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Abstract

In the context of pathological speech, perceptual evaluation is
still the most widely used method for intelligibility estimation.
Despite being considered a staple in clinical settings, it has
a well-known subjectivity associated with it, which results in
greater variances and low reproducibility. On the other hand,
due to the increasing computing power and latest research, auto-
matic evaluation has become a growing alternative to perceptual
assessments. In this paper we investigate an automatic predic-
tion of speech intelligibility using the x-vector paradigm, in the
context of head and neck cancer. Experimental evaluation of
the proposed model suggests a high correlation rate when ap-
plied to our corpus of HNC patients (p = 0.85). Our approach
also displayed the possibility of achieving very high correlation
values (p = 0.95) when adapting the evaluation to each individ-
ual speaker, displaying a significantly more accurate prediction
whilst using smaller amounts of data. These results can also
provide valuable insight to the redevelopment of test protocols,
which typically tend to be substantial and effort-intensive for
patients.
Index Terms: speech intelligibility, automatic speech process-
ing, speaker embeddings, head and neck cancer

1. Introduction
Speech disorders, such as dysarthria or dysphonia, are usually
associated with an underlying medical condition. These dis-
orders can affect multiple components of speech (respiration,
articulation, phonation, etc.) and can cause different sorts of
speech impairment. Depending on the underlying condition,
there are several methods and protocols that assess the overall
speech ability of the patient. These protocols can be associated
to a specific condition, such as Parkinson or amiotrophic lateral
scleriosis [1], or can involve a more generalist approach [2].
Head and neck cancer (HNC) has major functional repercus-
sions on the upper aerodigestive tract (breathing, swallowing,
and phonation/speech). Due to this, a functional impairment at
the level of communication is likely to appear, impacting the
speech-related quality of life. As a result, perceptual evalua-
tion has long been the most used method of disordered speech
assessment. On the other hand, perceptual evaluation is usu-
ally time-consuming, biased and variant, since the evaluation
can depend, amongst other facts, on the previous assessments
that the health practitioner performed, affecting reproducibil-
ity [3]. Hence, the reliability of perceptual evaluations is mostly
listener-dependent [4].With the increasing rate of oropharyn-
geal cancer incidence and the interjudge/intrajudge variance,
the development of an automatic assessment that is able to out-
put unbiased intelligibility measures becomes relevant [5, 6].

Loss of intelligibility is commonly found in the post-
treatment of conditions that affect the vocal tract, such as HNC,
and also in neurodegenerative diseases with dysarthria symp-
toms. An early diagnosis is usually correlated to a better prog-
nosis, as a result of a progressive and timed implementation of
post-treatment measures [7]. To better address the subjectivity
and bias of intelligibility scores, automatic assessments have
also been seen as a more objective and reproducible alternative.
In the literature, one can distinguish two different approaches
concerning automatic prediction of intelligibility measures. The
first is based on the extraction of an intelligibility score as the re-
sult of the word error rate achieved by automatic speech recog-
nition [8]. The second approach aims to extract relevant fea-
tures from pathological speech by using automatic speech pro-
cessing technologies, and then output a predicted intelligibility
score [9].

Speaker embedding representations, such as i-vectors, have
proven to represent well speaker characteristics [10]. In [11],
we can see approaches based on i-vectors that aim to predict
dysarthric speech evaluation metrics like intelligibility, sever-
ity and articulation impairment. In [12], the speaker embedding
paradigm was applied to the specific case of intelligibility in the
same HNC corpus. The study used the recording of a vast list
of pseudo-words and addressed intelligibility as the phonetic
distance between the original and the perceived word. The au-
tomatic measures achieved high correlation values in terms of
intelligibility prediction (between 0.7 and 0.9) when compared
to the reference values. Proposed by Snyder, x-vectors [13]
are discriminative DNN speaker embeddings that have outper-
formed i-vectors in tasks such as speaker and language recog-
nition [14, 15]. Recent advances suggest that x-vectors have
been successfully applied to paralinguistic tasks such as emo-
tion recognition [16], and to the detection of diseases like Ob-
structive Sleep Apnea [17] and Alzheimer’s [18]. Following the
line of research present in [11] and [12], we investigate the re-
liability of using x-vector speaker embeddings as features for
automatic intelligibility prediction in the context of HNC. We
perform comparisons between the automatic predicted scores
and the perceptual evaluation issued by the professional assess-
ment of dysarthria and healthy speakers.

The rest of this paper is organized as follows. Section 2 ex-
plains the methodology used, emphasizing the x-vector extrac-
tion network as well as the shallow neural network used. Sec-
tion 3 presents the experiments performed on the French Head
and Neck Speech Corpus (C2SI) and respective results. Section
4 presents the discussion as well as some perspectives on the re-
sults achieved. Finally, section 5 displays our conclusions and
provides a few suggestions for future work.
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Figure 1: Global Overview of the proposed system. The x-vectors are extracted from the segmented parts of a reading passage task
(LEC), and then fed to a shallow neural network that regresses an intelligibility score.

2. Methodology
The proposed methodology relies on two steps (see figure 1).
The first one corresponds to the extraction of the x-vector
speaker embeddings, in order to obtain a fixed-length represen-
tation of every speaker’s utterance. In our specific case, we used
the segmented recordings of a reading text task (LEC) which
can be found fully described in 3.1. The second step relies on
the regression task of predicting an intelligibility score based
on the embedding representations. In order to do so, a shallow
neural network was modeled to fit the data.

Both stages are fully explained in sections 2.1 and 2.2.

2.1. X-vector extraction

As mentioned before, x-vectors are DNN speaker embeddings
that have seen a growing use in speaker recognition and paralin-
guistic tasks [16]. While i-vectors represent the total variability
subspace of a channel or speaker, x-vectors aim to represent
discriminative features between speakers. The comparison of
both embeddings suggests that x-vectors require shorter tempo-
ral segments to achieve good results, and have been shown to
be more robust to data variability and domain mismatches [13].

In order to extract x-vectors, we used the open source im-
plementation present in the Kaldi toolkit1. The complete de-
scription of the extraction network can be found in [13]. Table 1
presents the outline of the DNN configuration used. Assuming a
given speech signal has a total of N frames, the first five layers
operate on speech frames with a small temporal context cen-
tered at the current frame t, building on temporal context of the
previous layers. The statistics pooling layer aggregates all N
frame-level outputs from layer frame5 and computes its mean
and standard deviation, which are then concatenated and prop-
agated through segment-level layers, and finally to the softmax
output layer. After training, embeddings are extracted from the
affine component of layer segment6. The total dimension of
each x-vector is 512. All long silences and noise bits were re-
moved from the input audio files.

2.2. Shallow Neural Network

As previously stated, to predict an intelligibility score based on
the embedding representations, a shallow neural network was
modeled to fit our data. Only fully-connected layers (fc-layers)
were used in our case. Figure 2 presents the proposed dimen-
sions for the used network.

1https://github.com/kaldi-asr/kaldi

Table 1: X-vector extraction DNN outline.

Layer Layer context Input x Output

Frame 1 {t− 2, t+ 2} 120× 512
Frame 2 {t− 2, t, t+ 2} 1536× 512
Frame 3 {t− 3, t, t+ 3} 1536× 512
Frame 4 t 512× 512
Frame 5 t 512× 1500

Stats pooling [0, N ] 1500T × 3000
Segment 6 0 3000× 512
Segment 7 0 512× 512
Softmax 0 512×N

Table 2: Proposed shallow neural network outline.

Layer Input x Output

Input 512× 128
fc-1 128× 64
fc-2 64× 1

3. Experiments and results
The present section displays the experiments performed and re-
sults achieved. On 3.1 we introduce the HNC corpus used, 3.2
presents the data augmentation scheme applied, 3.3 illustrates
the training protocol, and finally sub-section 3.4 displays the
evaluation scores.

3.1. C2SI Corpus

The present work is based on the French head and neck cancer
speech corpus C2SI [19]. The corpus includes patients that suf-
fer oral cavity or oropharyngeal cancer and also healthy speak-
ers. All cancer patients have undergone at least one cancer treat-
ment, such as surgery, radiotherapy and/or chemotherapy. All
of the speakers were asked to record a different set of spoken
tasks such as sustained vowels, picture description, spontaneous
speech, passage reading and isolated pseudo-words.

In this study, the main focus of attention was set towards
the passage reading task (LEC). In the context of the C2SI cor-
pus, all speakers were asked to read the 1st paragraph of “La
chèvre de M. Seguin”, a tale by Alphonse Daudet that was cho-
sen due to being long enough to include all French phonemes.
This passage is also well known and widespread in French clin-
ical phonetics [20].
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For each speaker, the mean intelligibility and severity were
computed based on the independent perceptual evaluation of 6
different health professionals. Each speaker was given a score
between 0 and 10, the smaller the value, the less intelligible the
speech is. The recordings were later segmented into 8 different
segments of similar lengths, which can be found marked in the
text. A total of 105 speakers, 84 patients and 21 controls, were
used in this study.

The full LEC task is as follows, cut into segments: (S1)
Monsieur Seguin n’avait jamais eu de bonheur avec ses chèvres.
(S2) Il les perdait toutes de la même façon. (S3) Un beau matin,
elles cassaient leur corde, (S4) s’en allaient dans la montagne,
et là-haut le loup les mangeait. (S5) Ni les caresses de leur
maı̂tre (S6) ni la peur du loup rien ne les retenait. (S7) C’était
paraı̂t-il des chèvres indépendantes (S8) voulant à tout prix le
grand air et la liberté.

3.2. Data augmentation

In order to increase the training data available, a data augmen-
tation scheme based on temporal distortion was implemented.
Speed and tempo distortions have long been a reliable augmen-
tation scheme applied to Automatic Speech recognition [21]. In
our case, we employed a tempo distortion to all utterances of the
training set. Tempo distortion is fairly similar to a speed pertur-
bation, however, ensures that the pitch and spectral envelope of
the signal remain the same [22]. We performed the augmenta-
tions by a factor of 0.9 and 1.1, where a factor of 1 corresponds
to the original signal. A speech therapist listened to a subset of
the augmented data in order to validate that there was no per-
ceptual variation of intelligibility. Therefore, the same target
values for intelligibility were used as labels for the augmented
data.

3.3. 5-Fold Cross-Validation

A 5-fold cross-validation scheme was implemented in order to
train the shallow neural network. At each fold, 84 speakers (pa-
tients and controls) were used for training and the remaining
21 unseen speakers were used for testing. Data augmentation
was performed at every training fold. For each fold, the shallow
neural network was trained during a total of 15 epochs using
an exponential learning rate decay. Batch normalization and a
dropout rate of 25% were applied on every layer.

3.4. Evaluation scores

In order to evaluate the resulting predictions, we evaluated our
system on two metrics: Spearman’s correlation (p), as the target
intelligibility values were far from being normally distributed,
and Root Mean Squared Error (RMSE). The scores were com-
puted using the perceptual values mentioned in 3.1 as reference.
The intelligibility perceptual assessment can be found fully de-
scribed in [19].

The first intelligibility prediction experiment that we per-
formed made use of all the 8 speaker’s segments. In this case,
the x-vectors were extracted, fed to the shallow neural network
and finally paired to a predicted intelligibility value. The final
score for each speaker was computed as the average score of
each speaker’s 8 segments. This analysis promoted more train-
ing data and a more granular analysis at sentence level, which
will be explained further. Figure 2 depicts the predicted intelli-
gibility values compared to the professional perceptual assess-
ment. The correlation values achieved are consistent with the
ones found in previous studies such as [12], which achieved

correlation values between 0.75 and 0.84. However it is impor-
tant to state that the perceptual intelligibility measures, in our
case, are far more subjective due to being rated by health pro-
fessionals instead of naive listeners.

Figure 2: Intelligibility prediction plot, using the average score
of each speaker’s segments.

Outliers were accounted for speakers that had a predicted
score outside a [−2, T, 2] boundary, where T stands for the tar-
get value. From the 105 speakers, a total of 6 outliers were
found above bounds and 21 below bounds, two of which were
controls.

4. Discussion
4.1. Best segment scores

From the results achieved using the average score of 8 segments,
we noticed that, in the majority of cases, there was a large vari-
ance within the individual scores of each speaker. Due to this,
one can notice that there are sentences able to convey a much
more precise intelligibility estimation. We further investigated
this aspect by manually choosing, for each speaker, the segment
that had the predicted value closest to target. The RMSE and p
values were computed. The results can be found in table 3,
paired with the results of choosing the worst segment as well.

The resulting values suggest that, for each speaker, there are
segments that are able to convey a highly precise intelligibility
measure, generally displaying a very high correlation value and
a low root mean squared error. This points to a deeper analy-
sis of those segments, showing that we are able to achieve very
high correlation values by manually identifying utterances that
fit each speaker best. The resulting best segments were further
assessed. Although no clear preference was found towards a
specific sentence, from the sub-list of best segments, number 2
and number 6 were the ones with larger representativeness, ac-
counting for 22% and 15% of all cases respectively.

4.2. Choosing the best segment

As we have seen before, some of the segments were able to con-
vey a much more accurate intelligibility measure than others.
Due to this, it becomes relevant to devise a way to detect each
speaker’s most relevant sentence. While the subset of speaker’s
best segments displayed no clear preference towards a specific
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one, we implemented a simple decision criterion based on ex-
ternal features, which points to a more accurate segment choice.

Table 3: Results achieved by manually choosing, for each
speaker, the best/worst segment scores.

p RMSE
Best segment 0.95 0.900

Worst Segment 0.53 2.224

From the subset of speakers that had segments 2 and 6 as
the most accurate ones, we analyzed the number of recognized
phonemes that the speakers from each subset had. Word and
phoneme error rates have long been used as an automatic way
to assess speech intelligibility [8]. From this analysis, we found
that segment 2 was associated with a clear above average recog-
nition rate, while segment 6 was clearly below average. We
believe this may be due to the larger presence of nasalised vow-
els in segment 6, which typically presents articulation issues
for oropharyngeal cancer patients [23]. Afterwards, we corre-
lated all speaker predictions from each segment group with the
target values, and confirmed that segments 2 and 6 presented
the highest correlation values when compared to the remain-
ing ones. This was expected since from the subset of best seg-
ments, those two were the ones with larger representativeness.
Interestingly, by simply using segment 2, the correlation/RMSE
pair obtained (p: 0.82, RMSE: 1.434) was slightly better than
the average score displayed in 3.4. Furthermore, we devised
a simple decision tree that chooses the best speaker’s segment
based on the number of recognized phonemes by a kaldi-based
phoneme recognizer. For speakers with or more than 167 over-
all recognized phonemes, segment 2 was assigned, while for the
counterpart segment 6 was chosen. The split value mentioned
corresponds to the mean value of recognized phonemes for the
C2SI patients. The results using this criterion, present in table
4, suggest an improvement in correlation and a total decrease
of 0.34 on the root mean squared error. I-vectors were obtained
through the pretrained model [24], which served as baseline.

Table 4: Comparison between the scores previously obtained
and the decision tree criterion implemented.

p RMSE
i-vectors Averaged Scores 0.72 2.121

x-vectors
Averaged Scores 0.81 1.728
Only Segment 2 0.82 1.434
Decision Tree 0.85 1.389

4.3. Perspectives

The results presented suggest that by using the x-vector
paradigm, we are able to obtain reliable intelligibility predic-
tions with a given combination of individual segment scores.
Moreover, when identifying the best segment for each speaker,
a very high correlation value can be achieved, and the RMSE
decreases to almost half of the value achieved in the averaged
approach.

Concerning the results of the perceptual assessment, the in-
telligibility measures used suffered, in some cases, from very
high variance within the same speaker, reaching standard devi-
ations of up to 3 (on a 0-10 scale), pinpointing the large inter-
class variance present in this type of clinical assessments [4].
This aspect points out the subjectivity of the intelligibility

scores used, when compared to the more objective ones found
previously in the literature [12], which were rated by naive lis-
teners instead of health professionals. When comparing the us-
age of i-vectors with the x-vector paradigm, we can conclude
that the latter does not rely on larger amounts of data to output
better results [13]. This aspect was evident by analyzing the
scores of only segment 2, present in 4.2, which were slightly
better than the averaged approach described in 3.4. This can
provide interesting cues to the development of less extensive
and more precise batteries of exams, as the majority of the as-
sessments are substantial and require much effort from both
patient and therapist. A more precise and targeted assessment
would strongly diminish the battery of exams required.

Regarding the outliers mentioned in 3.4, since only 12.4%
of the total number of speakers had a target intelligibility score
below 5, it was expected that the system would perform with
larger margins of error in this specific context. This was the
case for the 6 outliers predicted above bounds. Concerning the
23 outliers that were below bounds, half of them were found to
have a tumor in the amygdala region. Tumors in this location
are typically associated with changes in articulation of fricatives
and stop consonants [25]. While perceptually, a larger vowel
presence is usually correlated to an improvement in speech un-
derstandability [26], we introduce the hypothesis that in the
context of an automatic assessment, a larger consonant presence
may be related to a more accurate intelligibility score. When the
decision tree criterion was applied, the number of lower out-
liers drastically reduced from 23 to 5. The usage of this simple
decision method in the system promoted a correlation increase
and a decrease in error. However it still leaves room for im-
provement. A deeper analysis on speaker individual features
and speaker-specific phonetic content could provide a valuable
insight to detect specific words and phonemes that are able to
convey a more accurate intelligibility estimation.

5. Conclusions
This paper investigated an automatic approach for intelligibil-
ity estimation based on x-vectors and shallow neural networks.
This approach was devised for the segmented parts of a pho-
netically rich passage, in the context of HNC. When using the
average of all passage segments, a high correlation value of 0.81
was achieved, showing that x-vectors can indeed convey intelli-
gibility measures, similarly to the i-vector paradigm. However
they require smaller amounts of speech data, as it was evident
in the single segment analysis devised. When choosing the seg-
ments that are closest to target, we achieved a very high cor-
relation value of 0.95, pointing out the importance of selecting
the sentences used in this automatic assessment to each speaker.
Moreover, we devised a simple criterion to choose the speaker’s
best segment based on the statistics obtained and the number of
recognized phonemes. The results suggest a correlation value
of 0.85 and a total decrease of 0.34 on the root mean squared
error. While this criterion promotes a better correlation value
than the average score, it displays the relevance of an affect-
ing pathology based way to detect the best sentence for each
speaker. Future work will investigate this aspect, and a more
granular phonetic analysis of the textual content used.
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