
HAL Id: hal-03122709
https://hal.science/hal-03122709v1

Submitted on 27 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Toward a correct and optimal time-aware cloud resource
allocation to business processes

Rania Ben Halima, Slim Kallel, Walid Gaaloul, Zakaria Maamar, Mohamed
Jmaiel

To cite this version:
Rania Ben Halima, Slim Kallel, Walid Gaaloul, Zakaria Maamar, Mohamed Jmaiel. Toward a correct
and optimal time-aware cloud resource allocation to business processes. Future Generation Computer
Systems, 2020, 112, pp.751-766. �10.1016/j.future.2020.06.018�. �hal-03122709�

https://hal.science/hal-03122709v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Toward a Correct and Optimal Time-aware
Cloud Resource Allocation to Business Processes

Rania Ben Halimaa,b, Slim Kallelb, Walid Gaaloula, Zakaria Maamarc,
Mohamed Jmaielb,d

aTelecom SudParis, UMR 5157 Samovar, Institut Polytechnique de Paris, France
bReDCAD, University of Sfax, Tunisia

cZayed University, Dubai, United Arab Emirates
dDigital Research Center of Sfax, Technopole Sfax, Tunisia

Abstract

Cloud is an increasingly popular computing paradigm that provides on-

demand services to organizations for deploying their business processes over

the Internet as it reduces their needs to plan ahead for provisioning resources.

Cloud providers offer competitive pricing strategies (e.g., on-demand, reserved,

and spot) specified based on temporal constraints to accommodate organiza-

tions’ changing and last-minute demands. Despite their varieties and benefits

to optimize business process deployment cost, using those pricing strategies can

lead to violating time constraints and exceeding budget constraints due to in-

appropriate decisions when allocating cloud resources to business processes. In

this paper, we present an approach to guarantee a correct and optimal time-

aware allocation of cloud resources to business processes. Correct because time

constraints on these processes are not violated. And, optimal because the de-

ployment cost of these processes is minimized. For this purpose, our approach

uses timed automata to formally verify the matching between business pro-

cesses’ temporal constraints and cloud resources’ time availabilities and linear

programming to optimize deployment costs. Experiments demonstrate the tech-

nical doability of our proposed approach.

Keywords: Business process, Cloud resource, Formal verification,

Optimization

Preprint submitted to Future Generation Computer Systems June 8, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167739X19333679
Manuscript_0b57b6e370db4d20a270db0fa1029284

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0167739X19333679
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167739X19333679

1. Introduction

Cloud computing is an attractive operational model for organizations that

wish, among other reasons, to reduce upfront investment on Information and

Communication Technologies (ICT) and to tap into hardware and software re-

sources of cloud providers in return of a fee. Cloud is known for resource elas-5

ticity and pay-per-use model making it perfect for organizations that witness a

surge of activities during particular periods of the year. For instance, during

2017 Christmas Amazon.com had to temporarily cope with 280 millions online

retail transactions calling for immediate provisioning of resources that luckily

were released once the load went back to normal1.10

In today’s economic world, attracting and retaining customers constitutes

a challenge. Indeed, many cloud providers offer competitive pricing strategies

(e.g., on-demand, reserved, and spot) to accommodate users’ changing and last-

minute demands. However this price variation puts more pressure on cloud

providers who need to ensure resource availability on a short-notice, for ex-15

ample. Organizations that “wrestle” with time like shipping need to respond

quickly to any unforeseen event and hence, could call upon cloud providers

anytime. Indeed, cloud computing allows organizations to optimize their Busi-

ness Processes (BPs, aka know-how) thanks to different techniques associated

with cloud computing such as virtualization and load balancing. But, this op-20

timization should not happen on the expense of increasing operation costs [1]

and/or violating time constraints, for example. “Striking” the right balance

between cloud resources’ pricing strategies and BPs’ time constraints is one of

our objectives in this paper. We achieve this objective by ensuring the temporal

correctness of cloud-aware BPs, finding an optimal-deployment cost for these25

BPs, and validating the deployment of these BPs as well.

Some research works on temporal verification of BPs [2, 3] and allocation

of cloud resources to BPs [1, 4] are reported in the literature. Nevertheless,

1www.hitwise.com.

2

formal satisfaction of BPs’ temporal constraints with respect to cloud resources’

availabilities and identification of optimal deployment cost of BPs over these30

resources, is either barely touched upon or handled on a case-by-case basis. Our

previous work reported in [5] and [6] is one step towards a formal specification

and verification of allocating cloud resources to BPs. To this end we used timed-

automata networks to check BPs’ time-constraint behaviors like reachability and

deadlock-free [7]. We also used linear programming to optimize the deployment35

cost of these BPs [8]. Although, due to the complexity of linear programming,

handling BPs with large number of activities (200 as per our work in [8]) turned

out cumbersome and inefficient. In this paper, first, we extend our verification

approach presented in [5, 6] to check more advanced properties such as liveness

to guarantee better correctness of time-constrained, cloud-aware BPs. Second,40

we improve our optimization approach presented in [8] to reduce the deployment

cost of cloud resources when running more complex and “large” BPs.

Our contributions are, but not limited to, (i) developing a set of rules to

transform BP into timed-automata as a step towards a correct time-aware cloud

resource allocation in BP, (ii) formalizing the optimization problem as a math-45

ematical model to minimize the deployment cost of time-constrained BPs, and

(iii) evaluating the technical doability of our approach for ensuring the correct-

ness and optimization of time-aware cloud resource allocation to BPs.

The remainder of this paper is organized as follows: Section 2 presents the

necessary concepts related to our work. Section 3 presents a real use case from50

France Telecom Orange labs. Section 4 and Section 5 discuss the verification

and optimization steps, respectively. Section 6 details the evaluation. Section 7

presents some related works. Finally, Section 8 presents our conclusions and

future works.

2. Preliminaries55

In this section, we present the foundations upon which our approach for

the correctness and optimization of BPs over cloud resources, is built. First,

3

we define cloud resources along with their pricing strategies and then, present

types of temporal constraints that BPs’ activities could be subject to. Finally,

we present timed automata elements.60

2.1. Cloud resource

Cloud computing is known for ∗aaS model with focus here on computing

resources of type Infrastructure-as-a-Service (IaaS).

Definition 1. A cloud resource is a couple (id, Cap) where:

• id is a unique identifier;65

• Cap is a resource’ capacity in terms of memory amount and virtual core

number, Cap=(RAM, vCPU) ∈ N × N.

Cloud resources payment refers to different pricing strategies that are vendor

dependent such as pre-paid subscription for Microsoft [9], per-minute billing for

Google [10], and on-demand, reserved, and spot for Amazon. Hereafter we70

discuss Amazon’s 3 types of pricing [11]; they are comprehensive and cater to

major users’ needs in terms of cloud resources.

• On-demand: the customer pays an hourly fixed amount with no long-

term commitment. The procured resource capacity can be increased or

decreased depending on the customer applications’ requirements and the75

payment is done for the procured capacity, only.

• Reserved: the customer can make a one-time, all upfront, partial upfront,

or no upfront payment for a long-term commitment of a resource capacity

and pays a significant hourly rate when running capacity instances in

the future.80

• Spot: customers bid for unused resource capacities to secure some spots

instances offered at a spot price and with an interruption risk due to

the bidding process. In response to potential disruptions, Amazon also

proposes spot instances with a predefined duration (also known as Spot

Blocks) that are continuously available (from 1 to 6 hours).85

4

Definition 2. A cloud resource pricing strategy is a triple st=(type,TC,c) where:

• type is a type of strategy;

• TC is the temporal availability of a price that the strategy st imposes;

• c is a unit hour price that the strategy st proposes, c ∈ R.

Temporal constraints over a cloud resource’s pricing strategy are of 2 types:90

• Relative temporal constraints specify a time interval [MinAvr, MaxAvr]

in which a resource is available at a certain price; 1 ≤MinAvr ≤MaxAvr.

• Absolute temporal constraints specify the start and finish times of a re-

source availability at a certain price. Those constraints could be special-

ized into: Start Using No Earlier Than (SUNET (r)), Finish Using No95

Earlier Than (FUNET (r)), Start Using No Later Than (SUNLT (r)),

and Finish Using No Later Than (FUNLT (r)).

Let’s consider a set of n cloud resources that p cloud providers propose in

s pricing strategies:

• R = {ri | 1 ≤ i ≤ n} is the set of all cloud resources;100

• Pri = {prij | 1 ≤ i ≤ n, 1 ≤ j ≤ p} is the set of all providers offering a

cloud resource ri;

• Stij = {stijk | 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ s} is the set of all pricing

strategies for each prij .

Table 1 presents a set of Amazon cloud resources. Their operating system is105

Linux and availability time zone is us-east-a1. In our current work, we assume

that the size of transferred data between cloud resources is not considered and

is left as future work.

Amazon EC2 offers different instance types with different computing capaci-

ties (virtual CPU cores (vCPU) and memory (RAM)) and grouped into instance110

families. For instance, r3 = m3.2xlarge corresponds to an Amazon computing

5

Table 1: Virtual machine instance properties by pri1=Amazon EC2

Instances RAM

(GB)

vCPU On-demand Reserved

(no-upfront)

Spot blocks Spot instance

r1= 16 4 c111=0.215$/h c112=0.147$/h c113=0.129$/h

[0h,1h]

c114=0.0491$/h

[6pm,1am(+1)]

m4.xlarge c113=0.142$/h

[1h,6h]

c114=0.0386$/h

[1am,6pm]

r2= 15 2 c211=0.166$/h c212=0.105$/h c213=0.096$/h

[0h,1h]

c214 =0.0225$/h

[3am,10pm]

r3.large c213=0.102$/h

[1h,6h]

c214=0.0381$/h

[10pm,3am(+1)]

r3 = 30 8 c311=0.532$/h c312=0.380$/h c313=0.293$/h

[0h,1h]

c314=0.0787$/h

[10am,9pm]

m3.2xlarge c313=0.372$/h

[1h,6h]

c314=0.0863$/h

[9pm,10am(+1)]

resource of type m3. The latter belongs to general purpose instance family that

provides a balance of compute and memory resources, and can be used for a

variety of workloads [11]. Still in Table 1, the unit hourly price of r3 as spot

instance is equal to c313=0.372$/h. As a result, r3 is temporally available for a115

minimum duration MinAvr3 of 1 hour and a maximum duration MaxAvr3 of

6 hours (i.e., st313=(spot, [1h,6h], 0.372$/h)).

2.2. Business process

As per Definition 3, a BP, consists of a set of activities A (where A = {aq :

q ∈ {1, · · · , z}}) that are performed in coordination in an organizational and120

technical environment to jointly achieve business goals [12]. It happens that a

BP is subject to some time constraints which can be relative or absolute. For

more details about temporal constraints, we refer readers to [13].

• Relative temporal constraints refer to activity duration and dependency.

Duration defines the completion time of an activity expressd as an in-125

terval [MinDaq
, MaxDaq

]. Let s(a) (resp. e(a)) be the starting (resp.

the ending) time of an activity a. Let MinDaq and MaxDaq be two rel-

ative time values representing respectively the minimum and maximum

durations of a. Duration is defined as follow:

6

Duration(a,MinDaq
,MaxDaq

)
def
= MinDaq

≤ e(a) - s(a) ≤ MaxDaq
130

Dependency is a relationship between two activities, aq and al (l 6= q), in

which one activity depends on the start or finish of another in order to

begin or end [13]. We consider 4 temporal dependencies as follow; Start-

To-Finish (SF), Start-To-Start (SS), Finish-to-Start (FS), and Finish-

to-Finish (FF). For illustration, Finish-to-Start dependency between two135

activities aq and al, is defined as follows:

TD(FS,aq,al,Dmin,Dmax)
def
= Dmin ≤ s(al) - e(aq) ≤ Dmax

This definition denotes that al should start its execution no later than

Dmax time units and no earlier than Dmin time units after aq ends.

• Absolute temporal constraints define a punctual temporal structure and140

refer to start and finish times of an activity. First, Must Start On (MSO)

and Must Finish On (MFO) indicate the exact time for begining and com-

pleting an activity. Second, Start No Earlier Than (SNET) and Finish No

Earlier Than (FNET) indicate the earliest possible time that an activity

can begin and complete. Finally, Start No Later Than (SNLT) and Finish145

No Later Than (FNLT) indicate the latest possible time that an activity

is set to begin and complete.

In previous work [14], we proposed a survey of time-related aspects of process

models. We identified the existing approaches that specify and verify temporal

constraints and enhance the time dimension in the BPM field. Some approaches150

opted for modeling time using graphs while others used formal specification

languages and algebras (e.g., Linear Temporal Logic [15], Allen’s algebra [16],

and time petri nets [17]) for specifying and verifying time-based BP models.

In the following, we compare our time representation to Allen’s algebra. When

using Allen’s algebra, we identified several limitations since the designer can not155

specify that:

(i) A BP activity should be executed with respect to a specific time nor a date.

7

(ii) A BP activity can be executed a limited number of times within a time in-

terval.

(iii) A set of BP activities should be performed periodically in a predefined du-160

ration.

Contrarily, we examined in our research work [13, 18] how to extend BPMN

artifacts to specify expressive temporal constraints. Compared to Allen’s alge-

bra, we can represent:

(i) Absolute temporal constraints: MSO/MFO (Must Start/Finish On a de-165

fined date), SNLT/FNLT (Start/Finish No Earlier Than). These con-

straints mean that a BP activity should be executed in a defined date.

(ii) Temporal constraints over cardinality that specify that a BP activity

should be executed n times in a specific interval.

(iii) Periodic/Sporadic activity: A periodic activity has a recurrent start event170

every T period of time. T is the time duration between the occurrences

of two start events of the same activity. While a sporadic activity has a

recurrent start event, but the period is variant. The sporadic activity has

a minimum and maximum separation between the occurrence of two start

events in the same activity which called sporadic interval.175

For the sake of illustration, we only consider in this paper, absolute temporal

constraints, duration constraints, and temporal dependencies between activities.

To this end, we relied on (i) BPMN to specify and model a BP that is subject

to some time constraints that could be either relative or absolute and (ii) timed

automata to formally verify the correctness of a time-constrained cloud resources180

allocation to BPs.

Definition 3. A BP model is a tuple (N, E, F, ReqA, PenA) where:

• N is the set of nodes that correspond to a set of activities A, gateways G,

and events Ev, i.e., N={A ∪ G ∪ Ev};

8

• E ⊆N × N is the set of edges;185

• F : A −→ T is a function that assigns temporal constraints T to activi-

ties A;

• ReqA is the set of activities requesting cloud resources;

• PenA is the set of financial penalties that are subject to in case activities

are canceled due to resource interruption.190

Definition 4. An activity a is a tuple (temp, res, type) where:

• temp is a set of temporal constraints which can be temporal duration, de-

pendency, and/or absolute temporal constraints;

• res is the resource allocated;195

• type is the pricing strategy type.

2.3. Timed automata

As per Definition 5, a timed automata is a directed graph where nodes corre-

spond to the system states (aka locations) and edges correspond to transitions

between these nodes. In a timed automata [19], the time passing is modeled200

by real non-negative variables, named clocks. The conditions over clocks are

defined through the use of constraints allowing to reset certain clocks to zero.

A clock constraint, called invariant, is associated with each state. While this

invariant is satisfied, the system remains in the current state. The transitions

are labelled by both temporal constraints, called guards, and clock variables,205

and are synchronized through binary channels. Guards and invariants are con-

junctions of constraints x on v, where x is in the set of non-negative clocks X,

v ∈ R+, and on ∈ {<,≤,=, >,≥}. A transition is enabled if the guard evaluates

to true and the source state is active. The set of constraints over X is named

Ψ(X).210

9

Definition 5. A timed automata is a tuple (L, X, l0, Tr, I) where:

• L is a finite set of states,

• X is a finite set of clocks,

• l0 is an initial state,

• Tr v L× Ψ(X)× 2X× L is the set of transitions,215

• I: L −→ Ψ(X) is a function that assigns invariants to states.

Definition 6. A transition is a tuple tr=(l, α,ψ, cl, l’) ∈ E where l is a source

state, l’ is a target state, α is a label, ψ is a guard, and cl is a set of clocks

to reset.220

3. Case study

For illustration purposes, we consider “supervision service” BP from France

Telecom/Orange labs ([20], Figure 1). First, we model this BP’s process model

in Business Process Model Notation (BPMN) [21], the standard for BP model-

ing, and then specify cloud resources and their pricing strategies, and activities’225

temporal constraints.

Figure 1: Supervision service BP in BPMN

Table 2 lists “supervision service” BP’s temporal constraints along with

the capacities expressed in terms of RAM and vCPU that each activity in this

10

process requires. For instance, a2 and a6 minimum duration is 2 h and maximum

duration is 3 h. Moreover, the time lag between a3 end and a4 start should be230

between 3 h and 5 h. a1 and a5 require a resource with 16 GB of RAM and

4 virtual CPUs. Moreover, some activities are subject to penalty cancellation

prices pq that should be added to the BP’s deployment cost. For instance, a1

has a penalty price p1=0.7$ (Table 2). The BP is triggered when a customer

sends a compliant by executing get service trouble ticket activity a1. Then,235

necessary data are retrieved a2 so that the management test begins a3. After

launching service test a4 the process continues by replying to the customer a5

and troubleshooting a6. The process ends when sending results to the customer

(get test scenario results a7).

Table 2: Process activities’ temporal constraints and needs in cloud resources

Activities a1 a2 a3 a4 a5 a6 a7

Durations [1h,2h] [2h,3h] [1h,1h] [1h,4h] [1h,2h] [2h,3h] [1h,2h]

Penalties in $ 0.7 0 0 0.2 0 0 0

RAM in GB 16 15 16 28 16 28 30

vCPU number 4 2 2 8 4 8 8

When working on “supervision service” BP, the designer has different op-240

tions in terms of resource allocation. For instance, since r1 satisfies a1’s RAM

and vCPU requirements, then he assigns r1 to a1 as a spot instance though we

will illustrate later that this assignment would violate a temporal constraint.

Namely, r1 is available from 1am until 6pm at a price of 0.0386$/h. However,

if the process starts at 10pm then this would lead to a temporal constraint245

violation, i.e., 10pm /∈ [1am, 6pm]. In conjunction with analyzing r1, r2 satis-

fies a7’s capacity requirements. The designer can consider r2 as a spot blocks

that would cover the minimum and maximum execution-duration of 1 hour at a

price of 0.096$/h. The maximum duration of a7 is 2 hours. Unfortunately, the

designer’s choice can lead again to a temporal violation; the temporal duration250

of the activity is greater than the duration of the selected resource. Besides, it

11

happens that an activity can use one cloud resource that would has different

prices according to the available pricing strategies. Table 3 presents 2 possi-

ble resource allocation options with focus on a1. In the first allocation r1 is

allocated as a spot instance and in the second allocation as an on-demand in-255

stance. We compute the cost for each allocation based on Equation 1 that is

(i) the sum of the unit hourly price cijk of ri from prij in strategy stijk by

the activity duration dq (we assume that dq = MaxDaq
) and (ii) the sum of

activity penalty prices [8]. Although a more expensive strategy (on-demand) is

used, the BP cost is lower for the second allocation. This is due to the penalty260

price of a1 that is added to the process cost in case of allocating a spot instance

with an interruption risk. Therefore, it is important to find the suitable cloud

resource and the best pricing strategy for each cloud resource especially in case

of critical activities. More precisely, it is better to avoid selecting spot strategy

for cloud resources allocated for critical activities. Consequently, to minimize265

the BP cost deployment, the designer needs (i) to find an optimal solution that

satisfies activities’ requirements, and/or (ii) to reduce the search complexity of

the optimization problem to converge in a short time to an optimal solution if

the BP is large.

270

C =

|A|∑
q=1

|R|∑
i=1

p∑
j=1

s∑
k=1

dqcijk +

|A|∑
q=1

pq (1)

4. Verification of cloud resources allocation correctness

We present, in this section, the necessary steps that we took to ensure the

correctness of our time-constrained cloud resources allocation to BPs. First, we

developed a set of rules to automatically transform time-constrained BPMN mod-275

els into a network of timed automata. Then, we formally verified this network

against advanced properties known in the community as liveness, deadlock free,

and deadline.

12

Table 3: Possible resource allocations for supervision service BP

Activity Allocation1 Allocation2

a1 r1 from pr1 from st114 r1 from pr1 from st111

a2 r2 from pr1 from st213 r2 from pr1 from st213

a3 r1 from pr1 from st113 r1 from pr1 from st113

a4 r5
a from pr2 from st521 r5 from pr2 from st521

a5 r4 from pr2 from st421 r4 from pr2 from st421

a6 r3 from pr1 from st314 r3 from pr1 from st314

a7 r3 from pr1 from st313 r3 from pr1 from st313

Total cost 3.7578$ 3.4106$

ar4 (c421= 0.128$/h) and r5 (c521= 0.387$/h) are Microsoft Azure instances.

4.1. From BPMN to timed automata

We recall that our BPMN process model consists of activities that are sub-280

ject to temporal constraints and consume cloud resources. We developed a set

of transformation rules that take as an input a BP’s activities along with the

cloud resources they consume and produce as an output a network of timed

automata depending on these resources’ pricing strategies.

A network of timed automata consists of (i) the BP’s timed automata with285

focus on its activities’ states and temporal constraints and (ii) the cloud re-

sources’ set of timed automata that these activities will consume. The synchro-

nisation of BP-related and resource-related timed automata is achieved using

binary channels.

To begin with, let us consider an activity a that consumes a cloud resource r.290

Because of this resource’s pricing strategies, we identify three consumption cases:

on-demand instance, reserved or spot blocks, and spot instance. We also con-

sider that although our BPs could be subject to temporal dependency and ab-

solute temporal constraints, we only look into duration constraints. For more

details about how we handled other constraints, readers are referred to [2].295

• On-demand instance: When a is defined as ({Duration(a, MinDa,

MaxDa)}, r, on-demand), a is transformed into two timed automata,

TAad and TArd. On the one hand, TAad, represents the activity’s timed

13

automata and consists of three locations: aReady, aWorking, and aFinish.

aReady means that a is ready for execution, aWorking means that a is run-300

ning and consumes r as an on-demand instance, and aFinish means that a

has been successfully executed allowing to free r. The transition from

aReady to aWorking initializes a clock t to zero. And, the transition from

aWorking to aFinish takes a guard to control the activity’s temporal du-

ration. Formally, , TAad is a tuple where L={aReady, aWorking, aFinish},305

l0=aReady, X=t, I(aReady)=∅, I(aWorking)={t ≤MaxDa}, I(aFinish)=∅,

and Tr= {(aReady, start!, t = 0,∅, aWorking), (aWorking, done?, t ≥MinDa

&&t ≤MaxDa, aFinish)} (Definition 5).

On the other hand, TArd consists of three locations: Idle, Inuse, and

Used. Idle means that r is available but not-assigned, yet; Inuse means310

that r is assigned to a and is in-use; and, Used means that r was consumed

in the past by a and now is free. Formally, TArd is a tuple where L={Idle,

Inuse, Used}, X = ∅, l0=Idle, I(Idle)=∅, I(Inuse)=∅, I(Used)=∅, and

Tr={(Idle, start?, ∅, Inuse), (Inuse, done!, ∅, Used)} (Definition 5).

For illustration purposes, we consider a1=({Duration((a1, 1, 2)}, r1, on-315

demand) in the “supervision process” BP. a1 is transformed into two timed

automata: TAad is shown in Figure 2a and TArd is shown in Figure 2b.

a1 can start consuming r1 only if the clock t is less than 2 (i.e., defined as

an invariant) and will execute successfully only if its temporal duration is

met (i.e., defined as a guard).320

a1 Ready a1 Working

t ≤ 2

U

a1 Finish

t = 0

start!

t ≥ 1 && t ≤ 2

done?

(a) TAad of activity a1

Idle Inuse

.

U

Used

start? done!

(b) TArd of r1 as an on-demand instance

Figure 2: Allocation of r1 as an on-demand instance cloud-resource to activity a1

• Reserved or Spot blocks: When a is defined as ({Duration(a, MinDa,

MaxDa)}, r, reserved) or ({Duration(a, MinDa, MaxDa)}, r, spot blocks)

14

it is transformed into two timed automata, TAar and TArr. TAar and

TAad are similar. Further, TArd and TArr have the same formalism in

terms of locations, transitions, clock, guard, and invariant. This is due to325

the fact that a cloud resource consumed as on-demand, reserved or spot

blocks, is not subject to any interruption once it becomes consumed. Thus,

the resource’s timed automata, TArr, consists of the same three locations

as TArd: Idle, Inuse, and Used. But, they are different in terms of tran-

sitions since r can have temporal duration. As a result, we assign a clock x330

to the transitions between {Idle, Inuse} and {Inuse, Used} to specify the

minimum (MinAvr) and maximum (MaxAvr) durations of r’s temporal

availability. Formally, TArr is a tuple where L={Idle, Inuse, Used}, X =

{x}, l0=Idle, I(Idle)=∅, I(Inuse)=∅, I(Used)=∅, and Tr={(Idle, start?,

{x= MinAvr}, Inuse), (Inuse, done!, {x = MaxAvr}, Used)} (Defini-335

tion 5).

For illustration, we refer to our case study where Figure 3a, same as Fig-

ure 2a, presents a1’s timed automata TAar, and Figure 3b presents r1’s

timed automata TArr. When r1 takes on Inuse state, the clock x is ini-

tialized to 1. If it is initialized to 6 that is the maximum duration, then340

the resource is considered as used and no longer available.

a1 Ready a1 Working

t ≤ 2

U

a1 Finish

t = 0

start!

t ≥ 1 && t ≤ 2

done?

(a) TAa of activity a1

Idle Inuse

U

Used

x = 1

start?

x = 6

done!

(b) TArr of r1 as a spot block

Figure 3: Resource allocation with r1 as spot block to an activity a1

We implemented our transformation rules using ATLAS Transformation

Language (ATL) which is a model-to-model transformation language [22].

Listing 1 is an excerpt of an ATL rule for transforming a resource allocation

15

with spot blocks into a network of timed automata. Figure 6c depicts345

the generated timed automata. In this listing, Line 2 corresponds to the

source element of the BPMN model. Lines 4-7 depict how Idle state is

created. Similarly to Idle state, we create Inuse and Used states [6]. The

way transitions are created is presented in Lines 9-25. Finally, lines 27-

33 depict the composition of the full timed-automata of the spot blocks350

pricing strategy.

Listing 1: Example of a tranformation rule in ATL

1 rule spotPredDuration {

2 from spotPred: BPMN!ExtensionAttributeValue (..)

3 to355

4 idleLocation:uppaal!Location(

5 id <-’id’ + thisModule.getcounterSpotPredefined ()

6 name <-thisModule.NewName(’Idle),

7 initLocation: uppaal!Init (ref <-idleLocation.id),...

8360

9 transitionIdleInuse: uppaal!Transition (

10 source <- thisModule.SourceTransition(idleLocation),

11 target <- thisModule.TargetTransition(inUseLocation),

12 label <- thisModule.synchronisation(’start?’),

13 label <- spotPred.taskConfig.parameterspotPredDuration ->365

14 collect(e |if e.Shared=false then

15 thisModule.assignmentVM(’x=’ + e.MinAvR)

16 else OclUndefined endif),

17

18 transitionInuseUsed: uppaal!Transition (370

19 source <-thisModule.SourceTransition(inUseLocation),

20 target <-thisModule.TargetTransition(usedLocation),

21 label <-thisModule.synchronisation(’done!’),

22 label <- spotPred.taskConfig.parameterspotPredDuration ->

23 collect(e |if e.Shared = false then375

24 thisModule.assignmentVM(’x=’ + e.MaxAvR)

25 else OclUndefined endif),

16

26

27 templateSpotPredefined: uppaal!Template (

28 name <- templateNameSpotPredefined ,380

29 location <- idleLocation ,...

30 transition <- transitionIdleInuse ,...

31 init <- initLocation),

32 templateNameSpotPredefined: uppaal!Name (

33 value <- ’templateSpotPredifinedDuration ’)}385

• Spot instance: When a is defined as ({Duration(a,MinDa,MaxDa)},

r, spot instance), a is transformed into two timed automata TAaa and

TAra. It must be noted that r here can be interrupted while it is under use.

On the one hand, TAaa is the activity’s timed automata. So, activity a390

would be blocked. That is why we add a fourth state, aBlocked, reached

when the resource r becomes interrupted. Defining a Boolean variable e is

required to verify if an external event has happened (i.e., another customer

proposes a higher bid price and takes resource r). Thereby, transiting from

aWorking to aBlocked is enabled only if the guard indicating the interruption395

is true. Formally, TAaa is a tuple where L={aReady, aWorking, aBlocked,

aFinish}, l0=aReady, X = {x}, I(aReady)=∅, I(aWorking)={x ≤MaxDa},

I(aBlocked)=∅, I(aFinish=∅, Tr={(aReady, start!, x = 0, ∅, aWorking),

(aWorking, done?, e == true, aBlocked), (aWorking, done?, x ≥ MinDa

&& x ≤ MaxDa, aFinish)} (Definition 5).400

On the other hand, TAra is composed of four states: Idle, Inuse, Used,

and Interrupted. If the spot price becomes greater than the bid price, r

will be interrupted. In this case, the transition from Inuse to Interrupted

is enabled. So we use a Boolean variable e to control the interruption.

Moreover, to satisfy the absolute constraint over r, we initialize x to405

zero and take it as a timed reference to subsequently specify that exactly

FUNET −SUNET hours must separate the starting and finishing avail-

ability times of the resource. Therefore, to move from Inuse to Used,

we update x based on the difference between FUNET and SUNET .

17

Formally, TAra is a tuple where L={Idle, Inuse, Interrupted, Used},410

l0=Idle, X = {x}, I(Idle)=∅, I(Inuse)=∅, I(Interrupted)=∅, I(Used)=∅,

and Tr={(Idle, start?, {x= 0}, Inuse), (Inuse, done!, {x = FUNET −

SUNET}, Used), (Inuse, e == true, ∅, Interrupted)} (Definition 5).

For illustration purposes, we consider that a1=({Duration((a1, 1, 2)}, r1,

spot instance) in the “supervision process” BP. Figure 4 presents the trans-415

formation output of a1. Figure 4a is different from Figure 3a; a1Blocked
lo-

cation is reached when r1 is interrupted (i.e., defined as a guard). The

timed automata of r1 is illustrated in Figure 4b. When r1 is in state Inuse

the clock x, taken as a time reference, is initialized to zero. Then, it is

initialized to 10 if its finish availability time is reached. The Boolean vari-420

able e is “true” to indicate that resource r1 is interrupted (i.e., defined as

a guard).

a1 Ready a1 Working

t ≤ 2

U

a1 Finish

U

a1 Blocked

t = 0

start!

t ≥ 1 && t ≤ 2

done?

done? e == true

(a) TAaa of a activity a1

Idle Inuse

U

Used

U

Interrepted

x = 0

start!

x = 10

done?

e == true

(b) TAra of r1 as a spot instance

Figure 4: Allocation of r1 as a spot instance with an interruption risk to activity a1

Our transformation rules are correct-by-construction since they are neither

ambiguous nor conflicting. The generated network of timed automata that

the transformation produces are well-formed. These automata networks are425

consistent with timed-automata meta-model. In addition, the transformation

is complete since each element (e.g., activity, gateway, and event) in a time-

constrained BP, as a source model, has a corresponding element (e.g., state,

transition, and guard) in the timed automata, as a target model.

18

SProcess A1 Ready A1 Working

t1 ≤ 2

A1 Blocked

U

A1 Finish

ANDSplit0

AND Working0

t34 − 0

U

AND Finish0

A4 Ready

t34 ≤ 5

A4 Working

t4 ≤ 4

U

A4 Finish

ANDSplit1

AND Working1

t5 ≤ 3

UAND Finish1

A7 Ready A7 Working

t7 ≤ 2

A7 Blocked

U

A7 Finish

U

EProcess

t0 = 0 t1 = 0

start1!

e == true

t1 ≥ 1&&t1 ≤ 2

done1?

start2! start3! t2 = 0

done2? done3? t2 ≥ 1&&t2 ≤ 3

t34 ≥ 3&&t34 ≤ 5

start4! t4 = 0

t4 ≥ 1&&t4 ≤ 3

done4?

start5! start6! t5 = 0

done5? done6? t5 ≥ 1&&t5 ≤ 3

t7 = 0

start7!

e1 == true

t7 ≥ 1&&t7 ≤ 2

done7?

Figure 5: Process activities timed automata

4.2. Correctness analysis430

Figures 5 and 6 illustrate the generated network of timed automata associ-

ated with “supervision process” BP. We assume that a1 consumes r1 as a spot

instance, a2 consumes r2 as a spot blocks, a3 consumes r1 as on-demand in-

stance, a4 consumes r5 as an on-demand instance, a5 consumes r1 as a spot

blocks, a6 consumes r3 as a spot instance, and a7 consumes r3 as an on-demand435

instance. We submit the network of timed automata to UPPAAL to verify

first, the matching between temporal constraints of both activities and cloud

resources and second, the satisfaction of some properties including: liveness,

19

Idle Inuse

U

Used

U

Interrupted

x1 = 0

start1?

x1 = 17

done1!

e == true

(a) Timed automata of r1 as a spot instance

Idle Inuse

U

Used

U

Interrupted

x7 = 0

start7?

x7 = 11

done7!

e7 == true

(b) Timed automata of r3 as a spot instance

Idle Inuse

U

Used

start2?

x2 = 1

done2!

x2 = 6

(c) Timed automata of r2 as a spot blocks

Idle Inuse

U

Used

start3? done3!

(d) Timed automata of r1 as an on-demand

instance

Idle Inuse

U

Used

start4? done4!

(e) Timed automata of r5 as an on-demand

instance

Idle Inuse

U

Used

start5?

x5 = 1

done5!

x5 = 6

(f) Timed automata of r1 as a spot blocks

instance

Idle Inuse

U

Used

start6? done6!

(g) Timed automata of r3 as an on-demand

instance

Figure 6: Example of a BP transformation into timed automata

free of deadlock, and deadline.

1. Liveness: a specific condition is guaranteed to hold eventually, i.e., “some-440

thing good will happen (eventually)” [23]. Let us consider that a consumes

a spot instance. We say that if a is in state working and the consumed

resource is still temporally available then a will eventually finish its exe-

cution successfully. Thus, we verify that: a will eventually reach the state

finish successfully. With respect to the process in Section 3, if a2 still con-445

sumes r2 that is still available then eventually a2 will finish successfully

its execution. Thus, the liveness property is satisfied.

2. Free of deadlock: “the system never ends up in a state where it cannot

perform any action” [24]. So, we verify that the system is deadlock free

20

expressed using a special state formula proposed by the model checker UP-450

PAAL.

3. Deadline: it expresses the set of states where a corresponding action is

expected to be executed without delay. With respect to “supervision pro-

cess” BP, its duration is 23 hours, so it should complete in this duration so

that the deadline is met. Otherwise, the model checker UPPAAL proposes455

a counterexample.

5. Cost optimization of BP deployment cost

We discuss how to optimize the cost of BP deployment in cloud resources.

To this end, we use Binary Linear Program (BLP) to define both an objective

function and constraints that would guide the optimization. BLP is known for460

its simplicity, flexibility, and extensive modeling capability [25].

5.1. Input and decision variables

To begin with, we assume the availability of several cloud resources that sat-

isfy activities’ requests of these resources. BLP takes as an input variable a set of

correct allocation options ca that were previously verified in Section 4. Thanks465

to this verification the BLP’s search space and resolution time are reduced [25].

The following are BLP’s inputs:

• A set of process activities A, a set of activities’ requests of resources

ReqA = {reqaq : aq ∈ A}, and a set of activities’ temporal constraints

TA={tempaq : aq ∈ A};470

• A set of cloud providers Pr = {prij ,∀j ∈ {1, · · · , p}} and a set of pricing

strategies Stij = {stijk,∀k ∈ {1, · · · , s}} per provider prij .

• A set of resources R′ that are correctly allocated using our formal verifi-

cation approach. R′ = {rc,∀c ∈ {1, · · · , ca}} where R′ ⊆ R.

21

Equation 2 is the decision variable that assigns a suitable cloud resource,475

cloud provider, and pricing strategy to an activity.

Xijkq =

1 if activity aq consumes resource ri ∈ R′ that

provider prij offers according to strategy k;

0 otherwise

(2)

5.2. Problem statement

To optimize cost, the model objective function in Equation (3) selects the

cloud resources that satisfy activities’ requests of resources, the cloud providers

of these resources, and the suitable pricing strategies that satisfy these activities’480

temporal constraints.

MinC is the total execution cost that is the sum of all resources allocated to

a process’s activities. To compute this cost, we multiply an activity’s execution

time dq=MaxDa by the resource ri’s utilization price (cijk) that is reported in

the strategy k related to the provider prij (Equation 3).485

MinC =

|A|∑
q=1

|R′|∑
i=1

p∑
j=1

s∑
k=1

dqcijkXijkq (3)

In the following, we present a set of linear constraints which should be con-

sistently satisfied to ensure the successful deployment of a BP’s activities on

cloud resources. A cloud resources allocation refers to a BP’s activities whose490

execution requirements are of types memory and processing. Moreover, both

activities and cloud resources are subject to temporal constraints. Finally, we

assume that a cloud resource is not shareable and an activity consumes one

cloud resource, only.

1. Execution constraints on activities: Equations 4 and 5 ensure that re-

sources’ capacities meet activities’ processing and memory requirements.

|R′|∑
i=1

p∑
j=1

s∑
k=1

min(RAMi)Xijkq ≥ RAMaq
,∀q ∈ {1, · · · , r} (4)

22

|R′|∑
i=1

p∑
j=1

s∑
k=1

min(vCPUi)Xijkq ≥ vCPUaq
,∀q ∈ {1, · · · , r} (5)

In the case study, activity a4 requires 28GB and 8 in terms of RAM495

and vCPU , respectively. Therefore, the processing and memory capaci-

ties of the selected resource ri should be equal or greater to RAMa4
and

vCPUa4
, respectively.

2. Temporal constraints on activities: Equation 6 ensures that each activ-

ity’s start time (Saq) is after the maximum end-time (Fao) of all this

activity’s predecessors.

max(Fao) + TD(FS, aq, ao, du, du) ≤ Saq : ∀aq, ao ∈ A and o < q

and Dmax = du (6)

In the case study, a5 and a6 are a7’s predecessors; a7’s start time is after

their respective end times. Consequently, Sa7
must be equal or greater500

than the maximum value between the respective end times of a5 and a6.

3. Temporal constraints on pricing strategies: Equations 7 and 8 specify the

time interval allowed to allocate resource ri ([MinAvri,MaxAvri]) to an

activity aq. Equations 9 and 10 ensure that ri is available from the start

until the end time of this activity aq.

|R′|∑
i=1

p∑
j=1

s∑
k=1

MinAvriXijkq ≥ MinDaq ,∀q ∈ {1, · · · , r} (7)

|R′|∑
i=1

p∑
j=1

s∑
k=1

MaxAvriXijkq ≥ MaxDaq
,∀q ∈ {1, · · · , r} (8)

|R′|∑
i=1

p∑
j=1

s∑
k=1

SUNET (ri)Xijkq ≤ Saq
,∀q ∈ {1, · · · , r} (9)

23

|R′|∑
i=1

p∑
j=1

s∑
k=1

FUNET (ri)Xijkq ≥ Faq
,∀q ∈ {1, · · · , r} (10)

Pricing strategies’ temporal constraints should satisfy activities’ tempo-

ral constraints (Equations 7-10). For instance, MinDa5
=1 hour and

MaxDa5
=2 hours are minimum and maximum duration, respectively.

If ri is assigned to a5 as a spot blocks, then its temporal duration should505

be greater than d5, i.e., MinAvri ≥ d5 and MaxAvri ≥ d5. However,

if ri is allocated as a spot instance to a5, then, SUNET (ri) ≤ Sa5
and

FUNET (ri) ≥ Fa5
.

4. Constraint interruption: To avoid paying the penalty price of a criti-

cal activity (i.e., such activity should properly managed to avoid failure)510

should not consume a resource with an interruption risk (strk=1) as per

Equation (11).

|R′|∑
i=1

p∑
j=1

s∑
k=1

Xijkqstrk = 0 : ∀aq ∈ A, pq > 0 and strk = 1 (11)

In the case study some activities like a4 are subject to financial penalties,

so a4 should not consume ri as spot instance (Equation 11).

5. Assignment constraint: Equation 12 ensures that a cloud resource has one

pricing strategy and is consumed by one activity at the time.

|R′|∑
q=1

Xijkq = 1 : ∀i ∈ {1, · · · , n},∀j ∈ {1, · · · , p},∀k ∈ {1, · · · , s} (12)

In the case study, a2 consumes one resource r2 that the cloud provider515

pr21=Amazon offers using the pricing strategy st213=spot block and en-

sures that it is allocated to a2, only. As a result, X2132=1.

6. Binary constraint: to ensure that our linear program is binary, we impose

24

that the decision variable should be either 0 or 1 (Equation 13).

Xijkq ∈ {0, 1}, ∀q ∈ {1, · · · , r}, i ∈ {1, · · · , n}, j ∈ {1, · · · , p},

k ∈ {1, · · · , s} (13)

6. Evaluation

We present the technical doability of our approach for ensuring the correct-

ness and optimization of time-aware cloud resources allocation to BPs. This520

doability started with model checking to verify some Computation Tree Logic

(CTL) properties that support matching temporal constraints of both activities

and cloud resources. Then, we analyzed the impact of verification on the op-

timization approach in terms of objective function and response time. Finally,

comparing our results to those of CloudSim simulator took place. Due to lack525

of real datasets that could be used for optimizing the BPs deployment cost, we

randomly generated a simulated dataset defined from the ranges presented in

Table 4. The different experiments were conducted on a Windows 10, 64-bit

Intel Core 2.3 GHz CPU, and 6 GB RAM laptop.

Table 4: Data input ranges

Information Type Range

Number of providers integer 2

Number of Amazon strategies integer [1, · · · , 4]

Number of Microsoft strategies integer 1

Number of vCPU integer [2, · · · , 10]

Amount of RAM (GB) double [15, · · · , 30]

Compute price double [0.01$, · · · , 0.532$]

Requirement in vCPU integer [2, · · · , 10]

Requirement in RAM (GB) double [15, · · · , 30]

Number of activities integer [5, · · · , 1000]

Activities’ duration integer [1, · · · , 5]

Penalty cost double [0$, · · · , 1$]

25

6.1. Checking CTL properties530

Model checking is a widely used technique to verify the BP against a wide

range of temporal constraints [3]. Our UPPAAL-based verification targets the

matching of the temporal constraints of activities and cloud resources. A BP

and cloud resource allocation are modeled as a network of timed automata of

ProcessActivities (activity-timed automata) and Resource (resource-timed au-535

tomata), respectively. Assuming a process automata such as the one in Figure 5,

we use a rich set of CTL formulae to verify the satisfaction of different properties

such as:

1. Liveness: E<>(ProcessActivities.ANDWorking1 and r2.Inuse→ Proces-

sActivities.ANDFinish1): if a2 is consuming r2 which is still available then540

eventually a2 will finish successfully its execution.

2. Deadlock: A[] not deadlock: the BP is free of deadlock.

3. Deadline: A[](ProcessActivities.EProcess imply t0<=23): the BP should

reach the EProcess state before 23 hours to ensure that its deadline is met.

UPPAAL takes inputs (i) an activity-timed automata (Figure 5), (ii) a545

resource-timed automata (Figure 6), and (iii) a formulae to formally verify the

correctness of the cloud resources allocation. The outcomes show that the corre-

sponding resource allocation is not correct, i.e., the BP is not safe, not deadlock

free, and does not meet its deadline. This helps the BP designers to detect tem-

poral violations due to the mismatch between activities’ and cloud resources’550

temporal constraints.

6.2. Impact of verification on optimization

We note that linear programming optimization problems are NP- hard [26].

So they require high computational efforts to find out an optimal and even a

feasible solution for large size problems. For that, it is often more important to555

reduce the search space to avoid waiting for a long time to obtain the optimal

solution. To this end, to deal with more complex and large BPs, before moving

26

to the optimization step, we check in our verification approach the temporal cor-

rectness of time-aware cloud resource allocation in BPs. Then, we take as inputs

for our BLP: a BP and only the set of cloud resources and pricing strategies that560

ensure correct resource allocations. In this manner, the size of the optimization

problem is reduced and so the response time of our BLP is reduced. Conse-

quently, our BLP may converge in a short time to an optimal solution [27]. For

that, we vary the optimization problem size to compare between the values of

response time and objective function when the inputs of our BLP are a BP, and565

(i) a set of cloud resources and their pricing strategies (BLP without verifica-

tion), or (ii) a set of possible allocation options that are verified as per Section 4

(BLP with verification).

In Figure 7 and Figure 8, we respectively present the response time’s and

objective function’s values of our BLP. On the one hand, as expected, the results570

show that BLP’s computation time has low values (about 30 seconds) in case

of BPs with a small number of activities (under 200) compared to values (high

number of hours) in case of BPs with a large number of activities. We also note

that taking as input correct allocations, in both cases, helps to converge in a

limited time (under 1 hour) to optimal solutions thanks to a restricted search575

space. More precisely, an organization can reduce up to 85% in response time

to obtain the optimal solution. This observation may support the hypothesis

that minimizing the problem size can lead to minimizing the waiting time to

reach an optimal solution.

On the other hand, the results revealed that the objective function values are580

always high if we take as input correct allocations (verification step). This is due

to a restricted search space. But, if we take as input all cloud resources (without

verification step) we notice that the objective function values are less thanks

to the large variety of cloud resources proposed in various pricing strategies.

Namely, an organization can save up to 8% in BP deployment cost (i.e., objective585

function) when enlarging the search space (without verification step). In general,

therefore, it seems that the restriction of the search space may cause the raise

of the objective function value.

27

0
500

1000
1500
2000
2500
3000
3500
4000

T
im

e
(s

ec
on

ds
)

Number of activities

BLP without verification BLP with verification

Figure 7: Impact of inputs on the response time

0
50

100
150
200
250
300
350
400

C
os

t i
n

$

Number of activities

BLP without verification BLP with verification

Figure 8: Impact of inputs on the objective function

The results provided from BLP show the effectiveness of our solution. In

fact, taken together, these results suggest that our approach helps the designers590

to optimize costs of BP deployment in cloud resources. Even in case of space

restriction (with verification) for BPs with a large number of activities, the rate

28

of increase of the objective function is quite small (up to 8%) compared to the

rate of decrease of the response time (up to 85%).

The number of correct allocations ca is one of the factors that can impact595

both: the BP deployment cost and our BLP’s response time. Thus, we vary

this number ca to analyze the values of the response time and the objective

function of our BLP. So, we take as inputs: (i) a BP of 200 activities and (ii) a

set of correct allocations ca. The results are reported in Figure 9 and Figure 10.

As shown in Figure 9, the BP deployment cost is always less expensive when600

ca is higher while the search space is larger and so there are more choices. In

contrast, from Figure 10, it can be seen that following the increase of ca, a

significant increase in the response time was recorded. Mainly, the high value

of ca helps to reduce the objective function but it raises the response time of

our BLP. It can therefore be assumed that the number of correct allocations has605

a significant impact on BP deployment cost and BLP’s response time.

0

10

20

30

40

50

60

70

80

90

10 30 60 90

C
os

t i
n

$

Correct allocations number

Figure 9: Impact of the number of correct allocations on the objective function

29

0

200

400

600

800

1000

1200

1400

1600

1800

10 30 60 90

T
im

e
in

 s
ec

on
ds

Correct allocations number

Figure 10: Impact of correct allocations’number on response time

6.3. Simulation Results

The price of cloud resources is variable and depends on temporal perspective

such as spot instance. So, configuring a real cloud environment using a wrong

estimation can lead to waste of efforts, time, and money. As a result, to ensure610

that the BP is successfully executed organizations would pay extra fees. To

overcome this challenge, researchers often rely on simulation tools to model the

mechanisms and evaluate their outputs [28]. That is why, the BP designer can

use a cloud simulator in order to simulate a BP deployment in cloud resources

and to get its real cost before deploying or even purchasing these resources from615

cloud providers. We mention that various simulators are suggested to analyze

and simulate cloud resource allocation such as CPEE [29], GreenCloud [30],

CloudExp [31], CloudSim [32], iCanCloud [33], TeachCloud [34], and many oth-

ers. Unlike the existence of various simulators, only CloudSim is able to offer a

clear isolation of the different multi-layer service abstractions (SaaS, PaaS, and620

IaaS) requested by cloud computing environment. Besides, because of its exten-

sible behavior, CloudSim allows to seamlessly model, and simulate the emerging

cloud infrastructure and application services. It is also open source, developed

30

using java programming language, and does not require a lot of effort and time

to implement cloud-based applications. Consequently, we are of the opinion625

that CloudSim is the most appropriate simulator to use in our experiments.

With the aim of validating the objective function’s values (cost) of our ap-

proach, we relied on our previous work [35] that extends CloudSim to support

AWS pricing strategies and the simulation of a time-constrained BP deployed in

cloud resources. Thereby, we show through the experiments that the difference630

between the cost value of our approach and the cost computed using CloudSim

simulator is “limited”. Towards this end, we take as input a unified description

model specified as an XML document composed of BP activities, temporal con-

straints, cloud resources, and pricing strategies selected using our BLP model.

Thus, based on cloud providers’ APIs, CloudSim extension gives the real cost635

of BP deployment cost.

Figure 11 and Figure 12 illustrate the experimental results. We note the

limited difference between the simulator computed cost and the cost value of

our approach. Besides, to better compare that difference in various cases (with

and without verification) we use Equation (14). The latter computes based on640

simulator’s cost obsimul and our approach’s cost obap the percentage per value.

We note that per values are around 13% in case of BPs with a large number

of activities. But, overall, it is under 10%. Whereas, it is null if the number

of activities is small. These findings suggest that our approach is more efficient

especially if the number of a BP activities is small (under 200) and continues645

to provide good solutions even in case of BPs with a large number of activities,

thanks to our verification approach.

per = |1− obap
obsimul

| × 100 (14)

7. Related work

In this section, we discuss some works related to formal verification (Sec-

tion 7.1) and optimization (Section 7.2) of BPM in the context of cloud.650

31

0
50

100
150
200
250
300
350
400

C
os

t i
n

$

Number of activities

BLP Simulation

Figure 11: Comparing process cost without verification

7.1. Works on formal verification

Table 5 is a summary of some works that examine cloud resource allocation

to time-constrained BP. We classified these works using different criteria such as

process temporal constraints, resource, formal language, and pricing strategies.

“+” refers to in the scope criteria and “-” refers to out of the scope criterion.655

Table 5: Summary of the literature study of formal verification

Work Process temporal Resource Formal Language

constraint

[36, 37] - + RAL

[1, 38] - + Event-B

[39] - + Coloured Petri Net

[2, 3, 13] + - Timed automata

[40] + - Time petri net algorithm

[41] + + Timed automata

[42] + + fUML

[43] + + Time workflow net

[44, 45, 46, 47] + + Algorithm

Our approach + + Timed automata

32

0
50

100
150
200
250
300
350
400
450

C
os

t i
n

$

Number of activities

BLP with verification Simulaiton with verification

Figure 12: Comparing process cost with verification

A graphical notation was proposed in [36, 37] for assigning human resources

to BP activities, the so-called Resource Assignment Language Graph (RALph).

The latter has formal semantics provided by a transformation step to Resource

Assignment Language (RAL) to automate the analysis of the BP resource per-

spective [36]. Nevertheless, in both works, process temporal constraints and660

cloud resources are disregarded.

Boubaker et al. [1] propose a formal specification of resource perspective to

guarantee a correct and optimal cloud resource allocation to BPs. Concretely,

using the Event-B formal specification, they verify the consistency of cloud

resource allocation for process modeling at design time taking into account665

users’ demands and resources’ properties. In [38], the same authors verify

also the correctness of cloud resource allocation in BPs considering properties

such as elasticity and shareability. Garfatta et al. [39] rely on Coloured Petri

net formalism to model formally the cloud resource perspective in BP taken

into consideration their properties such as vertical/horizontal elasticity. So, the670

BP designer can model correct resource allocations in BPs to avoid runtime

errors. In contrast to the above, we propose rules to transform BPMN models

33

into a network of timed automata models to verify the matching between both

activities’ temporal constraints and cloud resources’ temporal availabilities.

Various research works address the issue of formal specification and verifi-675

cation of temporal constraints in BP models. For instance, Cheikhrouhou et al.

in [2, 3, 13] proposed rules to transform BPs modeled in BPMN language and

enriched with relative and absolute temporal constraints into a formal language

(timed automata). Then, using UPPAAL, they verified the satisfaction of some

CTL properties in order to verify the temporal consistency of BPs. Further-680

more, Huai et al. [40] verified BPMN models using Timed Petri Nets by analyz-

ing process structure such as deadlock and testing if there is a conflict between

model temporal constraints. However, neither (cloud) resource representation

nor pricing strategies are studied.

We mention that several works deal with formal verification of resource allo-685

cation and activities temporal constraints. In fact, Watahiki et al. [41] extended

BPMN to support temporal, concurrency, and resource constraints. Moreover,

they generated automatically from BPMN extended models, timed automata

models based on a set of transformation rules. The aim is to check deadlocks and

bottlenecks. However, Watahiki et al. [41] did not take into account temporal690

dependency. Besides, Du et al. [43] concentrated on the problem of specification

and verification of process temporal constraints. Arévalo et al. [44] focused on

activities’ temporal constraints and resources. As well, they proposed a frame-

work to derive BPMN models from legacy systems focusing on time and resource

perspectives. Compared to our work, authors consider neither advanced tem-695

poral constraints, namely the relative and absolute ones, nor cloud resources

and pricing strategies. Fakhfakh et al. [48] focused on cloud resource allocation

in the context of dynamic workflows. They propose an Event-B model to ver-

ify the correctness of dynamic changes. The solution checks properties related

to control flow perspective and the matching between activities and cloud re-700

sources according to a set of constraints. Contrarily, we take into consideration

that each cloud resource in a BP has an assignment interval representing its

temporal availability that is associated with some pricing strategies.

34

Massive parallel business workflows running in the cloud are prone to tem-

poral violations (namely intermediate runtime delays) due to various reasons705

such as service performance fluctuation and resource conflicts [45]. Thus, au-

thors in [45] presented a propagation-aware temporal verification strategy for

parallel business cloud workflows. Further, Luo et al. [46] developed the idea of

”adaptiveness” in their design strategy in order to detect temporal violations

and to achieve on-time completion of time-constrained business cloud workflows.710

So, they presented an adaptive temporal checkpoint selection strategy. Besides,

they proposed a strategy to handle temporal violation. Besides, Wang et al. [47]

proposed a new sliding-window based checkpoint selection strategy for detecting

temporal violations. Indeed, the strategy selects the next observation time inter-

val based on the overall temporal consistency state at last checkpoint. However,715

they did not consider that cloud resources have limited temporal availabilities.

As can be seen from Table 5, the majority of the cited research works focus

only on one perspective: time or resource. Moreover, the works combining both

perspectives, overall, do not consider that cloud resources have limited temporal

availabilities. We observe also, that, in general, authors use formal methods such720

as timed automata, and petri nets for formal verification reason. Compared to

the aforementioned works, we handle advanced temporal constraints on activi-

ties and cloud resources’ pricing strategies. Next, we transform BPMN models

into timed automata models in order to check BPs’ time-constraint behaviors

such as liveness.725

7.2. Works on optimization

Table 6 is a summary of some works that optimize cloud resource allocation

cost. We classified these works using different criteria such as process temporal

constraints, resource type, resource constraint, etc. “+” refers to in the scope

criteria and “-” refers to out of the scope criterion. “+/-” means that the730

criterion is partially studied.

Afilal et al. [49] proposed an approach for an optimal human resource allo-

cation using MIP model under a set of constraints such as employee availabil-

35

T
a
b

le
6
:

S
u

m
m

a
ry

o
f

th
e

li
te

ra
tu

re
st

u
d

y
o
f

cl
o
u

d
re

so
u

rc
e

a
ll
o
ca

ti
o
n

o
p

ti
m

iz
a
ti

o
n

W
o
r
k

P
r
o
c
e
s
s
t
e
m

p
o
r
a
l

c
o
n
s
t
r
a
in

t

R
e
s
o
u
r
c
e

R
e
s
o
u
r
c
e

c
o
n
s
t
r
a
in

t
P
r
ic
in

g
s
t
r
a
t
e
g
ie
s

O
p
t
im

iz
a
t
io

n

t
e
c
h
n
iq

u
e

[4
9
]

-
H

u
m

a
n

T
e
m

p
o
ra

l
a
v
a
il
a
b
il
it

y
-

M
IP

[5
0
]

-
C

lo
u
d

-
-

2
A

lg
o
ri

th
m

s

[5
1
]

-
C

lo
u
d

-
-

L
in

e
a
r

P
ro

g
ra

m

[5
2
]

-
C

lo
u
d

-
-

3
A

lg
o
ri

th
m

s

[5
3
]

-
C

lo
u
d

V
a
ri

o
u
s

c
o
n
st

ra
in

ts
-o

n
-d

e
m

a
n
d

-r
e
se

rv
e
d

-S
to

ch
a
st

ic
in

te
g
e
r

p
ro

g
ra

m
-

m
in

g
-A

lg
o
ri

th
m

[5
4
]

-
C

lo
u
d

P
e
rf

o
rm

a
n
c
e

N
u
m

b
e
r

o
f

V
M

s

-o
n
-d

e
m

a
n
d

-r
e
se

rv
e
d

H
is

to
g
ra

m
H

e
u
ri

st
ic

[5
5
]

-
C

lo
u
d

Q
o
S

c
o
n
st

ra
in

ts

N
u
m

b
e
r

o
f

V
M

s

-o
n
-d

e
m

a
n
d

-r
e
se

rv
e
d

-d
y
n
a
m

ic

L
in

e
a
r

P
ro

g
ra

m
H

e
u
ri

st
ic

[5
6
]

+
/
-

C
lo

u
d

N
o
n

sh
a
re

a
b
le

-o
n
-d

e
m

a
n
d

-r
e
se

rv
e
d

S
to

ch
a
st

ic
in

te
g
e
r

p
ro

g
ra

m
m

in
g

[5
7
]

+
/
-

C
lo

u
d

-
-o

n
-d

e
m

a
n
d

-r
e
se

rv
e
d

-M
IP

&
A

lg
o
ri

th
m

[5
8
,

5
9
]

+
/
-

C
lo

u
d

-
-o

n
-d

e
m

a
n
d

A
lg

o
ri

th
m

s

[6
0
]

+
/
-

C
lo

u
d

S
h
a
re

a
b
le

-o
n
-d

e
m

a
n
d

-r
e
se

rv
e
d

A
lg

o
ri

th
m

s

[6
1
]

+
/
-

C
lo

u
d

Q
o
S

c
o
n
st

ra
in

ts
-

M
e
ta

-H
e
u
ri

st
ic

A
lg

o
ri

th
m

s

[6
2
,

6
3
]

+
/
-

C
lo

u
d

-
o
n
-d

e
m

a
n
d

G
e
n
e
ti

c
A

lg
o
ri

th
m

s

[6
4
]

+
C

lo
u
d

N
o
n

sh
a
re

a
b
le

-
L

in
e
a
r

P
ro

g
ra

m
A

lg
o
ri

th
m

O
u
r

a
p
p
ro

a
ch

+
C

lo
u
d

T
e
m

p
o
ra

l
A

v
a
il
a
b
il
it

y
-o

n
-d

e
m

a
n
d

-r
e
se

rv
e
d

-s
p

o
t

-L
in

e
a
r

P
ro

g
ra

m
H

e
u
ri

st
ic

36

ity. However, authors considered neither activities’ temporal constraints nor

cloud resources.735

Different research works are proposed in the context of optimal cloud re-

source allocation cost. For instance, Wang et al. [50] proposed two distributed

algorithms to maximize revenues and minimize electricity costs for data cen-

ters. Hoenisch et al.[51] proposed a MIP model to optimize the deployment

cost of elastic BP under a set of requirements such as the data transfer com-740

munication. Moreover, Goettelmann et al. [52] worked on optimizing the cost

of deploying BPs into different public clouds. For that, they proposed three

algorithms to reduce the cost while considering the data transfer time and re-

source cost. Though, in our work, we optimize the BP deployment cost while

considering different pricing strategies, various cloud providers, and the process745

constraints (time, capacity, penalty).

A considerable amount of surveys have been presented to extensively review

and profoundly study the relevant research works in the context of BPs/work-

flows scheduling or assignment in a cloud environment such as [65, 66, 67].

Moreover, several algorithms have been proposed for workflow scheduling, but750

most of them fail to incorporate the key features of cloud including: hetero-

geneous resources, pay-per-usage model, and elasticity along with the QoS re-

quirements. Kaur et al. [62] proposed a hybrid genetic algorithm which uses the

Predict Earliest Finish Time (PEFT) to generate a schedule as a seed with the

aim to minimize cost while keeping execution time below the given deadline. A755

good seed helps to accelerate the process of obtaining an optimal solution. The

algorithm is simulated on WorkflowSim and is evaluated using various scientific

realistic workflows of different sizes. Visheratin et al. [63] dealt with scheduling

scientific workflows in heterogeneous cloud-based computational environment.

They considered the main features of IaaS providers, such as the wide variety of760

offered computational services and pay-as-you-go price model with time periods

of charge. More specifically, Visheratin et al. [63] proposed an heuristic algo-

rithm, named Levelwise Deadline Distributed Linewise Scheduling (LDD-LS),

for scheduling workflows in hard-deadline constrained clouds. After, they com-

37

bined LDD-LS with the implementation of IC-PCP algorithm to initialize their765

proposed metaheuristic algorithm called Cloud Deadline Coevolutional Genetic

Algorithm (CDCGA). But, both of studies tend to focus only on one pricing

strategy (pay-as-you-go).

In literature, recent research works proposed algorithms to reduce the cost

of BP/workflow scheduling [58, 59] while taking into consideration heteroge-770

neous resources and hybrid cloud environment. Chen et al. [58] focused on the

scheduling problem of budget constrained applications on heterogeneous cloud

computing systems. To this end, they suggest an algorithm that minimizes the

length of the schedule using the budget level. Namely, this algorithm selects the

processors that satisfy the budget constraint and reduce the schedule length.775

Zhou et al. [59] presented two efficient workflow scheduling approaches to opti-

mize the makespan and monetary cost in hybrid clouds. For this reason, they

formulated the workflow scheduling problem, first, as a single objective opti-

mization problem for minimizing the execution cost under deadline constraints

and second, as a multi-objective workflow scheduling optimization for minimiz-780

ing simultaneously the cost and makespan of scheduling workflows. In contrast,

Saber et al. [61] offered an approach for Iaas providers to optimize the data cen-

ters makespan. For this reason, they formulated the problem of VM reassign-

ment in hybrid and decentralized workflow as a multi-objective problem. They

proposed also an hybrid algorithm, called H2-D2, that aims to reassign solutions785

evaluated by different hosting departments (according to their preferences) us-

ing a multi-layer architecture and a metaheuristic algorithm. Nevertheless, in

our work we provide for the BP designer an approach that aims to optimize

the deployment cost of a time-constrained BP in cloud resources proposed by

various cloud providers under different pricing strategies.790

Other authors propose approaches to optimize the cloud resource allocation

cost while considering 2 pricing strategies (on-demand and reserved) [53, 54].

Chaisiri et al. [53] optimized the cost of cloud resources and the processing time.

Moreover, Diaz et al. [54] provided two solutions to optimize cloud resource

allocation: (i) a new approach that uses histograms of load levels to find the795

38

optimal solution and (ii) an approach that gives an approximated solutions by

grouping load levels in bins and computing the histogram. In this manner, the

problem size is reduced and the allocation strategy is provided in a short time.

Whereas, Bellur et al. [55] considered not only on-demand and reserved but also

dynamic pricing strategy. They propose an approach to optimize the cost in800

multi-site mutli-cloud environments. They formalized the multi-site multi-cloud

environment problem and they model it as a linear program. Bellur et al. [55]

presented a greedy heuristic algorithm and they have proved its effectiveness in

reducing the total cost of infrastructure. Though, in our work, we optimize the

process cost while taking into account different pricing strategies (on-demand,805

reserved, spot), various cloud providers, and the BP constraints (time, capacity).

We mention that several works support partially activities’ temporal con-

straints and consider on-demand and reserved pricing strategies [57, 56, 60]. A

stochastic integer programming is proposed by Li et al. [56] to optimize the cloud

resource allocation cost and execution time. Hu et al. [57] proposed a MIP model810

to optimize the deployment cost of elastic BP under a set of requirements such

as the data transfer communication. Mastelic et al. [60] defined an approach

to estimate and reduce the cost of cloud resources allocated to run process.

Concretely, they predicted the execution path of the process to assign the cloud

resources to activities and select the best strategy for each cloud resource.815

Fakhfakh et al. [64] proposed an approach to minimize the cost of the cloud

resources consumed to execute dynamic workflows under a set of constraints. Af-

terwards, they extended their approach to deal with workflow dynamic changes.

In contrast to the above, we optimize the BP deployment cost taken into account

cloud resources offered by various cloud providers in various pricing strategies820

and the activity subject to financial penalty price.

As mentioned in the Table 6, advanced temporal constraints for activities

requiring resources to be performed are not well studied in the literature. Fur-

thermore, we conclude that most of the cited research works focus especially on

cloud resources. Compared to our work, few works consider that we can specify825

temporal availability constraint over cloud resources based on pricing strategies.

39

Besides, the majority of the presented works assume that cloud resources are

offered only as on-demand and/or reserved instances. However, in this paper,

we take resources from various cloud providers under various pricing strate-

gies. In addition, we denote that mathematical models namely mixed integer830

programming, linear programming, and stochastic integer programming models

are, generally, the most used methods to find the optimal resource allocation

cost. Finally, to deal with huge number of input data, authors propose to reduce

the complexity of the mathematical model and provide an approximative solu-

tion.835

8. Conclusion

In this paper, we presented an approach for allocating cloud resources to

activities of BPs that are subject to time constraints. This allocation needs to

be, at run-time, both correct to avoid blockage and optimized to avoid excessive

deployment costs. To achieve verification, we developed rules that transform840

BPMN-based BPs’ process models into a network of timed-automata so that

proper matching of activities’ needs of resources to cloud resources is ensured

despite the time constraints. And, to achieve optimization that the number of

a BP’s activities could impact, we developed a linear programming model that

took into account the deployment cost of these activities over cloud resources.845

In term of future work, different aspects will be pursued. First, we would

like to verify the semantic correctness of the transformation rules: The gen-

erated timed automata should preserve semantic properties like termination

(i.e., transformations should always lead to a result) and confluence (i.e., re-

sult should be unique). Second, we would like to consider all branching types850

(i.e., ORsplit and XORsplit) that could define process models of BPs. Cur-

rently, we only examined ANDsplit branching. Third, we would like to assess

the impact of changes of spot instance price on cloud resources allocation at

run-time. Related to this impact, it is worth mentioning Amazon new pricing

strategy known as SavingsP lans [11] that could be added to our future work855

40

plan so that we would have covered all Amazon pricing strategies. Finally we

would like to consider data transfer fee when verifying and optimizing cloud

resources allocation.

References

[1] S. Boubaker, W. Gaaloul, M. Graiet, N. B. Hadj-Alouane, Event-b based860

approach for verifying cloud resource allocation in business process, in:

Proceedings of the IEEE International Conference on Services Computing,

IEEE, 2015, pp. 538–545. doi:10.1109/SCC.2015.79.

[2] S. Cheikhrouhou, S. Kallel, N. Guermouche, M. Jmaiel, Enhancing formal

specification and verification of temporal constraints in business processes,865

in: Proceedings of the IEEE international conference on services comput-

ing, IEEE, 2014, pp. 701–708. doi:10.1109/SCC.2014.97.

[3] S. Cheikhrouhou, S. Kallel, M. Jmaiel, Toward a verification of time-centric

business process models, in: Proceedings of the IEEE 23rd International

WETICE Conference, IEEE, 2014, pp. 326–331. doi:10.1109/WETICE.870

2014.75.

[4] E. Hachicha, W. Gaaloul, Towards resource-aware business process develop-

ment in the cloud, in: Proceedings of IEEE 29th International Conference

on Advanced Information Networking and Applications, IEEE, 2015, pp.

761–768. doi:10.1109/AINA.2015.265.875

[5] R. B. Halima, S. Kallel, K. Klai, W. Gaaloul, M. Jmaiel, Formal ver-

ification of time-aware cloud resource allocation in business process, in:

Proceedings of the OTM Confederated International Conferences On the

Move to Meaningful Internet Systems, Springer, 2016, pp. 400–417. doi:

10.1007/978-3-319-48472-3_23.880

[6] R. Ben Halima, I. Zouaghi, S. Kallel, W. Gaaloul, M. Jmaiel, Formal ver-

ification of temporal constraints and allocated cloud resources in business

41

processes, in: Proceedings of the IEEE 32nd International Conference on

Advanced Information Networking and Applications, IEEE, 2018, pp. 952–

959. doi:10.1109/AINA.2018.00139.885

[7] A. Wall, K. Sandstrom, J. Maki-Turja, C. Norstrom, W. Yi, Verify-

ing temporal constraints on data in multi-rate transactions using timed

automata, in: Proceedings Seventh International Conference on Real-

Time Computing Systems and Applications, IEEE, 2000, pp. 263–270.

doi:10.1109/RTCSA.2000.896400.890

[8] R. B. Halima, S. Kallel, W. Gaaloul, M. Jmaiel, Optimal cost for time-

aware cloud resource allocation in business process, in: Prceedings of the

IEEE International Conference on Services Computing (SCC), IEEE, 2017,

pp. 314–321. doi:10.1109/SCC.2017.47.

[9] Online, Microsoft azure, https://azure.microsoft.com/en-us/.895

[10] Online, Google cloud, https://cloud.google.com/.

[11] Amazon ec2, https://aws.amazon.com/fr/ec2/pricing/ (2020).

[12] M. Weske, Business process management architectures, in: Business

Process Management, Springer, 2012, pp. 333–371. doi:10.1007/

978-3-642-28616-2_7.900

[13] S. Cheikhrouhou, S. Kallel, N. Guermouche, M. Jmaiel, Toward a time-

centric modeling of business processes in bpmn 2.0, in: Proceedings of

International Conference on Information Integration and Web-based Appli-

cations & Services, ACM, 2013, p. 154. doi:10.1145/2539150.2539182.

[14] S. Cheikhrouhou, S. Kallel, N. Guermouche, M. Jmaiel, The temporal905

perspective in business process modeling: a survey and research chal-

lenges, Service Oriented Computing and Applications 9 (1) (2015) 75–85.

doi:10.1007/s11761-014-0170-x.

42

[15] M. Pesic, M. H. Schonenberg, N. Sidorova, W. M. P. van der Aalst,

Constraint-based workflow models: Change made easy, in: R. Meersman,910

Z. Tari (Eds.), Proceedings of the International Conferences on the Move

to Meaningful Internet Systems, Vol. 4803 of Lecture Notes in Computer

Science, Springer, 2007, pp. 77–94. doi:10.1007/978-3-540-76848-7_7.

[16] D. Gagné, A. Trudel, Time-bpmn, in: B. Hofreiter, H. Werthner (Eds.),

Proceedings of the IEEE Conference on Commerce and Enterprise Com-915

puting, IEEE Computer Society, 2009, pp. 361–367. doi:10.1109/CEC.

2009.71.

[17] W. Huai, X. Liu, H. Sun, Towards trustworthy composite service through

business process model verification, in: Proceedings of the 2010 7th In-

ternational Conference on Ubiquitous Intelligence and Computing and 7th920

International Conference on Autonomic & Trusted Computing, IEEE Com-

puter Society, 2010, pp. 422–427. doi:10.1109/UIC-ATC.2010.114.

[18] I. Graja, S. Kallel, N. Guermouche, A. H. Kacem, Time patterns for cyber-

physical systems, in: Proceedings of the IEEE Symposium on Computers

and Communication, IEEE Computer Society, 2016, pp. 1208–1211. doi:925

10.1109/ISCC.2016.7543900.

[19] G. Rodriguez-Navas, J. Proenza, Using timed automata for modeling dis-

tributed systems with clocks: Challenges and solutions, IEEE Transactions

on Software Engineering 39 (6) (2012) 857–868. doi:10.1109/TSE.2012.

73.930

[20] E. Hachicha, N. Assy, W. Gaaloul, J. Mendling, A configurable resource

allocation for multi-tenant process development in the cloud, in: Pro-

ceeedings of the 28th International Conference on Advanced Informa-

tion Systems Engineering, Springer, 2016, pp. 558–574. doi:10.1007/

978-3-319-39696-5_34.935

[21] Omg. business process model and notation (bpmn) 2.0., http://www.omg.

org/spec/BPMN/2.0/.

43

[22] Atlas transformation language, https://www.eclipse.org/atl (2020).

[23] L. Lamport, Proving the correctness of multiprocess programs, IEEE trans-

actions on software engineering 3 (2) (1977) 125–143. doi:10.1109/TSE.940

1977.229904.

[24] W. Fokkink, A. Kakebeen, J. Pang, Adapting the uppaal model of

a distributed lift system, in: International Conference on Fundamen-

tals of Software Engineering, Springer, 2007, pp. 81–97. doi:10.1007/

978-3-540-75698-9_6.945

[25] D. Solow, Linear and nonlinear programming, Wiley Encyclopedia of Com-

puter Science and Engineering (2007) 1–5doi:10.1002/9780470050118.

ecse219.

[26] G. R. Raidl, J. Puchinger, Combining (integer) linear programming tech-

niques and metaheuristics for combinatorial optimization, in: Hybrid meta-950

heuristics, Springer, 2008, pp. 31–62.

[27] M. Laguna, J. Marklund, Business Process Modeling, Simulation and De-

sign, CRC Press, 2013.

URL https://books.google.be/books?id=SRHSBQAAQBAJ

[28] W. Long, L. Yuqing, X. Qingxin, Using cloudsim to model and simulate955

cloud computing environment, in: Proceedings of the 9th International

Conference on Computational Intelligence and Security, IEEE, 2013, pp.

323–328. doi:10.1109/CIS.2013.75.

[29] J. Mangler, S. Rinderle-Ma, CPEE - cloud process execution engine, in:

Proceedings of the BPM Demo Sessions, co-located with the 12th Interna-960

tional Conference on Business Process Management, 2014, p. 51.

[30] D. Kliazovich, P. Bouvry, S. U. Khan, Greencloud: a packet-level simulator

of energy-aware cloud computing data centers, The Journal of Supercom-

puting 62 (3) (2012) 1263–1283. doi:10.1007/s11227-010-0504-1.

44

[31] Y. Jararweh, M. Jarrah, M. Kharbutli, Z. Alshara, M. N. Alsaleh, M. Al-965

Ayyoub, Cloudexp: A comprehensive cloud computing experimental frame-

work, Simulation Modelling Practice and Theory 49 (2014) 180–192. doi:

10.1016/j.simpat.2014.09.003.

[32] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, R. Buyya,

Cloudsim: a toolkit for modeling and simulation of cloud computing en-970

vironments and evaluation of resource provisioning algorithms, Software:

Practice and experience 41 (1) (2011) 23–50. doi:10.1002/spe.995.

[33] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Car-

retero, I. M. Lorente, iCanCloud: A flexible and scalable cloud infras-

tructure simulator, Journal of Grid Computing 10 (1) (2012) 185–209.975

doi:10.1007/s10723-012-9208-5.

[34] Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli, M. N. Alsaleh, Teach-

cloud: a cloud computing educational toolkit, International Journal of

Cloud Computing 2 (2/3) (2013) 237–257. doi:10.1504/IJCC.2013.

055269.980

[35] R. B. Halima, S. Kallel, M. A. Nacer, W. Gaaloul, Optimal business process

deployment cost in cloud resources, Journal of Supercomputing (2020).doi:

10.1007/s11227-020-03316-9.

[36] C. Cabanillas, D. Knuplesch, M. Resinas, M. Reichert, J. Mendling,

A. Ruiz-Cortés, Ralph: a graphical notation for resource assignments in985

business processes, in: Proceedings of the International Conference on

Advanced Information Systems Engineering, Springer, 2015, pp. 53–68.

doi:10.1007/978-3-319-19069-3_4.

[37] C. Cabanillas, M. Resinas, A. del Ŕıo-Ortega, A. Ruiz-Cortés, Specification

and automated design-time analysis of the business process human resource990

perspective, Information Systems 52 (2015) 55–82. doi:10.1016/j.is.

2015.03.002.

45

[38] S. Boubaker, A. Mammar, M. Graiet, W. Gaaloul, Formal verification

of cloud resource allocation in business processes using event-b, in: Pro-

ceedings of the IEEE 30th International Conference on Advanced Infor-995

mation Networking and Applications (AINA), IEEE, 2016, pp. 746–753.

doi:10.1109/AINA.2016.126.

[39] I. Garfatta, K. Klai, M. Graiet, W. Gaaloul, Formal modelling and ver-

ification of cloud resource allocation in business processes, in: Proceed-

ings of the Confederated International Conferences On the Move to Mean-1000

ingful Internet Systems, Springer, 2018, pp. 552–567. doi:10.1007/

978-3-030-02610-3_31.

[40] W. Huai, X. Liu, H. Sun, Towards trustworthy composite service through

business process model verification, in: Proceedings of the 7th International

Conference on Ubiquitous Intelligence & Computing and 7th International1005

Conference on Autonomic & Trusted Computing, IEEE, 2010, pp. 422–427.

doi:10.1109/UIC-ATC.2010.114.

[41] K. Watahiki, F. Ishikawa, K. Hiraishi, Formal verification of business pro-

cesses with temporal and resource constraints, in: Proceedings of the IEEE

International Conference on Systems, Man, and Cybernetics, IEEE, 2011,1010

pp. 1173–1180. doi:10.1109/ICSMC.2011.6083857.

[42] Y. Laurent, R. Bendraou, S. Baarir, M.-P. Gervais, Formalization of FUML:

An application to process verification, in: Proceedings of the International

Conference on Advanced Information Systems Engineering, Springer, 2014,

pp. 347–363. doi:10.1007/978-3-319-07881-6_24.1015

[43] Y. Du, P. Xiong, Y. Fan, X. Li, Dynamic checking and solution to temporal

violations in concurrent workflow processes, IEEE Trans. Systems, Man,

and Cybernetics, Part A 41 (6) (2011) 1166–1181. doi:10.1109/TSMCA.

2011.2116003.

[44] C. Arévalo Maldonado, I. Ramos Román, M. J. Escalona Cuaresma, Dis-1020

covering business models for software process management-an approach

46

for integrating time and resource perspectives from legacy information

systems, in: Proceedings of the 17th International Conference on Enter-

prise Information Systems, SciTePress, 2015, pp. 353–359. doi:10.5220/

0005454903530359.1025

[45] H. Luo, X. Liu, J. Liu, Y. Yang, Propagation-aware temporal verifica-

tion for parallel business cloud workflows, in: Proceedings of the IEEE

International Conference on Web Services, IEEE, 2017, pp. 106–113. doi:

10.1109/ICWS.2017.22.

[46] H. Luo, X. Liu, J. Liu, B. Han, Y. Yang, Adaptive temporal verification and1030

violation handling for time-constrained business cloud workflows, in: Pro-

ceedings of the International Conference on Service-Oriented Computing,

Springer, 2018, pp. 90–99. doi:10.1007/978-3-030-03596-9_6.

[47] Y. Wang, R. Xu, F. Wang, H. Luo, M. Wang, X. Liu, Sliding-window based

propagation-aware temporal verification for monitoring parallel cloud busi-1035

ness workflows, in: Proceedings of the IEEE 22nd International Conference

on Computer Supported Cooperative Work in Design, IEEE, 2018, pp. 449–

454. doi:10.1109/CSCWD.2018.8465205.

[48] F. Fakhfakh, H. H. Kacem, A. H. Kacem, F. Fakhfakh, Preserving the

correctness of dynamic workflows within a cloud environment, Procedia1040

Computer Science 126 (2018) 1541–1550. doi:10.1016/j.procs.2018.

08.127.

[49] M. Afilal, H. Chehade, F. Yalaoui, The human resources assignment with

multiple sites problem, International Journal of Modeling and Optimization

5 (2) (2015) 155. doi:10.7763/IJMO.2015.V5.453.1045

[50] W. Wang, P. Zhang, T. Lan, V. Aggarwal, Datacenter net profit opti-

mization with individual job deadlines, in: Proceedings of the 46th An-

nual Conference on Information Sciences and Systems, 2012, pp. 1–6.

doi:10.1109/CISS.2012.6310925.

47

[51] P. Hoenisch, C. Hochreiner, D. Schuller, S. Schulte, J. Mendling, S. Dust-1050

dar, Cost-efficient scheduling of elastic processes in hybrid clouds, in: Pro-

ceedings of the 8th IEEE International Conference on Cloud Computing,

IEEE, 2015, pp. 17–24. doi:10.1109/CLOUD.2015.13.

[52] E. Goettelmann, W. Fdhila, C. Godart, Partitioning and cloud deployment

of composite web services under security constraints, in: Proceedings of1055

the IEEE International Conference on Cloud Engineering, IEEE, 2013, pp.

193–200. doi:10.1109/IC2E.2013.22.

[53] S. Chaisiri, B.-S. Lee, D. Niyato, Optimization of resource provisioning cost

in cloud computing, IEEE transactions on services Computing 5 (2) (2011)

164–177. doi:10.1109/TSC.2011.7.1060

[54] J. L. Dı́az, J. Entrialgo, M. Garćıa, J. Garćıa, D. F. Garćıa, Optimal allo-

cation of virtual machines in multi-cloud environments with reserved and

on-demand pricing, Future Generation Computer Systems 71 (2017) 129–

144. doi:10.1016/j.future.2017.02.004.

[55] U. Bellur, A. Malani, N. C. Narendra, Cost optimization in multi-site multi-1065

cloud environments with multiple pricing schemes, in: Proceedings of the

7th IEEE International Conference on Cloud Computing, IEEE, 2014, pp.

689–696. doi:10.1109/CLOUD.2014.97.

[56] Q. Li, Y. Guo, Optimization of resource scheduling in cloud computing,

in: Proceedings of the 12th International Symposium on Symbolic and1070

Numeric Algorithms for Scientific Computing, IEEE, 2010, pp. 315–320.

doi:10.1109/SYNASC.2010.8.

[57] M. Hu, J. Luo, B. Veeravalli, Optimal provisioning for scheduling divisible

loads with reserved cloud resources, in: Proceedings of the 18th IEEE

International Conference on Networks, IEEE, 2012, pp. 204–209. doi:1075

10.1109/ICON.2012.6506559.

48

[58] W. Chen, G. Xie, R. Li, Y. Bai, C. Fan, K. Li, Efficient task scheduling for

budget constrained parallel applications on heterogeneous cloud computing

systems, Future Generation Computer Systems 74 (2017) 1–11. doi:10.

1016/j.future.2017.03.008.1080

[59] J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei, M. Chen, Cost and makespan-

aware workflow scheduling in hybrid clouds, Journal of Systems Architec-

ture 100. doi:10.1016/j.sysarc.2019.08.004.

[60] T. Mastelic, W. Fdhila, I. Brandic, S. Rinderle-Ma, Predicting resource

allocation and costs for business processes in the cloud, in: Proceedings1085

of the IEEE world congress on services, IEEE, 2015, pp. 47–54. doi:

10.1109/SERVICES.2015.16.

[61] T. Saber, J. Thorburn, L. Murphy, A. Ventresque, Vm reassignment in

hybrid clouds for large decentralised companies: A multi-objective chal-

lenge, Future Generation Computer Systems 79 (2018) 751–764. doi:1090

10.1016/j.future.2017.06.015.

[62] G. Kaur, M. Kalra, Deadline constrained scheduling of scientific workflows

on cloud using hybrid genetic algorithm, in: Proceedings of the 7th In-

ternational Conference on Cloud Computing, Data Science & Engineering-

Confluence, IEEE, 2017, pp. 276–280. doi:10.1109/CONFLUENCE.2017.1095

7943162.

[63] A. A. Visheratin, M. Melnik, D. Nasonov, Workflow scheduling algorithms

for hard-deadline constrained cloud environments, Procedia Computer Sci-

ence 80 (2016) 2098–2106. doi:10.1016/j.procs.2016.05.529.

[64] F. Fakhfakh, H. H. Kacem, A. H. Kacem, Dealing with structural1100

changes on provisioning resources for deadline-constrained workflow, The

Journal of Supercomputing 73 (7) (2017) 2896–2918. doi:10.1007/

s11227-016-1823-7.

49

[65] E. N. Alkhanak, S. P. Lee, S. ur Rehman Khan, Cost-aware challenges for

workflow scheduling approaches in cloud computing environments: Taxon-1105

omy and opportunities, Future Generation Computer Systems 50 (2015)

3–21. doi:10.1016/j.future.2015.01.007.

[66] A. R. Arunarani, D. Manjula, V. Sugumaran, Task scheduling techniques

in cloud computing: A literature survey, Future Generation Computer Sys-

tems 91 (2019) 407–415. doi:10.1016/j.future.2018.09.014.1110

[67] L. Thai, B. Varghese, A. Barker, A survey and taxonomy of resource op-

timisation for executing bag-of-task applications on public clouds, Future

Generation Computer Systems 82 (2018) 1–11. doi:10.1016/j.future.

2017.11.038.

50

