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Abstract. A detailed knowledge of a vehicle’s characteristics makes it
possible to monitor its dynamic behavior, energy consumption, and wear.
In this preliminary study, we address the problem of learning a robust
and consistent mass estimator from data provided by embedded sensors,
which are subject to uncertainties. Consistency refers to the ability to
comply with physical laws — Newton’s second law in the case of mass
estimation, robustness to the capacity to infer from uncertain or scarce
data. This preliminary work aims at defining the problem and providing
some guidelines with respect to constructing a robust and consistent mass
estimator from uncertain data. Simple experiments on a Renault vehicle
confirm the feasibility and the interest of learning a consistent vehicle
model so as to increase the estimation accuracy of vehicle consumption.

Keywords: robustness and consistency · physics-constrained estimation
· dynamical mechanical system modeling · informed machine learning

1 Introduction

In the automotive industry, vehicle modeling has become a key issue for vari-
ous purposes, such as consumption estimation and optimization. A vehicle model
heavily depends on a number of parameters which determine the vehicle’s behav-
ior. For instance, the load, which may vary according to its usage, influences its
dynamics (and therefore its energy consumption) as well as its wear. On-board
measurement of the vehicle mass is thus a key issue towards a better monitoring
and control of vehicle performances.

Measuring the vehicle mass classically requires the use of sensors, the accu-
racy of which directly depends on their price. An alternative approach consists
in constructing estimators (also referred to as observers, inferential sensors, or
virtual sensors) [15,10], which spares making these additional expenses, but may
result in poor parameter estimates. Some physical values describing the vehi-
cle’s behavior cannot be directly measured, and thus require the use of such
estimators. Obviously, the quality and quantity of available data then inevitably
restricts the accuracy of the resulting estimations.
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This preliminary study principally aims at clearly setting the problem, and
in particular justify the need for robust and consistent estimators. Robustness
directly refers to the ability to provide accurate estimates in presence of uncertain
or scarce input data. Our purpose is to develop a vehicle model using machine
learning, through which data uncertainty can be propagated. Thus, the resulting
parameter estimates will depend on data quality. Consistency, on the other hand,
is defined as the ability of the model to comply with the well-established laws
of physics — here, Newton’s laws of motion — to which the system is subject.
The use of physical knowledge to constrain the training of a vehicle model is
related to the field known as informed machine learning [21], and theory-guided
data science [9]. Our ultimate goal is to be able to exploit consistency in order
to reduce the uncertainty arising from the data, while remaining robust to noisy
or scarce data.

A short list of references focusing on mass estimation is given in Section 2.
Section 3 discusses the problem of building a robust consistent vehicle mass
estimator via machine learning. In Section 4, we report some preliminary exper-
iments realized on data measured on a real vehicle. Finally, Section 5 concludes
the paper and provides several future research directions.

2 Existing works

Several articles have investigated estimating a vehicle’s mass from data. In 2005,
[26] considered a longitudinal dynamic vehicle model, and proposed an online
mass estimation strategy using recursive least square. Road slope was also jointly
estimated as it is highly coupled to mass in the dynamic model considered. Other
contributions considered using extended Kalman filters [24], sensor-based road
slope estimation [6], Lyapunov-based observers [13,12], and road slope transition
filtering [11].

More recently, several studies addressed the problem of robustness. For in-
stance, [1] proposed to increase robustness in Kalman and recursive least squares
filtering approaches, by adding a conditioning term and managing outliers. Al-
ternatively, [25] proposed to estimate mass and road slope directly using a neu-
ral network. In [23], uncertainty is managed using a particle filtering approach,
whereas [17] uses maximum likelihood estimation jointly with polynomial chaos
theory in order to recursively estimate a reduced-order state-space vehicle model.

3 Problem statement

Sensors are subject to uncertainties, which may come from various sources
(aleatoric perturbations due to their functioning, biases due to inappropriate
locations in the vehicle, limited scope of use). As a consequence, estimators are
themselves subject to the uncertainties coming from their input data (which
may be scarce or noisy), to the parameters on which they depend, and due to
the assumptions underlying the model of the estimator itself (which reflect a
particular context of usage).
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We aim at providing estimators which are robust to low-quality data, by
exploiting the physical principles to which the system modeled is subject — in
our case, the vehicle should satisfy Newton’s laws of motion. The requirement
that the estimator be consistent, i.e. that it satisfies these physical principles,
will help guiding the estimation process towards a robust solution.

3.1 Robust inference

One of the difficulties to proceed with mass estimation comes from the high un-
certainty of the data gathered via the controller area network (CAN) embedded
into a series production vehicle. A now classical distinction can be made between
aleatoric and epistemic uncertainty [22,7].

In our problem, aleatoric uncertainty will systematically pervade the data at
hand — for example, aleatoric delays generated by the CAN protocol (typically,
50± 50ms), or noise in the sensors’ measurement process, due to their physical
conception (for instance, a same acceleration will deform the silica spring of the
accelerometer with an aleatoric variation due to small frictions, elasticity, or
geometry variations in sensor physics). Classically, this uncertainty is quantified
via physical measurement approaches.

Epistemic uncertainty, on the other hand, reflects the lack of knowledge with
respect to the actual vehicle’s behavior in terms of quantity and quality of data.
First of all, despite the increasing number of embedded sensors in modern ve-
hicles, the three dimensional dynamic of this multi-body system remains a very
complex model [27], which would require a large quantity of data provided by
high quality sensors to be properly assessed. For instance, a sensor on the vehicle
damper would provide a quite accurate estimation of the vehicle mass by measur-
ing the damper travel; however, this sensor being expensive, it cannot be made
available in series vehicles. As a consequence, it is in practice very difficult to
gather a large number of high-quality data about the vehicle’s behavior in each
of its operating modes. Another source of epistemic uncertainty corresponds to
the biases, unique to each vehicle, caused by the manufacturing or assembly pro-
cesses. For instance, an internal Renault study showed that the braking torque
data were subject to such uncertainties, since the embedded black box sensor
and does not take into account the brake setting nor the wear.

Note that a third source of uncertainty may be identified with the choice of
the vehicle model, which may be too simple or inappropriate. For instance, the
use of a nominal mass value for estimating the parameters in a hybrid model,
such as mentioned in Section 3.3, falls into this category, since subsequent mea-
surements or predictions realized during the vehicle’s life (e.g. related to con-
sumption) may be inaccurate. Model assumptions may also be restrictive: for
instance, damping is often neglected, which prevents to accurately model vehi-
cle pitching; friction forces of the wheel on the road are considered independent
of velocity, which is notoriously wrong (friction forces are equal to zero when the
vehicle is motionless on a flat road); the acceleration is assumed to be measured
at the moving center of gravity, which may not always be the case in practice.
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Being able to correctly model the vehicle’s dynamic while being robust to
poor quality data motivates the use of advanced machine learning methods of
a hybrid model, where physics principles make it possible to guide the estima-
tion of the statistical model. In addition, it seems necessary to propagate the
uncertainty through the model, so as to assess to which extent it is appropriate
given the data at hand and the physics principles involved. The interest of such
a “self-aware” [22] estimator of the vehicle mass is twofold. First of all, should
the mass estimate be used in subsequent estimates (for instance of the vehicle
consumption), its validity could be taken into account. Besides, it would ideally
provide an indicator of the vehicle’s operating modes in which either the data
and the model are in conflict, which would indicate poor inappropriate model
assumptions; or for which the estimates are too uncertain, thus pointing out
the necessity to gather additional data in order to better describe the vehicle
behavior.

3.2 Consistency

Due to the data being scarce or poor in some operating modes of the vehicle,
statistical approaches to modeling the vehicle behavior are prone to overfitting.
Our proposal to address this undesirable outcome consists in constraining the
model to satisfy some constraints, imposed by the physics laws to which the
vehicle is subject. In the present case, as any dynamical system, the moving
vehicle should satisfy Newton’s second law of motion [14]:

d

dt

(
m(t) ·−→v (t)

)
=
∑−−→

fext(t); (1)

here, m(t) is the total mass of the vehicle frame and its load, −→v (t) is the speed
of the center of gravity of the vehicle frame in the Galilean referential, and∑−−→

fext(t) refers to the sum of all external forces on the vehicle frame at time t.
We will make the following additional assumptions: the vehicle mass m is

constant over a trip; the vehicle frame is a rigid body, and its center of gravity is
constant; and the external forces are composed of both forces generated by the
gravity g which are proportional to m, and forces which are independent of m:∑−−→

fext(t) = m ·
∑−→

fg(t) +
∑−→

fg(t).

Then, Equation (1) can be projected onto a direction
−→
i , which yields:

m · a(t) = f(t) + εgen(m, t) (2)

with

a(t) =

(
d

dt
−→v (t) +

∑−→
fg(t)

)
·
−→
i , f(t) =

∑−→
fg(t) ·

−→
i .

The term a relates to the sum of vehicle frame kinematic and gravity effects on
the vehicle frame, whereas f relates to the sum of mechanical actions applied on
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the vehicle frame which are independent of gravity; finally, εgen(m, t) represents
possible errors due to the assumptions underlying the generic model which are
considered to depend on m. For example, the assumption that the mass m is
constant over a trip amounts to neglect weight loss due to fuel consumption (this
can leave to an error of about 30kg) or weight variations due to the arrival or
the leave of passengers.

3.3 Consistent online mass estimation

A straightforward approach to mass estimation would lead to invert equation 2.
Obviously, due to measurement uncertainties, this approach requires solving an
online least-squares optimization problem:

m̂ = arg min
m

∑
t∈T

(m · a(t)− f(t))
2
, (3)

where T is the set of timestamps of the portion of the trip used for the estimation,
during which mass variations are neglected. The solution m̂ to Equation (3) is
the slope of the “best-fit” line in the (a, f) referential (see Figure 2). To proceed
with this estimation, it is necessary to obtain values for a(t) and f(t) from the
CAN embedded into the vehicle.

Physical model The physical model, which is the most frequently found in the
literature, defines a(t) and f(t) using the mechanical knowledge of the system
along the longitudinal axis −→x of the vehicle frame:{

fphys(t; θf ) = θ0 + θ1 · tw(t) + θ2 · ẍ(t) + θ3 · ẋ(t)2 + εf (t)

aphys(t; θa) = ẍ(t) + g sin(α(t)) + θ4 · g cos(α(t)) + εa(t)
, (4)

where ẋ(t) is the vehicle speed, ẍ(t) is the vehicle acceleration (derivative of
ẋ(t)), tw(t) is the traction torque on the vehicle wheels, α(t) is the slope of the
road, g is the gravity acceleration, θ are the model parameters, and εf (t) and
εa(t) represents errors made because of the model assumptions.

Statistical model It might be tempting to use a purely statistical model of
the vehicle so as to estimate a and f . However, this approach did not prove to
be relevant so far.

Indeed, even high-quality sensors (which cannot be embedded on production
models, for obvious economical reasons) are subject to uncertainties, due to
drift, suboptimal location in the vehicle, or restricted scope of validity. The
collection of a large dataset of a high quality is therefore very expensive and
time-consuming. Experiments showed that using machine learning without any
additional background knowledge performs poorly, mainly due to overfitting, as
will be seen in Section 4.



6 M. Randon et al.

Hybrid model A hybrid model combines a statistical approach with a physical
component, which can either be a physical model such as described above, or
a set of constraints arising from the dynamics of the vehicle. The interest is to
avoid making prior assumptions about a physical model which are oversimplistic
or have a restricted range of validity. It allows for a good compromise between
model adaptability (provided by machine learning) and universality (guaranteed
by satisfying the laws of physics). As an example, if f(t) (the sum of mechanical
forces independent of gravity) is to be statistically estimated from data whereas
a(t) is determined as previously, the physical model (4) results in the following
hybrid model:{

fstat(t; θf ) = hf (yf (t), θf ) + εf (t)

aphys(t; θa) = ẍ(t) + g sin(α(t)) + θA · g cos(α(t)) + εA(t)
, (5)

where yf (t) are the input data of the statistical model hf obtained by the CAN,
α(t) is the slope of the road, and θf is the set of parameters governing this
statistical model.

The learning task consists in computing the best estimate θ̂ of θ = (θa, θf )
using a set of learning samples:

θ̂ = arg min
θ
j(θ) =

∑
t∈T

(
m0 · aθa(t)− fθf (t)

)2
, (6)

under the constraints imposed by Equation 2 and both models assumptions:

aθa(t) = ha(ya(t), θa) + εa(t), fθf (t) = hf (yf (t), θf ) + εf (t).

Note that computing θ̂ requires to know the mass of the vehicle: hence, it is
performed during the vehicle’s conception step using a nominal mass m0. As a
consequence, the estimated components a(·; θ̂a) and f(·; θ̂f ) may only be valid,
during the vehicle’s use, if its actual mass is close to m0.

Multiple methods have been recently developed to proceed with such a physics-
guided learning strategy [19,3,28].

4 Preliminary experiments on a real case

The problem presented in Section 3 has been applied to a 1300 kg passenger
vehicle. The global dataset contains 63h54min of CAN data recorded at 10Hz,
on open road, for 5 different additional load cases (90kg, 155kg, 255kg, 325kg
and 375kg). This dataset is split into three parts: 67% training data, 8% for
validation, and 25% in the test set. The training data corresponds to the first
samples of the global trip (roughly, from t = 1 to t = 17000 in Figures 3 and
5), and to vehicle load weights of 155kg, 255kg, and 325kg (as well as a few
instances with an additional load of 375kg). The test data (from t = 17000 on)
correspond to additional loads of 375kg and 90kg.
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4.1 Data preprocessing

Raw data are filtered with a 3Hz low pass filter (Shannon criteria) and then
0.3Hz to remove high frequency noises. The road slope (α) is calculated using a
sensor-based method [18,6].

The physical model (4) is valid only under several conditions: straight posi-
tion, stabilized slope, no braking, no clutching, moderate speed, and moderate
longitudinal accelerations. Consequently, all data samples which do not satisfy
those conditions may actually be considered as noisy, since they would induce
a bias in the estimation process. These data can therefore be removed from the
dataset — which leaves us with 1% of the data.

Feature engineering, which corresponds to transforms of the input data based
on mechanical knowledge, is performed to reduce the number of layers needed
for the neural network. For instance, V S2 (square of vehicle speed) and V1000
are calculated from other input data. The former allows to model aerodynamic
resistance at high speed, the latter represents the gearbox ratio which impacts
friction forces of the transmission. Estimates of derivatives with respect to time
are commonly used to provide information about the temporal dynamics of the
vehicle. These transformations may however increase the level of uncertainty in
the training data. Note that the features which appear in the statistical model
hf have been selected using the mechanical knowledge of the system only.

4.2 Training

The approach described in Section 3.3 is applied on the data. The model hf is
a feed-forward neural network displayed in Figure 1. Its accuracy is assessed via
curves displaying the mass estimate during time, the distribution of residuals
(Figure 4), as well as the determination coefficient

R2 = 1−

∑
∀t

(m(t)− m̂(t))
2∑

∀t
(m(t)−m)2

.

Note that this coefficient can take negative values when computed over a set of
data distinct from the training sample.

Both the purely physical model and the hybrid model allow for different
levels of load to be distinguished: for each cloud of sample data corresponding
to a particular load, a specific slope can be estimated (see Figure 2). After
validation, the hybrid model obtains an overall R2 score of 0.95, which is slightly
higher than that obtained with the physical model (0.92).

4.3 Results on mass estimation

The online estimation of vehicle mass (3.3) is performed recursive least squares
[8] with a forgetting factor of 0.957 (10 minutes driving in average depending on
contexts). Results are shown in Figures 3, 4, and 5.
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Fig. 1. Chosen feed-forward neural network architecture: 19 inputs, 3 layers of 10, 5
and 2 neurons with rectified linear unit activation function.
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physical model (R2=0.92)
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Fig. 2. Vehicle data projected in the (a, f) regression referential learnt via the physical
model (left, R2=0.92) and the hybrid model (right, R2=0.95).



Towards a robust and consistent estimation of a vehicle’s mass 9

0 5000 10000 15000 20000
samples

1300

1400

1500

1600

1700

1800

m
as

s (
kg

)

real mass estimated mass (physic model R2=0.17) estimated mass (hybrid model, R2=0.51)

Fig. 3. Mass estimated with the physical model (red dotted line, R2=0.17) and the
hybrid model (blue line, R2=0.51), both after a selection of the training data.

300 200 100 0 100 200 300
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

mass estimation's residual with hybrid model

 ( =9kg, 2), =62kg

200 0 200 400
0.000

0.001

0.002

0.003

0.004

0.005

mass estimation's residual with physical model

 ( =10kg, 2), =84kg

Fig. 4. Distribution of residuals for the physical model (red line, σ=84kg) and the
hybrid model (blue line, σ=62kg) both after a selection of the training data.
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We first comment the results obtained after a selection of the training data
based on the driving conditions (Figure 3). Overall, the mass is estimated with a
95% confidence interval accuracy of [−119kg,+137kg] (see Figure 4). The hybrid
model significantly improves accuracy (R2 score of 0.51) compared to the purely
physical model (R2 score of 0.17). However, the errors may be large in some
driving contexts, and a more stable estimation can be obtained with an increase
of the forgetting factor.

0 50000 100000 150000 200000
time
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1450

1500

1550
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m
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(k
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real mass estimated mass (machine learning) estimated mass (contextualized machine learning)

Fig. 5. Mass estimated with a purely statistical model, without training data selection
(red dotted line, R2=0.04) and after training data selection (blue line, R2=0.21).

Should an unconstrained statistical model be directly estimated — i.e., the
mass is estimated using a neural network without any physical constraints, the
resulting model now appears to be unable to relate mass to the input data, as
can be seen in Figure 5. The estimation seems to be only marginally affected by
load variations of the vehicle. Selecting the training instances based on driving
conditions appeared to improve the results only in a limited way (overall R2 score
of 0.04 without selection, against 0.21 with selection). This illustrates the need
of data selection and the sensitivity of pure satistical approaches to overfitting.

Note that although the R2 score might seem better for the unconstrained
statistical model with selected examples than for the physical model, both of
the unconstrained approaches actually perform poorly (R2 scores of -0.28 with-
out sample selection, and 0.06 with sample selection) in the test sequence (from
t = 17000 on), compared to the physical and hybrid models. Besides, we found
out that selecting the training instances may significantly improve the results,
but may also lead to overfit some specific driving contexts if the screening con-
ditions are too restrictive, most probably due to the training set being then
depleted. The use of a statistical approaches is more adaptable to a specific ve-
hicle configuration and its embedded sensors. However, collecting an exhaustive
dataset with loading cases in diverse driving conditions is limited by indus-
trial resources, therefore pure machine learning approach trends to overfit. We
expect a careful uncertainty quantification and propagation to help detecting
those driving contexts for which too few data are available.
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Last, if the estimation accuracy can appear to be poor compared to other
results found in literature in Section 2, this is essentially due to poor quality
and quantity of available sensors to describe the complexity of a real vehicle
dynamics. However, even if the 95% confidence interval accuracy is quite limited
(standard deviation σ ' 62kg), it remains sufficient to distinguish an overload
use of the vehicle from normal load contexts. This distinction can be already be
used onboard to improve control strategy of powertrain, steering, braking and
damping systems of the vehicle. This is all the more true for commercial vehicles,
for which the load can reach more than 100% of the empty vehicle’s weight.

5 Conclusions and perspectives

In this preliminary contribution, we presented a problem where some parame-
ters influencing a dynamical system are to be estimated. More particularly, we
focused on a vehicle where the mass is to be determined from measurements
provided by embedded sensors. Important choices influencing data quality and
quantity are guided by industrial requirements. These constraints, together with
the high influence of the driving context on the vehicle’s behavior, strongly moti-
vates the use of cautious models, where the uncertainty coming from the quality
of the data at hand, systematic errors made by the sensors, and oversimplified
physical models are propagated to the model output. This seems even more nec-
essary as the global model output is to be used in a more general vehicle model.
The objective is to find methods to build a reliable estimator from uncertain
or scarce data that can be generalized to the estimation of other first-order
parameters of a vehicle.

For this purpose, two families of approaches can be deployed. In a purely
physical model, the dynamical system is described using the mechanical knowl-
edge of the system only. Alternatively, a purely statistical approach usually more
adaptable to infer the dynamic behavior directly from sensors available in the
vehicle. In the case of mass estimation, both purely statistical, and purely phys-
ical approaches are limited, the former by epistemic uncertainties (representing
lack of quality and quantity of data), and the latter by its range of validity. We
therefore advocate a hybrid approach, where some of the physical components
are replaced by a statistical counterpart. This makes it possible to avoid restrict-
ing the model to over-simplistic physical assumptions, while reducing trends of
machine learning to overfit with lack of data, by incorporating additional knowl-
edge (laws of dynamics to which the vehicle is subject) to the training process.

Preliminary results obtained in Section 4 demonstrate the interest of the
hybrid approach: constraining the statistical component makes it possible to in-
crease the mass estimation accuracy. This shows that using a complex statistical
model makes it possible to account for complex dynamic behaviors which are
difficult to explicitly assess using parameterized dynamics equations. The results
obtained motivate requiring that the statistical model be consistent with respect
to the laws of dynamics. Feature selection and model selection (based on statis-
tical tests) may allow for further improvements. It could also be interesting to



12 M. Randon et al.

apply other models found in the literature 2 on the proposed dataset to obtain
an objective comparison.

Future work will be conducted in several directions. First of all, we only
assessed the interest of taking into account data uncertainty in the crudest
of ways — i.e., by selecting data according to their quality and relevance to
the vehicle’s operating mode. This makes it possible to lower the bias induced
by atypical data, at the price of a loss of information. We will therefore focus
on uncertainty propagation. More particularly, we will investigate generalized
least squares, Bayesian or robust Bayesian approaches [10], as well as imprecise-
probabilistic and credal formalizations, in order to propagate data scarcity or low
quality to the estimates, and to take into account the degree of conflict between
the input data and the vehicle model estimated. For Bayesian approaches, weak
prior knowledge on the vehicle load could be derived from the number of passen-
gers (given by the number of fastened seat belts) and the remaining fuel in the
vehicle. However, this would be restricted to passenger cars, and would exclude
commercial vehicles. The results may be compared to those previously obtained
using generative models [5], maximum likelihood estimation with polynomial
chaos modeling [16], or Gaussian process regression via Kriging [2,20].

In addition, this approach may be generalized to estimating several first-
order parameters such as aerodynamic resistance, battery state of health, tire
efficiency, or driving conditions [4]. In this more general setting where several
parameters are to be jointly estimated, an additional challenge comes from the
interdependencies between these parameters. Hopefully, consistency may then
help proceeding with the estimation in a large number of operating contexts
while preventing overfitting.
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