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Abstract

In the context of simulations of coupled thermal en-

closures, we present here a substructuring technique

adapted to the amalgam reduced‐order modal model

(AROMM). This technique consists of splitting the

geometry into different zones. A modal model is then

applied to each zone, and the coupling of the resulting

models is performed via a thermal contact resistance.

This technique allows the consideration of physical

thermal resistances between different components of

the geometry, as well as the making of fictitious cuts

within a continuous domain, when its large size causes

difficulties in obtaining the global reduced model.

Applied to the simulation of a simplified component of

a liquefied natural gas carrier, the use of a sub-

structured model with 200 modes allows an access to

the whole temperature field with a maximum differ-

ence near 1 K and an average difference of the order of

0.2 K, compared with a conventional Lagrange finite‐

element model of shell type, which requires 60 times

longer calculation.
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1 | INTRODUCTION

The liquefied natural gas (LNG) and its transportation by tankers play an increasingly im-

portant role in the field of energy. The LNG transportation volume is 330 billions m3 (30% of

global exported volume). Membrane technology, which is the one studied in this article,

constitutes nearly 85% in terms of order book. This technology allows the design of very large

ships, which can contain LNG volumes higher than 200.000m3. When designing these ships, a

major problem is the risk of mechanical breakage due to the extremely cold walls of the vessel,

as it contains several large tanks of natural gas kept in a liquid state at −163°C. Accurate

knowledge of temperature fields is then a necessity, which generates the development of

specific computer codes.

This configuration corresponds to the thermal problem of enclosures, for which different

kinds of studies have been carried out. Many studies focused first on the study of heat transfer

by natural convection inside closed cavities. Except for some recent articles corresponding to

analytical studies validated by experiences in simple configurations,1 the studies correspond

generally to numerical tools development, usually for two‐dimensional (2D) geometries2 and

sometimes for 3D configurations.3

All of these studies include the assumption of a natural flow and require the meshing of the

walls and of the gas contained in the enclosure. They are, therefore, limited to a simple

configuration. Thus, for the complex geometry, the solution is to discretize only the wall. It is

then considered that the internal fluid is characterized by a single temperature and that this

fluid exchanges a convective flow with the walls via a convection coefficient h, which is known

either from correlations or from experiences.

For the study of a set of enclosures characterized by a complex geometry, the mesh of the walls

leads to a large number of unknowns. Various simplified models can be used, which generally

provide the average temperatures of wall surfaces: the study reported in Reference [4] offered a

simple parametric model, whose coefficients are identified for a given geometry by a complete set of

numerical simulations for various stresses. The study reported in Reference [5] examined a steady‐

state model for a 3D configuration, taking into account the conduction and the convection effects,

where each wall is characterized by a simple 1D resistance. In a similar way, studies reported in

References [6,7] used the technique of RC networks to determine the wall temperatures.

To determine the complete thermal fields of the walls, a possibility is to develop plate8 or

shell models.9,10 In these models, the walls are considered as a superposition of layers. One

then seeks to resolve a set of coupled dimensional problems along the thickness of the wall. The

study reported in Reference [11] proposed another model in which a single plate is considered,

but it is characterized by three points in the direction of thickness. Finally, when we can

consider that the wall is sufficiently thin and heat‐conductive to consider only one temperature

in the thickness, it is possible to use a simple degenerated 2D model, often proposed by

industrial computer codes. The problem posed in this paper corresponds to this configuration.

However, even if a shell model is used, calculation of the temperature for the entire ship's

structure requires significant CPU time, and it is incompatible with a goal of online predictions

of the ship's thermal behavior in case of technical problems. The idea is to use model reduction

methods based on modal formulation. The most used technique is the proper orthogonal

decomposition (POD) method that requires the knowledge of thermal fields to get a reduced

basis. Initiated in the field of fluid mechanics, numerous thermal studies were performed.12‐14

Recently, similar methods have emerged: such as the APHR method15 and the PGD ap-

proach.16 There is another technique that is particularly suitable for inverse problems: It is the

Received: Added at production  |  Revised: Added at production  |  Accepted: Added at production DOI: xxx/xxxx

2 | 25



MIM method, in which the reduced model is directly identified without computing or iden-

tifying the modal basis. The latest works17,18 focus on control command problems.

Finally, another approach is to solve an eigenvalue problem adapted to the thermal pro-

blem, which gives access to knowledge of a complete modal basis. In using specific techniques,

the knowledge of this basis allows to obtain a reduced model. Initially, the so‐called classical

bases were obtained from an eigenvalue problem for which boundary conditions matched those

of the thermal problem posed.19,20 This method was limited to thermal problems characterized

by linear and stationary parameters. The generalization of this technique to all thermal pro-

blem types has subsequently been made possible by the use of the amalgam reduced‐order

modal model (AROMM) method,21,22 previously called as the BERM method.23‐25

In parallel to this issue of rapid calculations, another difficulty is the consideration of thermal

contact resistance that can affect the thermal behavior of the structure. One solution is to use the

substructuring technique, in which the different substructures in an imperfect thermal contact are

coupled by the heat flux. It is used in industrial computer codes using the finite‐element/volume

method (Comsol, Fluent). The adaptation of this substructuring technique for the various reduction

methods mentioned above has already been studied (Reference [26] for the MIM, References [27,28]

for the method using conventional modal bases, and Reference [29] for POD). These studies have

employed the substructure technique to avoid calculating a complete basis when the domain leads to

large matrices or increase precision on regions of interest. Finally, two studies30,31 used the BERM

method with a branch basis when solving heat transfer problem in a substructured configuration. In

continuation of these previous works, the aim of the present study is to develop the AROMM

method for a shell geometry using the branch basis associated with a substructuring technique, to

simulate the thermal behavior of a simplified part of an LNG tanker.

2 | PHYSICAL PROBLEM WITHOUT ANY THERMAL
CONTACT RESISTANCE: THE ONE ‐PIECE DOMAIN
FORMULATION

Ne enclosures are considered, each defined as a closed set of walls, containing a gas, and

equipped with mechanical stiffeners. The thermal fields of the walls of these enclosures are

governed by conduction phenomena in the walls and convective exchanges between the wall

and the surrounding fluids (Figure 1).

FIGURE 1 The considered geometry
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Indoor temperatures Tint
e( ) are related to convective exchanges with all the walls.

Assuming that the heat capacity of the internal fluid is negligible compared with that of the

walls, a simple heat balance on the volume of gas provides the expression of indoor

temperatures: ∫∫T
h d

h Td=
1

Ω
Ω.int

e

int
e int

e( )

Ω
( ) Ω

( )

int
e int

e

( )

( )
(1)

If the temperature gradient in the thickness of the wall of the enclosure is negligible, it is

possible to use a shell model (Figure 2), in which the temperature field depends only on local

coordinates η ζ( , ) for the plane Ω defined for the wall: T x y z T η ζ( , , ) = ( , ). This domain Ω
corresponds to the main surface of the shell and has two faces, characterized by normal vectors

of opposite signs:Ω(+) and Ω(−) (Figure 2a). The weak formulation of the heat equation is then

expressed as follows:∫ ∫ ∫ ∫∂∂ ∇→ ⋅∇→ec
T

t
f d eλ T f d φf d φf dΩ = − Ω + Ω + Ω,

Ω Ω Ω Ω(+) (−)
(2)

where φ is the heat flux exchanged with the surrounding fluids, e M( ) is the thickness of the

wall, which is not necessarily uniform on Ω, and ∈f H (Ω)1 is the test function on Ω.

FacesΩ(+) andΩ(−) receive convective heat fluxes and can also be decomposed into the sum

of the surfaces facing the outer side of the enclosureΩext and those facing the interior volume of

each enclosure Ωint
e( ) (Figure 2b): ∪ ∪ ∪( )Ω =Ω Ω = Ω Ω .e

N
int
e

ext(+) (−) =1
( )e (3)

FIGURE 2 Analysis of borders of a shell element
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Equation (2) finally becomes:∫ ∫ ∫ ∫∫ ∫∑∂∂ ∇→ ⋅∇→ { }ec
T

t
f d eλ T f d h T f d h T T f d

h T f d h T f d

Ω = − Ω + − Ω + ( ) Ω

‐ Ω + Ω,
e

N

int
e

int
e

int
e

ext ext ext

Ω Ω
=1

Ω
( )

Ω
( ) ( )

Ω Ω

e

int
e

int
e

ext ext

( ) ( )

(4)

where Tint
e( ) is defined by relation (1).

3 | PHYSICAL PROBLEM WITH THERMAL CONTACT
RESISTANCES: THE SUBSTRUCTURING METHOD

The method consists of splitting the geometry into Nd substructures Ω k( ) such as∪Ω = Ω .
k

N
k

=1

( )
d

(5)

As shown in Figure 3, subdomains Ω i( ) and Ω j( ) have Nfc shared boundaries, denoted

as ≤ ≤l NΓ , 1st
l

fc
( ) (Figure 3). The subscript of line l is associated unambiguously to the

subscripts i and j of the two areas that are linked by this line.

The substructuring method applied to a shell model leads to particular boundaries that

appear inside the considered domain (Figure 4). The borders Γstl( ) can then be defined

• as classical external boundaries to a domain: Γst e
l
( )

( ) ,

• as particular internal boundaries: Γst i
l
( )

( ) .

where ∪∩ ∅Γ =Γ Γ
Γ Γ = .

st st e st i

st e st i

( ) ( )

( ) ( )
(6)

By considering that each border is characterized by a flux condition, Equation (2) for the

considered subdomain Ω k( ) (Figure 3) is expressed as follows:∫ ∫ ∫∫∂ ∂ ∇→ ⋅∇→ec
T

t
f d eλ f T d φ f d φ f d

φ f d

Ω = ‐ Ω + Ω + Ω

+ Γ.

k
k k k k k k k

st

k k

Ω
( )

( )

Ω
( ) ( )

Ω
( ) ( )

Ω
( ) ( )

Γ
( ) ( )

k
k k k

k

( )
( )

(+)
( )

(−)
( )

( )
(7)

FIGURE 3 The substructuration principle
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As the two subdomainsΩ i( ) andΩ j( ) exchange heat through each border Γstl( ), the variational
formulation of the heat transfer problem over the entire domain Ω is written as follows:∫ ∫ ∫∫ ∫∑ ∑ ∑

∑ ∑
∂ ∂ ∇→ ⋅∇→

( )

ec
T

t
f d eλ f T d φ f d

φ f d φ f φ d

Ω = − Ω‐ Ω

− Ω + + f Γ.

k

N k
k

k

N

k k

k

N

k k

k

N

k k

l

N

st

i i j j

=1
Ω

( )
( )

=1
Ω

( ) ( )

=1
Ω

( ) ( )

=1
Ω

( ) ( )

=1
Γ

( ) ( ) ( ) ( )

d

k

d

k

d

k

k

fc

l

( ) ( )
(+)
( )

d

(−)
( ) ( )

(8)

The conservation of the heat flux leads to the classical relation between the flux and

temperatures:

≡φ φ e

R
T T

e

R
T= − = ( − ) [[ ]] ,i j

TC

i j

TC

l( ) ( ) ( ) ( ) ( ) (9)

where RTC is a thermal contact resistance. From this relation, and considering the convective

flux on Ωint
k e( , ) and Ωext, the variational formulation of the heat equation on the entire domain

(Equation 2) is written as follows:∫ ∫ ∫∫ ∫∫ ∫
∑ ∑ ∑∑

∑ ∑
∑∑ ∑

∂ ∂ ∇→ ⋅∇→ec
T

t
f eλ T f d h T f d

h T f d
e

R
T f d

h T T f d h T f d

= − Ω‐ Ω

− Ω + [[ ]] [[ ]] Γ

+ ( ) Ω + Ω,

k

N k
k

k

N

k k

k

N

e

N

int
k k

k

N

ext
k k

l

N

st TC

l l

k

N

e

N

int int
k e k

k

N

ext ext
k

=1
Ω

( )
( )

=1
Ω

( ) ( )

=1 =1
Ω

( ) ( )

=1
Ω

( ) ( )

=1
Γ

( ) ( )

=1 =1
Ω

( , ) ( )

=1
Ω

( )

d

k

d

k

d e

int
k,e

d

ext
k

fc

l

d e

int
k e

d

ext
k

( ) ( ) ( )

( ) ( )

( , ) ( )
(10)

where T T( )int
k e( , ) is defined by Equation (1).

The discretization of the problem defined by Equations (10) and (1) by Lagrange finite

elements results in the following matrix problem (referred hereafter as detailed model):

d

dt
C

T
K H H J T U T T U ,= [ + + + ] + ( ) +int ext st cpl int 0 (11)

FIGURE 4 Substructuring problem in a shell geometry: Emergence of internal boundaries
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and

T T DT.( ) =int (12)

The matrices of Equations (11) and (12) are sparse block matrices constructed from the finite‐

element matrices of each of the substructures. Construction of block sparse matrices is detailed in

Appendix A. Block sparse matrices C K H H, , ,int ext, of dimension N N( , ), are thermal inertia,

conductivity, and accomodation matrices extern and intern, respectively, whereas matrix Jst
results from the coupling between substructures via the contact resistance. Matrix Ucpl corre-

sponds to the convective term with the air inside each enclosure area, whereas U0 is a vector

representing the external known solicitations. D is a matrix of dimension N N( , )e giving us, from

nodal temperature T, the access to T T( )int , which is the vector containing the temperature of the

air inside each enclosure. To avoid the manipulation of the dense matrix H U D=cpl cpl , in-

compatible with the finite‐element method, Equations (11) and (12) are solved iteratively.

4 | MODAL METHOD FOR THE SUBSTRUCTURING
TECHNIQUE

4.1 | Principle

In modal methods for a single domain Ω, the temperature field T M t( , ) is projected on a basis

z V( , )i i of the space of the solution. Here, zi is the eigenvalue and Vi is the eigenvector for the ith

element of the basis. When obtained numerically, the number N of modes computed is linked

to the discretization: for P1 finite elements, N correspond to the mesh points number. This

projection is written as follows:

∑T M t x t V M( , ) = ( ) ( ),
i

N

i i

=1

(13)

where xi is the time‐dependent amplitude, called the excitation state.

The principle of the modal substructuring technique is to compute a basis ( )z V,i
k

i
k( ) ( ) for

each substructure Ω k( ):

∑T M t x t V M( , ) = ( ) ( ).k

i

N

i
k

i
k( )

=1

( ) ( )

k( )

(14)

4.2 | Branch basis

Among the different possible bases, the branch basis defined by Equations (15a) and (15b) for

each substructure k( ) is particularly adapted to the problem characterized by nonlinear boundary

conditions,23 as the banch vectors form a basis for the Hilbert space H (Ω)1 .@@@@

∀ ∈ ∇→( )M div λ V z c VΩ , = ,k
i
k

i
k

i
k( )

0
( ) ( )

0
( ) (15a)

∀ ∈ ∇→ →M λ V n z ζVΓ , = − .st
k

i
k

i
k

i
k( )

0
( ) ( ) ( ) (15b)
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The originality of this problem is the Steklov boundary condition, which depends on the

eigenvalue zi
k( ) and is independent of the boundary conditions of the real thermal problem. For a

substructured problem in which common intern boundary Γst i
k
( )

( ) in the domainΩ k( ) may exist, an

adapted eigenvalue problem to this condition and the shell model (thickness e0) is proposed:

⎡
⎣⎢

⎤
⎦⎥∀ ∈ ∇→( ) ( )M e div λ V z e c V δ e ζVΩ , = + ,k

i
k

i
k

i
k

i
k( )

0 0
( ) ( )

0 0
( )

Γ 0
( )

st i
k
( )

( ) (16a)

∀ ∈ ∇→ →M e λ V n z e ζVΓ , = − .st
k

i
k

i
k

i
k( )

0 0
( )

Γ
( )

0
( )

st e
k
( )

( ) (16b)

where Γ boundaries are defined in Equation (6) and ( )δ Γst i
k
( )

( ) is the Dirac delta function

defined by ∀ ∈ ( )M δΓ , = 1,st i
k
( )

( )
Γst i
k
( )

( ) (17a)

∀ ∈ ( )M δΩ \Γ , = 0.k
st i
k( )
( )

( )
Γst i
k
( )

( ) (17b)

The weak formulation for a shell model of Equation (16) is written in a compact form (for

details, see Appendix C):

⎜ ⎟
⎛
⎝

⎞
⎠∫ ∫ ∫∀ ∈ ∇→ ∇→f H e λ f V d z e c V f d e ζV f d(Ω), · Ω = − Ω + Γ .k

i
k

i
k

i
k k

i
k k

1 Ω 0 0
( ) ( ) ( )

Ω 0 0
( ) ( )

Γ 0
( ) ( )

k k
st
k( ) ( ) ( )

(18)

To balance the two terms ∫ e c V f dΩi
k k

Ω 0 0
( ) ( )

k( ) and ∫ e ζ V f dΓi
k k

Γ 0
( ) ( )

st
k( ) in Equation (18), an

appropriate choice of the Steklov coefficient ζ is given by the following:∫∫ζ
e d

e c d=
1

Γ
Ω.

Γ 0 Ω 0 0

st
k

k
( )

( )
(19)

This special boundary condition reveals two types of modes. The first type is constituted of

quasi‐null modes on the boundary but not on the domain, and the second one of quasi‐null

modes on the domain but not on the boundary. Examples of such modes are given in Figure 5.

In this way, the branch modes form a basis for any thermal problem, irrespective of the

boundary conditions. For a substructured problem in which a contact resistance RTC appears,

this second type of mode allows to link the temperature “sub‐fields” on the interface.

4.3 | Amalgam reduction

From the original branch basis ( )z V,i
k

i
k( ) ( ) , the objective of the modal reduction is to build a

reduced basis ͠ ∼( )z V,i
k

i

k( ) ( )
, of dimension

∼
N N< <

k k( ) ( ), which permits to approach correctly the

thermal field by the relation:

∑≈ ∼ ∼∼
T M t x t V M( , ) ( ) ( ).k

i

N

i
k

i

k( )

=1

( ) ( )

k( )

(20)

The reduction step is performed by the amalgam reduction method. Unlike other

techniques,19,32,33 all original modes are retained, because modes Vi
k( ) are amalgamated:
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∑∀ ∈ ∼∼
i N V M α V{1, … } ( ) = .

k
i

k

p

N

i
k

i
k( ) ( )

=1

( ) ( )
i

k

p p

( )

(21)

To ensure the orthogonality of the reduced basis, each eigenvector Vi is used only once.

The distribution of the original modes Vi
k( ) in the reduced basis

∼
Vi

k( )
and the calculation of

the weighting coefficient αi k( )p
are obtained from excitation states xi

k( ) of each eigenvectors of the

complete basis, for a physical reference case, characterized by constant parameters c λ,ref ref , and

href . Detailed calculations are developed in the study reported in Reference [23].

For each subdomain Ω k( ), a reduced basis ͠ ∼( )z V,i
k

i

k( ) ( )
, of dimension

∼
N

k( )
, is obtained. The

extension of each basis on the whole domain is obtained by extending each eigenvector by zero

on the other subdomains. Each vector then defined on the whole domain can be written as Vi
k( )
.

The substructured reduced basis of the whole domain Ω is then constituted by all modes

defined as above. We can then write that all Nd thermal fields of each subdomain Ω k( ) can be

projected on the substructured modal basis, which is thus defined as follows:

 
∑≈T M t T M t x t V M( , ) ( , ) = ( ) ( ),
p

N

p p

=1

(22)

where

 ∑∼
N N= .

k

N
k

=1

( )
d

(23)

4.4 | Substructured modal formulation

The substructured modal formulation is obtained by using the temperature projection on the

basis (Equation 22) in the variational formulation (Equation 10) and by replacing the test

FIGURE 5 Examples of branch modes for a substructure corresponding to a single plate
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function f by the eigenvector Vq of the substructured basis. We obtain the following equation,

in which the operators are bilinear, symmetric, and positive definite:









   

   

 

 



 











⎛

⎝
⎜

⎞

⎠
⎟

∫ ∫ ∫ ∫∫
∫ ∫

∫ ∫

∑ ∑ ∑ ∑ ∇→ ⋅∇→
∑ ∑ ∑
∑ ∑
∑ ∑ ∑
∑ ∑

∂∂

( )
( )

ecV V d eλ V V d x

h V V d h V V d x

V V d x

h V d h V d x

h T V d

Γ =− Ω

− Ω + Ω

+ [[ ]] [[ ]] Γ

+ Ω Ω

+ Ω.

p

N

k

N
p q

x

t p

N

k

N
p q p

p

N

k

N

e

N
int p q ext p q p

p

N

l

N

st

e

R p
l

q
l

p

p

N

k

N

e

N

h d
int p int q p

p

N

k

N
ext ext q

=1 =1 Ω =1 =1 Ω

=1 =1 =1 Ω Ω

=1 =1 Γ
( ) ( )

=1 =1 =1

1

Ω Ω Ω

=1 =1 Ω

d
k

p d
k

d e
k e k

fc
l

TC

d e

k e int

k e k e

d

ext
k

( ) ( )

( , ) ( )

( )

Ω( , )
( , ) ( , )

( )
( )

(24)

According to the numerical formulation (Equations 11 and 12):

      d

dt
V CV

X
V K H H J VX V U DVX V U ,= [ + + + ] + +

tt t
int ext st cpl

t
0 (25)

where  N NV [ , ] is the matrix containing the N discrete vectors Vp. Construction of reduced

matrix  N NV [ , ] and vector X is detailed in Appendix B.

In a compact form:

d
dt

L
X

MX N.= + (26)

Matrices L and M are dense and with dimension  N N( , ).

5 | APPLICATION

5.1 | Physical problem

The application is a simplified portion of the structure of an LNG carrier, the cofferdam, which

corresponds to a mechanical retaining element between two LNG tanks (Figure 6). The con-

figuration studied consists of Ne = 20 enclosures (Figure 7A), each containing four stiffeners

(Figure 7B). The dimension of the simplified cofferdams is around 4m, instead of 30 m, for a

real ship's shell. The cofferdam walls and stiffeners are characterized by different thicknesses e

(1–3 cm) and constant thermal characteristics (λ= 45W·m−1·K−1, c= 3.4 × 106 J·m−3·K−1). To

keep the walls at an acceptable temperature above 5°C, despite the proximity of the LNG tanks,

a heating system is positioned through the cofferdam. It is composed of two steel pipes (see

FIGURE 6 A schematic view of a liquefied natural gas (LNG) tanker
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Figure 7A) in which glycol–water maintained at 65°C circulates. As shown in Figure 7C, these

tubes come through the walls of the cofferdam, along a border Γst. Along this border, the

contact between pipes and walls is imperfect, which is then characterized by a thermal contact

resistance RTC= 1 K·m2·W−1.

The thermal behavior of the cofferdam when a shutdown of the heating circuit appears is

simulated. The initial condition is the nominal operating temperature, and the simulation

duration is 3 × 104 s.

The external boundary conditions are those from the U.S. Coast Guard (U.S.A. federal

agency imposing computing standards), which are represented in Figure 8. Given the un-

certainties that exist in the values of various convection coefficients, the goal is to perform a

sensitivity analysis of the cofferdam's thermal comportment to these coefficients.

The outer surfaces can be divided into several sub‐boundaries:

• Ωatm is in contact with the atmosphere (hatm variable, ∘T = −18 Catm ),

• Ωsea is in contact with the sea (hsea variable, ∘T = 0 Csea ),

• ΩLNG is in contact with the insulated tank containing the LNG (hLNG variable,∘T = −163 CLNG ), and

• Ωadiab corresponds to the surface in contact with other enclosures of the ship, for which an

adiabatic condition is applied.

Concerning the values of these convective coefficients, three cases are considered and

presented in Table 1:

The heat supplied by the glycol–water to the tubes is simulated during normal operation by

a convective flux: hbri= 1000W−2·K−1, Tbri= 65°C (Figure 7C). During the shutdown, we

consider that no more heat is brought and these tubes are cooled by convective exchange with

the surrounding enclosures through which they pass.

FIGURE 7 The cofferdam and its internal boundaries conditions. (A) Complete cofferdam, (B) one

enclosure, and (C) details of the tubes
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These external thermal loads (atmosphere, sea, glycol–water, and LNG) are globally noted

as hext and Text.

As presented in Figure 7B, a convective heat exchange between the inner walls of each

enclosure (including the walls of the tubes passing through it) and indoor air (whose

temperature is unknown and depends on its surroundings) is made via a constant exchange

coefficient hint. As for the other convective coefficients, three values are used (Table 1).

5.2 | Hypotheses

Considering the above characteristics, the following facts are revealed:

• the maximum Biot Number ≤Bi = 0.06
h e

λ2 (with e= 3cm and h= 168W·m−2·K−1),

• the surface variation between the inside and the outside is negligible, and

(A)

(B)

(C)

FIGURE 8 The cofferdam and its external boundaries conditions

TABLE 1 Values of the various convection coefficients used (W·m−2·K−1)

hint hsea hatm hLNG

Minimum configuration: β = 0.6 2.4 72 8.4 0.12

Intermediate configuration: β = 1 4 120 14 0.20

Maximum configuration: β = 1.4 5.6 168 19.6 0.28
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• the ratio of thermal capacity between the wall and the gas inside is ≈ 200
cVo

cVo

( )

( )

wall

gas
(whereVo is

the volume).

Thus, first, it can be considered that the shell model can be used and, second, that the

thermal inertia of the gas in the enclosures may not be taken into account. The physical model

described above can be applied.

6 | RESULTS AND DISCUSSION

6.1 | Detailed model

A finite‐element model (the detailed model) will be referred to quantify the effectiveness of the

reduced model (Equations 11 and 12). In the processed application, a sensitivity analysis

showed that a mesh of 21,548 nodes in the simplified cofferdam and 6600 nodes per pipe is

required. The resolution of the transient problem over a period of 3 × 104 s is performed by a

CPU time of 60 s. In case β = 1, Figure 9 allows to visualize the cooling of the cofferdam (point

A shown in Figure 8) and heating pipes (point B). The inertia due to the heating tubes keeps the

temperature of the stiffeners near 290K for about an hour, and therefore delays the risk of

rupture.

6.2 | A reduced substructured model for physical thermal
resistances: The 3ST model

A sensitivity analysis on the reduction order has been conducted. To quantify its results, the

following quantities are defined:

FIGURE 9 Temporal evolution of the temperature on points A and B
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 ∫∫ ∣ ∣ε
V τ

T T d

T T
ε T T

T T
< > =

1 1 − Ω
max ( ) − min ( )

, =
max −

max ( ) − min ( )
,τ

τ τ

τ

τ τ

Ω

,Ω ,Ω
max

,Ω

,Ω ,Ω

where τ is the simulation duration and V the volume of domain Ω.

In this model, the division into substructures follows the physical division, with appearance

of three substructures: the cofferdam (ST1) and the two heating pipes (ST2 and ST3). The

reduced model is obtained by using the reference configuration β = 1 for the amalgam pro-

cedure. For three selected configurations (Table 1), different modal simulations are carried out,

keeping 40 modes for each heating tube and varying the number of modes for the cofferdam.

The construction of the modal model (computation of the basis and reduction) is performed

offline, which requires a calculation time of 1642 s.

Figure 10 shows the evolution of the error on points A and B for the configuration β = 1.4

with a reduced model using 200 modes (RM200). It clearly appears that the error is larger for

the first steps of simulation, which tends to stabilize at a value less than 0.1 K. This type of

behavior is typical of reduced models, as the reduction does not keep the momentum of the

fastest modes.

All results are presented in terms of average and maximum temperature deviations from the

detailed model and computational gain in Table 2.

When the boundary conditions for the simulation match those used for reduction (β = 1),

the difference between reduced and detailed models is already very low with only 120 modes

(compared with 34,748 nodes of the initial mesh), with a maximum deviation of 0.73 K, an

average deviation of 0.023 K, and a gain in terms of computation time of the order of 60, thus

showing the effectiveness of the method for problems characterized by structures coupled by a

thermal contact resistance.

When the boundary conditions are different from those used during reduction (β = 0.6 and

β = 1.4), performance degrades: to maintain a maximum error of less than 1 K, the reduced

model must contain between 200 and 240 modes, which limits the gain in computation time of

FIGURE 10 A 3ST substructured model: Temporal evolution of the deviation between detailed and

reduced RM200 models (for β = 1.4)
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20–27. The average errors for these models are extremely low (they are between 0.063 and

0.085 K), thus indicating that the maximum error remains isolated in space and time.

6.3 | A reduced substructured model for fictitious thermal
resistance: The 6ST model

In addition to the two pipes, the cofferdam has been artificially divided into four substructures

shown in Figure 11 and coupled together by an artificial contact resistance. It is then checked if

the method is able to reduce such a problem.

The first step is to find an optimal value for the fictitious thermal contact resistance. Indeed,

an excessive value of the fictitious resistance biases results by introducing a very important

nonphysical temperature jump. However, due to the reduction of the modal basis, imposing an

extremely low‐temperature jump at the interface induces a significant error in the calculation

of the heat flux, and therefore significant temperature differences in the interface as well as in

TABLE 2 Maximum and average absolute error for different reduction orders for 3 ST

Error (K)

β= 0.6 β = 1 β= 1.4

Model order εmax ε̄ εmax ε̄ εmax ε̄ Gain in computation time

120 (40,40,40) 2.2 0.15 0.73 0.023 1.82 0.110 58

140 (60,40,40) 1.11 0.13 0.40 0.016 1.23 0.098 48

160 (80,40,40) 1.14 0.11 0.33 0.012 0.83 0.083 40

200 (120,40,40) 1.19 0.085 0.18 0.008 0.81 0.063 27

240 (160,40,40) 0.796 0.071 0.17 0.007 0.63 0.052 20

FIGURE 11 A virtual division of the cofferdam
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the domain. For the case β = 1.4, a sensitivity analysis on the value of the RTC has been

conducted for different orders of reduction. Results are presented in Table 3.

It is first noted that for a given reduction order, depending on the chosen criterion

(εmax or ε̄), the optimum value of the contact resistance is not the same. In addition, the

optimum value for a given criterion changes depending on the order of reduction. However,

there is a whole range (roughly R5 × 10 < < 10 K·m ·WTC
−5 −4 2 −1) on which the change in

spreads is low, indicating that an order of magnitude is sufficient. The value

R = 10 K·m ·WTC
−4 2 −1 has been chosen. For the used steel (k = 45W·m ·K−2 −1), this resistance

corresponds to a thickness equal to 4.5 mm. This optimum resistance corresponds to an

acceptable error of temperature jump at the interface between the substructures, considering

the overall error linked to the use of a reduced model.

With RTC= 10−4K·m2·W−1, several simulations are performed for the three configurations

specified in Table 1 and for different reduction orders. As before, the order of reduction of each

tube is kept constant (40 modes).

Figure 12 shows the time evolution of the difference between reduced and detailed model at

points A and B (see Figure 2) for both divisions (physical and artificial) with 200 modes and

β = 1.4. The evolution of the errors at these points is similar to that obtained for the model 3ST.

Figure 13 presents the overall results of these tests. When both divisions are compared,

following the number of modes, the second splitting seems less relevant, as for β = 1 and 160

modes, for example, maximum and average deviations are about two times higher. This is

easily explained as follows: as each substructure requires a minimum number of modes to

reproduce a temperature field, increasing the number of substructures increases the total

number of modes.

However, it is also noted that for a same order of reduction, the computation time is lower

for the 6ST model than for the 3ST model. It seems as if the increase of the number of

substructures leads to a weaker computation time. This can be explained by the nature of

matrices: Figure 14 presents the value of the coefficients of the matrixM (see Equation 26) for

both configurations (3ST and 6ST). For the model 6ST, the matrix M consists of small blocks (in

comparison with the matrix M of the model 3ST). The diagonal blocks corresponding to the

TABLE 3 The influence of the value of the fictitious contact resistance on the accuracy of the model for the

case β = 1.4

Number of modes

240 (4 × 40, 2 × 40) 160 (4 × 20, 2 × 40) 120 (4 × 10, 2 × 40)

RTC (m2·K·W−1) ε (K)max ε (K̄) ε (K)max ε (K̄) ε (K)max ε (K̄)

10−3 2.72 0.095 2.35 0.128 2.12 0.162

2 × 10−5 0.96 0.076 1.06 0.119 2.06 0.158

10−4 0.96 0.076 1.01 0.123 1.92 0.165

5 × 10−5 0.97 0.078 0.97 0.128 1.70 0.176

2 × 10−5 1.02 0.083 1.57 0.137 1.82 0.195

10−5 1.07 0.088 2.37 0.144 2.09 0.212

5 × 10−6 1.13 0.094 3.25 0.153 3.19 0.233

10−6 1.73 0.116 5.47 0.183 6.61 0.353
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various substructures generally have higher values than non‐diagonal blocks that correspond to

the coupling between the substructures. The matrix resolution is achieved by BLAS and

LAPACK libraries, which use partition block matrices. The matrix structure of the

substructured problem is well suited to this kind of partition, as the substructure naturally

leads blocks that contain zero or low values.

Thus, for a same order of reduction, the use of artificial splitting leads to

• an increase in maximum error and

• a decrease in CPU time.

Figure 15 represents the errors evolution versus the gain in computation time.

Concerning the mean error ε̄:

FIGURE 12 A 6ST substructured model: Temporal evolution of the deviation between detailed and reduced

RM200 models (for β = 1.4)

FIGURE 13 Maximum and average absolute error for different reduction orders for 6 ST
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• For configuration β = 1 (for which the simulated thermal problem is the same as the one

used for the amalgam procedure), both curves (3ST and 6ST) are coincident.

• In other cases, same precision requires more computational time for the 3ST model than for

the 6ST model.

Regarding the maximum errors, the trend is the same, with more chaotic evolutions.

7 | CONCLUSION

The first objective of this paper was to study a substructured reduced model for a geometry

made up of many thermal enclosures coupled together when the imperfect contact between

different components reveals a temperature jump at the interface. We have shown the effi-

ciency of this method, as for a different problem than the reference one, the maximum

(A) (B)

FIGURE 14 Matrix M. (A) 3ST and (B) 6ST

FIGURE 15 A comparison between the one‐body and the substructured cofferdams
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deviation from Lagrange finite‐element model is less than 1°C, while being 60 times faster. The

entrance ticket of this model is the initial base computation on which the amalgamated base is

built.

The second objective was to study the relevance of this technique for an artificial division of

an initially continuous domain. The results are very satisfactory: the artificial cut allows a gain

in computation time of the reduced model calculation without additional cost of error and time

during simulation. Furthermore, with this substructured model, the time to create the reduced

model is reduced by a factor 4, compared with the original case with physical separation.

This study, thus, demonstrated the effectiveness of the substructured modal method, which

could be extended to the cofferdam in all its geometrical complexity and the entire

ship structure.
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NOMENCLATURE

VARIABLES

c thermal heat capacity, J·m−3·K−1

e wall thickness, m

εmax maximum error over space and time, K

ε̄ mean error, K

f test function

φ heat flux, W·m−2

h heat exchange coefficient, W·m−2·K−1

λ thermal conductivity, W·m−1·K−1

M point of space (x,y,z), m→n normal

N dimension of a substructure of the FE problem∼
N dimension of a reduced base of a substructure k
N dimension of a global reduced problem

Nd number of substructures

Ne number of enclosures

Nfc number of shared boundaries

RTC thermal contact resistance, K·m2·W−1

t times, s

Tint
e( ) indoor temperature of enclosure e, K

T t M( , ) temperature of point M at t time, K

V M( )i Value of ith mode at point M, K

x(t) modal amplitude at t time

z eigenvalue, s−1

ζ Steklov number, J·m−2·K−1
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SPECIAL

Δ Laplace operator, m−2∇→ gradient operator, m−1

Ω domain

Γ boundaries

MATRICES

D transformation matrix from nodal to air temperatures

C thermal inertia matrix, J·K−1

H Accommodation matrix, W·K−1

Jst Coupling matrix between substructures, W·K−1

K Conductivity matrix, W·K−1

Ucpl Matrix of convecting exchange with the air inside, W·K−1

VECTORS

T temperature, K

U0 vector of external solicitations, W

V matrix of modes, K

X vector of states

SUPERSCRIPTS○∼ reduced notation of a substructure
○ global reduced notation○e enclosure e○k substructure k○l shared boundary l
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APPENDIX A: MATRICES CONSTRUCTION OF FE PROBLEM

Sparse matrices C K H H, , ,int ext have a block diagonal and square structure of dimension

N N[ × ]. Each block is a classical finite‐element matrix. For example, matrix C can be written

as follows:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
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Sparse matrices of diagonal C K H, ,k k k
int

( ) ( ) ( ) , and H k
ext
( ) are FE matrices for each substructure,

which are defined by classical Lagrange linear finite‐element basis functions ≤ ≤( )Ψ j
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The matrix of coupling J is expressed as follows:
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where each block corresponds to the finite‐element matrices:
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Vectors have the same construction methodology:
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≤ ≤( )TT =k
i
k

i N

( ) ( )

1 k( )
(A9)

Concerning the indoor temperatures, matrix Ucpl is constructed by blocks with Nd submatrices

of dimension N N[ × ]k
e

( ) :

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋮⋮
U

U

U

U

U

=

N

cpl

cpl

cpl

cpl

cpl

(1)

(2)

(3)

( )d

(A10)

⎜ ⎟
⎛
⎝

⎞
⎠∫ ≤ ≤≤ ≤hU = Ψ Ψk

int i
k

j
k

i N

j N

cpl
( )

Ω
( ) ( )

1

1
int
k e k

k

( , ) ( )

( )

(A11)

Also, Tint
e( ) is the temperature of an enclosure e defined in Equation (1). Tint is expressed as

follows:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋮⋮

T

T

T

T

T =

int

int

int

int
N

int

(1)

(2)

(3)

( )e

(A12)

Finally, the vector of external stress U0 is heat flux losses by convection:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋮⋮
U

U

U

U

U

=

N

0

0

0

0

0

(1)

(2)

(3)

( )d

(A13)

and in an elementary form:

⎜ ⎟
⎛
⎝

⎞
⎠∫ ≤ ≤h T dU = Ψ Ωk

ext i
k

ext
i N

0
( )

Ω
( )

1ext
k

k
( )

( )

(A14)
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APPENDIX B: MATRICES CONSTRUCTION OF A REDUCED PROBLEM

The reduced problem is constructed from matrices of the detailed problem and the couple of

eigenvector V and vector of excitation states X:



⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋯ ⋯ ⋯⋱ ⋮⋮ ⋱ ⋱ ⋮⋮ ⋱ ⋱ ⋱ ⋮⋮ ⋱ ⋱⋯ ⋯ ⋯

∼ ∼ ∼
∼

V

V

V

V

V

=

0 0

0

0

0 0
N

(1)

(2)

(3)

( )d

(B1)

where each
∼
V

k( )
gathers the eigenvectors

∼
V i

k( )
of a substructure k( ) and could be defined by

⎡
⎣⎢

⎤
⎦⎥⋯ ⋯∼ ∼ ∼ ∼ ∼∼V V V V V=

k k k k

N

k( )
1

( )

2

( )

3

( ) ( )
k( ) (B2)

The vector of excitation states X is written as follows:



⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋮⋮

∼∼∼
∼

X

X

X

X

X

=

N

(1)

(2)

(3)

( )d

(B3)

APPENDIX C: WEAK FORMULATION OF BRANCH BASIS FOR A

SHELL MODEL

The variational formulation is obtained in three steps:

• (16a) is multiplied by a test function ∈f H (Ω)1 and integrated over Ω k( ):∫ ∫∀ ∈ ∇→ ( )( ) ( )f H e div λ V f d z e c V δ e ζV f d(Ω), Ω = + Ω.i
k k

i
k

i
k

i
k k

1 Ω 0 0
( ) ( )

Ω
( )

0 0
( )

Γ 0
( ) ( )

k k
st i
k

( ) ( )
( )

( )

(C1)

• In Equation (C1), Green–Ostrogradsky formula is applied on the first member and Equation

(17) for the second member:

⎛

⎝
⎜

⎞

⎠
⎟

∫ ∫∫ ∫∀ ∈ ∇→ ∇→ ∇→ →f H e λ f V d e λ f V n d

z e c V f d e ζV f d

(Ω), − · Ω + · Γ

= Ω + Γ .

k
i
k k

i
k

i
k

i
k k

i
k k

1 Ω 0 0
( ) ( )

Γ 0 0
( ) ( )

Γ

( )

Ω 0 0
( ) ( )

Γ 0
( ) ( )

k
st e
k st

k

k
st i
k

( )
( )

( )
( )

( )
( )

( )
(C2)
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• Equation (C2) could be simplified with Equation (16b)

⎛

⎝
⎜

⎞

⎠
⎟

∫ ∫∫ ∫∀ ∈ ∇→ ∇→f H e λ f V d z e ζV f d

z e c V f d e ζV f d .

(Ω), − · Ω − Γ

= Ω + Γ

k
i
k

i
k

i
k k

i
k

i
k k

i
k k

1 Ω 0 0
( ) ( )

Γ
( )

0
( ) ( )

( )

Ω 0 0
( ) ( )

Γ 0
( ) ( )

k
st e
k

k
st i
k

( )
( )

( )

( )
( )

( ) (C3)

The weak formulation for a shell model of Equation (16), after a simplification by Equation (6),

is written in a compact form as follows:

⎜ ⎟
⎛
⎝

⎞
⎠∫ ∫ ∫∀ ∈ ∇→ ∇→f H e λ f V d z e c V f d e ζV f d(Ω), · Ω = − Ω + Γ .k

i
k

i
k

i
k k

i
k k

1 Ω 0 0
( ) ( ) ( )

Ω 0 0
( ) ( )

Γ 0
( ) ( )

k k
st
k( ) ( ) ( )

(C4)
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