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Abstract

The A − ϕ − B magnetodynamic Maxwell system given in its potential and space-time formulation
is a popular model considered in the engineering community. It allows to model some phenomena such
as eddy current losses in multiple turn winding. Indeed, in some cases, they can significantly alter the
performance of the devices, and consequently can no more be neglegted. It turns out that this model is
not yet analytically studied, therefore we here consider its well-posedness. First, the existence of strong
solutions with the help of the theory of Showalter on degenerated parabolic problems is established.
Second, using energy estimates, existence and uniqueness of the weak solution of the A − ϕ − B is
deduced.
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1 Introduction

Let T > 0 and Ω ⊂ R3 be an open simply connected bounded domain with a Lipschitz boundary Γ that is
also connected. The usual Maxwell system is given in Ω× [0, T ] by Faraday’s law :

curl E = −∂tB, (1)

and Ampère-Maxwell’s law :
curl H = ∂tD + J, (2)

with initial and boundary conditions to be specified. Here, E stands for the electric field, H for the magnetic
field, B for the magnetic flux density, J for the current flux density (or eddy current) and D for the displace-
ment flux density. The Maxwell system also includes Gauss’ laws, i.e., the divergence equations div B = 0
and div D = q, with q the charge density, here supposed to be zero.

In the low frequency regime, the magneto-quasistatic approximation can be applied, which consists in
neglecting the temporal variation of the displacement flux density with respect to the current density [5, 2],
see also [1, p. 743], so that the propagation phenomena are not taken into account. Consequently, Ampère-
Maxwell’s equation (2) reduces to Ampère’s equation

curl H = J. (3)
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The current density J can be decomposed in two terms such that J = Js + Je. Js is a known distribution
current density generally generated by a coil, which is supposed to be divergence free in Ω and such that
supp(Js) = Ωs ⊂ Ω. Je represents the unknown eddy current generated in the conductive part Ωc ⊂ Ω,
in which the electrical conductivity σc is not equal to zero. Both equations (1) and (3) are linked by the
material constitutive laws (here we restrict ourselves to the isotropic and linear case):

B = ν−1 H, (4)

Je = σc E, (5)

where ν stands for the reluctivity of the material. Figure 1 displays the domain configuration we are interested
in, in the case Ωs ∩Ωc = ∅. Boundary conditions associated with the previous system are given by B ·n = 0
on Γ, where n denotes the unit outward normal along the boundary of Ω.

!

!
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∂Ωc
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σ=σc>0

Js

Ωe
ν > 0
σ = 0

Figure 1: Domains configuration.

In order to solve the problem with the magneto-quasistatic approximation, a formulation which is able
to take into account the eddy currents in Ωc and which verifies Maxwell’s equations in Ωe = Ω\Ωc must be
developed. This can be obtained by chosing the potential formulation often used for electromagnetic problems
[13]. Indeed from the divergence free property of B, namely div B = 0 in Ω, the boundary condition B ·n = 0
on Γ, and the fact that Ω is a simply connected domain, by Theorem 3.17 of [3], a magnetic vector potential
A can be introduced such that

B = curl A in Ω, (6)

with the boundary condition A × n = 0 on Γ. Like B, the magnetic vector potential A exists in the whole
domain Ω. To ensure its uniqueness, it is necessary to impose a gauge condition. The most popular one is
div A = 0 (the so-called Coulomb gauge). Moreover, from equations (1) and (6), an electric scalar potential
ϕ can be introduced in Ωc so that the electric field takes the form:

E = −∂tA−∇ϕ in Ωc. (7)

Similarly to the magnetic vector potential, the electric scalar potential must be gauged as well. To obtain
uniqueness, the averaged value of the potential ϕ on Ωc is taken equal to zero. From (4),(5), (6) and (7),
equation (3) leads to the so-called A− ϕ formulation:

curl (ν curl A) + σ
(
∂tA +∇ϕ

)
= Js. (8)

The great interest of this formulation relies in its effectivity in both domain Ωc and Ωe. Indeed, in Ωc we have
σ = σc, and in Ωe we have σ = 0 so that the second term vanishes and the A− ϕ formulation becomes the
classical A formulation used in the magnetostatic case. In a previous work [15], existence results for problem
(8) with appropriated boundary conditions have been derived, using a weak formulation that is used for the
numerical resolution by the Finite Element Method in the context of electromagnetic problems [8].
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Actually, Ωs is usually composed of multiple-turn windings, in which some eddy currents are also gener-
ated if Ωs ∩ Ωc 6= ∅. Consequently, when the working frequency (from imposed source) increases, the eddy
currents/induced currents in the windings must be considered to ensure a good description of the involved
physical phenomena. In particular, eddy current losses, composed of skin and proximity effect losses, have
to be investigated. A first possibility is to discretize each separate turn of each winding and to use the above
A − ϕ formulation. Unfortunately, such a way to proceed is seldom if ever an option, given the extremely
high computional cost in terms of memory requirements and computation time for fully-fledged 3D finite
element models of industrial configurations. Consequently, a homogenization is used in order to replace
the (litz-)wire bundle by a homogeneous domain. It consists in transforming a heterogeneous material like
a winding region (consisting of conductors, insulation and e.g. air) into a homogeneous material. In the
frequency domain, it amounts to the use of complex frequency-dependent proximity-effect reluctivity and
skin-effect impedance values. In the time domain, one way to model such a skin-effect is to employ an RL
ladder network of which the order determines the modeling accurary [11, 21, 18]. By analogy, these authors
introduce auxilliary inductions to approach the proximity-effect reluctivity. This allows to consider conduc-
tors of arbitrary cross-section and packing [10], and is used in 2D [11] as well as in 3D [21] finite element time
dependent models. Numerical simulations allow to validate the relevance of this approach by comparison
with experimental data, to evaluate for instance the leakage inductances in magnetic components [14], the
impedance of multi-turn coils [12], the effective resistance of the windings [17, 19], or skin and proximity
losses [20].

In the time domain, the skin effect is accounted for by directly adding the RL ladder circuit to the supply
circuit. In what follows, for the sake of simplicity, the skin effect is no further considered as it does not
influence the formulation. In many practical electrotechnical applications, the skin effect is negligible with
regard to the proximity effect [11, 21, 18].

From the mathematical point of view, the time dependent A − ϕ formulation has consequently to be
reformulated and generalized, by adding additional unknowns coming from the homogenization method. The
right time dependent A− ϕ−B formulation is then obtained by considering a new constitutive law, simply
replacing (4) by 

H
0
...
0

 = ν


curl A
B2

...
Bn

+ σsP∂t


curl A
B2

...
Bn

 , (9)

where the additional unknown B = (Bi)
n
i=2 are auxilliary induction components in the winding region Ωs ⊂ Ω,

while P is a given symmetric positive definite matrix of size 3n × 3n and σs is a given positive function in
Ωs that depends on some material properties (see the precise assumptions below) and on the number n that
characterizes the accurary of the approximation (the number of auxilliary induction components being clearly
equal to n − 1), see the identities (10) and (17)-(18) in [11] or the identity (10) in [18]. Note that the first
line of (9) is an extension of (4), a modification of the material law accounting for the proximity-effect losses.
Therefore using this first line, Ampère’s law (3), the splitting J = Js + Je, the identity (5), and (7) lead to
the differential equation

curl (ν curl A) + σc

(
∂tA +∇ϕ

)
+ σs

(
P11∂t(curl curl A) +

n∑
i=2

P1i∂t(curl Bi)

)
= Js, (10)

instead of (8). On the other hand one directly sees that the n−1 last lines of (9) yield a system of differential
equations in Bi, i = 2, · · · , n

σsP̂∂tB + σsP1∂t curl A + νB = 0, (11)

where P̂ = (Pij)2≤i,j≤n is the “submatrix” of P, where the first line and the first column of P are skiped.
Altogether using magnetic Gauss’ law, and the boundary and initial conditions, we arrive at the set of
equations (12)-(18) below. The advantage of the time dependent formulation is that it allows to consider
non-sinusoidal sources, e.g. pulse width modulation, as well as non-linearities in material laws. As said
before, the well-posedness of this problem is an open question. Therefore the goal of this paper is to establish
the existence and uniqueness of strong and weak solutions to this system.
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As previously, the domain Ω contains the conductor part Ωc assumed to be simply connected, and the
(not necessarily connected) source domain Ωs both with a Lipschitz boundary such that Ωc ⊂ Ω and Ωs ⊂ Ω.
The electrical conductivity is not equal to zero in Ωc (as previously), but this time is also considered different
from zero in Ωs, so that eddy currents may appear in Ωc ∪Ωs. The domain Ωe = Ω\(Ωc ∩Ωs) is now defined
as the part of Ω where the electrical conductivity is identically equal to zero. Two geometrical configurations
between Ωc and Ωs are supposed: either Ωc ∩ Ωs = ∅, i.e., Ωc and Ωs are disjoint or Ωs ⊂ Ωc, i.e., Ωs is
included into Ωc.

Let us finish this introduction by some notation used in the whole paper. On a given domain D, the
L2(D) norm is denoted by ‖ · ‖D, and the corresponding L2(D) inner product by (·, ·)D. The usual norm and
semi-norm on H1(D) are respectively denoted by ‖ · ‖1,D and | · |1,D. In the case D = Ω, we drop the index
Ω. Recall that H1

0 (D) is the subspace of H1(D) with vanishing trace on ∂D. Finally, the notation a . b and
a ∼ b means the existence of positive constants C1 and C2, which are independent of the quantities a and b
under consideration such that a ≤ C2b and C1b ≤ a ≤ C2b, respectively.

The paper is organized as follows. In section 2, the strong and weak formulations of the problem are
presented and the existence result is stated (see Theorem 2.1). Then, section 3 is devoted to the proof of
some preliminary results in order to apply a result of Showalter on degenerated parabolic problems. Finally, in
section 4 we prove energy estimates and the main result of our paper. Let us note that the case corresponding
to Ωc not simply connected as well as numerical aspects will be treated in a forthcoming work.

2 Formulation of the problem and the main result

Before stating the problem, let us specify the assumptions satisfied by the involved parameters introduced
before. We suppose that ν ∈ L∞(Ω) and that there exists ν0 ∈ R∗+ such that ν > ν0 in Ω. We also assume
that σc ∈ L∞(Ωc) and σs ∈ L∞(Ωs) and that there exists σ0 ∈ R∗+ such that σc > σ0 in Ωc and σs > σ0 in
Ωs. P is a symmetric positive definite matrix of size 3n× 3n given by

P = (Pij)1≤i,j≤n,

where each Pij is a 3× 3 symmetric matrix such that Pij = Pji. Below P̂ = (Pij)2≤i,j≤n is the ”submatrix”
of P, where the first line and the first column of P are skiped, that is still a symmetric positive definite
matrix, while P1 is the first column of P under P11, namely

P1 = (Pi1)2≤i≤n =


P21

P31

...
Pn1

 .

According to the introduction, the A − ϕ − B formulation of the magnetodynamic problem with skin and
proximity effects can be formulated as follows: Given the source Js that is divergence free in Ω (supported
in Ωs) and an initial datum A0 (both in an appropriate spaces described below), we look for A, ϕ, and
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B = (Bi)
n
i=2 (also in appropriate spaces described below) solutions of

curl (ν curl A) + σc

(
∂tA +∇ϕ

)
+ σs

(
P11∂t(curl curl A) +

n∑
i=2

P1i∂t(curl Bi)

)
= Js in Ω× (0, T ), (12)

div
(
σc

(
∂tA +∇ϕ

))
= 0 in Ωc × (0, T ), (13)

σsP̂∂tB + σsP1∂t curl A + νB = 0 in Ωs × (0, T ), (14)

A× n = 0 on Γ× (0, T ), (15)

σc (∂tA +∇ϕ) · n = 0 on ∂Ωc × (0, T ), (16)

A(t = 0, ·) = A0 in Ω, (17)

B(t = 0) = 0 in Ωs. (18)

At last, we recall the gauge conditions. Like mentioned in section 1, we choose the Coulomb one div A = 0
in Ω, and we ask for the averaged value of ϕ in Ωc to be equal to zero.

We now define L2(Ω) = L2(Ω)3,

X(Ω) = H0(curl,Ω) =
{

A ∈ L2(Ω) ; curl A ∈ L2(Ω) and A× n = 0 on Γ
}
,

XN (Ω) = {A ∈ X(Ω) : div A ∈ L2(Ω)},
X0(Ω) = {A ∈ X(Ω) ; div A = 0 in Ω},

H̃1(Ωc) =
{
ϕ ∈ H1(Ωc) ;

∫
Ωc

ϕ dx = 0
}
,

equipped with their usual norm

‖A‖2X(Ω) = ‖A‖2 + ‖ curl A‖2,∀A ∈ X(Ω),

‖A‖2X0(Ω) = ‖A‖2 + ‖ curl A‖2,∀A ∈ X0(Ω),

‖A ‖2XN (Ω) = ‖A ‖2X(Ω) + ‖div A‖2,∀A ∈ XN (Ω),

‖ϕ‖
H̃1(Ωc)

= |ϕ|1,Ωc
,∀ϕ ∈ H̃1(Ωc).

Let us note that XN (Ω) is compactly embedded into (L2(Ω))3 because the boundary ∂Ω is supposed to
be Lipschitz regular, see [23] or [3, Theorem 2.8]. Similarly, we set

H(div = 0,Ω) = {A ∈ L2(Ω) : div A = 0 in Ω},

that is a closed subspace of L2(Ω). Note that, here and below, div A = 0 in Ω means equivalently that

(A,∇ξ) = 0 ∀ ξ ∈ H1
0 (Ω).

We also need to introduce the following closed subspace of H(div = 0,Ω):

H0(div = 0,Ω) = {A ∈ H(div = 0,Ω) : A · n = 0 on ∂Ω}.

The variational (or weak) formulation associated with (12)-(18) is obtained in a usual way, multiplying

(12) by a test function A′ ∈ XN (Ω) (resp. (13) by a test function ϕ′ ∈ H̃1(Ωc) and (14) by a test function
B′ ∈ L2(Ωs)

3(n−1) ), integrating the results in Ω, formal integrations by parts and taking the sum we find

(σc(∂tA +∇ϕ), Ā
′
+∇ϕ̄′)Ωc + (σsP(curl ∂tA, ∂tB)>, (curl A′,B′)>)Ωs + ( ν curl A, curl A′ )Ω

+(νB,B′)Ωs
= (Js, A′ )Ωs

,∀ A′ ∈ XN (Ω) , ϕ′ ∈ H̃1(Ωc),B
′ ∈ L2(Ωs)

3(n−1). (19)
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An existence result for this problem can be stated as follows

Theorem 2.1. Let us assume that Js ∈ H1((0, T );H0(div = 0,Ωs)) and set Js,0 = Js(t = 0). Let A0 ∈
X0(Ω) be the unique solution of

( ν curl A0, curl A′ ) = (Js,0, A
′ )Ωs

,∀A′ ∈ XN (Ω).

Then problem (19) has a unique solution (A, ϕ,B) in H1(0, T ;X0(Ω))×L2(0, T ; H̃1(Ωc))×H1(0, T ;L2(Ωs)
3(n−1))

with A(t = 0) = A0 and B(t = 0) = 0.

Proof. The proof is postponed to section 4.

By the uniqueness of the solution, this local existence result directly allows to obtain a global one.
Note that by Theorem 1.17 of [4] (see also Corollary A.3 of [6]), any u ∈ H1(0, T ;E), where E is a Hilbert

space, is absolutely continuous on [0, T ] with values in E giving a meaning to the initial conditions in the
above Theorem.

3 Preparations for the application of a theorem by Showalter

Our results on existence and uniqueness rely on the following theorem:

Theorem 3.1 ([22], Theorem V4.B). Let Vm be a seminorm space obtained from a symmetric and non-
negative sesquilinear form m(·, ·), and let M ∈ L(Vm, V

′
m) be the corresponding operator given by Mx(y) =

m(x, y), for all x, y ∈ Vm. Let V be a Hilbert space which is dense and continuously embedded into Vm. Let a
be a continuous, sesquilinear and elliptic form on V and denote by A the corresponding isomophism from V
onto V ′. Let D = {u ∈ V : Au ∈ V ′m}. Then for any f ∈ C1([0,∞), V ′m) and y0 ∈ Vm, there exists a unique
solution y to {

(My)t(t) +Ay(t) = f(t) in V ′m, ∀t > 0,
My(0) = My0 in V ′m,

(20)

with the regularity
My ∈ C([0,∞), V ′m) ∩ C1((0,∞), V ′m)

and such that
y(t) ∈ D,∀t > 0.

Before going on, let us mention some hidden regularity of the solution y of the previous problem (20).

Lemma 3.2. Under the assumption of Theorem 3.1, y ∈ C((0,∞), V ), m(y, y) ∈ C1(0,∞) with

d

dt
m(y(t), y(t)) = 2<

〈
(My)t(t), y(t)

〉
,∀t > 0, (21)

where
〈
·, ·
〉

means the duality pairing between V ′m and Vm and finally

m(y(t), y(t))→ m(y0, y0) as t→ 0. (22)

Proof. The first identity of (20) can be equivalently written as

y(t) = A−1(f(t)− (My)t(t)),∀t > 0.

Since f−(My)t belongs to C((0,∞), V ′m) and A−1 is continuous from V ′m into V , the first assertion is proved.
For the second assertion, let us fix t > 0 and an arbitrary real number h > −t. Then we may write

m(y(t+ h), y(t+ h))−m(y(t), y(t))

h
=

〈My(t+ h)−My(t)

h
, y(t)

〉
+
〈My(t+ h)−My(t)

h
, y(t+ h)

〉
=

〈My(t+ h)−My(t)

h
, y(t)

〉
+
〈My(t+ h)−My(t)

h
, y(t)

〉
−

〈My(t+ h)−My(t)

h
, y(t)− y(t+ h)

〉
.
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The first two terms of this right-hand side clearly converge as h goes to zero, hence it remains to show
that the last term tends to zero. Indeed by the definition of the norm in V ′m, one has

∣∣〈My(t+ h)−My(t)

h
, y(t)− y(t+ h)

〉∣∣ ≤ ∣∣∣∣My(t+ h)−My(t)

h

∣∣∣∣
V ′m
|y(t)− y(t+ h)|Vm

where |z|Vm = m(z, z)
1
2 is the semi-norm associated with m. Since V is continuously embedded into Vm, one

deduces that

|
〈My(t+ h)−My(t)

h
, y(t)− y(t+ h)

〉
| .

∣∣∣∣My(t+ h)−My(t)

h

∣∣∣∣
V ′m
‖y(t)− y(t+ h)‖V .

By the regularity ofMy ∈ C1((0,∞), V ′m), the first factor of this right-hand side remains bounded as h goes
to zero, while the second factor tends to zero as one just shows that y ∈ C((0,∞), V ).

Altogether we deduce that

m(y(t+ h), y(t+ h))−m(y(t), y(t))

h
→
〈
(My)t(t), y(t)

〉
+
〈
(My)t(t), y(t)

〉
,

which shows that m(y, y) is C1 and that (21) holds.
Let us go on with the third assumption. First notice that for any z ∈ Vm, we have

|z|Vm = ‖Mz‖V ′m . (23)

Indeed we directly have
|z|2Vm

= m(z, z) =
〈
Mz, z

〉
≤ ‖Mz‖V ′m |z|Vm

,

which implies that
|z|Vm

≤ ‖Mz‖V ′m .

On the other hand, one has

‖Mz‖V ′m = sup
w∈Vm:|w|Vm≤1

|
〈
Mz, w

〉
| = sup

w∈Vm:|w|Vm≤1

|m(z, w)| ≤ |z|Vm
.

Applying the identity (23) to y(t)− y0 for any t > 0, we get

|y(t)− y0|Vm
= ‖My(t)−My0‖V ′m .

Therefore |y(t)−y0|Vm
tends to zero as t goes to zero, because this right-hand side does due to the regularity

My ∈ C([0,∞), V ′m) and the initial condition My(0) =My0. Finally as the triangle inequality is valid for
a semi-norm, we have

| |y(t)|Vm − |y0|Vm | ≤ |y(t)− y0|Vm ,

which guarantees that (22) holds.

In order to apply this theorem, we show that problem (12)-(18) fits in the associated framework. This
requires some preliminary results. First as in [15], for A ∈ L2(Ω)3, we consider the unique solution ϕA ∈
H̃1(Ωc) of ∫

Ωc

σc∇ϕA · ∇χ̄ dx = −
∫

Ωc

σcA · ∇χ̄ dx,∀χ ∈ H̃1(Ωc). (24)

Such a solution exists by Lax-Milgram lemma and furthermore, by Cauchy-Schwarz’s inequality, we have

‖σ1/2
c ∇ϕA‖Ωc

≤ ‖σ1/2
c A‖Ωc

. (25)

By (24), we deduce that the field σc(A +∇ϕA) is divergence free in Ωc, i.e.,

div (σc(A +∇ϕA)) = 0 in Ωc, (26)
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and satisfies the boundary condition

σc(A +∇ϕA) · n = 0 on ∂Ωc. (27)

Now we introduce the space

Vm := {(A,B)> ∈ L2(Ω)× L2(Ωs)
n−1 : curl A ∈ L2(Ωs)},

and introduce the sesquilinear form

m((A,B)>, (A′,B′)>) =

∫
Ωc

σc(A +∇ϕA) · Ā′ dx+

∫
Ωs

σsPBA · B̄
′
A′ dx,∀(A,B)>, (A′,B′)> ∈ Vm,

where BA means the 3n column

BA =

(
curl A
B

)
.

Note that by (24) with χ = ϕA′ , we have∫
Ωc

σc(A +∇ϕA) · Ā′ dx =

∫
Ωc

σc(A +∇ϕA) · (Ā′ +∇ϕ̄A′) dx,

and consequently the form m is symmetric and non-negative (recall that P is symmetric positive definite)
with

m((A,B)>, (A,B)>) ∼ ‖A +∇ϕA‖2Ωc
+ ‖ curl A‖2Ωs

+ ‖B‖2Ωs
,∀(A,B)> ∈ Vm.

From its definition and from the linearity of the mapping A → ∇ϕA, the expression | · |m := m(·, ·) 1
2 is a

seminorm on Vm. It is indeed a seminorm but not a norm because by taking B = 0 and A = ∇ϕ, with
ϕ ∈ H1(Ω) different from zero, we find that |(∇ϕ,0)>|m = 0, while the pair (∇ϕ,0)> is different from zero.

Now recall that (see for instance [22]) the dual space V ′m of Vm is a Hilbert space that will be characterized
in the next lemma. We start with the case Ω̄c ∩ Ω̄s = ∅.

Lemma 3.3. If Ω̄c ∩ Ω̄s = ∅, then it holds

V ′m = {(A′, (B′i)ni=1) ∈ H0(div = 0,Ωc)× L2(Ωs)
n : B′1 ∈ Hc(div = 0,Ωs)}, (28)

In other words, l ∈ V ′m if and only if there exist A′ ∈ H0(div = 0,Ωc), B′1 ∈ Hc(div = 0,Ωs) and
B′i ∈ L2(Ωs), i = 2, · · · , n such that l = l(A′,(B′i)ni=1), where

l(A′,(B′i)ni=1)(A,B) :=

∫
Ωc

A′ · Ā dx+

∫
Ωs

(B′i)
n
i=1 · B̄A dx,∀(A,B) ∈ Vm, (29)

and

‖l‖V ′m ∼ ‖A
′‖Ωc

+

n∑
i=1

‖B′i‖Ωs
.

Proof. Denote the right-hand side of (28) by

Wm = {(A′, (B′i)ni=1) ∈ H0(div = 0,Ωc)× L2(Ωs)
n : B′1 ∈ Hc(div = 0,Ωs)},

that is a Hilbert space equipped with the inner product

((A′, (B′i)
n
i=1), (A′′, (B′′i )ni=1))Wm

=

∫
Ωc

A′ · Ā′′ dx+

∫
Ωs

(B′i)
n
i=1 · B̄

′′
dx.

The inclusion Wm ⊂ V ′m is direct since for (A′, (B′i)
n
i=1) ∈Wm, the linear form l(A′,(B′i)ni=1) defined above

is continuous on Vm. Indeed since A′ belongs to H0(div = 0,Ωc), for any (A,B) ∈ Vm, we have∫
Ωc

A′ · Ā dx =

∫
Ωc

A′ · (Ā +∇ϕ̄A) dx.
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Inserting this identity in (29) and applying Cauchy-Schwarz’s inequality we find that

|l(A′,(B′i)ni=1)(A,B)| . (‖A′‖Ωc + ‖(B′i)ni=1‖Ωs) m((A,B), (A,B))1/2.

For the converse inclusion, let us fix l ∈ V ′m, which, with the convention of [22, p. 5, 9], means that l is a
conjugate linear functional from Vm into C such that

|l(A,B)| . m((A,B), (A,B))1/2,∀(A,B) ∈ Vm. (30)

From this estimate, we first notice that

l(A,B) = l(A′′,B),∀(A,B), (A′′,B) ∈ Vm s.t. A+∇ϕA = A′′+∇ϕA′′ in Ωc, curl A′ = curl A′′ in Ωs. (31)

Now let us fix an extension operator E from H1(Ωs) to H1(R3) (see [9, p. 25]) that is a linear continuous
operator H1(Ωs) to H1(R3) satisfying (Eϕ)|Ωs

= ϕ, for all ϕ ∈ H1(Ωs). We further fix two (smooth)
functions ηs, ηc ∈ D(Ω) such that ηs = 1 in Ωs (resp. ηc = 1 in Ωc) and ηs = 0 in Ωc (resp. ηc = 0 in Ωs).
Then we set

Esϕ = ηsEϕ,∀ϕ ∈ H1(Ωs).

This define a linear operator from H1(Ωs) to H1
0 (Ω). We further notice that for any ϕ ∈ H1(Ωs), Esϕ

coincides with ϕ on Ωs and is equal to zero on Ωc.
Now we introduce a linear mapping F from Wm into Vm defined as follows: for any (A′′, (B′′i )ni=1) ∈Wm,

we set
F (A′′, (B′′i )ni=1) = (A,B),

where B = (B′′i )ni=2, and

A = ηcÃ
′′ + EsRB′′1 ,

where Ã′′ means the extension of A′′ by zero outside Ωc and the operator R is defined in Lemma 3.4 below.
Note that

A = A′′ in Ωc, curl A = B′′1 in Ωs. (32)

Now introduce the mapping

l0 : Wm → C : (A′′, (B′′i )ni=1)→ l(F (A′′, (B′′i )ni=1)),

that is clearly conjugate linear and continuous from Wm to C. Hence, by Riesz’s representation theorem,
there exists (A′, (B′i)

n
i=1) ∈Wm such that

l0(A′′, (B′′i )ni=1) =

∫
Ωc

A′ · Ā′′ dx+

∫
Ωs

(B′i)
n
i=1 · (B̄

′′
i )ni=1 dx,∀(A

′′, (B′′i )ni=1) ∈Wm. (33)

Now for (A,B) ∈ Vm, we set

A′′ = A|Ωc
+∇ϕA,B

′′
1 = curl(A|Ωs

),B′′i = Bi,∀i = 2, · · · , n. (34)

This yields a pair (A′′, (B′′i )ni=1) in Wm such that

l(A,B) = l(F (A′′, (B′′i )ni=1)),

due to (31), (32) and (34). This means that

l(A,B) = l0((A′′, (B′′i )ni=1)),

and, by (33) and (34), that

l(A,B) =

∫
Ωc

A′ · Ā′′ dx+

∫
Ωs

(B′i)
n
i=1 · (B̄

′′
i )ni=1 dx

=

∫
Ωc

A′ · Ā dx+

∫
Ωs

(B′i)
n
i=1 · B̄A dx.

This ends the proof.
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To complete the proof of the previous Lemma we need the next result.

Lemma 3.4. There exists a linear and continuous operator R from Hc(div = 0,Ωs) to H1(Ωs)
3 such that

curlRA = A in Ωs. (35)

Proof. By Lemma 3.5 of [3], the linear mapping

C : H1(Ωs)
3 → Hc(div = 0,Ωs) : Ψ→ curl Ψ,

is continuous and onto. Hence it admits a right inverse R, see [7, Thm 2.12], that is linear and continuous
from Hc(div = 0,Ωs) to H1(Ωs)

3.

Note that Theorem 3.12 of [3] implies that C is also continuous from H(curl,Ωs) into Hc(div = 0,Ωs).
We go on with the case Ωs ⊂ Ωc.

Lemma 3.5. If Ωs ⊂ Ωc, then it holds

V ′m = {(A′, (B′i)ni=2) ∈ H0(div = 0,Ωc)× L2(Ωs)
n−1 : curlA′ ∈ L2(Ωs)}, (36)

in other words, l ∈ V ′m if and only if there exist A′ ∈ H0(div = 0,Ωc) such that curlA′ ∈ L2(Ωs) and
B′ = (B′i)

n
i=2 such that l = l(A′,(B′i)ni=2), where

l(A′,B′)(A,B) :=

∫
Ωc

A′ · Ā dx+

∫
Ωs

B′A′ · B̄A dx,∀(A,B) ∈ Vm, (37)

and
‖l‖V ′m ∼ ‖A

′‖Ωc + ‖B′A′‖Ωs .

Proof. Denote the right-hand side of (36) by

Wm = {(A′, (B′i)ni=2) ∈ H0(div = 0,Ωc)× L2(Ωs)
n−1 : curl A′ ∈ L2(Ωs)},

that is a Hilbert space equipped with the inner product

((A′,B′), (A′′,B′′)Wm
=

∫
Ωc

A′ · Ā′′ dx+

∫
Ωs

B′A′ · B̄
′′
A′′ dx

The inclusion Wm ⊂ V ′m is proved as before. So we concentrate on the converse inclusion. Let us fix l ∈ V ′m
and introduce the mapping

l0 : Wm → C : (A′′,B′′)→ l(Ã′′,B′′),

that is clearly conjugate linear and continuous from Wm to C. Hence, by Riesz’s representation theorem,
there exists (A′,B′) ∈Wm such that

l0(A′′, (B′′i )ni=1) =

∫
Ωc

A′ · Ā′′ dx+

∫
Ωs

B′A′ · B̄
′′
A′′ dx,∀(A

′′,B′′) ∈Wm. (38)

Now for (A,B) ∈ Vm, we set
A′′ = A|Ωc

+∇ϕA, and B′′ = B. (39)

This yields a pair (A′′,B′′) in Wm such that

l(A,B) = l(Ã′′,B′′),

due to (31) and (39). This means that

l(A,B) = l0(A′′,B′′),

and we conclude as before.
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For further purposes, we also need the following density result.

Lemma 3.6. The space H1
0 (Ω)3 ×D(Ωs)

3(n−1) is dense in Vm.

Proof. As D(Ωs) is dense in L2(Ωs), it suffices to show that H1
0 (Ω)3 is dense in

Y := {A ∈ L2(Ω) : curl A ∈ L2(Ωs)},

equipped with the norm
‖A‖Y = ‖A‖Ω + ‖ curl A‖Ωs .

Note that
m((A,B)>, (A′,B′)>)

1
2 . ‖A‖Y + ‖B‖Ωs .

Hence convergence in the norm of the right-hand side norm implies convergence in the left-hand side semi-
norm.

So let us fix A ∈ Y and take an arbitrary positive real number ε. First by Proposition 2.3 of [3], there
exists A′ ∈ D(Ω̄s)

3 such that
‖A−A′‖H(curl,Ωs) ≤ ε. (40)

Now as before by using an extension operator EΩs
from H1(Ωs) to H1(R3) (see [9, p. 25]) and a (smooth)

functions ηΩs ∈ D(Ω) such that ηΩs = 1 in Ωs, we can consider A − ηΩsEΩsA
′ that belongs to L2(Ω \ Ωs).

Therefore there exists C ∈ D(Ω \ Ωs)
3 such that

‖A− ηΩs
EΩs

A′ −C‖Ω\Ωs
≤ ε. (41)

Then we set

D =

{
ηΩs

EΩs
A′ + C in Ω \ Ωs,

A′ in Ωs.

By construction D belongs to H1
0 (Ω)3. Furthermore by (40) and (41), we see that

‖A−D‖2Ω = ‖A−A′‖2Ωs
+ ‖A− ηΩs

EΩs
A′ −C‖2Ω\Ωs

≤ 2ε2,

while by (40)
‖ curl A− curl D‖Ωs ≤ ε.

These two estimates yield
‖A−D‖Y ≤ (1 +

√
2)ε.

The proof is then complete.

At this stage in order to apply Theorem 3.1, we define the Hilbert space

V = {(A,B) ∈ Vm : A ∈ XN (Ω)}

equipped with the inner product

((A,B), (A′,B′))V =

∫
Ω

(
curl A · curl Ā

′
+ div A div Ā

′
+ A · Ā′

)
dx

+

∫
Ωs

B · B̄′ dx,∀(A,B), (A′,B′) ∈ V.

We also introduce the sesquilinear form

a((A,B), (A′,B′)) =

∫
Ω

(
ν curl A · curl Ā

′
+ div A div Ā

′
)
dx

+

∫
Ωs

νB · B̄′ dx, ∀(A,B), (A′,B′) ∈ V,
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that is clearly continuous and coercive on V due the compact embedding of XN (Ω) into L2(Ω)3.
Furthermore V is clearly continuously embedded into Vm and is dense in Vm due to Lemma 3.6. Therefore

we have checked all assumptions of Theorem 3.1. Before stating a consequence of this theorem, we introduce

D={(A,B) ∈ V : ∃l ∈ V ′m : a((A,B), (A′,B′) = l(A′,B′),∀(A′,B′) ∈ V },

and show that elements of such a set are divergence free.

Lemma 3.7. For any (A,B) ∈ D, A is divergence free in Ω.

Proof. Fix (A,B) ∈ D, then there exists l ∈ V ′m such that

a((A,B), (A′′,B′′) = l(A′′,B′′),∀(A′′,B′′) ∈ V. (42)

For any f ∈ L2(Ω), we take the unique solution uf ∈ H1
0 (Ω) of

∆uf = f in Ω,

or equivalenty the unique solution of∫
Ω

∇uf · ∇v̄ dx = −
∫

Ω

fv̄ dx,∀v ∈ H1
0 (Ω).

By taking A′′ = ∇uf in (42) (allowed since ∇uf ∈ XN (Ω)) and B′′ = 0, we find∫
Ω

div Af̄ dx = l(∇uf ,0).

But in the case Ω̄c ∩ Ω̄s = ∅ by Lemma 3.3 (resp. in the case Ωs ⊂ Ωs by Lemma 3.5), l is in the form (29)
with (A′, (B′i)

n
i=1) ∈Wm (resp. in the form (37) with (A′, (B′i)

n
i=2) ∈Wm). But in both case, we will have

l(∇uf ,0) =

∫
Ωc

A′ · ∇ūf dx,

for A′ ∈ H0(div = 0,Ωc). This right-hand side being zero by Green’s formula, we deduce that∫
Ω

div Af̄ dx = 0.

Since f is arbitrary in L2(Ω), we conclude that div A = 0 in Ω.

4 Some existence results

Let us now give the first consequence of Theorem 3.1.

Theorem 4.1. Let T > 0 be fixed and F ∈ C1([0, T ], V ′m) and X0 ∈ Vm. Then there exists a unique solution
X = (A,B) to {

∂t(MX)(t) +AX(t) = F(t) in V ′m,∀t ∈ (0, T ),
(MX)(t = 0) =MX0,

(43)

with the regularity MX ∈ C([0, T ], V ′m) ∩ C1((0, T ], V ′m), and

X(t) ∈ D,∀t ∈ (0, T ].

Furthermore one has (recalling that
〈
·, ·
〉

means the duality pairing between V ′m and Vm)〈
∂t(MX)(·, t),Z

〉
+

∫
Ω

ν curl A · curl Ā
′′
dx+

∫
Ωs

νB · B̄′′ dx = (F(t),Z),∀Z = (A′′,B′′) ∈ V,∀t ∈ (0, T ),

(44)
with the estimate

‖A‖L2(0,T ;X0(Ω)) + ‖B‖L2(0,T ;L2(Ωs)3(n−1)) + ‖MX‖C([0,T ];V ′m) . ‖F‖L2(0,T ;V ′m) + |X0|Vm
. (45)
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Proof. The existence and uniqueness result directly follows from Theorem 3.1, by taking an appropriate
extension of F in the whole [0,∞). Hence it remains to prove (44) and the estimate (45).

For that purpose, we closely follow the proof of Corollary 3.8 of [16] or of Theorem 4.1 of [15]. As V ⊂ Vm,
the first identity of (43) implies that〈

∂t(MX)(·, t),Z
〉

+ a(X,Z) = (F(t),Z),∀Z ∈ V,∀t ∈ (0, T ).

By Lemma 3.7 we directly arrive at (44).
To prove (45), we first take Z = X in (44) and take the real part of the obtained identity, to get, due to

Lemma 3.2
1

2
∂tm(X,X) + ‖ν1/2 curl A‖2Ω + ‖ν1/2

0 B‖2Ωs
= <

〈
F(t),X

〉
.

Hence by the definition of the norm in V ′m, we get

1

2
∂tm(X,X) + ‖ν1/2 curl A‖2Ω + ‖ν1/2

0 B‖2Ωs
≤ ‖F(t)‖V ′m |X|Vm

,

and with the estimate |X|Vm
≤ C1‖ν1/2 curl A‖Ω + ‖B‖Ωs

, for some C1 > 0 and Young’s inequality we
obtain

∂tm(X,X) + ‖ν1/2 curl A‖2Ω + ‖ν1/2
0 B‖2Ωs

≤ C2‖F(t)‖2V ′m ,
for some C > 0. Integrating this estimate in t ∈ (η, u), with η, u ∈ (0, T ] arbitrary but such that η < u, we
get

m(X(·, u),X(·, u)) +

∫ u

η

‖ν1/2 curl A(·, t)‖2Ω dt+

∫ u

η

‖ν1/2
0 B(·, t)‖2Ωs

dt

≤ C2

∫ u

η

‖F(t)‖2V ′m dt+m(X(·, η),X(·, η)).

Letting η tends to zero and recalling the regularityMX ∈ C([0, T ], V ′m) and using again Lemma 3.2, we find
that

m(X(·, u),X(·, u)) +

∫ u

0

‖ν1/2 curl A(·, t)‖2 dt+

∫ u

0

‖ν1/2
0 B(·, t)‖2Ωs

dt

.
∫ T

0

‖F(t)‖2V ′m dt+ |X0|2Vm
. (46)

In a first step by taking u = T , this shows that

‖A‖L2(0,T ;X0(Ω)) + ‖B‖L2(0,T ;L2(Ωs)3(n−1)) . ‖F‖L2(0,T ;V ′m)) + |X0|Vm . (47)

In a second step, for any u ∈ (0, T ], we also have

|m(X(·, u),X(·, u))| .
∫ T

0

‖F(t)‖2V ′m dt+ |X0|2Vm
+

∫ u

0

‖ν1/2 curl A(·, t)‖2Ω dt+

∫ u

0

‖ν1/2
0 B(·, t)‖2Ωs

dt,

and therefore by (47)

|m(X(·, u),X(·, u))| . ‖F‖L2(0,T ;V ′m)) + |X0|Vm
,∀u ∈ [0, T ]. (48)

The proof of the estimate (45) is then complete.

Now we can prove an existence result to problem (12)-(18).

Theorem 4.2. Let us suppose that Js ∈ C2([0, T ], H0(div = 0,Ωs)). Then, there exists one and only one

solution (A, ϕ,B) ∈ H1(0, T ;X0(Ω)) × L2(0, T ; H̃1(Ωc)) × H1(0, T ;L2(Ωs)) to problem (12)-(18) with the
(additional) initial condition

A(t = 0) = A0,B(t = 0) = 0. (49)

and that satisfies the estimate

‖A‖H1(0,T ;X0(Ω)) + ‖ϕ‖
L2(0,T ;H̃1(Ωs))

+ ‖B‖H1(0,T ;L2(Ωs)3(n−1)) . ‖Js‖H1(0,T ;L2(Ωs)3). (50)
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Proof. Assume that a solution (A, ϕ,B) of problem (12)-(18) exists and is sufficiently regular, then comparing
(13) and (16) with (26) and (27), we can say that ϕ = ∂tϕA, ϕA being the unique solution of (24). With
this property, problem (12)-(18) is then (formally) equivalent to{

∂t(M(A,B)) +A(A,B) = (J̃s,0) in Ω× (0, T ),
A(t = 0) = A0, B(t = 0) = 0 in Ω.

(51)

Now in order to apply Theorem 3.1 (or equivalently Theorem 4.1), we need that the above right-hand
side Js corresponds to an element of V ′m. Hence we perform a sort of elliptic lifting. More precisely in the
case Ω̄c ∩ Ω̄s = ∅, for any t ∈ [0, T ], we consider the unique solution LJs(t) ∈ X0(Ωs) of{

curl(curl LJs(t)) = Js(t) in Ωs,
LJs(t) × n = 0 on ∂Ωs,

(52)

or in a weak form ∫
Ωs

curl LJs(t) · curl W̄ dx =

∫
Ω

Js(t) · W̄ dx,∀W ∈ X0(Ωs). (53)

Since Js(t) is assumed to be divergence free in Ωs and to satisfy

Js(t) · n = 0 on ∂Ωs, (54)

the identity (53) remains valid for all W ∈ X(Ωs), namely∫
Ωs

curl LJs(t) · curl W̄ dx =

∫
Ω

Js(t) · W̄ dx,∀W ∈ X(Ωs). (55)

Using the coercivity of the left-hand side of (55) in X(Ωc), the mapping

Js → LJs

is linear and continuous from X0(Ωs) into X(Ωs), by using finite differences and passing to the limit, we
easily deduce that B′1 defined by B′1(t) = curl LJs(t), for all t ∈ [0, T ] satisfies

B′1 ∈ C1([0, T ];H0(div = 0,Ωs)).

By setting 〈
F(t),Z

〉
=

∫
Ωs

B′1(t) · curl Ā
′′
dx,∀Z = (A′′,B′′) ∈ Vm,

we see by Lemma 3.3 that it defines an element in C1([0, T ];V ′m). Furthermore owing to (55), we have

〈
F(t),Z

〉
=

∫
Ω

Js(t) · Ā
′′
dx,∀Z = (A′′,B′′) ∈ Vm. (56)

Now in the case Ωs ⊂ Ωc, we introduce the Hilbert space

M = {A ∈ L2(Ωc) : curl A ∈ L2(Ωs)},

equipped with the natural inner product

(A,C)M =

∫
Ωc

A · C̄ dx+

∫
Ωs

curl A · curl C̄ dx, ∀A,C ∈M.

Then for any t ∈ [0, T ], we consider the unique solution LJs(t) ∈M of∫
Ωc

LJs
(t) · C̄ dx+

∫
Ωs

curl LJs
(t) · curl C̄ dx =

∫
Ω

Js(t) · C̄ dx,∀C ∈M. (57)
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Since Js(t) is assumed to be divergence free in Ωs and to satisfy (54), by taking test-functions C = ∇ϕ, with
ϕ ∈ H1(Ωc), we deduce that LJs

(t) belongs to H0(div = 0,Ωc). Here by setting〈
F(t),Z

〉
=

∫
Ωc

LJs(t) · Ā′′ dx+

∫
Ωs

curl LJs(t) · curl Ā
′′
dx∀Z = (A′′,B′′) ∈ Vm,

we see by Lemma 3.5 that it defines an element in C1([0, T ];V ′m) such that (56) holds owing to (57).
In both cases, Theorem 4.1 (see (44)) furnishes a solution X = (A,B) ∈ C((0, T ), V ) of〈

∂t(MX)(·, t),Z
〉
+

∫
Ω

ν curl A·curl Ā
′′
dx+

∫
Ωs

νB·B′′ dx =

∫
Ω

J̃s(t)·Ā
′′
dx,∀Z = (A′′,B′′) ∈ V,∀t ∈ (0, T ),

(58)
with initial condition

MX(t = 0) =MX0, (59)

with X0 = (A0,0) that clearly belongs to Vm. Furthermore X belongs to L2(0, T ;X0(Ω) × L2(Ωs)
n−1),

satisfies MX ∈ C([0, T ];V ′m) with the estimate (compare with (45))

‖A‖L2(0,T ;X0(Ω)) + ‖B‖L2(0,T ;L2(Ωs)3(n−1)) + ‖MX‖C([0,T ];V ′m) . ‖Js‖L2(0,T ;L2(Ωs)3) + |A0|X0(Ω). (60)

In order to come back to the original problem, we actually need more regularity for X in order that

∂t(MX) =M∂tX.

This is the reason of the assumptions Js ∈ C2([0, T ], H0(div = 0,Ωs)). Hence by using our previous
argument (applied with ∂tJs and a zero initial datum), we find a unique (strong) solution of C ∈ C((0, T ), V )
of

∂t(MC)(·, t) +AC(·, t) = (∂tJ̃s(t),0) in V ′m, ∀t > 0, (61)

with initial condition
MC(t = 0) = 0.

This solution C belongs to L2(0, T ;X0(Ω)×L2(Ωs)
3(n−1)) and satisfiesMC ∈ C([0, T ];V ′m) with the estimate

‖C‖L2(0,T ;X0(Ω)×L2(Ωs)3(n−1)) + ‖MX‖C([0,T ];V ′m) . ‖∂tJs‖L2(0,T ;L2(Ωs)3). (62)

Now we define a primitive of C:

P(t) =

∫ t

0

C(s) ds+ X0,

that has a meaning due to (62) (we recall that X0 = (A0,0)) and has the regularity

P ∈ H1(0, T ;X0(Ω)× L2(Ωs)
3(n−1)).

Integrating the identity (61) between 0 and t (meaningful due to (62)), we find that

MC +AP−AX0 = (J̃s(t),0)− (J̃s(0),0) in V ′m, ∀t > 0.

By the definition of A0 and the property C = ∂tP, we find that P is solution of

M∂tP +AP = (J̃s(t),0) in V ′m, ∀t > 0, (63)

with initial condition
P(t = 0) = X0.

Since this last property implies that
MP(t = 0) =MX0,

this initial condition is the same as (58) and as (63) is the strong formulation of (58), we deduce that X = P,
which proves the result due to (60) and (62).
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We are ready to prove our main result.

Proof. of Theorem 2.1.

For Js ∈ H1((0, T );H0(div = 0,Ωs)), we can consider

Ĵs = Js − Js,0,

that is still in H1((0, T );H0(div = 0,Ω)) but is zero at t = 0. Note that by Corollary A.3 of [6], we have

Ĵs(t) =

∫ t

0

Ĵ
′
s(u) du,∀t ∈ [0, T ],

hence by using the same arguments as in the scalar case, namely by multiplication by cut-off functions and
convolution by a regularization sequence, if we denote by

C∞l ([0, T ];H0(div = 0,Ωs)) = {F ∈ C∞([0, T ];H0(div = 0,Ωs)) : F = 0 in a neighbourhood of t = 0},

there exists a sequence Ĵ
(n)

s ∈ C∞l ([0, T ];H0(div = 0,Ωs)) such that

Ĵ
(n)

s → Ĵs in H1((0, T );H0(div = 0,Ω)) as n→∞.

Setting

J(n)
s = Ĵ

(n)

s + Js,0

we get a sequence in C∞([0, T ];H0(div = 0,Ωs)) satisfying the assumptions of Theorem 4.2 and such that

J(n)
s → Js in H1((0, T );H0(div =0,Ωs)) as n→∞.

as well as J(n)
s (t = 0) = Js(t = 0).

Hence by Theorem 4.2, for all n there exists a (strong) solution (An, ϕn,Bn) ∈ H1(0, T ;X0(Ω)) ×
L2(0, T ; H̃1(Ωc)) ×H1(0, T ;L2(Ωs)) to problem (12)-(18) with the (additional) initial condition (49). This
in particular implies that

(σc(∂tAn +∇ϕn), Ā
′
+∇ϕ̄′)Ωs + (σsP(curl ∂tAn, ∂tBn)>, (curl A′,B′)>)Ωs + ( ν curl An, curl A′ )Ω

+(νBn,B
′)Ωs

= (J(n)
s , A′ )Ωs

,∀ A′ ∈ XN (Ω) , ϕ′ ∈ H̃1(Ωc),B
′ ∈ L2(Ωs)

3(n−1). (64)

Furthermore by the estimate (50), applied to (An, ϕn,Bn)− (Am, ϕm,Bm) for all n,m, we have

‖An−Am‖H1(0,T ;X0(Ω))+‖ϕn−ϕm‖L2(0,T ;H̃1(Ωs))
+‖Bn−Bm‖H1(0,T ;L2(Ωs)3(n−1)) . ‖J(n)

s −J(m)
s ‖H1(0,T ;L2(Ωs)3),

(65)

for all n,m. Hence there exist A ∈ H1(0, T ;X0(Ω)), ϕ ∈ L2(0, T ; H̃1(Ωc)) and B ∈ H1(0, T ;L2(Ωs)
3(n−1))

such that

An → A in H1(0, T ;X0(Ω)) as n→∞, (66)

ϕn → ϕ in L2(0, T ; H̃1(Ωc)) as n→∞, (67)

Bn → B in H1(0, T ;L2(Ωs)
3(n−1)) as n→∞. (68)

Passing to the limit in (64), we conclude that (A, ϕ,B) ∈ H1(0, T ;X0(Ω))×L2(0, T ; H̃1(Ωc))×H1(0, T ;L2(Ωs))
is the unique solution of (19).
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[1] A. Alonso Rodŕıguez, R. Hiptmair, and A. Valli. A hybrid formulation of eddy current problems. Numer.
Methods Partial Differential Equations, 21(4):742–763, 2005.
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