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Abstract—We proposed a real time Total-Variation denosing
method with an automatic choice of hyper-parameter λ, and the
good performance of this method provides a large application
field. In this article, we adapt the developed method to the non
stationary signal in using the sliding window, and propose a noise
variance monitoring method. The simulated results show that our
proposition follows well the variation of noise variance.

I. INTRODUCTION

The signal y = (y1, · · · , yn) ∈ Rn collected by the sensor
can be modeled as y = u+ ε: a random noise ε is added into
the useful physical quantity u with E(ε) = 0 and V(ε) = σ2.

We aim to recover the unknown vector u = (u1, · · · , un) ∈
Rn from the noisy sample vector y = (y1, · · · , yn) with yi
the sample at time ti by minimizing the Total Variation (TV)
restoration functional:

F (u, y, τ, λ) =

n∑
i=1

τi(yi − ui)2 + λ

n−1∑
i=1

|ui − ui−1| (1)

with the sampling period vector τ = (τ1, · · · , τn) where τi =
ti − ti−1 for i = 2, ..., n and τ1 = τ2. The restored signal is
given by:

u∗(λ) = (u∗1(λ), · · · , u∗n(λ)) = arg minF (u, y, τ, λ) (2)

Total Variation based restoration method is first proposed
in [1]. The authors in [2] show an one-to-one correspondence
between the noise’s variance σ2 and λ under the hypothesis
of constant σ2.

Motivated by the local influence of new sample to the actual
restoration, we propose a new online TV-restoration algorithm
with an automatic choice of λ for a stationary 1D signal in [3]
following the work of [4] and [5]. The simulations show that
our proposition of λ has a similar performance as the existing
methods (SURE [6] and cross-validation). Further more, our
method is appropriate for real time applications, especially for
monitoring a huge amount of sensors in the plants.

In this paper, we adapt our online TV restoration to non-
stationary signals and propose a noise variance monitoring
method. The key idea is to use our method on sliding windows,
assuming a local-stationary hypothesis for the signal. This
hypothesis is strong but commonly used already (e.g. Fourier
analysis, wavelet transforms). In order to apply our method to
non-stationary signals, two problems are to be solved:

• Adaptation of the online method to the sliding window
• Choice of the length of window (noted m)

The first point ensures the efficiency of the real time estima-
tion, while the second point guarantees the good performance
of method. Indeed, the choice of m needs to get a compromise
between the local stationarity assumption and the performance
of the restoration : the local influence of new sample vanishes
inside a large window, but the local stationarity may not be
respected. In this article, we present how we deal with the
first point by supposing the influence of new sample stays
inside the actual window. The choice of window size is the
immediate perspective of this work.

The increasing of the ground noise is one of the index
for the failures of the sensors or the production lines. This
motivates us to build a real time application for detecting
the variance behaviour by tracking the windowed restoration
residuals y−u∗(λours) based on the automatic determination
of hyper-parameter λours.

Here some approaches for the estimation of noise variance
σ2 are listed:

• Most of the existing methods are based on the separation
of signal and noise by digital filters [7] or the restoration
methods (i.e. wavelet transform) [8] [9] [10]. See more
details in [11].

• Median absolute deviation (MAD) proposed by [12] is a
heuristic method largely used in many applications, espe-
cially for the choice of threshold for wavelet restoration.
σ can be estimated by the median absolute deviation of
the finest scale of wavelet coefficients By of signal.

With respect to the previous cited method, our approach,
based on the separation of signal and noise, proposes a
procedure for simultaneously signal denoising and variance
tracking, while being implementable as an online application.
Thanks to its low time and space complexity, our proposition
is well fitted to the cases with limited computation resource.

The paper continues as it follows: in Section II we will at
first present our TV-based denosing method with an automatic
choice of parameter. Then, in Section III we adapt our online
implementation to the sliding window. After that, in Section
IV, we will present an application of our algorithms: noise
variance monitoring, and compare with an existing method.
Finally, conclusions and perspectives are depicted.



II. AUTOMATIC TOTAL VARIATION DENOISING METHOD

In this section, we will present the automatic TV-denoising
method proposed in [3]. We aim to recover the unknown vector
u from the noisy samples y by minimizing (1). The restored
signal is given by (2).

Since we work on a finite sample of signal, the solution
u∗(λ) can be seen as piece-wise constant. We use the segment
representation [5] for the constant pieces: a set of index {j, j+
1, · · · , k} of consecutive points whose restored value u∗j (λ) =
· · · = u∗k(λ) is called a segment if it can not be enlarged, which
means if u∗j−1(λ) 6= u∗j (λ) (or j = 1) and u∗k(λ) 6= u∗k+1(λ)
(or k = n). The segments number of u∗(λ) is noted as K(λ).
The following notations are introduced for the jth segment:
• Index set Nj(λ) = {ij1, · · · , ijnj} with nj(λ) =

Card(Nj(λ)), containing the point inside the jth segment.
• Segment level v∗j (λ) = u∗i (λ),∀i ∈ Nj(λ)

An equivalent representation of u∗(λ) is provided by
the couple {v∗(λ),N (λ)} with the set of segment levels
v∗(λ) = (v∗1(λ), · · · , v∗K(λ)) and the cutting set N (λ) =
{N1(λ), · · · ,NK(λ)}. By knowing the cutting set N (λ), let
s(v) = {s0(v), s1(v), · · · , sK(v)} with si(v) = sign(vi+1 −
vi) for i = 1, · · · ,K − 1, si(v) = 0 for i ∈ {0,K} and
s∗ = s(v∗(λ)), the level of jth segment is given by:

v∗j (λ) = y∗j +
λ

2Tj
(s∗j − s∗j−1) (3)

with j = 1, · · · ,K(λ), the segment length Tj =
∑
i∈Nj(λ) τi

and the mean value inside jth segment y∗j =

∑
i∈Nj(λ)

τiyi

Tj .
A different value of λ may provide a solution with distinct

cutting set: λ = 0 gives u∗ = y, while λ = ∞ implies a
parsimonious solution u∗ = mean(y). The authors in [4] and
[5] show there exists a sequence Λ = (λ1, · · · ) such that for
every λ ∈ Λ, two segments are merged together by moving
λ− η to λ with η → 0 and η > 0. In [3], we propose a rapid
algorithm to estimate the dynamic of the restoration in function
of λ, and the dynamic is saved in Λ◦ = (λ◦1, λ

◦
2, · · · , λ◦n−1)

with λ◦i the value of λ for which the points i and i + 1 are
merged into the same segment. Λ◦ allows the computation of
the cutting set and also the restoration (3) for every λ.

Based on the variation of the extremums number (noted
g(λ)) of the restoration u∗(λ) in function of λ, an adaptive
choice of hyper-parameter λ is proposed. The simulations
show that our estimation λours has a similar performance
as the state of the art, all near the optimal choice λop =
arg min |u∗(λ) − unet|2 with unet the original signal. The
variation ∆g(λ) = g(λ − η) − g(λ) for every λ ∈ Λ with
η → 0 and η > 0 can be estimated simultaneously as the
estimation of Λ◦.

Besides, we analysed the local influence for Λ◦ by intro-
ducing a new sample at the end of the sequence: only a small
part of Λ◦ will be changed. Based on this local property, we
proposed an online algorithm (c.f. Algorithm 2 in [3]) for
updating the changed part of Λ◦, which is more efficient than
the offline estimation. The locality of the TV-denoising method
motives the adaption of sliding windows in order to deal with

the non-stationary signal by supposing the local stationarity
inside the window.

III. ADAPTATION TO SLIDING WINDOWS

In this section, we will present some theoretical elements
about the local behaviour of the restoration and adapt the
online algorithm to the sliding window.

Let’s consider two successive sliding windows wmi =
[i, i + m − 1] and wmi+1 = [i + 1, i + m]. wmi+1 is in-
deed wmi in which we take off the first point (yi, τi) and
add a new point (yi+m, τi+m). For the sake of simplic-
ity, F (u{i,··· ,i+m−1}, y{i,··· ,i+m−1}, τ{i,··· ,i+m−1}, λ) is noted
Fmi (λ) for the window wmi .

We note u∗ = (u∗1, · · · , u∗m) = {v∗,N ∗} = arg minFmi
the restoration of the window wmi with a given λ and û =
(û1, · · · , ûm) = {v̂, N̂ } = arg minFmi+1 for wmi+1. For the
simplify of the presentation, the elements concerning about
wmi will be noted with the symbol ∗, and that for wmi+1 will
be noted with the hat symbol. For example, with a given λ,
the segment length set of u∗(λ) is T ∗ = {T ∗1 , · · · , T ∗K̂} with
T ∗j =

∑
i∈N∗j

τi, and that of û(λ) is T̂ = {T̂1, · · · , T̂K̂} with

T̂j =
∑
i∈N̂j τi.

A. Influence of slide movement

The update of the restored signal and Λ◦ need to consider
the sliding of index from wmi to wmi+1: a restored signal point
is unchanged under the influence of slide movement means
ûi−1 = u∗i . In [3], we have shown the following theorem:

Theorem 1. If there exists an index j ∈ {2, · · · ,K∗(λ)} such
that sign(v∗j−1(λ)−v∗j (λ)) = sign(v∗K∗(λ)(λ)−yi+m), then the
new restoration û satisfies ûi−1(λ) = u∗i (λ) for all i < ij,∗1 .

The diffusion from the “new” sample yi+m changes only
the last part of the restoration of wim up to the junction of
two segments whose sign of the variation v∗j−1(λ) − v∗j (λ)
corresponds to that of v∗K∗(λ) − yn+1. We can establish a
similar theorem (c.f. Theorem 2) about the influence of the
first sample yi for the sliding window wmi : the removing of
yi changes only the first part of the restoration.

Theorem 2. If there exists an index j ∈ {2, · · · ,K∗(λ)} such
that sign(v∗j−1(λ)− v∗j (λ)) = sign(v∗1(λ)− yi), then the new
restoration û satisfies ûi−1(λ) = u∗i (λ) for all i ≥ ij+1,∗

1 .

To sum up, for updating u∗(λ) to û(λ), only the first
part and the last part of wmi are changed. We introduce the
following definitions:

Definition 1. With l = ij1 and p = ik+1
1 − 1 where j is

the last segment which satisfies sign(v∗j−1(λ) − v∗j (λ)) =
sign(v∗K∗(λ)−yi+m) and k is the first segment which satisfies
sign(v∗k−1(λ)− v∗k(λ)) = sign(v∗1(λ)− yi),

• (u∗l , · · · , u∗m) is called non right-isolated sequence.
• (u∗2, · · · , u∗p) is called non left-isolated sequence.
• (u∗p+1, · · · , u∗l−1) is called isolated sequence.



B. Independence between segments

For a given λ (noted λ̂), the cutting set N (λ̂) is given by
{λ◦ > λ̂}. In [3], we showed the points inside a segment of
u∗(λ̂) are merged for λ ≤ λ̂, and the value of λ provoking
the merge is independent to the points outside the segment.
By introducing the virtual segment (c.f. Definition 2), the
estimation of Λ◦ can be broken into some sub-problems for
each virtual segment, shown in proposition 1. Combining with
Theorem 1 and 2, the elements of {λ◦ ≤ λ̂} inside the isolated
sequence are not influenced by the sliding movement.

Definition 2. Let λ̂ and ελ > 0, we have v∗(λ̂) =
{v∗1(λ̂), · · · , v∗l (λ̂)}, N ∗(λ̂) = {N1, · · · ,Nl}, l = K(λ̂) and
si = sign(v∗i+1(λ̂)−v∗i (λ̂)). For each segment {yNj , τNj} with
j = 1, · · · , l, let ci = λ̂+ελ

2si
, we introduce the virtual segment

{y+Nj , τ
+
Nj} where:

• y+N1
= {yN1

, v∗1(λ̂) + c1}, y+Ni = {v∗i (λ̂) −
ci−1, yNi , v

∗
i (λ̂) + ci} for i = 2, ..., l − 1 and y+Nl =

{v∗l (λ̂)− ci−1, yNl}.
• τ+N1

= {τN1 , 1}, τ+Ni = {1, τNi , 1} for i = 2, ..., l − 1

and τ+Nl = {1, τNl}.

Proposition 1. Let Λ◦ the estimation with all the samples
{yi, ti}1,··· ,n, Λ◦i = {λ◦i,1, · · · } the estimation with ith virtual
segment (y+Ni , τ

+
Ni), Λ∗1 = {λ◦i,1, · · · , λ◦i,ni−1} and Λ∗i =

{λ◦i,2, · · · , λ◦i,ni} for i = 2, ..., l, we have ∪i=1,··· ,lΛ
∗
i =

{λ|λ ≤ λ̂ ∩ λ ∈ Λ◦}.

C. Proposition of algorithms

Let ∆g◦ = (∆g(λ◦1),∆g(λ◦2), · · · ,∆g(λ◦n−1)), we note
Λ◦,i and ∆g◦,i, two vectors of size m− 1, the result of wmi .
The results after sliding (Λ◦,i+1 and ∆g◦,i+1) based on wmi+1

can be obtained by updating Λ◦,i and ∆g◦,i. In this section, we
will propose an adaptation of the online algorithm proposed
in [3] to the sliding windows.

We will only talk about the online estimation of Λ◦,i+1

from Λ◦,i in detail. By following, we note an application of
Algorithm 1 in [3] to a given sequence of {y} and {τ} as
Λ◦ = DP-TV({y}, {τ}).

After choosing λ̂ ≥ 0, called the cutting point, the restora-
tion for wmi is u∗(λ̂). We note p and j∗p respectively the last
point and the last segment of the non left-isolated sequence of
u∗(λ̂), l and j∗l respectively the first point and the first segment
of the non right-isolated sequence of u∗(λ̂). Λ◦,i+1 can be
splitted into four parts: (1) Some elements of {λ◦,i+1 > λ̂}
are changed following Proposition 1; (2) The non left-isolated
sequence {λ◦,ij ≤ λ̂} for j ≤ p is influenced by the removal
of the first point yi; (3) The non right-isolated sequence
{λ◦,ij ≤ λ̂} for j ≥ l is influenced by the new point yi+m; (4)
All λ◦,ij ≤ λ̂ remains the same for p < j < l.

We treat at first the unchanged part of Λ◦,i+1 : due to the
sliding, we have λ◦,i+1

{λ◦,i+1
p,··· ,l−2≤λ̂}

= λ◦,i
{λ◦,np+1,··· ,l−1≤λ̂}

.
For the non right-isolated sequence, let ελ > 0, Λa =

λ◦,i+1

{λ◦,i+1
l−1,··· ,m≤λ̂}

can be estimated by DP-TV(y+a , τ
+
a ) with the

virtual segment:

• y+a = {v∗j∗l (λ̂)− λ̂+ελ
2sign(vj∗

l
−vj∗

l
−1)

, y{l+i−1,··· ,m+i}}
• τ+a = {1, τ{l+i−1,··· ,m+i}}
For the non left-isolated sequence, Λb = λ◦,i+1

{λ◦,i+1
1,··· ,p−1≤λ̂}

can

be estimated by DP-TV(y+b , τ
+
b ) with the virtual segment:

• y+b = {y{i+1,··· ,i+p−1}, v
∗
j∗p

(λ̂) + λ̂+ελ
2sign(vj∗p+1−vj∗p )

}
• τ+b = {τ{i+1,··· ,i+p−1}, 1}
The isolated and non-isolated sequences can be assembled

in Λc = {λc1, · · · , λcm} with λck = λak−l+3 for k ≥ l − 1,
λck = λbk for k ≤ p− 1 and λck = λ◦,nk−1 for p < k − 1 < l.

It remains {λ◦,i+1 > λ̂}. Let d = {λ◦,i+1 > λ̂} = {λck >
λ̂} containing indeed all the last points of û(λ̂)’s segments,
we can get Λd = λ◦,i+1

d = DP-TV(v̂(λ̂), T̂ (λ̂)).
Finally, Λ◦,i+1 can be assembled in the following way:

λ◦,i+1
k =

{
λck, if λdk ≤ λ̂.
λdα(i) if λdk > λ̂.

(4)

with α : Z→ Z giving the index of i in the vector d.

Algorithm 1 Adaptation of online implementation to sliding
window
Require: (yi, · · · , yi+m−1), (τi, · · · , τi+m−1), (yi+m, τi+m)
Require: Λ◦,i, ∆g◦,i, λ̂

Find non right-isolated sequence (l, · · · ,m) of u∗(λ̂)
Find non left-isolated sequence (2, · · · , p) of u∗(λ̂)
if p < l − 2 then

(Λa,∆ga) = DP-TV(y+a , τ
+
a )

(Λb,∆gb) = DP-TV(y+b , τ
+
b )

Λ◦,i+1 = {Λb{1,··· ,p−1},Λ
◦,i
{p+1,··· ,l−1},Λ

a
{2,··· ,m−l+2}}

∆g◦,i+1 = {∆gb{1,··· ,p−1},∆g
◦,i
{p+1,··· ,l−1},

∆ga{2,··· ,m−l+2}}
d = {λ◦,n+1 > λ̂}
(λ◦,i+1
d ,∆g◦,i+1

d ) = DP-TV(û(λ̂), T̂ (λ̂))
else . Offline approach

(λ◦,i+1
d , T ◦,i+1

d ) = DP-TV({yi, τi}i+1,··· ,i+m)
end if
return Λ◦,i+1 and ∆g◦,i+1

The algorithm adapted for the sliding window is gathered
in Algorithm 1. With a nice choice of λ̂, only a small part
(Λa,Λb,Λd) of the window wmi+1 needs to be updated from
wmi . The overall complexity for estimating the restoration in
a window of size m is in O(m).

IV. PERFORMANCE ANALYSIS

A. Application: noise variance monitoring

We propose a method to detect the shift of noise’s variance
based on our restoration method. For an observed signal
y of size n, we take a sliding window of size m with
m < n. For each window wmi = [i, i + m − 1], we
apply our denoising algorithm with the automatic choice of λ
on the sequence (yi, · · · , yi+m−1) and (τi, · · · , τi+m−1) for
estimating the restored signal u∗(λours) = (u∗1, · · · , u∗m). The
windowed restoration residual for j = 1, · · · ,m is given by



rj = yj+i−1 − u∗j (λours). The variance of the residual inside
wmi can be estimated by:

(σm∗i )2 =
1

m− 1

m∑
j=1

(rj − ri)2 (5)

with the mean value of residual ri = 1
m

∑m
j=1 rj .

For the simulation, the realisation of noise is ε̂j = yj −
unet,j with unet the original signal and j = 1, · · · , n. The
estimation of noise variance inside wmi is given by (σ̂mi )2 =

1
m−1

∑i+m−1
j=i (ε̂j − ε̂i)2 with ε̂i = 1

m

∑i+m−1
j=i ε̂j .

Since u∗(λours) is a good restoration of y, u∗(λours) is sim-
ilar to unet, which means that σm∗i is close to σ̂mi inside each
window wmi . The noise variance σm∗i is not available for the
real data, so we propose to detect the variance shift in using the
residual standard deviation vector σm∗ = (σm∗1 , · · · , σm∗n−m+1)
with σm∗i obtained by (5) inside wmi .

For estimating the noise variance in a window of size m,
the complexity is in O(m) with the online implementation of
sliding windows, and the overall complexity for monitoring
the variance of a signal of size n is in O((n−m)m).

B. Results

For the variance monitoring, the method needs to estimate
accurately the noise variance in the ideal case or capture the
variation of noise variance in a more realistic case. We use
the following criteria to evaluate the performance of variance
monitoring:
• Average bias: bias = 1

n−m+1

∑n−m+1
i=1 (σ̂mi − σm∗i ).

• Ratio of σ̂m variation explained:

RVE = 1−
∑n−m+1
i=1 (σ̂mi − bias− σm∗i )2∑n−m+1

i=1 (σ̂mi − σ̂m)2
(6)

where σ̂m = 1
n−m+1

∑n−m+1
i=1 (σ̂mi ). It is indeed the R2

score between σm∗ and σ̂m after adjusting those two
items to the same mean value. The range of RVE is
between 0 and 1, and RVE = 1 indicates our estimation
explains perfectly the variation of σm∗.

We compare our method with Median Absolute Deviation
(MAD) following the proposition of [12] and [13] σ =
1.4826 median(By − median(By)) with By =

√
2(y2 −

y1, · · · , yn − yn−1).
At first, we will fix the window length m = 400. Our

proposition requires a parameter q which stands for the
length of the approximation of derivative, see p13 in [3] for
more details. We apply our method to a simulated piece-
wise constant signal with the parameter log10(q) = 1. An
example of y = unet + ε with ε ∼ N (0, σ2

a(t)) and the
noise variance estimations for 400-point windows w400

i and
i = 1, · · · , 1601 are shown in Figure 1. Both MAD and our
method propose an estimation similar to the variance of the
noise realisation for every sliding windows. In this example,
our method underestimates the variance, but the variation of
our estimation inside each sliding window follows well that of
σ̂400. The estimation of MAD propose a precise estimation,

Fig. 1: Up: example of simulated signal: y = unet + ε with
ε ∼ N (0, σ2

a(t)). Colors : y (red) and unet (blue). Middle: the
standard deviation of the noise realisation ε = y − unet (red
line), that estimated by our method (green line) and by MAD
(blue line) inside every w400

i . Down : histogram of non-right-
isolated sequence’s length inside each sliding window

but does not follow the variation of σ̂400. The lengths of non-
right-isolated sequence of each window (shown in Figure 1)
are all smaller than the window size m = 400, which means
the influence of new sample remains inside each window and
validates our assumption about the local influence.

We tested the performance of MAD and our approach under
different noise hypothesis:

1) N (0, σ2
a(t)) with σa(t) = 1 + 0.0005t.

2) N (0, σ2
b (t)) with σb(t) = 1 for t ≤ 1000 and σb(t) =

1 + 0.001t for t > 1000.
3) U(−d(t), d(t)) with d(t) = 1 + 0.0005t.
4) N (0, σ2

a(t)) + U(−1, 1).

We have done 100 simulations for each type of noise,
and the results are gathered in Figure 2. For the most of
simulations, our method has RVE > 0.95 and over-performs
MAD. The high RVE score indicates the variation of our
proposition fits well that of the real values, which allows us
to monitor the variation of noise variance for the real signal
collected from plants. However, the result of Bias shows our
method always underestimates the noise variance, and the bias
depends on the type of noise, which means we can not estimate
an universal offset for removing this bias in a general case.

The windows length m plays an important role in the
restoration and the variance monitoring, and needs to be cho-
sen carefully. A short window can capture the local variation of
the noise variance, but the new point (i.e (i+m)th point) may
still have a strong influence for the pass (i.e. i− 1, i− 2, · · · ),
which limits the restoration performance for the pass points.



Fig. 2: Result of 100 simulations with different types of noise
(1): N (0, σ2

a(t)), (2): N (0, σ2
b (t)), (3): U(−d(t), d(t)) and

(4): N (0, σ2
a(t)) + U(−1, 1). Up: RVE Score of our method;

Middle: RVE score of MAD; Down: Bias of our method.

Fig. 3: RVE score of 100 simulations with different window
length (m).

We test m = 200, 400, 600 with the noise ε ∼ N (0, σ2
a(t)),

and the results are shown in Figure 3. A longer window
provides a better performance of monitoring. But the local
variation of σ2 will be neglected for a long window, and
the stationarity hypothesis inside the window is not validated
anymore. The choice of m is out of the scope of this article,
and it remains an open question.

To sum up, our method can not provide a precise estimation
of the noise’s variance values, but our estimation follows well
that of the real value with an estimation error depending on
the type of noise and the shape of original signal.

One of the applications of our method is to detect the shift
of noise variance. The residual variance may stay stable (i.e
σm∗i = σ) during the correct functional period, and the noise
variance shift can be detected by a prefixed threshold over
σm∗i comparing to the stable regime: e.g σm∗i > 1.2σ for
some successive sliding windows wmi .

V. CONCLUSION

In this article, we adapt the TV denoising method proposed
in [3] to sliding windows based on the local property of
the TV-denoising signal. We believe our adaptive choice of
λ works also for the non-stationary signal. We applied the
adaption to some signals with time varying noise variance.
The simulated results shows that the variance of the restoration
residuals follows well that of the noise, and this method can
be used to monitor the ground noise variance in real time with
a limited computation resource. However, the performance
of these methods (both restoration and variance monitoring)
depends on the choice of window length m which is our on-
going research interest. The application to the real data is also
one of on-going works.
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