
HAL Id: hal-03122974
https://hal.science/hal-03122974

Submitted on 27 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

State Machine based Human-Bot Conversation Model
and Services

Shayan Zamanirad, Boualem Benatallah, Carlos Rodriguez, Mohammadali
Yaghoubzadehfard, Sara Bouguelia, Hayet Brabra

To cite this version:
Shayan Zamanirad, Boualem Benatallah, Carlos Rodriguez, Mohammadali Yaghoubzadehfard, Sara
Bouguelia, et al.. State Machine based Human-Bot Conversation Model and Services. Advanced
Information Systems Engineering - 32nd International Conference, CAiSE 2020, Jun 2020, Grenoble,
France. pp.199-214, �10.1007/978-3-030-49435-3_13�. �hal-03122974�

https://hal.science/hal-03122974
https://hal.archives-ouvertes.fr

State Machine based Human-Bot Conversation
Model and Services

Shayan Zamanirad1, Boualem Benatallah1,2, Carlos Rodriguez1, Mohammadali
Yaghoubzadehfard1, Sara Bouguelia2, and Hayet Brabra2

1 University of New South Wales (UNSW), Sydney Australia
{shayanz, boualem, crodriguez, m.yaghoubzadehfard}@cse.unsw.edu.au

2 LIRIS – University of Claude Bernard Lyon 1, Villeurbanne, France
{sara.bouguelia,hayet.brabra}@univ-lyon1.fr

Abstract. Task-oriented virtual assistants (or simply chatbots) are in
very high demand these days. They employ third-party APIs to serve
end-users via natural language interactions. Chatbots are famed for their
easy-to-use interface and gentle learning curve (it only requires one of
humans’ most innate ability, the use of natural language). Studies on hu-
man conversation patterns show, however, that day-to-day dialogues are
of multi-turn and multi-intent nature, which pushes the need for chatbots
that are more resilient and flexible to this style of conversations. In this
paper, we propose the idea of leveraging Conversational State Machine
to make it a core part of chatbots’ conversation engine by formulating
conversations as a sequence of states. Here, each state covers an intent
and contains a nested state machine to help manage tasks associated
to the conversation intent. Such enhanced conversation engine, together
with a novel technique to spot implicit information from dialogues (by
exploiting Dialog Acts), allows chatbots to manage tangled conversation
situations where most existing chatbot technologies fail.

Keywords: Conversational Chatbot · State Machine · Natural Lan-
guage Processing · REST API.

1 Introduction

Messaging bots, software robots, and virtual assistants (hereafter for simplicity
called chatbots), are used by millions of people every day [9]. Applications such
as Siri, Google Now, Amazon Alexa, Baidu and Cortana have a presence in our
living rooms and are with us all the time. New chatbots are developed contin-
uously, from those providing psychological counseling to task-oriented chatbots
that help book flights and hotels. They use human-friendly interfaces, using nat-
ural language (e.g., text or voice), to access complex cognitive backend, which
tries to understand user needs and serve them by invoking the proper services.
Despite the interest and usage of chatbots, their interactions with users are still
in primitive stage.

2 S. Zamanirad et al.

Studies on human-chatbot conversation patterns (e.g. [21]) reveal that, in
practice, conversations are multi-turn, where there may exist missing informa-
tion (e.g. “location”) in users’ utterances (e.g. “what will the weather be like
tomorrow?”) that needs to be fulfilled by the chatbot before an actual API call
be invoked. Other examples include an invocation of an API by the chatbot to
resolve the value of a missing parameter, a question by a chatbot to a user to
confirm an inferred intent value or make a choice among several options, ex-
tracting an intent parameter value from the history of user and chatbot interac-
tions. In addition, according to studies on human-chatbot dialogue patterns (e.g.
[25]), switching between different intents is a natural behaviour for users. Thus,
there is a need for more dynamic and rich abstractions to represent and reason
about multi-turn and multi-intent conversational patterns. The main challenge
of achieving this objective arise from variations in open-end interactions and the
large space of APIs that are potentially unknown to developers.

In this paper, we propose a multi-turn and multi-intent conversational model
that leverages Hierarchical State Machines (HSMs) [7][27]. HSMs are a well-
known model suited to describing reactive behaviours, which are very relevant
for conversations but other specific users-bot-API conversation behaviours must
be modelled too. More specifically, HSMs reduce complexity that may be caused
by the number of states that are needed to specify interactions between users,
chatbots and services.

In this approach, conversations are represented as a sequence of states each
covering an intent. A state relies on a nested state machine to manage required
tasks towards handling an intent to completion. Transitions between states are
triggered when certain conditions are satisfied (e.g., detection of new intent,
detection of missing required parameter). The proposed conversational model
and engine, together with new techniques to identify implicit information from
dialogues (by exploiting Dialog Acts [25]), enable chatbots to manage tangled
and multi-turn conversational situations. In summary, our contribution is three-
folded:

– We propose the concept of conversation state machines as an abstraction to
represent and reason about dialog patterns. Conversational state machines
represent multi-turn and multi-intent conversations where state represent in-
tents, their parameters and actions to realise them. Transitions automatically
trigger actions to perform desired intent fulfilment operations. The proposed
model extends hierarchical state machine model, to effectively support com-
plex user intents through conversations among users, chatbots services and
API invocations.

– We propose a dialog act recognition technique to identify state transition
conditions. We use dialog acts to specify interaction styles between users,
chatbots and APIs (e.g., user submit utterance, chatbot detect missing slot
value, chatbot ask user to provide missing slot value, user submit a new
utterance to supply missing value).

– We develop a conversation management engine that is used to initiate, mon-
itor and control the run-time interactions between users, chatbots and APIs.

Hierarchical State Machine based Conversation Model and Services 3

The knowledge required at runtime by the conversation management engine
is extracted from chatbot specification (i.e,, developer supplied user intents)
and user utterances. In this way, the conversation manager automates the
generation of run-time nested conversation state machines that are used to
deploy, monitor and control conversations with respect to user intents and
utterances.

2 Related Work

Conversational Bots. Bots are computer programs that provide natural lan-
guage conversations between users and software systems. The input of such sys-
tems is natural language utterances (text/voice). The system also generates an
appropriate response (in form of text/voice) back to the user. Bots are generally
categorized into two classes [5][15]: (i) Non-task oriented, and (ii) Task oriented.

Non-task oriented bots focus on open domain conversations with users (i.e,
non predefined goal of conversations). Examples for this type of bots include
DBpediabot [1], Cleverbot3 and Mitsuku4. This type of bots handle open-domain
conversations and hardly keep track of conversation states and are therefore not
designed to perform specific user tasks (e.g., task management).

Task-oriented bots, on the other hand, allow users to accomplish a goal (e.g.
maintain schedules [6]) using information provided by users during conversations.
Since the focus of this paper is on task-oriented bots, the word “chatbot” refers
to this type of bots for simplicity. Task-oriented bots are classified into two cate-
gories [5]: pipeline and end-to-end. A pipeline-based chatbot is built with a set of
components, each responsible for a specific task [5]. Research in this area mainly
focuses on such tasks, including user intents classification [26], finding slot/value
pairs [8] and controlling dialog states [9]. Interested readers are referred to [10]
for a comprehensive discussion. On the other hand, end-to-end chatbots leverage
the idea of generative models and apply neural-based approaches [18] to train
and build a model that can decide what the next system action should be by
looking at the dialog history [24]. Such chatbots take in user utterances (as se-
quences of input tokens [10]) and generates actions (such as API invocations,
database queries) as sequences of output tokens. Research in this context in-
cludes the work by Rastogi et al. Li et al. [18] tackled the problem of building
an end-to-end model by considering it as a task completion system, where its
final goal is to complete a task (e.g. booking ticket), Furthermore, using mem-
ory networks [28], and query reduction networks [23] are other approaches that
have been proposed to tackle the challenge of having end-to-end conversational
chatbots.

Dialogue Management. Controlling the conversation flow, known as dialogue
management, is one of the key tasks in conversational chatbots. Dialogue man-
agement includes keep tracking of information that is entered implicitly or ex-

3 https://www.cleverbot.com/
4 https://www.pandorabots.com/mitsuku/

4 S. Zamanirad et al.

1. User Book a table at Time for Thai please
2. Chatbot What is the date?

3. User hmmm... never mind! Do I have any appointment on Saturday

4. Chatbot I cannot see anything on your calendar, you look free for Saturday.

5. User Ok, thanks!

Fig. 1. User changes the intent to know about her calendar schedule

plicitly by users, managing complex interactions with users, and choosing appro-
priate actions based on the history of interactions [13]. Research in this context
includes the work by Lopez et al. [19], who leveraged the concept of workflows
by proposing a system that takes a business process model and generates a list
of dialog management rules to deploy/run the chatbot.

Henderson et al. [11] formalized interactions as hidden states with random
sequences and transition probabilities using Markov decision processes (MDP)
trained on example conversations. More advanced techniques that build on NLP
provide rule- and template-based conversations for data science tasks [14], pattern-
matching over context-aware conversations for DevOps processes [2], nested and
sequence conversations to accomplish complex data science tasks [9], integration
of state machines and re-enforcement learning for dialog optimization [7], state
and slot tracking during conversations [16]. However, these efforts do not focus
on augmenting conversations with knowledge that is essential for the superim-
position natural language interactions over large number of evolving APIs.

We identified two main limitations in the works above: First, they heavily rely
on the availability of massive amounts of annotated data, structured knowledge
base and conversation data. Collecting domain-specific dialog data is laborious
[26] and hinders scalability in the context of larger and multi-domain systems.
Second, existing end-to-end systems are hard to trace: They can be consid-
ered “black-boxes” that accept user utterances in input and return new system
states/actions as output. Since in this paper we are addressing the issue of sup-
porting multi-intent conversations in chatbots, the use of existing probabilistic
approaches such as memory networks and MDPs becomes prohibitive due to the
need for collecting huge training datasets for the intents that the chatbot aims
to support. We therefore opt for pipeline-based chatbots, built with a set of key
components designed to perform specific tasks (e.g. intent recognition). As we
will discuss in the following sections, the main difference between our approach
and existing pipeline-based ones is the clear separation between the conversation
logic and actual implementation of such logic. At the center of our approach,
we utilize the concept of HSMs [27][7] by formulating user-chatbot interaction
as a sequence of states. Such abstraction helps bot developers seamlessly de-
fine/choose user intent(s) they would like their chatbot to support.

3 Human-Chatbot Conversations

A conversation between user and chatbot can be formulated as a sequence of ut-
terances. For example, to answer user utterance “Please remind @Sarah that we

Hierarchical State Machine based Conversation Model and Services 5

have meeting tomorrow by 1:30PM”, after performing the task (e.g. reminder)
chatbot replies with, e.g., “Ok, reminder sent to Sarah”. Studies on human con-
versation patterns [12][20][22] reveal that human-chatbot dialogue can be divided
into three categories:

– Single Intent5 - Single Turn : Interaction between user and chatbot is
in the form of <Question, Answer> pairs. The assumption here is that user
provides all the required information (e.g. slots6/values) at once, in one single
utterance [30]. Thus, each utterance from user (e.g. “Please text Bob that we
are in meeting room 401K”) has a reply from chatbot (“’We are in meeting
room 401K’ is sent to Bob”). This type of conversation is stateless, i.e, each
user utterance is treated separately without using any knowledge from past
conversations or context. Thus, if any information is missing in user utterance
(e.g location, date), chatbot is not able to perform the required task (e.g.
book a flight ticket)). Finally, in this type of conversation, parties talk about
only about one specific intent (e.g. schedule meetings [6]) during the whole
conversation.

– Single Intent - Multi Turn : Providing missing information (e.g. location,
date) to generate a complete intent is a common behaviour that people follow
in their daily conversations [12][15]. For example, while talking to a friend
on the phone we may ask, “I’m going to have lunch, do you you have any
suggestion?” to get some ideas for lunch. However, without specifying the
place where we are at (e.g. “UNSW”) or our preference for today (e.g. “Thai
food”, “Sandwich”, “noodle”), our friend is less likely able to give us concrete
suggestions. Thus, she asks questions to get more details (e.g. “Where are
you?”, “What do you prefer”, “Do you like something soupy?”). Similar
to this example, information (e.g. “departureDate”, “destinationCity”) that
chatbot needs to perform a task (e.g. call Expedia API to book a flight ticket)
is scattered across multiple user utterances.

– Multi Intent - Multi Turn : In this type of conversation, the intent contin-
uously changes. Figure 1 exemplifies a dialogue where user changes the intent
by asking about “her appointment on the weekend”. Changing intent is some-
thing usual that people do in their day-to-day conversations [12]. However,
participating in a multi-intent conversation where conversation information
is scattered into multiple utterances, is a challenging task for chatbots [24].
Such difficulty stems mainly from the challenges of identifying user intent
changes [21], and tracking slots information for each intent in a conversation.
In the following sections, we explain our approach to empower chatbots in
handling this type of conversations by utilising Hierarchical State Machines
(HSMs).

5 An intent refers to users’ purposes, which a chatbot should be able to respond to
(e.g. “find restaurant” or “book table”).

6 A slot is an important information that is necessary for a chatbot to understand in
order to be able to serve the correct answer (e.g. location, data, time)

6 S. Zamanirad et al.

4 Conversation State Machines

We propose to represent User-Chatbot-API conversations using an extended
hierarchical state machine model. In this model, a state machine contains a
set of states representing user intents. We call these states, “intent-states”. An
intent-state characterizes the fulfillment of specific user intent. In the following,
we describe different types of states and transitions between states:

Basic Intent State: When user utterance carries all the required information
to fulfill the user intent, chatbot does not need to communicate with user to get
any further information. We call this state a basic intent state, where chatbot
has everything needed to perform required action (e.g., API call). For exam-
ple, given a user utterance (e.g.“What is the weather forecast in Sydney?”) with
an intent (e.g. “GetWeather”), chatbot invokes an API (e.g. OpenWeatherMap
to get weather condition) and returns a message to user (e.g. “We have Scat-
tered showers in Sydney.”). The interaction between user and chatbot is straight
forward, without any further question from chatbot.

Nested State: If user utterance has missing information, then the chatbot
needs to communicate with user to get missing values before it perform further
actions to fullfill the intent. In this situation, the intent-state relies on other
nested states [9] to complete the intent. More specifically, a nested state is used
by chatbot to ask user for missing values of intent slots. Based on user response
a nested state is divided into two categories: (i) nested slot-value state, and (ii)
nested slot-intent state.

Nested slot-value state represents a situation where user explicitly provides
“value” for the slot-filling question asked by chatbot. For example, in restaurant
booking chatbot, given the chatbot question “What is the date?” (to fulfill book-
ingDate slot), user answers with “This Sunday”. This answer does not require
any further processing as it provides the missing slot (e.g. bookingDate) value.

Nested slot-intent state represents a situation where user does not provide slot
“value” directly, but provides an utterance with a new request (i.e, new intent)
that the chatbot needs to process to obtain the missing value. For example,
considering the restaurant booking chatbot, given the chatbot question “What is
the date?”, user replies with “Which day of the weekend am I free?”. The answer
from the user is another utterance whose processing identifies another intent
which is represented by another intent-state e.g. “CheckCalendar”. In order to
obtain the slot value in this case, the parent intent-state (“BookRestaurant”)
triggers a transition to a nested slot-intent state (“CheckCalendar”).

4.1 Transitions between States

Transitions between states are triggered when actions are performed (e.g., asking
a clarification question to a user to resolve an intent parameter value) or upon
the detecting intent switch in conversations (i.e, detecting a new intent). We
identify three types of transitions: (i) new intent, (ii) nested slot.value, and (iii)
nested slot.intent transitions.

Hierarchical State Machine based Conversation Model and Services 7

 G
et

W
ea

th
er

SearchBusiness

GetWeather

 G
re

et
in

g

 S
ea

rc
hB

us
in

es
s

 G
re

et
in

g

En
d-

U
se

r

"What is the weather forecast in Sydney?"

Intent: "GetWeather"
Slot/Value: "location: Sydney"

Greeting

Search
Business

Get
Weather

"We have light rain in Sydney"

Fig. 2. Transition between intent-states based on user intent - current intent-state is
denoted by blue color, “new intent” transition is highlighted in orange

New intent transitions refer to the movements between intent-states. The state
machine transits to an a new intent-state if the processing of a new user utter-
ance identifies a new intent (an intent is that is not handled by the current
conversation state). Figure 2 shows an example of “new intent” transition be-
tween two intent-states (SearchBusiness, GetWeather). For example, assuming
that state machine is in “Greeting” intent-state, user asks for restaurant sug-
gestions. User utterance i.e. “Any Italian restaurant near Kingsford” triggers a
transition to move from the state “Greeting” (current intent-state) to the state
“SearchBusiness” (new intent-state). Then after, user utters another request,
e.g. “What is the weather forecast in Sydney?”). This new user utterance has a
different intent (e.g. “GetWeather”). Thus, it triggers a transition to move from
“SearchBusiness” to “GetWeather” intent-state (blue colored state in Figure 2).

Nested slot.value transition represents the movement of state machine to
nested slot-value state. The state machine moves to a slot-value state if user
provides a “value” for the missing slot upon a bot request for such value. Fig-
ure 3 shows an example of “nested slot.value” transition within “GetWeather”
intent-state. For example, to fill a missing slot (e.g. location), state machine
moves from parent state “GetWeather” (current intent-state) to the nested slot-
value state “location” (depicted with red colour in Figure 3) where chatbot asks
user to provide information (e.g. “Where are you?”). User replies with a value
(e.g. “I’m in Sydney”). The state machine moves back from nested slot-value
state “location” to the parent state “GetWeather” to continue the conversation
with user.

Nested slot.intent transitions indicate the movements of state machine to
nested slot-intent states. For example, to fill a missing slot (e.g. location), chatbot

8 S. Zamanirad et al.

En
d-

U
se

r

"What is the weather forecast?"

"Where are you?"

nested slot.value G
etW

eather

"I'm in Sydney"

"We have light rain in Sydney"

G
etW

eather

En
d-

U
se

r
location Basic

fulfilled

location Basic

Fig. 3. Transition to nested slot-value state denoted by red color

asks user to provide information (e.g. “Where are you?”). User’s answer (e.g.
“Where is my home town?”) carries another intent (e.g. “GetUserDetails”) to
obtain the missing value. This new intent is handled by a nested state in which
the value of the missing value is obtained (e.g., by invoking an API).

5 Generating State Machines

We devise “State Machine Generater” (SMG), a service that is used to generate
a state machine that allows chatbot to manage conversations at run-time. SMG
takes as input (i) user utterances, and (ii) bot specification which is a set of
intents (e.g. Greeting, SearchBusiness, GetWeather, GoodBye). In the following,
we explain the steps taken by SMG to generate a state machine.

5.1 Generating Intent States from Bot Specification

When SMG receives a bot specification (i.e, a set of user intents), it creates an
intent-state per user intent. For example, an intent-state, namely SearchBusiness
state is created to represents the user intent “SearchBusiness” (i.e, get list of
restaurants and cafes).

SMG creates intent-states for two types of user intents. The first type of
user intent is general communication intent (e.g. Greeting, GoodBye). These
intents are fullfiled using (question, answer) pairs that do not require any API

Hierarchical State Machine based Conversation Model and Services 9

Table 1. Examples of Dialog Acts in a conversation between user and chatbot.

User Chatbot

Is there any Italian restaurant around?
[New Intent]

Where are you?
[Request Information]

I’m in Kingsford.
[Provide Information]

I found Mamma Teresa in “412 Anzac Pde...”
[Provide Information]

invocation. The second type of user intent requires the invocation of an API
method to be completed. For example, in “GetWeather” user intent, the chatbot
needs to invoke OpenWeatherMap API to retrieve weather conditions and fulfills
user intent.

5.2 Generating Transitions between States

At run time, the bot generates three types of transitions namely ”new intent
state”, ”intent state to nested slot.value state”, ”intent state to nested slot.intent
state”. To generate these transitions, we leverage dialog acts [25]. In this section,
we first describe dialog acts and then we explain how SMG generates transitions
using dialog acts.

Dialog Acts Understanding user needs and engaging in natural language con-
versations requires chatbot to identify hidden actions in user utterances, called
dialog acts. Whether the user is making a statement, or asking a question, or
negotiating on suggestions, are all hidden acts in user utterances [4].

In a nutshell, dialog acts convey the meaning of utterances at the level of
illocutionary force [15]. For instance, 42 dialog acts were identified in [25]. In-
spired by this work and empirical studies on human-chatbot conversations [12],
we adapted dialog acts to the requirements of multi intent - multi turn chatbots
that leverage APIs. Table 1 shows examples of these dialog acts.

More specifically, we focus on the following dialog acts:

– U-New Intent : this act indicates that user has a new intent. For example,
when user says “Which day of this weekend am I free?”), her intention is to
know about her availability time for the weekend (intent is e.g. CheckCalen-
dar).

– C-Request Information : This act indicates that chatbot asks user to pro-
vide missing slot value. For example, chatbot asks the user (e.g. “Where are
you?”) to provide her location.

– U-Provide Information : This act indicates that user provides an infor-
mation (e.g. “15 March”) for a former question asked by the chatbot (e.g.
“What is the date?”).

– U-Provide Nested Intent : This act indicates that user provides utterance
(e.g. “When is my birthday?”) to answer a former question asked by chat-
bot (e.g. “What is the date?”). The completion of this utterance requires
transition to a nested intent state.

10 S. Zamanirad et al.

– C-Provide Information : This act indicates that chatbot replies to user
request by providing an answer. For example, chatbot answer (e.g. “I found
Mamma Teresa, it’s in 412 Anzac Parade...”) to the question asked by user
(e.g. “Is there an Italian restaurant around?”).

Generating Transitions. We annotate user-chatbot conversation messages us-
ing dialog acts. Thus, sequences of dialog acts (e.g. <C-request info, U-provides
info, ...>) can be inferred from conversations. We call these sequences dialog act
patterns. Dialog act patterns are used by the SMG to generate state transitions.

New Intent-State - The SMG generates this type of transition upon identifying
the dialog act patterns:

– <U-new intent>: It describes a situation where user starts a conversation
by uttering a request (e.g. What is the weather forecast for Sydney today?)
which is annotated with U-New Intent dialog act. This triggers a “new intent-
state” transition from “Greeting” (current intent-state) to the “GetWeather”
intent-state (as shown in Figure 2 with blue color).

– <..., C-provide info, U-new intent>: It represents a situation where user
utters another request (annotated with U-New Intent dialog act) right after
an answer from chatbot. The chatbot answer is related to a request asked by
user in previous conversation turns. For example, when chatbot answers user
request with e.g. “The weather in Sydney is sunny today”, the user asks a new
utterance i.e. “I want to drink slushy, is there any McDonald’s around?”.
The new user utterance carries a new intent (e.g. SearchRestaurant). This
triggers a “new intent-state” transition from “GetWeather” intent-state to
“SearchRestaurant” intent-state.

Intent state to nested slot.value state - The SMG generates this type of tran-
sition upon identifying the following pattern: <..., C-request info, U-provide
info>. This pattern describes a situation where user utters a request with miss-
ing information that the chatbot needs before it can fulfills the user intent. Thus,
chatbot asks user to provide the missing information. In this case the user an-
swer provides the missing value. Figure 3 shows an example of “nested slot.value”
transition within “GetWeather” intent-state. For example, when user asks for
weather condition (“What is the weather forecast?”), a “nested slot.value” tran-
sition from “GetWeather” intent-state (current state) to “location” nested slot-
value state is created. Chatbot then asks “Where are you?” and user replies with
“I’m in Sydney”. The state machine then goes back to the parent intent-state
“GetWeather”.

Nested slot.value state to nested slot.intent state - SMG generates this type of
transition upon identifying the following pattern: <..., C-request info, U-provide
nested intent>. This pattern describes a situation where a chatbot asks user
to provide a value for a missing slot value (e.g. location). The user answers
with another request with an intent to compute this value using another service.
For example, when chatbot asks “Where are you?”, the user answers with the
utterance “Where is my home town?” which is annotated with U-Provide Nested

Hierarchical State Machine based Conversation Model and Services 11

APM

SMG
DAR

UP SM

BRG

Detects user dialog acts Generates states and transitions

Stores Slots/Values per intent

Invokes APIs

Generates NL responses

Extracts Intent and Slots/Values

Fig. 4. Conversation Manager Architecture

Intent dialog act. This pattern triggers a “nested slot.intent” transition from
“location” nested slot-value state (current state) to “GetUserDetails” nested
intent-state. In this state, chatbot invokes an API to get the “user home town”.
The result (e.g. “Sydney”) is the value for missing slot (e.g. location).

6 Conversation Manager Service

In order to support multi-intent and multi-turn conversations, chatbots need we
devise a service that initiates, monitors and controls conversations. This service
is called conversation manager. It utilises a set of components to communicate
with users, manages the hierarchical state machine, and invoke APIs.

6.1 Conversation Manager Architecture

Figure 4 shows the architecture of conversation manager service. In terms of soft-
ware architecture, the conversation manager relies on the following components
namely Utterance Parser (UP), Dialog Act Recogniser (DAR), State Machine
Generator (SMG), Slot Memory (SM), API Manager (APM) and Bot Response
Generator (BRG). While UP, APM and BRG are general components that exist
in every chatbot and we refer interested readers to [13][5] for details about such
components. In this section, we describe DAR, SMG, and SM implementation
details.

6.2 Dialog Act Recogniser

DAR classifies user utterance into a corresponding dialogue act class. It can use
any classification model such as Naive Bayes, MaxEntropy and Support Vector
Machine (SVM). In the current implementation, DAR uses a Bi-LSTM classifier
[17] trained on Switchboard Dialogue Act Corpus7 which contains 1155 human
to human conversations with dialog act annotations.

7 https://web.stanford.edu/jurafsky/swb1 dialogact annot.tar.gz

12 S. Zamanirad et al.

6.3 State Machine Generator

SMG leverages pyTransitions8, an off-the-shelf python library to generate state
machines. To generate intent-states for general user intents, SMG initialises the
Machine class from the library with intent-state (e.g. Greeting, GoodBye) along
with an initial state (e.g. Greeting). To generate intent-states for intents with
API invocations, SMG uses an extension module in the library. It imports Nest-
edState class from the library with initialization arguments as “name” and “chil-
dren”. “name” refers to the name of intent (e.g. SearchBusiness) and “children”
refers to required slots of the API (e.g. type, location). To generate transitions,
SMG uses the “add transition” operation in Machine class of pyTransitions li-
brary. A transition is generated by passing the “source” (e.g. GetWeather) and
“destination” (e.g. SearchBusiness) states as arguments to the operation.

6.4 Slot Memory Service

“Remembering” the information that user provides in each turn is an essential
feature for chatbots. This feature is indispensable when it comes to multi-intent
conversations, where conversations involve several intents and slot values might
be missing in some conversation turns [9]. Having a component that helps recall
such information from user utterances throughout the conversation is there-
fore necessary. This is where the Slot Memory (SM) service comes into play.
SM stores extracted information from user utterances (e.g. intents, slots/values)
sourced from utterance parser component in each turn of conversation. In the
current version of SM, it uses Redis9 to store, update and fetch slots/values (e.g.
“location”: “Barker street”) information per intent (e.g. SearchBusiness).

7 Validation

In order to explore how our proposed conversational model effectively empowers
chatbots to handle multi-intent multi-turn conversations we run a user study.
To exploit this model within chatbots, we create two services for bot develop-
ers: (i) API-KG, an API Knowledge Graph which contains information about
APIs, their methods and annotated training dataset associated to them. (ii)
Bot Builder, a service that semi-automates chatbot development and deploy-
ment. Bot Builder takes any intent of interest from bot developer and deploys a
trained chatbot (with our conversation model embedded inside) over third-party
platforms (such as DialogFlow). We refer the interested reader to our work [29]
for more explanation of these services.

Participants. We involved PhD students in Computer Science with experience
in cloud services as participants for this user study.

8 https://github.com/pytransitions/transitions
9 https://redis.io/

Hierarchical State Machine based Conversation Model and Services 13

Study scenario. Participants were asked to build a devops chatbot to inter-
act with Amazon Elastic Compute Cloud (EC2)10. We chose devops domain
because of its multiple intents nature. It is a challenging domain for chatbots
to handle many intents in conversations. All chatbots in this study should sup-
port the following intents: {Run, Stop, Start, Terminate, Describe}Instances,
{Create, Describe}Volumes, {Create, Describe}Snapshots and DescribeImages.
These intents are chosen based on daily basis devops tasks for cloud infrastruc-
ture admins; therefore, a devops chatbot is expected to handle such intents for
end-users (e.g. cloud admins). Each participant was asked to build four versions
of his/her chatbot using the following setups:

– Wit.ai: Participants were asked to use this platform in their chatbots to
recognise intents/slots. However, this platform does not have any dialogue
management mechanism[3]. Therefore, chatbots that leverage this platform
are only able to handle single-turn conversations. The aim of this setup is to
emphasize the need for multi-turn conversations.

– Wit.ai + iConverse11: In this setup, participants were asked to leverage our
proposed conversational model along with Wit.ai in their chatbots. Thus,
chatbots are able to manage multi-turn conversations.

– DialogFlow: This platform not only offers intent/slot recognition feature, but
it also provides a simple conversational model for chatbots. Thus, chatbots
can handle multi-turn conversations. We consider this conversational model
as the baseline.

– DialogFlow + iConverse: For this setup, participants used our proposed
model instead of the baseline model (provided by DialogFlow). The aim
is to see if there is any performance boost in chatbots in handling complex
and ambiguous interactions.

Results and Findings. We collected a gold standard dataset of 100 utterances
for mentioned 10 intents, on average 10 utterance per intent, from Amazon EC2
CLI guideline12. We use this dataset to analyse the performance of chatbots by
considering the following criteria: (RQ1) “how many messaging rounds, includ-
ing both user and chatbot messages, needed to complete all intents?”, (RQ2) how
many times, on average, chatbot asks user to fulfill missing information for all
intent?, (RQ3) “how many times chatbot forgets the topic of conversation (user
intent) due to filling a missing information?”, and (RQ4) how many times, on
average, chatbot forgets user provided values for missing information in all in-
tents? (due to intent changes). As we leveraged on third-party NLU platforms
(Wit.ai and DialogFlow) for the Utterance Parser (UP) component in our con-
versational model, we could no measure the intent/slot recognition accuracy of
chatbots in this study.

The evaluation results (Table 2) shows that leveraging Wit.ai (without no
dialogue management mechanism) leads to have low performance in user intent

10 https://aws.amazon.com/ec2/
11 For simplicity, we call our conversational model as iConverse in this section.
12 https://docs.aws.amazon.com/cli/latest/userguide/cli-services-ec2.html

14 S. Zamanirad et al.

Table 2. Evaluation results. We report on average values for RQs on the settings, Wit
baseline (WA-B), DialogFlow baseline (DF-B), Wit + iConverse (WA-I), DialogFlow
+ iConverse (DF-I)

Criteria
Settings Performance Upgrades

WA-B WA-I DF-B DF-I WA-B ->WA-I DF-B ->DF-I

RQ1 120.5 34.1 78.6 39 56.61% 50.38

RQ2 NA 6.4 40.1 8.5 84.03% 78.80%

RQ3 NA 0.7 17.2 0.3 95.93% 98.25%

RQ4 NA 0 26.1 0 100% 100%

accomplishment metric (RQ1) when interactions are in the form of multi-turn.
This supports the need for leveraging a conversation engine within the body of
chatbots. Combining Wit.ai (as NLU model) with our proposed conversational
engine, however, delivers promising performance upgrades in RQ1 and RQ2 met-
rics comparing to the baseline model (conversation model provided by Wit.ai)
by 56.61% and 84.03%, respectively. Moreover, chatbots that benefit from our
conversation engine along with DialogFlow (as NLU model only), experienced a
boost in performance for RQ3 and RQ4 by 98.25% and 100%. This elevation in
performance for RQ4, compare to the baseline model, is because of exploiting
the Slot Manager (SM) component inside our proposed model. Due to space
limits, gold dataset along with evalution results in-depth details are available to
interested reader13.

8 Conclusions and Future Work

In this paper we proposed a novel approach for the management of multi-intent
multi-turn conversations based an extended HSM model. We proposed state ma-
chine generation techniques to support the automated initiation, monitoring and
control of conversatipns. Our work also comes with its own limitations and space
for possible improvements. For instance, we plan to extend our current study
to involve qualitative studies by exploring how chatbots with our conversation
model perform compare to the chatbots using conversation models provided by
third-party platforms.

Acknowledgement. We acknowledge Data to Decisions CRC (D2D-CRC) and
LIRIS Laboratory for funding this research.

References

1. Athreya, R.G., Ngomo, A.C.N., Usbeck, R.: Enhancing community interactions
with data-driven chatbots - the dbpedia chatbot. WWW ’18 (2018)

2. Bradley, N.C., Fritz, T., Holmes, R.: Context-aware conversational developer as-
sistants. ICSE ’18 (2018)

13 https://tinyurl.com/t9hqyx4

Hierarchical State Machine based Conversation Model and Services 15

3. Braun, D., et al.: Evaluating natural language understanding services for conver-
sational question answering systems. ACL ’17 (2017)

4. Bunt, H.: The semantics of dialogue acts. IWCS ’11 (2011)
5. Chen, H., Liu, X., Yin, D., Tang, J.: A survey on dialogue systems: Recent advances

and new frontiers. arXiv preprint arXiv:1711.01731 (2017)
6. Cranshaw, J., et al.: Calendar.help: Designing a workflow-based scheduling agent

with humans in the loop. CHI ’17 (2017)
7. Cuayahuitl, H., Renals, S., Lemon, O., Shimodaira, H.: Reinforcement learning of

dialogue strategies with hierarchical abstract machines. SLT ’06 (2006)
8. Deoras, A., Sarikaya, R.: Deep belief network based semantic taggers for spoken

language understanding. Interspeech ’13 (2013)
9. Fast, E., Chen, B., Mendelsohn, J., Bassen, J., Bernstein, M.S.: Iris: A conversa-

tional agent for complex tasks. CHI ’18 (2018)
10. Gao, J., Galley, M., Li, L., et al.: Neural approaches to conversational ai. Founda-

tions and Trends R© in Information Retrieval 13(2-3), 127–298 (2019)
11. Henderson, M.S.: Discriminative methods for statistical spoken dialogue systems.

Ph.D. thesis, University of Cambridge (2015)
12. Hutchby, I., Wooffitt, R.: Conversation analysis. Polity (2008)
13. Ilievski, V., Musat, C., Hossmann, A., Baeriswyl, M.: Goal-oriented chatbot dialog

management bootstrapping with transfer learning. arXiv:1802.00500 (2018)
14. John, R.J.L., Potti, e.a.: Ava: From data to insights through conversations.
15. Jurafsky, D., Martin, J.H.: Speech and language processing, vol. 3. Pearson (2017)
16. Kim, A., et al.: A two-step neural dialog state tracker for task-oriented dialog

processing. Computational Intelligence and Neuroscience (2018)
17. Kumar, H., Agarwal, A., Dasgupta, R., Joshi, S.: Dialogue act sequence labeling

using hierarchical encoder with crf. AAAI ’18 (2018)
18. Li, X., Chen, Y.N., Li, L., Gao, J., Celikyilmaz, A.: End-to-end task-completion

neural dialogue systems. arXiv preprint arXiv:1703.01008 (2017)
19. López, A., Sànchez-Ferreres, J., Carmona, J., Padró, L.: From process models to

chatbots. In: Giorgini, P., Weber, B. (eds.) CAiSE ’19 (2019)
20. Lupkowski, P., Ginz, J.: A corpus-based taxonomy of question responses. IWCS

’13 (2013)
21. Mensio, M., et al: Multi-turn qa: A rnn contextual approach to intent classification

for goal-oriented systems. WWW ’18 (2018)
22. Raux, A., Eskenazi, M.: A finite-state turn-taking model for spoken dialog systems.

NAACL ’09 (2009)
23. Seo, M., Min, S., Farhadi, A., Hajishirzi, H.: Query-reduction networks for question

answering. arXiv preprint arXiv:1606.04582 (2016)
24. Shah, P., et al.: Building a conversational agent overnight with dialogue self-play.

arXiv:1801.04871 (2018)
25. Stolcke, Andreas, e.a.: Dialogue act modeling for automatic tagging and recognition

of conversational speech. Computational linguistics 26(3), 339–373 (2000)
26. Yan, Z., Duan, N., Chen, P., Zhou, M., Zhou, J., Li, Z.: Building task-oriented

dialogue systems for online shopping. AAAI ’17 (2017)
27. Yannakakis, M.: Hierarchical state machines. Springer TCS (2000)
28. Yoshino, K., Hiraoka, T., Neubig, G., Nakamura, S.: Dialogue state tracking using

long short term memory neural networks. IWSDS ’16 (2016)
29. Zamanirad, S.: Superimposition of natural language conversations over software

enabled services. Ph.D. thesis, University of New South Wales, Sydney, Australia
(2019), http://handle.unsw.edu.au/1959.4/65005

30. Zamanirad, S., et al.: Programming bots by synthesizing natural language expres-
sions into api invocations. ASE ’17 (2017)

