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The achievement of quantum supremacy boosted the need for a robust medium of quantum
information. In this task, higher-dimensional qudits show remarkable noise tolerance and enhanced
security for quantum key distribution applications. However, to exploit the advantages of such
states, we need a thorough characterisation of their entanglement. Here, we propose a measure
of entanglement which can be computed either for pure and mixed states of a M -qudit hybrid
system. The entanglement measure is based on a distance deriving from an adapted application of
the Fubini-Study metric. This measure is invariant under local unitary transformations and has an
explicit computable expression that we derive. In the specific case of M -qubit systems, the measure
assumes the physical interpretation of an obstacle to the minimum distance between infinitesimally
close states. Finally, we quantify the robustness of entanglement of a state through the eigenvalues
analysis of the metric tensor associated with it.

I. INTRODUCTION

Entanglement is an essential resource for progressing
in the field of quantum-based technologies. Quantum in-
formation has confirmed its importance in quantum cryp-
tography and computation, in teleportation, in the fre-
quency standard improvement problem and metrology
based on quantum phase estimation [1]. The achieve-
ment of quantum supremacy [2] together with the rapid
experimental progress on quantum control is driving the
interest in entanglement theory. Nevertheless, despite
its key role, entanglement remains elusive and the prob-
lem of its characterisation and quantification is still open
[3, 4]. In time, several different approaches have been de-
veloped to quantify the variety of states available in the
quantum regime [5]. Entropy of entanglement is uniquely
accepted as measure of entanglement for pure states of
bi-partite systems [6], while for the same class of mixed
states, entanglement of formation [7], entanglement dis-
tillation [8–10] and relative entropy of entanglement [11]
are largely acknowledged as faithful measures. The de-
velopment of quantum information theory and the in-
creasing experimental demand of quantum states manip-
ulation led to develop measures enfolding more general
states. For multi-partite systems a broad range of mea-
sures has covered pure states [12, 13] and mixed states
[14] among which, a Schmidt measure [15] and a gen-
eralisation of concurrence [16] have been proposed. In
the last years, the variety of paths adopted to tackle
the problem led to estimation-oriented approaches based
on the quantum Fisher information [17–19]. Due to the
deep connection between the quantum Fisher informa-
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tion and a statistical distance [20], the geometry of entan-
glement has been studied in the case of two qubits [21].
While the mentioned measures address mainly qubits
systems, the necessity for noise tolerance and reliability
in quantum tasks opened the way to study higher di-
mensional states, the qudits [22, 23]. In noise-tolerant
schemes, magic-state-distillation protocols outperforms
their qubits counterparts [24] while a proof of enhanced
security for quantum key distribution tasks is derived
in [25]. In addition, a recent experimental realisation
confirmed the superiority of qudits in certifying entan-
glement in noisy environments [26]. At the same time,
different measure of entanglement for such systems ap-
peared, such as a measure for highly symmetric mixed qu-
dit states [27] and the I concurrence in arbitrary Hilbert
space dimensions [28]. Finally, a geometric measure for
M -qudit pure states has been proposed in [29].

Following a geometric approach, in the present
manuscript, we derive an entanglement monotone [30,
31], i.e. a measure of entanglement not increasing un-
der local unitary transformation. This measure can be
computed either for pure and mixed states of M -qudit
hybrid systems. The measure that we propose i) is in-
variant under local unitary transformations; ii) has an
explicit computable expression; iii) is derived from a tai-
lored form of the Fubini-Study metric. In the specific
case of M -qubit systems, the proposed measure iv) has
the structure of a distance such that the higher the en-
tanglement of a given state is, the greater is its minimum
distance from infinitesimally close states (see Fig. 1); v)
in such case the analysis of the eigenvalues of the metric
tensor associated with the entanglement measure allows
to quantify the robustness of the entanglement of a state
and determine if any states are more sensitive to small
variations than others.
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FIG. 1. In the specific case of 2-qubit states, the higher is
the entanglement of a state the greater is its minimum dis-
tance from infinitesimally close states. In the figure, |A〉 is a
low-entanglement state while |B〉 is a highly entangled state.
In fact, the minimum distance (dashed line) of |B〉 from in-
finitesimally closed states (continuous line) is larger than the
one associated with |A〉.

II. ENTANGLEMENT DISTANCE

A qudit, is a state in a d-dimensional Hilbert space
Hd and a hybrid M -qudit is a state in the tensor prod-
uct H := Hd0 ⊗ Hd1 ⊗ · · · ⊗ HdM−1

of Hilbert spaces
of dimension d0, d1, . . . , dM−1, respectively. Thus, the
dimension of H is d =

∏
µ dµ. First, we derive the entan-

glement measure for the case of pure hybrid multi-qudit
states, then we shall generalize this measure to the case
of mixed states.

A. Pure states

The Hilbert space H = Hd0 ⊗ Hd1 ⊗ · · · ⊗ HdM−1
of

an hybrid M qudit system carries the Fubini-Study met-
ric [32]

〈dψ|dψ〉 − 1

4
|〈ψ|dψ〉 − 〈dψ|ψ〉|2 , (1)

where |ψ〉 is a generic normalised state and |dψ〉 is an
infinitesimal variation of such state. The present study
is aimed to endow the Hilbert space with a Fubini Study-
like metric that has the desirable property of making it
an attractive definition for entanglement measure. For
this reason, such distance should not be affected by local
operations on single qudits [33, 34]. As a matter of fact,
the action of M arbitrary SU(dµ) local unitary operators
Uµ (µ = 0, . . . ,M − 1) on a given state |s〉, generates a
class of states

|U, s〉 =

M−1∏
µ=0

Uµ|s〉 (2)

that share the same degree of entanglement. For each µ,
Uµ operates on the µth qudit of Hdµ . Thus we define an

infinitesimal variation of state (2) as

|dU, s〉 =

M−1∑
µ=0

dŨµ|U, s〉 , (3)

where there is no summation on the index µ and each in-
finitesimal SU(dµ) transformation dŨµ operates on the µ-
th qudit. Such infinitesimal transformation can be writ-
ten as

dŨµ = −i(n ·T)µdξ
µ (4)

where (n · T)µ := nµ · Tµ, nµ is an unit vector in Rdµ ,
ξµ are real parameters, and where we denote by Tµa,
a = 1, . . . , d2µ − 1, the generators of su(dµ) algebra (see
App. A). From Eq. (1), with this choice, we obtain the
following expression for the Fubini-Study metric g(v),∑

µν

gµν(v)dξµdξν =
∑
µν

(〈s|(v ·T)µ(v ·T)ν |s〉+

−〈s|(v ·T)µ|s〉〈s|(v ·T)ν |s〉) dξµdξν . (5)

In the latter equation, the real unit vectors vµ are derived
by a rotation of the original ones according to

vν ·Tν = U†νnν ·TνUν , (6)

where there is no summation on the index ν. Focussing
on a generic state |s〉, for each µ = 0, . . . ,M − 1, we
obtain from (5)

g(vµ)µµ =
∑
ij

vµivµjAµij , (7)

where the elements of the matrices Aµ, µ = 0, . . . ,M−1,
are

Aµij = 〈s|TµiTµj |s〉 − 〈s|Tµi|s〉〈s|Tµj |s〉 . (8)

The proposed entanglement measure of the state |s〉 is

E(|s〉) =

M−1∑
µ=0

[tr(Aµ)− 2(dµ − 1)] . (9)

E(|s〉) is a proper measure of entanglement satisfying
the following properties [11]:

i) The relations (A4) and (A6) make the measure (9)
independent from the local operators Uµ. Con-
sequently, its numerical value is associated to the
class of states generated by local unitary transfor-
mations and not to the specific element chosen in-
side the class.

ii) From (A4) it results

tr(Aµ) =
2(d2µ − 1)

dµ
−
d2µ−1∑
k=1

〈s|Tµk|s〉2 . (10)



3

Furthermore, the absolute value for the maximum
eigenvalue of the set {Tµk}k is

√
2(dµ − 1)/dµ (see

App. A), therefore we get

tr(Aµ) ≥
2(d2µ − 1)

dµ
− 2(dµ − 1)

dµ
. (11)

From here,

tr(Aµ)− 2(dµ − 1) ≥ 0 , (12)

thus,

E(|s〉) ≥ 0 . (13)

iii) From (10) we have

E(|s〉) ≤
M−1∑
µ=0

2(dµ − 1)

dµ
. (14)

iv) For a maximally entangled state |s〉,

E(|s〉) =

M−1∑
µ=0

2(dµ − 1)

dµ
(15)

and

〈s|Tµk|s〉 = 0 (16)

for each µ = 0, . . . ,M − 1 and k = 1, . . . , d2µ − 1.

v) For a fully separable state |s〉 = |s0〉⊗ · · · ⊗ |sM−1〉
from Eqs. (A5) and (10) we get E(|s〉) = 0.

In summary, the entanglement measure for a general
hybrid qudit state |s〉, results

E(|s〉) =

M−1∑
µ=0

2(dµ − 1)

dµ
−
d2µ−1∑
k=1

〈s|Tµk|s〉2
 . (17)

Qubit states

Remarkably, in the case of a general M -qubit state |s〉,

inf
{vµ}µ

tr(g(v)) (18)

identifies a unit vectors ṽν for which it results

E(|s〉) = tr(g(ṽ)) , (19)

where the inf is taken over all the possible orientations of
the unit vectors vµ ∈ R2. We name entanglement metric
(EM) g̃ the Fubini-Study metric associated to ṽν

g̃ = g(ṽν) (20)

The off-diagonal elements of g̃ provide the quantum cor-
relations between qubits. In addition, states differing one
another for local unitary transformations have the same
form of g̃. In this way, the expression of EM identifies
the classes of equivalence for M -qubit states.

B. Mixed states

Now, we extend the entanglement measure (9) to the
case of mixed states. In order to do so, we require the
measure E to satisfy the following 3 conditions [8, 11, 15,
35, 36]:

i) E(ρ) ≥ 0 and E(ρ) = 0 if ρ is fully separable;

ii) E(ρ) is invariant under local unitary transforma-
tion, i.e. E(UρU†) = E(ρ);

iii) E is a convex functional of the density matrix, that
is

E(αρ1 + (1− α)ρ2) ≤ αE(ρ1) + (1− α)E(ρ2) , (21)

for each α ∈ [0, 1] and mixed states ρ1 and ρ2.

Given a mixed state ρ, consider all possible ways of ex-
pressing ρ in term of pure states in the form

ρ =
∑
j

pj |ψj〉〈ψj | , (22)

where pj is the probability of measuring the state |ψj〉.
We define

E(ρ) = min
∑
j

pjE(|ψj〉) , (23)

where the minimum is taken over all the possible com-
binations of the form (22). The conditions i) and ii)
above, are inherited by E(ρ) since the same properties
hold true for E(|s〉). Let us verify condition iii). Given
ρ = αρ1 + (1 − α)ρ2, where ρ1 (ρ2) can be expressed in
the form

∑
j p

1
j |ψ1

j 〉〈ψ1
j | (
∑
j p

2
j |ψ2

j 〉〈ψ2
j |) in several ways.

We have ρ =
∑
j(αp

1
j |ψ1

j 〉〈ψ1
j |+ (1− α)p2j |ψ2

j 〉〈ψ2
j |), thus

min
{p1,|ψ1〉,p2,|ψ2〉}

∑
j

(αp1jE(|ψ1
j 〉) + (1− α)p2jE(|ψ2

j 〉) ≤

min
{p1,|ψ1〉}

∑
j

αp1jE(|ψ1
j 〉) + min

{p2,|ψ2〉}

∑
j

(1− α)p2jE(|ψ2
j 〉)

(24)

since the minimum of a set is always less or equal to the
minimum of its subsets.

III. EXAMPLES OF APPLICATION

In order to verify the efficacy of the proposed entan-
glement measure, we have first considered two families
of one-parameter multi-qubit states depending on a real
parameter. The degree of entanglement of each state
depends on this parameter and the configuration corre-
sponding to maximally entangled states for each of the
families considered is known. The first family of states
we consider in III A, III A 1 and III A 2, has been intro-
duced by Briegel and Raussendorf in Ref. [13], for this
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reason we will name the elements in this family Briegel-
Raussendorf states (BRS). The second family of states,
in III B, is related to the Greenberger-Horne-Zeilinger
states [37], since it contains one of these states. We will
name the elements of such family Greenberger-Horne-
Zeilinger–like states (GHZLS). It is worth emphasizing
that in Ref. [13] it has been shown that the maximally
entangled states of these two families are not equivalent
if M ≥ 4, whereas they are equivalent if M ≤ 3, where
M is the number of qubits considered. This fact offers
us a further test for our approach to entanglement esti-
mation. In fact, we have found that i) the entanglement
measure (9) provides the same value for the maximally
entangled states of both families; ii) in the case M ≤ 3,
the entanglement metric (20) has the same form for the
maximally entangled states of the two families, whereas
for M ≥ 4 the EMs of the maximally entangled states of
the two families are inequivalent. In Sec. III C, we have
considered a family of three-qubit states depending on
two real parameters. With a suitable choice of these pa-
rameters, the state can be fully separable or bi-separable,
whereas in the generic case it is a genuine tripartite en-
tangled state. We will show that the proposed entan-
glement measure provides an accurate description of all
these cases. In Sec. III D we have applied the entangle-
ment measure (9) to the case of an hybrid qudit system
and in Sec. III E to the case of two qutrits.

A. Briegel Raussendorf states

In the case of qubit, the generators Tµ are the Pauli
matrices σµ. We denote with Πµ

0 = (I+σµ3)/2 and Πµ
1 =

(I−σµ3)/2 the projector operators onto the eigenstates of
σµ3, |0〉µ (with eigenvalue +1) and |1〉µ (with eigenvalue
−1), respectively. Each M -qubit state of the BRS class
is derived by applying to the fully separable state

|r, 0〉 =

M−1⊗
µ=0

1√
2

(|0〉µ + |1〉µ) , (25)

the non-local unitary operator

U0(φ) = exp(−iφH0) =

M−1∏
µ=1

(
I + αΠµ

0Πµ+1
1

)
, (26)

where H0 =
∑M−1
µ=1 Πµ

0Πµ+1
1 and α = (e−iφ − 1) . The

full operator (26) is diagonal on the states of the stan-
dard basis {|0 · · · 0〉 , |0 · · · 01〉, . . . , |1 · · · 1〉}. In fact,
each vector of the latter basis is identified by M inte-
gers n0, . . . , nM−1 = 0, 1 as |{n}〉 = |nM−1 nM−2 n0〉
and we can enumerate such vectors according to the bi-
nary integers representation |k〉 =

∣∣{nk}〉, with k =∑M−1
µ=0 nkµ2µ,

where nkν is the ν-th digit of the number k in binary
representation and k = 0, . . . , 2M − 1. Then, the eigen-

value λk of operator (26), corresponding to a given eigen-
state |k〉 of this basis, results

λk =

n(k)∑
j=0

(
n(k)

j

)
αj , (27)

where n(k) is the number of ordered couples 01 inside
the sequence of the base vector |k〉. For the initial state
(25) we consistently get

|r, 0〉M = 2−M/2
2M−1∑
k=0

|k〉 , (28)

and, under the action of U0(φ), one obtains

|r, φ〉M = 2−M/2
2M−1∑
k=0

n(k)∑
j=0

(
n(k)

j

)
αj |k〉 (29)

For φ = 2πk, with k ∈ Z, this state is separable,
whereas, for all the other choices of the value φ, it is
entangled. In particular, in [13] it is argued that the val-
ues φ = (2k+1)π, where k ∈ Z, give maximally entangled
states.

1. Fubini-Study metric for the Briegel Raussendorf states
M = 2, 3

In the case of two-qubit BRS, the trace of the Fubini-
Study metric is

tr(g) =

1∑
ν=0

[
1− c2

(
cvν1 + (−1)

ν+1
svν2

)2]
, (30)

where c = cos (φ/2) and s = sin (φ/2). (30) is minimised
with the choice ṽν = ±(c, (−1)ν+1s, 0). Consistently, the
EM results in

g̃ =

(
s2 1
1 s2

)
(31)

and

E(|r, φ〉2) = 2s2 . (32)

In the case M = 3 and φ 6= (2k + 1)π, with k ∈ Z, the
trace of g,

tr(g) =
[
3− c2 (c(v01 + v11 + v21) + s(v22 − v02))

2
]
,

(33)
is minimised with the choices ṽ0 = (c,−s, 0), ṽ1 =
(1, 0, 0) and ṽ2 = (c, s, 0). The EM and the entangle-
ment measure in this case result to be

g̃ = s2

 1 c −2s2c2

c 1 + c2 c
−2s2c2 c 1

 (34)
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and

E(|r, φ〉3) = s2
(
3 + c2

)
, (35)

respectively. By direct calculation, one can verify that in
the case of the maximally entangled BRS (φ = (2k+1)π,
k ∈ Z), the choice v0 = (−1, 0, 0), v1 = (0, 0, 1) and
v2 = (1, 0, 0) minimizes tr(g) and the corresponding EM
is the 3× 3 matrix of ones.

2. Fubini-Study metric for the Briegel Raussendorf states
M > 3

For a general M -qubit state |r, φ〉M , the trace of g
results

tr(g) =

{
M −

M−1∑
ν=0

[vν3wν3 + vν+wν− + vν−wν+]
2

}
,

(36)
where vν± = vν1 ± ivν2, ck = 2−M/2λk, and

wν− =
∑2M−1
k=0 δnkν ,0c

∗
k+2ν ck ,

wν+ =
∑2M−1
k=0 δnkν ,1c

∗
k−2ν ck ,

wν3 =
∑2M−1
k=0 (−1)n

k
ν |ck|2 .

(37)

The trace is minimised by setting ṽν+ = w?ν−/‖wν‖,
ṽν− = w?ν+/‖wν‖ and ṽν3 = wν3/‖wν‖.

From the latter, we get the entanglement measure for
the BRS

E(|r, φ〉M ) =

(
M −

M−1∑
ν=0

‖wν‖2
)
. (38)

B. Greenberger-Horne-Zeilinger–like states

Now, we consider a second class of M -qubit states, the
GHZLS, defined according to

|GHZ, θ〉M = cos(θ)|0〉+ sin(θ)eiϕ|2M − 1〉 . (39)

For θ = kπ/2 and ∀ϕ, where k ∈ Z, these states are
fully separable, whereas θ = kπ/2 + π/4 (∀ϕ) selects the
maximally entangled states. In this case, the trace for
the Fubini-Study metric,

tr(g) = M − cos2(2θ)

M−1∑
ν=0

(vν3)2 , (40)

is minimised by the values vν3 = 1. Consistently, we have

g̃ = sin2(2θ)JM (41)

where JM is the M ×M matrix of ones. The entangle-
ment measure for the GHZLS results

E(|GHZ, θ〉M ) = M sin2(2θ) . (42)

We have mentioned above that in the case M = 2, 3,
the maximally-entangled BRS |r, 2πk + π〉, where k ∈ Z
and the maximally entangled GHZLS are equivalent be-
cause differing just for local unitary transformations. In
the present approach, this equivalence is caught by the
entanglement matrices. We have shown that, in the case
M = 2, 3, the EM for the maximally entangled states
belonging to these two families are identical. Further-
more, we have verified for some cases with M > 3, that
the EMs for the maximally entangled states of the two
families are different thus confirming the results of Ref.
[13].

C. Three-qubit states depending on two
parameters

The last class of qubit states we consider is

|ϕ, γ, τ〉3 = cos(γ)|0〉[cos(τ)|00〉+ sin(τ)|11〉]
+ sin(γ)|1〉[sin(τ)|00〉+ cos(τ)|11〉] .

(43)

These states are fully separable for γ = 0, π/2 and τ =
0, π/2 whereas they are bi-separable for τ = π/4. In this
case, the trace of the Fubini-Study metric is

tr(g) =
{

3− cos2(2γ) cos2(2τ)[(v03)2 + (v13)2]

−[sin(2γ) sin(2τ)v21 + cos(2γ)v23]2
} (44)

and it is minimised by the values ṽν3 = (0, 0, 1), ν = 0, 1
and

ṽ31 =
sin(2γ) sin(2τ)√

sin2(2γ) sin2(2τ) + cos2(2γ)
,

ṽ32 = 0 ,

ṽ33 =
cos(2γ)√

sin2(2γ) sin2(2τ) + cos2(2γ)
.

(45)

Consistently, the entanglement measure for these states
results to be

E(|ϕ, γ, τ〉3) = [2 sin2(2τ) + 3 sin2(2γ) cos2(2τ)] . (46)

D. Hybrid two-qudit states depending on one
parameter

As an example of application to hybrid qudit systems,
we consider the Hilbert space H = H2 ⊗ H3, i.e. the
product of qubit and qutrit states. Let us denote the el-
ements of a basis in such Hilbert space with |α, j〉, where
α = ± and j = 0, 1, 2 and consider the following family
of single-parameter states

|s, θ〉 = cos(θ)|+, 0〉+ sin(θ)|−, 2〉 . (47)

We expect the state with a higher degree of entangle-
ment will correspond to θ = π/4. Note that this is not a
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maximally entangled state since the component |1〉 of the
second Hilbert space is absent. From Eq. (8), we have

A0 =

 1 i cos(2θ) 0
−i cos(2θ) 1 0

0 0 1− cos2(2θ)

 . (48)

In the case of qutrits, the generators Tµ can be repre-
sented with the Gell-Mann matrices. By direct calcula-
tion, one can verify that the only non-null matrix ele-
ments for A1 are the following

(A1)11 = cos2(θ) ,

(A1)22 = cos2(θ) ,

(A1)33 = cos2(θ) sin2(θ) ,

(A1)44 = sin2(θ) ,

(A1)55 = sin2(θ) ,

(A1)66 = 3 cos2(θ) sin2(θ) ,

(A1)77 = 1 ,

(A1)88 = 1 .

Thus, from Eq. (17) we have

E(|s, θ〉) = 2 sin2(2θ) . (49)

In (49), θ = π/4 provides the maximally entangled state.
In the next section, we will compare entanglement

measure E(|s, θ〉)/2 with the von Neumann entropy

E(ρ(θ)) = − cos2(θ) log2(cos2(θ))− sin2(θ) log2(sin2(θ))
(50)

of the density matrix ρ(θ) = |s, θ〉〈s, θ| associated to the
same state.

E. M-qudit states depending on two parameters

Let us consider an M -qutrit system, that has a Hilbert
space H = H3 ⊗ · · · ⊗ H3, that is to say, the product
of M qutrit states. We have considered the following
generalisation of the GHZLS states to qutrits,

|s, θ, φ〉M = sin(θ) cos(φ)|0, . . . , 0〉+
sin(θ) sin(φ)|1, . . . , 1〉+ cos(θ)|2, . . . , 2〉 ,

(51)

which is a family of 2-parameter states. We have,

(Aµ)11 = sin2(θ) ,

(Aµ)22 = sin2(θ) ,

(Aµ)33 =
1

4
sin2(θ)

(
3 + cos(2θ)− 2 sin2(θ) cos(4φ)

)
,

(Aµ)44 = sin2(θ) sin2(φ) + cos2(θ) ,

(Aµ)55 = sin2(θ) sin2(φ) + cos2(θ) ,

(Aµ)66 = 3 sin2(θ) cos2(θ) ,

(Aµ)77 = sin2(θ) cos2(φ) + cos2(θ) ,

(Aµ)88 = sin2(θ) cos2(φ) + cos2(θ) ,

for µ = 0, . . . ,M − 1. Thus, it results

E(|s, θ, φ〉M ) =
M

4
sin2(θ)

(
9+

7 cos(2θ)− 2 sin2(θ) cos(4φ)
)
. (52)

In the next section we compare the entanglement mea-
sure E(|s, θ, φ〉M )/M of the states (51) with the von Neu-
mann entropy

E(ρ(θ, φ)) = −a2 log2(a2)− b2 log2(b2)− c2 log2(c2) ,
(53)

where ρ(θ, φ) = |s, θ, φ〉22〈s, θ, φ| is the density matrix
associated with the same states in the case M = 2. Here,
a = sin(θ) cos(φ), b = sin(θ) sin(φ) and c = cos(θ).

IV. RESULTS

A. Entanglement measure

In Fig. 2, we plot the measure E(|r, φ〉M )/M vs φ/(2π)
according to Eq. (38), for the multi-qubit states (29) in
the case M = 3, 4, 7, 9. Figure 2 shows that the proposed
entanglement measure provides a correct estimation of
the degree of entanglement for the BRS in all the cases
considered. In particular, for the fully separable states
(φ = 0, 2π), it is zero, whereas, for the maximally entan-
gled states (φ = π), it provides the maximum possible
value for the trace, that is E(|r, π〉M )/M = 1. This im-
plies that the expectation values on the maximally en-
tangled states of the operators ṽν ·σν (ν = 0, . . . ,M −1)
are zero.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1.0

FIG. 2. The figure reports the entanglement measure
E(|r, φ〉M )/M vs φ/(2π) for the states (29) in the cases M = 3
(continuous line), M = 4 (dashed line), M = 7 (dot-dashed
line) and M = 9 (dotted line).

The entanglement measure (9) successfully passes also
the second test of the GHZLS for which it provides zero
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in the case of fully separable states (θ = 0, π), and the
maximum value (that is 1) in the case of the maximally
entangled state (θ = π/2). In figure 3, we compare the
curves E(|r, φ〉M )/M vs φ/(2π) in continuous line and
E(|GHZ, θ〉M )/M vs 2θ/π in dashed line, for the case
M = 3. Even in this case, the expectation values of the
operators ṽν · σν (ν = 0, . . . ,M − 1) on the maximally
entangled states are zero.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1.0

FIG. 3. In this figure we compare the entanglement measures
E(|r, φ〉M )/M vs φ/(2π) for the states (29) in continuous line,
and E(|GHZ, θ〉M )/M vs 2θ/π for the states (39) in dashed
line, for the case M = 3.

In Fig. 4, we report in a 3D plot the measure
E(|ϕ, γ, τ〉3)/3 as a function of γ/π and τ/π according
to Eq. (46), for the states (43). The measure (9) catches

FIG. 4. The figure reports the three dimensional plot of the
entanglement measure E(|ϕ, γ, τ〉3)/3 as a function of γ/π
and τ/π for the states (43).

in a surprisingly clear way the entanglement properties

of this family of states. In particular, E(|ϕ, γ, τ〉3)/3 is
null in the case of fully separable states (γ = 0, π/2, π
and τ = 0, π/2, π) and it is maximum (with value 1) in
the case of maximally entangled states (γ = π/4, 3π/4
and τ = 0, π/2, π). In addition, the case of bi-separable
states (τ = π/4) results in 0 < E(|ϕ, γ, τ〉3)/3 < 1.

Figure 5 refers to the hybrid two-qudit states (47).
Here, we compare the curves of entanglement measure
E(|s, θ〉)/2 vs θ/π of states (47) in a continuous line, and
the von Neumann entropy E(|s, θ〉) vs θ/π in dashed line,
for the same states. This figure clearly shows that, al-
though these two curves are different, they strongly agree
in the quantification of the entanglement of the different
states. Note that the highly entangled state associated
with θ = π/4 has an entanglement measure of 1, lower
than the maximally entangled state of this Hilbert space
which, using (15), report a value of 7/6.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1.0

FIG. 5. The figure compares the entanglement measure
E(|r, φ〉M )/M vs φ/(2π) in continuous line for the hybrid two-
qudit states (47), and the von Neumann entropy E(ρ(θ)) vs
θ/π in dashed line for the same states.

In Fig. 6, we report the entanglement measure
E(|s, θ, φ〉M )/M as a function of θ/π and φ/π given in
Eq. (52), for the multi-qubit states (51). Even in this
example, the measure (9) catches in a surprisingly clear
way the entanglement properties of this family of multi-
qudit states. In particular, E(|s, θ, φ〉M )/M is null in
the case of fully separable states, i.e. for θ = 0, ∀φ and
θ = π/2, φ = 0, π/2, π. In case of φ = 0, π, the entangle-
ment measure changes over θ and shows local maximum
for θ = π/4. For θ = π/2, the measure changes over φ
displaying local maxima for φ = π/4, 3π/4. Furthermore,
the state corresponding to sin(θ) cos(φ) = sin(θ) sin(φ) =

cos(θ) = 1/
√

3 is a maximally entangled state to which
corresponds an entanglement measure (15) of value 4/3.

In Fig. 7, we report the 3D plot for the von Neumann
entropy E(ρ(θ, φ)) (see Eq. (53)) as a function of θ/π
and φ/π. The entropy is calculated for the density ma-
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FIG. 6. The plot shows the entanglement measure
E(|s, θ, φ〉M )/M in (52) as a function of θ/π and φ/π for the
states (51).

trix ρ(θ, φ) = |s, θ, φ〉22〈s, θ, φ| associated to the family
of two-qudit states (51). The comparison between the

FIG. 7. The figure shows E(ρ(θ, φ)) as a function of θ/π and
φ/π given in Eq. (53). The density matrix is associated with
the states (51), ρ(θ, φ) = |s, θ, φ〉22〈s, θ, φ| in the case M = 2.

figures 6 and 7 clearly shows that, although the func-
tions E(|s, θ, φ〉M )/M and E(ρ(θ, φ)) are different, they
fully agree, in the entanglement estimation, for the states
|s, θ, φ〉.

B. Eigenvalues analysis for M-qubit states

In the case of multi-qubit states, a further interest-
ing characteristics of the entanglement measure comes

from the analysis of the entanglement metric’s eigenval-
ues. In fig. 8, we compare the plots of the eigenvalues
of g̃ for |r, φ〉M vs φ/(2π) (dotted lines), with the plot
of the unique not vanishing eigenvalue of g̃ for GHZLS
vs 2θ/π (continuous line), in the case M = 7. When

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

FIG. 8. Plot of the g̃ eigenvalues for the state |r, φ〉M vs
φ/(2π) in dotted lines and the unique not vanishing eigenvalue
of g̃ for the state GHZLS vs 2θ/π in continuous line, for the
case M = 7.

φ 6= 0, 2π the EM of the BRS, g̃, has exactly M non-
zero eigenvalues. On the other hand, the GHZLS have
only one non-vanishing eigenvalue. Although the value
of the latter is greater than the eigenvalues of the BRS
(see Fig. 8), the GHZLS appear weak, in the sense of en-
tanglement, since there exist M − 1 directions with null
minimum distance between states. This fact makes the
class of the BRS robust in the sense of entanglement. In
fact, the minimum distance between states in a random
direction is greater than the minimum eigenvalue of the
metric and, therefore, greater than zero.

Within the scenario that we have proposed, the en-
tanglement has the physical interpretation of an obstacle
to the minimum distance between infinitesimally close
states. In fact, by defining the distance between a given
state represented by the vector |U, s〉 and an infinites-
imally close state associated with the vector |dU, s〉 as
ds2 = tr(g(v))dr2 where

∑
µ(dξµ)2 = dr2, it results

ds2 ≥ E(|s〉)dr2 . (54)

This shows that the minimum distance density ds2/dr2,
obtained by varying the vectors v, is bounded from below
by the entanglement measure E(|s〉). For fully separable
states, the minimum distance density is zero whereas,
for maximally entangled states, it results M at the very
best. Finally, from the analysis of the eigenvalues we
can investigate the sensitivity of different states to small
variations. Fig. 9 shows that at different points in pa-
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FIG. 9. The figure plots the g̃ eigenvalues for the state |r, φ〉M
vs φ/(2π) for the case M = 7.

rameter space corresponds different state sensitivity of
|r, φ〉7. For instance, if we move out of φ = π/2, fol-
lowing the eigenvector’s direction corresponding to the
maximum eigenvalue of g̃, we find a greater distance than
moving along the eigenvector’s of the maximally entan-
gled state at φ = π. Such analysis can be profitably used
within quantum metrology applications.
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Appendix A: Generalized Gell-Mann matrices

As fundamental representation for the generators of
the algebra of SU(dµ), we use the generalized Gell-Mann
matrices. These are the following d2µ−1, dµ×dµ matrices.
Let Ej,k (for j, k = 1, . . . , dµ ) be the matrix with 1 as
(j, k)-th entry and 0 elsewhere. We define

Tµ` = (Ej,k + Ek,j) , (A1)

where ` = 2(k−j)+(j−1)(2dµ−j)−1 for j = 1, . . . , dµ−1,
k = j + 1, . . . , dµ,

Tµ` = −i(Ej,k − Ek,j) , (A2)

where ` = 2(k−j)+(j−1)(2dµ−j) for j = 1, . . . , dµ−1,
k = j + 1, . . . , dµ and

Tµ` =

 k∑
j=1

Ej,j − kEk+1,k+1

√ 2

k(k + 1)
, (A3)

where ` = dµ(dµ − 1) + k for k = 1, . . . , dµ − 1. In the
case dµ = 2, these generators are given in terms of the
Pauli matrices according to Tµ1 = σµ1, Tµ2 = σµ2 and
Tµ3 = σµ3. In the case dµ = 3, the generators are given
by the standard Gell-Mann matrices.

In the general case, the following identity holds true,

d2µ−1∑
k=1

TµkTµk =
2(d2µ − 1)

dµ
I (A4)

and, for each normalized state |sµ〉 ∈ Hdµ , it results

d2µ−1∑
k=1

〈sµ|Tµk|sµ〉2 =
2(dµ − 1)

dµ
. (A5)

For each normalized state |s〉 ∈ H and unitary local op-
erator Uµ : Hdµ → Hdµ , it results

d2µ−1∑
k=1

〈s|U†µTµkUµ|s〉2 =

d2µ−1∑
k=1

d2µ−1∑
α=1

(nkα)2〈s|Tµα|s〉2 =

d2µ−1∑
α=1

〈s|Tµα|s〉2
d2µ−1∑
k=1

(nkα)2 =

d2µ−1∑
α=1

〈s|Tµα|s〉2 .

(A6)
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