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A B S T R A C T

Experiences of animal and human beings are structured by the continuity of space and time coupled with the
uni-directionality of time. In addition to its pivotal position in spatial processing and navigation, the hippocam-
pal system also plays a central, multiform role in several types of temporal processing. These include timing and
sequence learning, at scales ranging from meso-scales of seconds to macro-scales of minutes, hours, days and
beyond, encompassing the classical functions of short term memory, working memory, long term memory, and
episodic memories (comprised of information about when, what, and where). This review article highlights the
principal findings and behavioral contexts of experiments in rats showing: 1) timing: tracking time during delays
by hippocampal ’time cells’ and during free behavior by hippocampal-afferent lateral entorhinal cortex ramping
cells; 2) ’online’ sequence processing: activity coding sequences of events during active behavior; 3) ’off-line’ se-
quence replay: during quiescence or sleep, orderly reactivation of neuronal assemblies coding awake sequences.
Studies in humans show neurophysiological correlates of episodic memory comparable to awake replay. Neural
mechanisms are discussed, including ion channel properties, plateau and ramping potentials, oscillations of ex-
citation and inhibition of population activity, bursts of high amplitude discharges (sharp wave ripples), as well
as short and long term synaptic modifications among and within cell assemblies. Specifically conceived neural
network models will suggest processes supporting the emergence of scalar properties (Weber’s law), and include
different classes of feedforward and recurrent network models, with intrinsic hippocampal coding for ‘transitions’
(sequencing of events or places).

1. Introduction/Overview

Neuroscientists have a long history investigating the processing of
temporal information. Such processes include estimations of intervals
after a cue, recall of order of previously experienced sequences, vari-
ous forms of memory, as well as anticipation and preparing the execu-
tion of sequences. It is important to distinguish interval timing, which
only concerns estimation of time elapsed from a cue or event from
working memory, where information is stored over a discrete interval.
Note, however, that overlapping neural circuitry could underlie both
types of processes, although differences in time scales likely implicate
different mechanisms in both cases. These frequently invoke some sort
of buffer. A related, but rarely discussed, issue concerns the mecha-
nisms by which the buffers are reset and the related events are forgot-
ten, or, alternatively, consolidated in long term memory (LTM). Seminal
work showed the hippocampus’ importance for tracking delay intervals
(Berger and Thompson, 1978; Meck et al., 1984). However, timing

functions in general are most often attributed to the cerebellar hemi-
spheres or the prefrontal-basal ganglia-thalamic network, both of which
the hippocampus is closely associated to (Coull et al., 2011; Doeller
et al., 2014). Neural activity underlying timing could include clock-like
signals, either as action potentials, rhythmic oscillations of excitability,
linear ramping (up or down) of activity, or patterns of peaks or dips of
activity over time. These types of activity will be discussed further below
in the context of recordings in the hippocampal system (HS) in behav-
ing animals. First, we will present fundamental processes from the mi-
cro-time scale of elementary cellular events (on the order of milliseconds
and tens of milliseconds), through the meso-time scale (on the order
of seconds) and finally the macro-time scales (minutes, hours or days)
of behavior. Two inter-related subjects are covered: coding for tempo-
ral information such as intervals and sequences, and temporal codes
in neuronal activity, such as phase locking to field potential oscilla-
tions, While there is a large literature concerning deficits in temporal

⁎ Corresponding author: ETIS UMR 8051, Université of Cergy-Pontoise, ENSEA, CNRS, 2 avenue Adolphe-Chauvin, B.P. 222, F-95000 Cergy-Pontoise, France.
E-mail address: jean-paul.banquet@sorbonne-universite.fr (J-P Banquet)

https://doi.org/10.1016/j.pneurobio.2020.101920
Received 28 November 2019; Received in revised form 18 August 2020; Accepted 7 October 2020
Available online xxx
0301-0082/© 2020.



UN
CO

RR
EC

TE
D

PR
OO

F

J-P Banquet et al. Progress in Neurobiology xxx (xxxx) xxx-xxx

processing induced by HS inactivation or lesions, this cannot be compre-
hensively reviewed here.

1.1. Overview of neurophysiological principles of temporal coding in the
hippocampus

1.1.1. Micro-time scale
Neurons in the hippocampus and associated structures have certain

neurophysiological properties propitious for tracking or representing
temporal information. The electrical characteristics of neuronal mem-
branes and their ion channels confer time constants that govern spike
generation and maintenance of plateau potentials.

A basic principle of neuronal coding and signal processing is based
upon the production of action potentials and the events associated with
them. Such ‘behavioral correlates’ can include responses when the ani-
mal is exposed to a sensory cue, is located in a certain place, performs a
certain behavior, or some combination of these. Of course, these events
occur at specific times, can last for specific durations of time, and may
occur as sequences, or within them, and this temporal information and
associations can be encoded as well.

Action potentials as well as synchronous activations of multiple neu-
rons (i.e., assembly activations) can signal behavioral correlates via ‘rate
codes’, where the average activation rate corresponds to the intensity
of expression of the correlate. This firing rate at a given instant is the
reciprocal of recent inter-spike interval(s), and thus can be informative
at the micro-scale. A minimal time limit for processing by single neu-
rons is imposed by the refractory period of ~1 ms between successive
action potentials. Individual CA3 and CA1 hippocampal neurons can fire
as single spikes or as ‘complex spikes’, that is, a large action potential
followed by a train of several progressively smaller ones at short inter-
vals. The implications for coding of these dynamics will not be further
explored here, although a complex spike would clearly be expected to
more strongly excite downstream neurons than would a single spike.

Alternatively, there are several types of ‘temporal codes’ where the
timing of the spikes encodes information, without necessarily involving
a change in firing rate (Huxter et al., 2003). It is important to dis-
tinguish between coding by spike timing vs. neuronal coding of tem-
poral information, both of which are discussed in this review. In cases
where neurons in a population have different behavioral, and in partic-
ular, temporal correlates, computations combining these diverse proper-
ties can provide accurate estimates of the behavioral state – these are de-
tected with ‘population analyses’. Note however that population analy-
ses often take firing rates averaged over extended periods, losing tempo-
ral precision to discern behavioral correlates.

When the collective spiking of a neuronal population occurs within
the membrane time constant (10−30 ms) (Koch et al., 1996) of down-
stream ‘reader’ neurons, it can be integrated by the readers to code the
coincident firing as a single event (Buzsáki, 2010).

1.1.2. Meso- and macro-time scales: brain rhythms
Another form of temporal coding in the hippocampus (and else-

where) is based upon the relation between spikes and the phase of
cerebral oscillations of excitation and inhibition of large populations of
neurons (so-called 'brain waves’). These oscillations appear at the lev-
els of individual cells, local circuits, and at progressively larger scales.
Theta oscillations (4−10 Hz in rodents) and gamma rhythmic oscilla-
tions (30−130 Hz) play an important role in the organization of hip-
pocampal activity (see Colgin, 2013, and Jensen and Colgin, 2007,
for reviews). The hippocampal theta rhythm occurs during exploration
or navigation, and also during quiet alertness. This rhythm plays two
complementary functions elaborated in this review. First, it provides a
scaffold for sequencing place- and event-coding cells and cell assem-
blies within the theta phase space. Second, by providing cycles of exci

tation and inhibition, it synchronizes these sequentially activated cells
within a time window propitious for synaptic plasticity, thus favoring
the representation of sequences of events.

Indeed, hippocampal NMDA receptors (NMDARs) are instrumental
for synaptic plasticity and learning (reviewed by Morris, 2013). The
NMDAR is a non-specific cation channel (i.e., permitting Ca2+ and
Na+ influx, and K+ efflux). This increased intracellular Ca2+ concentra-
tion acts as a second messenger in various signaling pathways leading
to synaptic plasticity. At resting membrane potential, the NMDA recep-
tor cation channel is blocked by Mg2+. To unblock this, the postsynap-
tic cell must already be depolarized for a certain period of time (due to
other synaptic inputs). Thus, the NMDA receptor has been called a "mol-
ecular coincidence detector", and is thus crucial for temporal processing
at the cellular level. An informative experimental model for formation
of NMDAR-dependent memory traces is Long-Term Potentiation (LTP),
where repeated stimulation leads to enhanced neural synaptic responses
over extended periods of time. A related important property that can be
derived from NMDAR binding is spike time dependent plasticity (STDP),
which is preferentially induced when a presynaptic cell fires in a par-
ticular time window relative to postsynaptic cell firing (Bi and Poo,
1998). These properties are crucial building blocks for neural processing
underlying temporal processing at the meso- and macro- time scales. In
this review, we explore how network phenomena such as variations in
population activity, oscillations and synchronization between neural ac-
tivations could result from bridging the micro-, meso-, and macro-time
scales.

1.2. Fundamental theories of temporal processing

Modern experimental techniques ranging from large scale, extra-cel-
lular ensemble recordings, calcium imaging, and optogenetic manipula-
tions of neuronal firing in animals, to fMRI in humans suggest a distrib-
uted representation of time, redundant in multiple, independent systems
across the brain. Time coding may emerge as a byproduct of event pro-
cessing in neural populations. The early models of Scalar Timing (Gib-
bon, 1977; Gibbon et al., 1984) and the corresponding internal clock
model proposed the scalar invariance property, i.e., variance in the tim-
ing signal is proportional to the timing magnitude, thus conforming to
the Weber-Fechner law. We will see that this property is maintained in
various timing signals in the hippocampus.

New models emphasize a neural population approach to timing, as
already employed in several domains of cognitive processing. In this dis-
tributed representation, time is encoded across a set of interval timers
corresponding to a population of neurons with different time constants
that each present a peak response at a different latency after a start sig-
nal. Learning consists of identifying those responses corresponding to
the end of the interval. The spectral timing models (Grossberg and
Merrill, 1992, 1996; Grossberg and Schmajuk, 1989; Section 2.4.1)
were originally designed to emulate trace classical conditioning (where
an interval separates the onset of conditioned and unconditioned stim-
uli), and may be incarnated in part by the time cells discussed in Sec-
tion 2.2. Hippocampal implementation of the spectral timing model is
described in Section 2.4.2. Various models of trace conditioning in the
HS are critically reviewed in Kryukov, 2012) and combined into a uni-
fied model. Some related models use a population of oscillators at differ-
ent frequencies, eventually harmonically related, converging onto stri-
atal neurons (Catalin et al., 2009; Matell et al., 2003; Miall, 1989).

1.3. Hippocampal processing of temporal information

The distributed cognitive processing network devoted to time eval-
uation is proposed to involve neural assemblies within brain structures
including the hippocampal system (HS), cerebellum and prefrontal cor
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tex (PFC) in particular. Here, the HS is considered to include dentate
gyrus (DG), hippocampus proper (CA1, CA2 and CA3), and parahip-
pocampal regions (including entorhinal cortex, EC, and subiculum). The
HS operates in the broad range from micro- to macro-time scales and
is therefore well suited for interfacing neural representations of experi-
ence, for memory and behavioral implementation.

HS architecture comprises a cascading network suited to rapidly
encoding sequences and coincidences between complex cortical sig-
nals, under the modulation of motivational signals (Banquet et al.,
1997, 2005; Gaussier et al., 2002, 2019; Hirel et al., 2013). The
HS, through its capacity to bridge temporal intervals separating events
(Wallenstein et al., 1998), could thus form the building blocks of
memories of sequences. From many decades of clinical and experimen-
tal observations, the HS is widely accepted as essential for learning and
recalling unique sequences of events (episodic memory) after brief and
long intervals. While there are some variations in the types of observa-
tions that can be made in humans and in experimental animal models,
strong evidence suggests similarities in the mechanisms of HS process-
ing of temporal information across species.

Most recordings of neural activity in behaving animals or humans
concern processes that are inseparably temporal and spatial. The ro-
dent literature primarily focuses on spatial orienting and navigation al-
though, in a few paradigms, processing of time is fully dissociated from
that of space. The capacity to navigate requires self-localization, but also
information on the relative position of desired goals and the (shortest
and safest) routes leading to these goals. Many hippocampal pyramidal
cells discharge selectively at particular locations in the environment and
were thus named place cells (PCs) (O’Keefe and Dostrovsky, 1971).
These cells are implicated in learning sequences of adjacent locations
and, more generally, maps and goal locations, thus contributing to a
global navigation system. Here we will concentrate more on the tempo-
ral and sequential aspects of spatial-temporal processing, and finally will
present an alternative framework to interpret temporal-spatial activity
in terms of transitions.

In order to illustrate how the HS is integral to and exploits differ-
ent types of temporal and sequence processing, this review will present
findings from recording studies in behaving animals involving: first, tim-
ing, i.e., tracking time during delays by hippocampal 'time cells’ and
during free behavior by hippocampal-afferent lateral entorhinal cortex
(LEC) ramping cells; second 'online’ sequence processing: activity cod-
ing sequences of events during active behavior; third, 'off-line’ sequence
replay: during quiescence or sleep, orderly reactivation of neuronal as-
semblies coding awake sequences; and also studies in humans showing
comparable neurophysiological correlates of episodic memory (Table
1). Mathematical models specifically designed to account for these re-
sults will be examined to shed light on the underlying mechanisms. We
will expose elements of a model of HS (Banquet et al., 1997, 2005;
Gaussier et al., 2002; Hirel et al., 2013) relevant to timing and se-
quence processing in the HS.

2. Timing during delays and active behavior

Three apparently different types of rodent HS activity will be re-
viewed here, either at the levels of single cells, or groups of cells. Firstly,
early reports showed that, after learning, some CA1 neurons fired max-
imally at a latency corresponding to the end of an interval, during
trace conditioning or in a continuous navigation task. Secondly, dur-
ing delays within a structured task, individual neurons in the HS, re-
ferred to as time cells, show spiking activity at specific parts of tem-
poral intervals. The population displays a succession of phasic activa-
tions referred to here as 'tiling’ (like overlapping shingles on a roof),
and this activity spans the entire duration of the delay. Typically, (ex-
cept for trace conditioning), the animal is not motivated to track the
interval in order to perform the task, since the interval is indicated by

salient cues like tones, closure and opening of barriers, etc. In such cases
neural coding of timing may be another way of tracking current context
(just as place cell activity is observed in situations not requiring navi-
gation). Yet, these tasks do require recall of previous events or actions,
and/or anticipation of future decisions. Finally, more recently, Tsao et
al. (2018) showed evidence, during foraging behavior, for LEC cells
with firing rates ramping over time, 'inherently’ coding time at a very
large range of time scales, from seconds to hours. These signals could
then be integrated in downstream hippocampal structures, to track time
and encode the order of events.

2.1. Evidence for interval encoding by hippocampal neurons

Several studies of classical conditioning demonstrated that an intact
HS was necessary to learn that a tone (the conditioned stimulus, CS) pre-
dicts an aversive stimulus (the unconditioned stimulus, UCS, an airpuff
or a mild shock), but only when a trace interval separated these stimuli
(trace conditioning). The HS was not necessary when there was no trace
interval (McEchron et al., 1998, 2000; Solomon et al., 1986). After
trace conditioning, in CS-alone retention trials (no UCS delivered), rab-
bit hippocampal CA1 neurons fired at the end of the previously trained
intervals, i.e., 10 or 20 s after the CS (McEchron et al., 2003). This
encoding of the trace duration shared a similar time course with the ex-
pression of the heart rate (HR) response associated with the fear con-
ditioning. Additionally, learning-related changes in CA1 activity have
been described during eyeblink conditioning (Berger and Thompson,
1978; McEchron and Disterhoft, 1997).

More recently, in a calcium imaging study in mice, with a much
larger sample of neurons, Modi et al. (2014) observed stimulus-locked
response of CA1 cells prior to trace conditioning. As the animals learned,
groups of time cells progressively emerged and became activated at
successive times in the trace interval, effectively tiling the entire pe-
riod between CS and UCS. Noise correlation (trial-by-trial correlations
in spontaneous activity), an indicator of functional connectivity, tran-
siently increased during the training session, especially between simi-
larly time-tuned neurons.

In a continuous navigation task combining goal navigation, tim-
ing and foraging, dorsal CA1 pyramidal cells showed an anticipatory
buildup of activity tracking time. Rats foraging in a circular arena had to
wait 2 s in an unmarked 'goal’ zone in order to trigger release of a food
pellet from an overhead dispenser (Hok et al., 2005, 2007). Most hip-
pocampal place cells increased their 'out-of-field’ firing rate during the
waiting period in the goal zone. The activity reached a peak anticipating
the end of the 2 s waiting period (Fig. 1). Note that similar goal zone
responses also occur in downstream medial prefrontal cortex (mPFC),
but these are suppressed by ventral hippocampal lesions (Burton et al.,
2009). However mPFC lesions did not affect hippocampal goal zone de-
lay activity or its activity profile (Hok et al., 2013). This indicates that
mPFC neurons are dependent on the HS for this timing function, but not
the reverse.

2.2. Time cell tiling activity during delay periods

Hippocampal neurons can fire continuously within intervals occur-
ring along a delay period, with overlapping tiling of the activity of dif-
ferent cells. This may be an example of a more general property of
hippocampal neurons firing in repeated sequences (discussed in Section
4.1; Buzsáki and Tingley, 2018). Such cells have been recorded in the
HS during delays imposed in memory tasks. The cells are referred to as
'time cells’, and the periods when they fire have been referred to as 'time
fields’, inspired by the place cell nomenclature (Eichenbaum, 2017).

3
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Fig. 1. Secondary field cell activity in the goal zone in hippocampal dorsal CA1 neurons. Dark purple, red, and yellow squares represent maximal, intermediate and minimal activity
respectively. a) Spatial responses of 12 goal-zone responsive place cells. The green dashed circles mark the goal zone. (b) Left) Cumulative PETHs for all recorded hippocampal neurons
synchronized with arrival in the goal zone. Upper histogram is for extinction trials and lower histogram is for rewarded trials. Right) Raster plot (upper) and PETH (lower) for a represen-
tative mPFC neuron. Adapted from Hok et al. (2007) and Burton et al. (2009) with permission.

2.2.1. CA1 time cells
In a seminal experiment, single hippocampal CA1 neurons were

recorded as rats alternated right and left turns on a figure-8 maze. The
rats had been trained to run on a running wheel for 10 or 20 s be-
fore entering the central arm leading to the choice point (Pastalkova
et al., 2008). Different neurons successively fired for durations on the
order of seconds during wheel running (Fig. 2). The entire run peri-
ods were spanned by tiling neuronal activations. The neuron firing se-
quences were different in trials when the rat turned right or left. When
the rats were tested in a control task with no memory requirement,
this activity disappeared. Furthermore, this time cell activity displayed
phase precession relative to the theta rhythm, as do place cells (dis-
cussed in Section 3.2).

In another experiment with a comparable paradigm, a treadmill was
placed in the stem of a figure-8 maze and dorsal CA1 neurons were
recorded during a delay period before each alternation trial. The tread-
mill forced the animals to run at varying speeds (Kraus et al., 2013)
permitting dissociation of neural activity responses to time elapsed, to
distance run, or both. Most neurons were simultaneously influenced by
both distance traveled and time, but some were significantly influenced
by only one of the two.

MacDonald et al. (2011) trained rats performing an object-odor
matching task with a 10 s delay between sampling and response. Like
Pastalkova et al. (2008), they observed time cells with their collec-
tive activity spanning the delay period. When the delay duration was
changed, 37 % of the neurons still fired at the same absolute delay, 6%
rescaled their timing to the new interval, while others changed their re

Fig. 2. Time fields during wheel running during delays in an alternation task. (A) The Fig. 8 maze with running wheel. Color-coded dots represent spike activity of respective CA1 place
cells on the maze. B) Normalized firing rate of six simultaneously recorded neurons during wheel running (each line shows the color rasters of activity on a single trial when the left
arm was chosen). The color scales are linear with the maximum value inset at the upper right. The time cells’ activities occurred at specific delays after the start of the wheel run. (C)
Normalized firing rate of 30 simultaneously recorded time cells during wheel running, ordered by the latency of their peak firing rate. Adapted from Pastalkova et al. (2008) with
permission.
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sponses completely. The latter was referred to as 'retiming’, analogous
to remapping, where place cells completely change their positional re-
sponses when the rodent is transferred between two different environ-
ments. MacDonald et al. (2011) also noted that other neurons were
selectively active during different times during the sampling and choice
periods of the task, with other spatial and odor correlates appearing as
well.

In the same vein, CA1 time cells were recorded in head-fixed rats
in performing a delayed matching to sample task (MacDonald et al.,
2013). There, distinct time cell firing sequences were associated with
the target odor during the delays after the sampling. These sequences
predicted performance accuracy. This supports a role for these acti-
vations in working memory (WM), keeping a trace of what happened
when.

In another non-spatial task, a pre-trained sequence of five odors was
presented; in the test phase, rats had to report the relative order of two
of the odors (Shahbaba et al., 2019). Time cells spanned the presen-
tations of the respective odors (as well as the delays afterwards). The
populations changed their order of firing for each successive odor, but
for each odor they maintained the same orderly sequence of activations
between trials. Statistical tools developed by the authors showed selec-
tivity for odor identity and order, and provided the most accurate esti-
mates for correct trials.

These characteristics of time cells suggest similar fundamental mech-
anisms for processing of spatial and temporal context of behavioral
events. Indeed, in rats shuttling between the center and the four corners
of a square arena, individual hippocampal CA1 neurons fired selectively
at equivalent points along two or more of these trajectories (Wiener et
al., 1995; Wiener, 1996). This was interpreted to support the view
that, “hippocampal neuronal discharge correlates represent the spatial
and temporal organization of the environment as well as of the behav-
ior of the rat. These elements would be partitioned from information
abstracted along one or more systems of categorization or 'information
domains': the physical structure of the environment and of sensory stim-
uli, regularities in the behavioral exigencies of the current situation. Or-
der, patterns and structure, both spatial and temporal, appear to have
been extracted, abstracted and re-differentiated into subsidiary elements
which are represented individually, or recombined as conjunctions, in
discharges of single hippocampal CA3 and CA1 neurons.”

Another study (Gill et al., 2011) recorded hippocampal CA1 neu-
rons during the delay period between trials of a plus maze task. In dif-
ferent blocks of trials, the rats had to go to either the East or West arms
(after starting in the North or South arms). During the delays between
trials, distinct episode fields emerged in the first training session and
continued developing over sessions. The time cells' sequences were spe-
cific to the respective goal arm selected after the delay (East or West),
regardless of the start arm for the trajectory. The gradual development
of these responses paralleling learning, and specificity for the goal, but
not the trajectory, are both consistent with participation in a WM trace.
Indeed, such coding of impending choice during delays by serial acti-
vation of time cells shows that the HS can encode certain parameters
relevant for successful task performance. However, there are counter-ex-
amples where hippocampal system spatial representations are not con-
sistent with behavioral choices (Golob et al., 2001; Lenck-Santini et
al., 2001). In the latter cases, the HS can be considered to provide a
representation of current context which may or may not be engaged in
decision making. It remains to be seen whether the episode fields’ cor-
relation with behavioral choice is generated in the HS, or elsewhere, or
both. Indeed, some regions of the mPFC (directly connected to HS) are
also capable of representing parameters related to task performance.

2.2.2. CA3 time cells
More recently, Salz et al. (2016) observed time cell responses in

rats during a delay period in a memory task (as did Sabariego et al.,
2019). There was a similar prevalence in both CA1 and CA3. However,
here, this activity persisted when the memory requirement was removed
from the task. The authors suggest that this difference from the results
of Pastalkova et al. (2008) was due to the latter’s control task bear-
ing a low level of “fixed temporal structure of events within trials”. This
would be consistent with the hippocampus representing temporal (and
spatial) structure in the environment, when present, and one’s interac-
tions with it. Furthermore, Pastalkova et al. (2008) hypothesized that
information about choice behavior is reflected in sequences on the run-
ning wheel. However, Sabariego et al. (2019) found that MEC lesions
spared time cell activity in CA1, but led to working memory deficits in a
delayed alternation task. The deficits were milder than those seen after
lesions of both MEC and hippocampus, suggesting that MEC inputs con-
tribute to, but may not be as crucial as hippocampus for working mem-
ory in this task.

2.2.3. MEC and temporal processing
Tiling representations of elapsed time during immobility were also

found in mouse MEC cells (Heys and Dombeck, 2018). These were
anatomically clustered separately from cells selective for places during
locomotion.

Another type of temporal processing in MEC concerns cells selective
for locomotion speed. These responses vary according to cell type and
layer, with layer II CA1-projecting pyramidal cells representing upcom-
ing speed (i.e., prospectively), while in CA1 and MEC layers III and V,
speed responses are retrospective (Iwase et al., 2020). Indeed, speed
signals could be path integrated over time to give rise to position signals,
perhaps via mechanisms involving summation of plateau potentials, or a
theta rhythm based clock (Navrátilová and McNaughton, 2014). The
elaboration of grid cell activity in MEC would benefit from such a mech-
anism (Gaussier et al., 2007, 2019; Gil et al., 2018). However, the
engagement of a time signal for carrying out such integration has not
yet been shown, although LEC ramping signals could participate (Sec-
tion 2.3).

Indeed, in rats running on a treadmill in the central arm of a Fig. 8
maze, MEC grid cells (and other cells on the same electrodes) fired as a
function of both time and distance after the start of of the run (Kraus et
al., 2015). But unlike free running (with changing visual cues), occa-
sionally there were two peaks and the second field on the treadmill runs
were consistently longer in duration and spatial extent than the first one,
consistent with scalar invariance.

2.2.4. Time cells in structures related to the hippocampal system
Cells of primate striatum and prefrontal cortex fire selectively at var-

ious times in meso-time intervals between events in a visual tracking
task with no memory requirement. The same neurons fired sequentially
for short and long intervals. These were referred to as 'time stamp’ re-
sponses (Jin et al., 2009). The authors found that a perceptron decoder
of population response data could accurately report all times in the task
with 50 ms precision. Other studies have also reported time cells in the
striatum (Adler et al., 2012; Akhlaghpour et al., 2016; Mello et
al., 2015). In monkeys performing a delayed match-to-category task,
sequential activations of prefrontal cortical time cells encoded the re-
spective stimuli and elapsed time (Tiganj et al., 2018). In rodent pre-
frontal cortex, time cells firing during a delay represent 10 % of the pop-
ulation (Tiganj et al., 2017). In all of these cases, time field durations
increased over the delay, as found with scalar invariance.
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2.2.5. Time cell coding at macro-time scales
Finally, time cell activity does not seem limited to encoding on

meso-time scales. In a calcium imaging study, CA1 tiling responses were
observed over a 10 s delay, and these also gradually changed over longer
time periods. These changes could serve as time stamps (Mau et al.,
2018). Indeed, sequences bear some similarities over several days, but
the neurons in the sequences change over time. Thus, time cells could
code information over delays of both seconds and days. The authors sug-
gest that a possible mechanism for changes in time cell activity over
minutes and days would involve endogenous cycling of cyclic AMP
(cAMP) response element-binding protein (CREB). The simultaneous ob-
servation of these two scales of variations is important in light of nu-
merous behavioral studies showing meso- and macro-time scale memory
functions of the HS.

2.3. Sustained ramping activity at different time scales in lateral entorhinal
cortex

Tsao et al. (2018) showed ramp-like increases in firing activity in
LEC neurons over a wide range of time scales. The animals foraged for
twelve 240 s periods in white or black square enclosures, with 120 s in-
ter-period intervals. Ramp-like activity in 20 % of the neurons extended
over time scales ranging from seconds to hours, within individual peri-
ods or across periods. Bayesian classifiers reliably decoded elapsed time
over minutes and days. Structuring the behavior of the animals in a fig-
ure-eight maze reduced the incidence of ramping activity across trials
within a session, but improved the coding of time relative to the start
of trials. This reduction led the authors to conclude that temporal infor-
mation in LEC is not explicitly clock-like, but rather arises from integra-
tion of the amount of change of the animal’s moment-to-moment expe-
rience. Indeed, the changes across trials can be considered to decrease
over identical repetitions.

This could correspond to the transformation of an episodic memory
into a procedural memory, independent of the HS. LEC ramping activity
could be instrumental in the elaboration of time cell activity, and also
the decorrelation/drift of place cell population activity in CA fields over
minutes to hours. This is consistent with the finding that MEC lesions do
not reduce the incidence of time cells or of prospective/retrospective ac-
tivity in CA1 (Sabariego et al., 2019; discussed in 3.2). Thus, LEC can
provide temporal “scaffolding” in the form of time stamp information
for signaling ‘When’ information for episodic memory at multiple time
scales. This could be homologous in the temporal domain to the spatial
coordinate system provided by grid cells of the MEC.

2.4. Models of timing

2.4.1. Models with spectral timing
The spectral timing model (Grossberg and Merrill, 1992) was

designed to emulate the hippocampal recording data available at that
time. It could also account for more recently discovered LEC ramping
responses and time cells. In this model, after parallel activation at CS on-
set, individual cell activities peak at successive delays during the CS-UCS
interval, according to their respective time constants (Fig. 3, top). In
the model, the synaptic weights between cells signaling the CS input
and these spectral cells develop differently during learning. Indeed, the
level of activation of the cells at the time of the unconditioned stim-
ulus (UCS) signals how much the weights should be modified at these
synapses (Fig. 3, middle). The weighted summation of these spectral
activities provides a global trace peaking just prior to the delivery of
the UCS (Fig. 3, bottom). Time cell activity resembles that of ‘spec-
tral cells’, although the nature of their time constants is not yet known.
This global activity emulates the incremental response of the CA3-CA1
cell population, with maximal firing anticipating the UCS. After learn

Fig. 3. Properties of the spectral timing model. Spectral timing is a weighted spectral de-
composition of a temporal signal by a neural population with activity emerging due to
a large spectrum of time constants. The onsets of CS and US are denoted by the vertical
lines and arrowheads to the left and right, respectively. The singly gated spectrum g(t) is
derived from the product of the input signal and a habituation gate, expressing the cell
time constant; the doubly gated spectrum hj(t) arises from a further gating by the synaptic
weights; the corresponding output signal R(t) results from the summation of the differen-
tially weighted inputs. i and j are indices labelling the neural components of the neural net-
work. In the model equations, the sampling signals gij and the US (expressed via a teaching
signal N) conjointly activate adaptive weights, constituting LTM traces, wij, which gener-
ate adaptively gated output signals hij = gij ∙ wij. Although individual signals hij do not time
the inter-stimulus interval (ISI) well, the population sum R of the adaptive signals does.
Adapted with permission from Grossberg and Merrill (1992).

ing, the presentation of the CS alone reactivates this pattern through the
modified synaptic weights.

A continuum of different levels of precision of temporal dynamics
could exist along the septo-temporal axis of the hippocampus, compara-
ble to the septal to temporal increase in place field sizes (Jung et al.,
1994). Indeed, dorsal hippocampal lesions lead to underestimations of
interval duration (Merchant et al., 2013; Tam et al., 2013, 2015),
while ventral hippocampal lesions produce temporary overestimation
(Yin and Meck, 2014). Oprisan (2018) reproduced this with a model
based on the hypothesis of a topological mapping in the hippocampus,
where longer durations are stored more dorsally (in rat; septally in pri-
mates) while shorter ones are stored ventrally (temporally). However,
in the tasks studied to date with meso-time delays, dorsal hippocampal
time cells respond at both short and long delays. Perhaps ventral hip-
pocampal neurons have time cell responses at even longer delays.

The observation by Hok et al., 2007 of goal-related out-of-field fir-
ing of CA1 place cells and mPFC neurons Hok et al., 2005 was mod-
eled according to the same principle of spectral timing cells, supported
by neurons displaying time-sensitive activity, presumably granule cells
of DG. This involved a neural network emulating the complex reciprocal
relations between HS and mPFC in the rat (Hirel et al., 2013).

2.4.2. The Itskov continuous attractor neural network (CANN)
To explain the results of Pastalkova et al. (2008); Itskov et al.

(2011) developed a recurrent network model that belongs to the class
of continuous attractor neural networks, with a fixed Mexican hat con-
nectivity among the cells. A 'bump’ of neural activity represents the cur-
rent state (i.e., the animal’s position) and can be maintained stable, or
travel in the state space of the model under the influence of internal
perturbations. The model generates unique sequences of CA1 pyramidal
cell assembly activations depending upon the initial conditions, which
are noisy, unstructured inputs (corresponding to stationary sensory in
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put). The sequences generated depend also upon the internal state of the
network, in the form of post-firing threshold elevation for the neurons
contributing to the active 'bump’. The asymmetric modulation of the
strength of the recurrent synaptic weights is an alternative mechanism
(Zhang, 1996). The network reliably produces the same sequences
from the same initial conditions and successfully predicts elapsed time
during wheel running. However, most of the patterns of serial activa-
tion of cells assemblies in the model do not follow Weber’s law. In spite
of this, the model presents the remarkable advantage of proposing the
same framework as that used for 'externally’ generated sequences in re-
sponse to a succession of external events (cf., Section 4.3), in order to
produce 'internally’ generated sequences (such as sequentially activated
time cells in response to a single trigger event). In the first case, the ac-
tive and/or hidden internal states play a fundamental role for the se-
quential activation of cell populations in the network. In the second
case, the sequential activation depends on a combination of the external
sequence of events and the internal states of the system.

2.4.3. Laplace transform model with leaky integrators
Howard et al. (2014) proposed a model that encodes an inte-

grated representation of spatiotemporal context incorporating all of the
aspects of a behavioral episode, a function ascribed to the hippocampus
(Eichenbaum et al., 1994; Manns et al., 2007). Both spatial loca-
tion and time were computed here, but these can be considered as spe-
cial cases of more general conjunctive processing. The authors posit that
as episodes occur over time they are encoded as a Laplace transform of
their input in a set of leaky integrators with different time constants.
An approximation to the inverse Laplace transform then recovers the
encoded information, be it spatial, temporal or conjunctive. This recon-
struction provides temporal history and, by integrating movements, can
perform path integration. An important requirement is that the rate of
change of the respective contextual parameters must be available at all
times. Indeed, the intermediate representation changes over time and,
crucially, the rate of change of the encoded parameter (position, time)
at each moment enables the leaky integrators’ activity to be updated
accordingly. This represents the hidden variable via path integration.
The authors provide support for the leaky integration being carried out
in MEC. The model generates activities resembling those of time cells,
retrospectively modulated place cells (discussed in Section 3.2), and
boundary vector cells (coding for the distance to a boundary of the en-
vironment; Lever et al., 2009).

Yet, scale invariance in timing allows an animal to use the same
mechanisms to integrate information over different time scales, thus
sparing processing resources. Using the same mathematical framework
of the Laplace transform, represented by a set of leaky integrators with
different time constants, and its approximated inverse (Howard et al.,
2014), Liu et al. (2019) conceived a three layer feedforward neural
network model. The output layer III neurons present sequentially firing,
approximately scale-invariant time cells in response to an input func-
tion. The inverse Laplace transform producing this result is implemented
in the neural network via the weight matrix W connecting layer II to
layer III neurons. The matrix W approximates an off-center/on-surround
‘receptive field’ of time cells when time constants are densely spaced
in layer I neurons. If temporal and visual/spatial information processing
share similar principles of maximizing statistical independence or spar-
sity in perceived patterns, this type of receptive field could reflect adap-
tation of the mechanism of temporal information processing to statistical
properties of the world (Howard, 2018). Layer I neurons are exponen-
tially decaying persistent firing neurons, maintained by the calcium-ac-
tivated non-specific (CAN) cation current. Simulated neural sequences
can be rescaled by adjusting the gain of the layer I neurons receiving
the inputs. In contrast, in recurrent neural network models based on a
reservoir computing framework (Laje and Buonomano, 2013), rescal-
ing requires learning new sets of weights.

2.4.4. Modelling LEC ramping cells and time cells
A recent neural network model (Rolls and Mills, 2019) combines

two networks to account for how LEC ramping cells contribute to hip-
pocampal time cells. First, an integrate-and-fire attractor network in-
cludes coupled populations functioning as gated dipoles (Grossberg,
1972), and shows slow temporal ramping of the neuronal firing rates,
thanks to synaptic adaptation mechanisms with different time constants.
Second, a competitive network, as implemented in DG and CA1 (Ban-
quet et al., 2005; Gaussier et al., 2002), combines slowly ramping
cells with different time scales to yield 'orthogonal’ discrete time cells in
the hippocampus. As an emergent property of the simulations, forward
and reverse replay of the sequences are generated. Similar mechanisms
have been implemented to transform MEC grid cell activities with differ-
ent spatial frequencies into hippocampal place cells with different field
sizes in the hippocampus (Gaussier et al., 2007, 2019; Solstad et al.,
2006).

Up to this point we have essentially considered how activation of sin-
gle cells or populations could represent elapsed time and/or maintain
memories over a delay, and also how time can be inherently tracked
during free or constrained behavior, at different time scales, through the
ramping activity of LEC cells. In time cells, serial activation of neurons
with different time constants results from their reactions to a unique
event at the onset of the delay. Yet, in many circumstances during ac-
tive behavior, a succession of several distinct external events could trig-
ger the successive activation of distinct neural populations. While the
temporal order is stored, the precise timing between successive events
within these sequences is not necessarily important. An animal can run
along the same trajectory at different speeds, and still activate the same
sequence of neurons. In the HS, this would successively activate chang-
ing, yet overlapping populations of neurons, or cell assemblies.

3. ‘Online’ timing and sequence coding of behavioral episodes

In most experiments showing time cells, animals were constrained in
a small area during a delay imposed by the behavioral task. The sequen-
tial activations of neurons were generated internally rather than by the
sequential appearance of external stimuli. Delay timing can be consid-
ered as a special case of WM where the stored content consists of the
behaviors performed: first, before the interval; second, during the inter-
val (e.g., waiting, running in place), and third, at the end of the inter-
val (e.g., continue with the next phase of the task). Thus, these memo-
ries concern events of the immediate past, but also anticipation of the
imminent future as well. We now consider sequential activation of cell
populations in relation to the external changes in sensory cues, spatial
position and context during behavior, usually on a background of theta
oscillations, which we refer to as ‘online’.

3.1. WM and 'online’ prospective and retrospective coding on the meso-time
scale

HS cell activity reflects current behavioral contingencies and WM on
a background of theta oscillations. These occur during active behavior
or alertness, i.e., online states, such as mobility during task performance.
In contrast, offline activity occurs during delays, pauses, or sleep, and
can be related to previous or imminent behaviors (discussed in Section
4).

3.1.1. WM and STM
Short-term memory (STM) briefly stores information. It demon-

strates temporal decay and limited chunk (i.e., number of elements)
capacity. On the other hand, working memory (WM) is a system that
manages and engages STMs for behavior and cognitive function. WM
is a temporary buffer of information whose principal properties are the
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duration of time the information is to be retained (and thus when to
delete it, a crucial process), the amount and the content of informa-
tion stored. Lisman and Idiart (1995) proposed a model of STM trace
storage based upon the modulation of hippocampal gamma oscillations
(40 Hz) by the theta rhythm (8 Hz). In this coding scheme (Jensen and
Lisman, 1996), the subset of cells that fire during a given gamma cy-
cle (sometimes referred to as a cell assembly or an ensemble) represents
a given item. In effect, largely non-overlapping assemblies are sequen-
tially active in successive gamma cycles, i.e., at different theta phases.
Given that there are four to eight gamma cycles nested within a theta
cycle, multiple items can be represented in a defined order. This would
limit STM storage to approximately 7 items.

3.1.2. Prospective and retrospective activity in different paradigms
Online, spatial responses in entorhinal and hippocampal neurons are

also modulated by recent (retrospective) (Frank et al., 2000; Wood
et al., 2000), or pending (prospective) actions (Ainge et al., 2007).
These responses would be of particular interest for solving Markov-
ian decision problems, which involve accumulation of memories of re-
cent events to predict action-outcome contingencies in the imminent
future. Frank et al. (2000) demonstrated prospective and retrospec-
tive modulation in rats trained to alternate trajectories from a central

start arm to the two lateral goal arms on a m-shaped track, then return-
ing to the center for a new trial. Entorhinal cortical, and CA1 neurons
firing rates varied at the same location on the central arm of the maze,
depending on which goal arm the rat was going to next (prospective ac-
tivity) or coming from (retrospective activity). Thus, these 'splitter’ cell
activities could predict the animals future choice for outbound paths, or
reflect the previous choice for inbound paths. Conversely, other cells in
deep EC layers fired at different locations of the track corresponding to
similar trajectories in terms of orientation and distance traveled, thus
encoding path equivalence, i.e., similarities between locations or regu-
larities across spatially distinct trajectories (Fig. 4, third row).

Comparable results were found in a T-maze with return arms (thus
with a figure-8 topology), when rats were trained to alternate right and
left goal arms (Wood et al., 2000). Two-thirds of the hippocampal CA1
pyramidal cells fired differentially on the common stem for the left turn
trials vs. right turn trials.

Several experiments have demonstrated prospective and retrospec-
tive activity when rats perform a spatial win-stay task in a plus maze
(e.g., Ferbinteanu and Shapiro, 2003). The start arm varies
pseudo-randomly from North to South in successive series of trials,
whereas the rewarded arm remains constant (e.g., East) until the rat
performs 9/10

Fig. 4. Position of an animal running between food wells on a m-shaped track was coded as distances from food wells at the beginning of each path. Four paths (bottom) were explored.
Firing rate maps by path are shown for representative neurons from each region. Color scales are in spikes/s. The top row shows a superficial EC cell, the second row a, CA1 cell, and the
third row, a deep EC cell. The color map indicates the firing rate. The section of the maze the animal did not traverse on a given path is shown in light gray. HS appears to represent the
animal’s position through each trajectory. EC, deep EC in particular, seems to represent regularities across different trajectories, suggesting a generalization across experiences. Adapted
from Frank et al. (2000), with permission.
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consecutive correct trials, and then the reward is shifted to the opposite
goal arm (i.e., West). Activity was compared in overlapping path seg-
ments either on the start arms with different destinations or on the goal
arms after leaving from different starting points, to reveal prospective
or retrospective activities respectively (Fig. 6). In this example, during
prospective coding, the cell fired more in the South arm for trajectories
terminating in the East rather than West arm. During retrospective cod-
ing, in this example the cell fired more in the East goal arm when com-
ing from the North arm than from the South arm.

Even in a continuous alternation task, there is evidence for at least
partial modulation of prospective firing by goal location. On the stem
of a T-maze, place fields of prospective cells shift gradually forward
towards the goal across trials, while place fields of non-prospective
cells remain stationary (Lee et al., 2006). The dramatic reduction
of prospective activity on error trials suggests that it supports cor-
rect choices (Ferbinteanu and Shapiro, 2003). Furthermore, such re-
sponses appear during a goal-directed task requiring decision-making,
but not during random foraging (Smith and Mizumori, 2006). Note
also that in some studies, prospective activity is rare or not observed at
all (Bower et al., 2005) for as yet undetermined reasons (Ainge et al.,
2007).

In general, retrospective and prospective modulations of hippocam-
pal place responses involve events on the order of hundreds of ms and
seconds in the recent past or imminent future. Catanese et al. (2014)
recorded in the dorsal CA1 region of the rat hippocampus in the T-maze
with return arms, and provided evidence supporting a role for prospec-
tive and retrospective modulations as temporary memory buffers of re-
cent experience and imminent behavior, rather than constituting activ-
ity within distinct maps for the two paths. In effect, retrospectively mod-
ulated fields are concentrated at early parts of the central stem, while
prospective ones are near the end, although they do overlap (Fig. 5).
These buffers could be engaged for representing ongoing behavior in the
broader context of a trajectory. Interestingly, retrospective modulation
is twice more prevalent than prospective responses (Catanese et al.,
2014). This echoes the dominance of retrospective representations in
delay activity in ensembles of eye-movement directional neurons in the
dorsolateral prefrontal cortex of monkey (homolog of rat mPFC) (Funa-
hashi, 2006).

3.1.3. Similarities between HS and neighbor structures in temporal context
representation

The similarities between HS and prefrontal cortex in the represen-
tation of temporal context could reflect some common principle of rep-
resentations of past and future events, or shared information between
HS and PFC. An exhaustive account of the implication of PFC in tempo-
ral processing is out of the scope of this article. Nevertheless, the PFC
is strongly involved in working memory and could be crucial for tran-
siently storing and controlling the implementation of these prospective
and retrospective modulations in the HS, according to the prevailing
context. Hippocampal-prefrontal synchrony is required for spatial work-
ing memory, and reuniens and rhomboid (Re/Rh) nuclei of the ven-
tral midline thalamus facilitate bidirectional communication between
the dorsal hippocampus and mPFC in a WM task (Griffin, 2015). Tra-
jectory-dependent activity occurs in Re, and Re/Rh inactivation reduces
trajectory-dependent activity in hippocampus, indicating that it is trans-
mitted from PFC by Re/Rh (Ito et al., 2015). This provides evidence for
a causal role of Re/Rh in regulating hippocampal-prefrontal synchrony
and WM-dependent spatial behavior (Hallock et al., 2016).

Trajectory-dependent hippocampal activity does not necessarily sup-
port the selection of the appropriate behavior during continuous alter-
nation tasks. Indeed, rats with complete HS lesions can learn and per-
form continuous spatial alternation (Ainge et al., 2007). However,
hippocampal-lesioned rats are significantly impaired if a delay of 2 or

10 s is imposed between alternation trials. This however does not nec-
essarily implicate prospective or retrospective activity. Rather, preplay
(presented in Section 4.2), as well as time cell activity, also appear dur-
ing the delay period, but only if the task requires the rat to make a
memory-based choice. The presence of prospective and retrospective ac-
tivity in tasks not requiring the HS suggests that other associated areas
such as mPFC and striatum could be implicated in the functional elab-
oration of this contextual activity. Depending upon task and learning
conditions, in particular stability vs variability in the task demands, the
most appropriate control structure would be engaged (Banquet et al.,
2016). In this view, the introduction of a delay during the alternation
task could disrupt the 'HS-independent’ automatic performance of con-
tinuous alternation resulting from overtraining, and lead to behavioral
control by the HS and/or mPFC, with their working memory processing.
But after the onset of a visual cue indicating the future path to take in
a T maze, there is a delay exceeding 300 ms before prospective activity
appears in hippocampal CA1 neurons (Catanese et al., 2012). This is
considerably greater than the latency between motor command signals
and movement, e.g., there is only a 150 ms post-stimulus delay between
choice predictive activity in superior colliculus and movement in an ol-
factory-cued choice task (Felsen and Mainen, 2008). For other types
of tasks much briefer delays on the order of 100 ms are also observed
(Kirchner and Thorpe, 2006). The long delay of the hippocampal re-
sponses suggests that hippocampal prospective activity is not implicated
in the early stages of trajectory selection. Rather, the decision signals
would be transmitted from other structures such as prefrontal areas.

3.2. Sequence compression, phase precession and theta sequences

A likely mechanism for compression of information from the meso-
and macro-time scales of behavior to the micro-scale of neural circuit
interactions involves the phenomenon of phase precession of cell firing
relative to the ongoing theta rhythm (Fig. 7). As a rat enters a place
field, the corresponding place cell (population) fires late in the theta cy-
cle. As the animal moves through the place field, the PC fires at pro-
gressively earlier phases of the subsequent cycles (O’Keefe and Recce,
1993). This process is repeated as the rat traverses firing fields of other
neurons along its trajectory. Hence the activation of neurons whose field
was first entered several cycles back takes place at the earliest phases of
a given theta cycle. Then follows activity of neurons with fields entered
more recently, and finally of the neurons whose fields are just being en-
tered (Fig. 7) and will be traversed next (Skaggs and McNaughton,
1996). Within a single cycle, the order of the represented places corre-
sponds to their order of occurrence during actual behavior. This is called
a 'theta sequence’ (Foster and Wilson, 2007).

While a theta cycle lasts about 130 ms, the sequence of PC activa-
tions it carries is on the order of several seconds of movement, corre-
sponding to the trajectory of the animal in a temporally compressed
manner. Some models of phase precession propose a repeated read out
of these time-compressed sequences of space in each theta cycle (Jensen
and Lisman, 1996) and a phase precession advance of one gamma
cycle per theta cycle. The existence of coupling between the power
of gamma oscillations and the phase of theta oscillations suggests that
gamma activity might divide theta cycles into discrete temporal slots
supporting phase coding (Jensen and Colgin, 2007).

The path represented by theta sequences extends farther ahead of
the animal’s actual position as it accelerates towards (e.g., at the be-
ginning of the maze arm) or leaves landmarks (Gupta et al., 2012),
but the fields lag further behind as the animal decelerates while it ap-
proaches landmarks or a goal. Forward skewed representations could
reflect a predictive recall cued by inputs from impending landmarks
supporting anticipation in navigation (Hasselmo, 2009). Conversely,
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Fig. 5. Examples of trajectory-modulation of CA1 place responses. A, Retrospective modulation. Left, Action potentials (red dots) superimposed on position samples of the four types of
trajectories (RR, RL, LR, LL) along the central arm of the T-maze with return arms. Gray dots are position samples with no cell activity. Right, Left minus right differences for prospective
(purple trace) and retrospective (orange trace) analyses. The inner dashed blue line is the global confidence limit derived from the Monte Carlo bootstrap analysis, and the outer dashed
green line is the pointwise confidence limit. The shaded zone corresponds to the significant retrospective activity; the prospective activity is not significant. Horizontal dashed lines delimit
the zone where trajectories did not diverge. Data outside this zone is dark gray. B, Significant prospective modulation is shaded in purple. Adapted from Catanese et al. (2014), with
permission.

backward biased representations could facilitate the encoding of the pre-
ceding experience (Buzsáki, 2005).

The phase precession phenomenon is not limited to PCs. In
head-fixed rats performing an odor-sound configuration discrimination
task, Terada et al. (2017) found that the CA1 neurons had sustained
responses to particular cue combinations. The neurons showed transient
phase precession (with theta phase sequencing), and this was followed
by phase locking later in the trial (Fig. 8). A Bayesian decoder showed
that the cue combination conditions for current trials were correctly rep-
resented during the descending phases of theta, while the future lever
press choice was encoded in the ascending phases. Conversely, in er-
ror trials, inaccurate cue combinations were represented on descend-
ing theta phases and erroneous choices were represented on ascending
phases. In a task where rats sampled two odors in sequence, and re

sponded about their relative order in a test template sequence of five
odors, Shahbaba et al. (2019) found theta sequencing of past, present
and future events.

In another non-spatial task, rats learned sequences of five odors and
responded for odors presented in or out of order (Allen et al., 2016).
Hippocampal CA1 single neurons and ensembles were selective for pre-
sentations of odors in sequential order, and others for odors out of order.

Some cells also had conjunctive responses for in (or out of) se-
quence odors as well as selectivity for odor identity and ordinal po-
sition. Others were selective for whether breaking the sequence was
due to skipping an odor, or repeating it, regardless of odor identity
or ordinal position in the sequence. In this same study, slow gamma
(20−40 Hz) power was greater during the odor sampling period, and
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Fig. 6. Above: Journey-dependent fields showing prospective coding in a plus maze. The cell fired (colored circles) reliably in the South arm during correct choices to the East arm but
rarely during South to West trajectories. Below: Retrospective coding during North to East rather than South to East journeys. Lines indicate trajectories, and red dots are locations where
cells fired in the North to East trajectory. Adapted from Ferbinteanu and Shapiro (2003), with permission.

Fig. 7. Theta phase precession. Top) A rat running left to right on a linear track traverses
the borders of the spatial firing fields (place fields) of successive hippocampal neurons
(place cells). Middle) Activity in the place field indicated in green in A is shown in more
detail. As the rat runs through the place field, the firing rate profile is symmetrical in
an approximately Gaussian form. Bottom)The precise timing of the spikes relative to the
phase of the theta cycle provides a temporal code for the animal’s location within the place
field. Thus, the first spikes of the cell fire at a late phase of the theta rhythm (indicated by
the first asterisk), and each successive burst of spikes occurs at increasingly earlier phases
of the rhythm. Cycles are delimited by vertical dashed lines. Adapted from Foster and
Knierim, 2012, with permission.

was even higher for odors in the correct sequence than those out of se-
quence.

Furthermore, the magnitude of slow-gamma modulation CA1 neu-
rons during odor-sampling periods was significantly correlated with per-
formance across sessions. These gamma results were not significant
when tested for theta, although theta power did have a greater magni-
tude prior to odor sampling.

Thus sequences of both spatial and non-spatial information can ap-
pear in a temporal code involving the sequential activation of neurons
with identified properties at successive phases of the theta cycle. But the
Allen et al. (2016) study also shows that sequence information can
be rate coded as well. Furthermore, gamma is likely involved in mecha-
nisms underlying the processing of sequence information as well.

3.3. Stimulus order and temporal representation by gradually changing
neural populations

3.3.1. Population coding of stimulus order
A few experiments have explored how changes in hippocampal neu-

ronal ensemble activity could support memory of the order of succes-
sive events. Rats experienced unique sequences of five odors, and in a
test phase only two of these odors were presented. The rats were re
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Fig. 8. Temporal coding via phase precession and theta sequences for positions (A) and events (B). A) As in Dragoi and Buzsáki, 2006, place cells fire as the animal’s trajectory covers
the corresponding place fields. Since the theta phase of each cell's spikes advance to earlier phases on each theta cycle, at the current position their firing in respective phases indicates
past, present and future positions. B) In the case of sequential non-spatial events consisting of a cue light, a cue sound and a reward, Terada et al. (2017) observed cells with selective
activation for combinations of the cue identities and a left or right lever choice, but lower activation for other combinations. The cells preferentially active for the successive events also
fire sequentially at earlier phases on each theta cycle. At the time of the current event, their theta phase represents past, present and future events, but for the cell’s ‘preferred’ events
only. Reproduced with permission from Terada et al. (2017).

warded for selecting the odor that had been presented first (Manns et
al., 2007). Contextual representations were operationally defined as the
activity of groups of simultaneously recorded neurons active from 1 s
before to 3 s after each sniffing bout. These were represented as pop-
ulation vectors and activations were compared with a distance index.
The patterns of activity of these groups gradually evolved during odor
sampling. They predicted accurate recall in the probe tests of memory
for the order of the odors, and their absence was correlated with erro-
neous choices. These trial-unique sequences of neuron ensemble activa-
tions also depended on spatial contexts, and varied among different lo-
cations where the odor stimuli were presented.

As evoked above, Allen et al. (2016) also showed hippocampal en-
semble coding for odor sequences. This demonstrates the importance of
temporal context in trial classification within the hippocampus. Ginther
et al. (2011) presented rats with two series of odors with an overlap-
ping subsequence in the middle, e.g., sequence 1 was MN ABC OP while
sequence 2 was WX ABC YZ, with letters representing different odors.
Some hippocampal neurons fired differentially during the two presenta-
tions of the overlapping sequence ABC, reflecting a coding of temporal
context, comparable to the spatially prospective and retrospective mod-
ulation presented above.

3.3.2. Timing by gradual changes and drift in neural populations
The hippocampal neural representation of different temporal con-

texts can also extend over periods of time longer than the usual dura-
tion of an experimental session. Several studies have shown that neu-
ronal firing in the hippocampus fluctuates over hours and days. These
fluctuations may concern their level of activity or the set of neurons

participating to these populations. Variations of place cell responses
over the course of many hours of recordings were first observed by Lud-
vig (1999). Manns et al. (2007) found that the population vectors
of CA1 neurons during odor sampling were more similar for the same
trial types closer together in time than those with greater delays be-
tween them. The authors suggest that this is an example of tracking time
through gradual changes in network states (Estes, 1955; Karmarkar
and Buonomano, 2007). Indeed, estimates of elapsed time, and perfor-
mance in sequence memory tasks can be predicted by activity changes
over time in the HS (humans: Ezzyat and Davachi, 2014; Hsieh et
al., 2014; rats: Manns et al., 2007). In rats foraging in circular and
square enclosures, monotonic decreases in similarity in spatial responses
at the levels of individual cells and populations over 6 and 24 h were
observed in CA1 (Mankin et al., 2012), while CA3 neurons remained
unchanged. Mankin et al. (2012) compared CA1, CA2 and CA3 pop-
ulation responses in rats in square and circular enclosures. In repeated
recordings over two days they found that CA2 was the area with the
most pronounced changes in its population code, even over intervals of
hours (Mankin et al., 2015).

Ziv et al. (2013) performed calcium imaging on hundreds of CA1
neurons in mice running on a linear track. They found that place cod-
ing was dynamic. Active subsets of neurons (generally with the same
place fields) overlapped from day to day, but the overlap diminished
over the course of days and weeks. Yet, there was a 15–25% overlap
between the cells with significant place fields in any two of these sub-
sets, and cells generally retained the same place fields. This sufficed to
preserve an accurate spatial representation across weeks. Similarly, Ru-
bin et al. (2015) recorded hundreds of CA1 neurons in mice in square
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and cylindrical enclosures. They found that decoding of population ac-
tivity recordings close to each other in time in the two contexts were
similar and thus had the same ‘time stamp’. Conversely, temporally re-
mote episodes had distinct time stamps, even if they occurred within
the same spatial context. Thus, over days, hippocampal population dy-
namics could support the formation of a timeline in which experienced
events could be mnemonically associated or dissociated based on their
temporal separation.

Large populations of hippocampal CA1 neurons were monitored with
calcium imaging in mice exposed to an environmental context A, and a
week later, to two other different environmental contexts B and C sep-
arated by a five hour interval (Cai et al., 2016). The contexts five
hours apart were represented by distinct but overlapping neuronal pop-
ulations. But, the contexts experienced a week apart demonstrated lit-
tle overlap in their neural representation. Two days later, mice were
exposed to shock in context C, evoking fear responses. Context B then
also triggered fear responses, but context A less so. This was ascribed
to the greater overlap of representations of B and C leading to greater
generalization between their associated memories. The conditioned re-
sponse did not transfer to the context experienced a week earlier. Thus,
the overlap of the population codes between events separated by hours
would establish a link between these events. Conversely, the low over-
lap in this active population for distinct events separated by days would
result in an absence of linkage between these events in memory.

Similarly, in mPFC, Hyman et al. (2012) found that ensemble re-
sponses exhibited significantly greater differences over time relative to
hippocampal ensembles. This was interpreted as evidence for greater
sensitivity of mPFC for temporal context.

3.4. Models emulating retrospective and prospective activity

The model presented above based on the principle of temporal con-
text and the Laplace transform (Section 2.4) accounts not only for time
cells but also for retrospective and prospective activity (Howard et al.,
2014).

A model also based on the principle of temporal context (Hasselmo
and Eichenbaum, 2005) accounts for the context-dependent retrieval
of memory episodes and navigation sequences. Its neural architecture
features the complex relationships between EC layers II and III on one
hand, and DG/CA3 and CA1 fields on the other. Here, EC layer III dri-
ves non-specific associative retrieval of sequences. Each element of a
stored sequence evokes subsequent elements, and therefore triggers the
retrieval of the remainder of the sequence, as in previous models (Ban-
quet et al., 2001; et al., 2001). But the selective retrieval of a spe-
cific episode depends on EC layer II inputs to DG/CA3 pyramidal neu-
rons. These signals inform the process of selection between different
episodes associated with the same cue. This selection of a specific se-
quence among several potential ones is effected through a multiplica-
tive interaction between signals from EC layer III and from CA3 (deriv-
ing from EC layer II) the CA1 dendrites, where the two pathways con-
verge. In earlier models (Blum and Abbott, 1996; Jensen and Lis-
man, 1996; Lisman, 1999; Tsodyks et al., 1996; Wallenstein and
Hasselmo, 1997), similar mechanisms for sequence retrieval were im-
plemented in the CA3 recurrent network. At a more local scale, the EC
layer III network activation could play the role of a local map, which
stores associations between elements, in this case, sequences of locations
on a trajectory. In our model (presented below), this function in the HS
is assigned to the top-down control of CA1 neurons by cortical inputs,
which would be transmitted through the nucleus reuniens of the thal-
amus (Banquet et al., 1997, 2005; Gaussier et al., 2002; Hirel et
al., 2013).

In a global approach, a Brain Based Device (BBD) large-scale archi-
tecture (Fleischer et al., 2007) emulates the results of the plus maze
paradigm (Ferbinteanu and Shapiro, 2003) with its retrospective

and prospective splitter cells. The architecture combines visual, proprio-
ceptive, and directional inputs to inferotemporal (IT) and posterior-pari-
etal (PP) cortices, and subcortical areas such as anterior thalamic nu-
cleus (ATN), and basal forebrain. Multimodal inputs converge on me-
dial temporal lobe (MTL), which features, in particular, a detailed ar-
chitecture of the hippocampus proper. Importantly, this neural network
(NN) simulation gives access to the history leading up to the final state
of activation for all brain areas in the model. An analysis that recur-
sively traces activation of CA1 place cells back in time to synaptically
connected upstream neurons reveals that the contribution of HS and EC
inputs to the activation of journey-dependent (splitter) cells is more im-
portant than the contribution of inputs from cortical areas. Conversely,
the inputs from cortical areas to CA1 neurons dominate journey-inde-
pendent neurons. This supports the hypothesis that trajectory-dependent
context coding is generated, at least partially at a local level, in EC and/
or HS, acting as relays between local and global representations. Then,
mPFC and PP, the supposed storage sites of the maps, could operate dur-
ing planning or navigation, at a more global level, for trajectory selec-
tion. It would be of interest to determine the properties of the simu-
lated hippocampal and cortical neurons responsible for this difference,
in particular because this is an alternative to the results of Ito et al.
(2015) showing that this activity in HS depends upon mPFC inputs. In-
deed, these results could also depend on the dynamics of the multiple
embedded loops of the large-scale architecture rather than specific dy-
namical properties of the neural elements.

4. 'Offline’ sequence replay/preplay during sharp wave ripples
(SWR) or REM sleep theta

‘Offline’ is the term we use here to refer to states without direct in-
teraction with the environment, including slow wave sleep (SWS) and
awake immobility, all featuring the presence of SWRs (Fig. 9). An ex-
ceptional offline state is rapid eye movement (REM) sleep since it is
characterized by theta oscillations, like the awake state. These states
could play roles for memory consolidation, albeit for different types of
memories.

Hippocampal replay consists of brief episodes of spontaneous se-
quential activation of PCs, reproducing sequences observed during ac-
tive behavior. This was first observed in pair-wise co-activations during
sharp-wave-ripples (SWRs) in SWS (Kudrimoti et al., 1999; Wilson
and McNaughton, 1994). The activation of PC pairs, and, by exten-
sion, of whole sequences of PCs can preserve the order observed dur-
ing awake trajectories (Lee and Wilson, 2002). Replay during ripples
during both awake immobility and slow wave sleep is accelerated 5 to
20 times relative to the sequences of activation occurring during the ac-
tual trajectories. The activation is limited to a single SWR event lasting
on the order of 100−200 ms, a compressed time window conducive to
STDP between successively activated neurons (Lee and Wilson, 2002;
Nádasdy et al., 1999). However, multiple successive awake replay se-
quences can span the totality of a trajectory. Recordings from rats as
they pause along an extended 10 m track can show replay over consec-
utive ripples (Davidson et al., 2009).

4.1. Sleep replay

The simultaneous or sequential firing of pyramidal cells during sleep
replay tends to replicate their spatial and temporal firing pattern dur-
ing exploration (Fig. 10). Its content may involve long episodes on the
order of several minutes. According to the two-stage model of memory
formation (Buzsáki, 1989), the first stage occurs online during wak-
ing, active exploration and training. Then, in a second stage, follow-
ing the acquisition of a labile memory trace, this information is trans-
ferred to cortical areas to produce a more permanent trace. This oc-
curs during reactivation during sleep, immobility and consummatory be-
haviors, driving synaptic changes in cortex. Consistent with this, tar
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Fig. 9. Hippocampal local field potentials (LFPs) during exploration and rest/sleep. (a) Theta rhythm (green trace) and large irregular activity (blue trace) are characterized by the oc-
currence of sharp wave events (red stars). (b) Detailed view of the LFP trace. Simultaneous with the sharp wave recorded in stratum radiatum (rad), a high frequency (200 Hz) ripple
oscillation is recorded in stratum pyramidale (pyr). Below: Trace with ripple-band filtering between 150 and 250 Hz. (c) Sharp waves in stratum radiatum reflect massive excitation of CA1
neurons by CA3 pyramidal cells via the Schaffer collaterals. The concomitant synchronization of the interneuron network at 200 Hz generates a ripple in the pyramidal layer (or: stratum
oriens, lm: stratum lacunosum moleculare, rad: stratum radiatum).Adapted from Girardeau and Zugaro, 2011, with permission.

geted suppression of SWRs (and hence replay) during post-training SWS
impedes acquisition in a hippocampal-dependent task (Ego-Stengel
and Wilson, 2010; Girardeau et al., 2009). Moreover, in rats, pos-
terior parietal, prefrontal, cingulate and retrosplenial (but not primary
sensory) cortices displayed localized ripple oscillations during non-REM
sleep, and coupling between ripples in hippocampus and these areas
was strengthened during sleep following learning (Khodagholy et al.,
2017). This supports the hypothesis that ripple-ripple coupling supports
hippocampus-association cortex transfer for memory consolidation, as it
could also support episodic memory recollection (Vaz et al., 2019, dis-
cussed in Section 4.3)

Note that Dragoi and Tonegawa (2011) found pre-existing tem-
poral sequences of CA1 neuron firing (during sleep or quiet rest prior
to experience), and these were subsequently mapped onto new experi-
ences on a novel track identical and adjacent to a familiar one. This
is controversial however (Silva et al., 2015), and could simply be
related to previous learning. Nevertheless, the hippocampus has been

proposed to be “a general-purpose sequence generator that carries con-
tent-limited ordinal structure, and tiles the gaps between events or
places to be linked” (Buzsáki and Tingley, 2018; Friston and
Buzsáki, 2016).

Temporal sequences representing tens of seconds of behavioral ex-
perience can be reproduced during REM sleep episodes. REM reactiva-
tion recapitulates waking activity at approximately the same speed or
slower (Louie and Wilson, 2001) upon a background of theta rhyth-
mic oscillations. This suggests that the underlying mechanisms of REM
replay may be distinct from those of SWR replay, bearing functional sig-
nificance. When the same task is repeated on successive days, except
for the initial conditions, the maximal correlation in sequential activa-
tions is found between REM episodes prior to the behavioral session
and the session itself. This contrasts with replay during SWRs in SWS,
where post-session sleep replay recapitulates the activity of the awake
session. This puzzling result suggests that REM sleep preceding a ses
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Fig. 10. Reactivation of CA1 pyramidal cells in the same order during slow wave sleep as during a prior session running on a track. Upper panel: firing probability of hippocampal pyra-
midal cells A to F as a function of the location of the rat as it traverses the linear track. Bottom panels: spike times of the same cells during sleep before and after the track running. Note
that in the first sleep session, cells fire during SWRs but in an order that is unrelated to ensemble firing patterns during subsequent track running. However, in sleep after exploration, the
cell firing during SWRs reflects the order that the cells fired during track running. Adapted from O’Neill et al. (2010), with permission.

sion could reactivate the behavioral experience of the previous day’s ses-
sion.

Imaging studies of brain activity during REM (Braun et al., 1998)
show that extrastriate cortex and its projection areas are intensely ac-
tive then too. These active structures could function as a closed system,
functionally disconnected from visual inputs and frontal cortex, where
high-level integration of visual information takes place. The functional
significance of this REM activity could correspond to preparation of fu-
ture behavior as well as a step in consolidation, i.e. elaboration of the
corresponding memory traces in LTM. REM reactivations could repre-
sent an extension to the two-stage schema, and this will be elaborated in
Section 4.

Sequential reactivations during sleep are not limited to the hip-
pocampus. Coordinated sequential activations of head direction re-
sponses in anterodorsal thalamic nucleus and postsubiculum neurons
are also observed with temporal compression during SWS, but at awake
rates in REM (Peyrache et al., 2015).

4.2. Awake replay/preplay

Awake replay and preplay can be considered 'offline’ because they
usually occur during pauses preceding or following active behavior. The
term 'preplay’ refers to sequential activation prior to the initiation of a
trajectory (not necessarily during SWRs). In rats shuttling on a linear
platform, during SWRs occurring during pauses prior to movements, PCs
are activated in the sequence of the forthcoming trajectory (forward pre-
play) (Diba and Buzsaki, 2007), and these predict the trajectory of the
animal to a remembered goal (Pfeiffer and Foster, 2013). Therefore,
these preplay sequences can be assimilated to the planning of forthcom-
ing paths. Yet, some preplayed sequences do not correspond to actual
behaviors. Also, it is not clear if predictive preplay originates in the hip-
pocampus or is elaborated in conjunction with other structures.

Conversely, during pauses at the end of the platform, the replay
may first represent the firing field at this end point and then proceed
backwards along the platform (reverse replay). Alternatively, the replay

may proceed in the temporal order experienced by the rat (forward re-
play of the prior trajectory). Most of the forward and reverse replays
start with the rat’s current position (Davidson et al., 2009). SWRs can
also occur during theta or non-theta exploration phases (eSWRs). Awake
replay is hypothesized to reinforce synaptic connectivity among PCs
with overlapping place fields. Priming of synapses during awake replay
could support population reactivation of these cells and in the structures
they project to during subsequent sleep (O’Neill et al., 2006).

The presence of reward can lead to increased rates of SWRs and
coordinated reactivation of PCs compared to when reward is absent
(Singer and Frank, 2009). Yet, only the rates of reverse replay oc-
curring during these SWRs increase with reward magnitude while for-
ward replays remain unaffected (Ambrose et al., 2016). Moreover,
the SWR rate changes in relation to changing reward contingencies
across trials (e.g., above-baseline rates after reinstatement of a reward
at a given site). This resembles activity changes in ventral tegmental
area (VTA) dopamine (DA) neurons signaling prediction errors (Gom-
perts et al., 2015). These DA neurons may interact with the HS by
directly modulating the cell populations generating SWRs. Note that
the HS projects to nucleus accumbens shell (in ventral striatum) which
then projects to VTA. This connectivity could account for similarities in
the activities of HS and ventral striatum during sequence coding (Ban-
quet et al., 2016). This increase in reverse replay following changes
in reward contingencies suggests a possible solution to the temporal
credit assignment dilemma (Foster and Wilson, 2006), that is, how
does the brain reinforce activated pathways leading up to the reward?
In cell culture, 20 µM dopamine during paired pre- and post-synap-
tic spikes expands the time window for spike time-dependent plastic-
ity (STDP) at glutamatergic synapses of hippocampal neurons, and per-
mits LTP induction by otherwise ineffectually weak stimuli with fewer
spike pairs (Zhang et al., 2009). This conjecture on the solution of
the credit assignment problem was recently supported by direct experi-
mental results. A pre-established silent synaptic eligibility trace initiated
by synaptic activity underwent synaptic strengthening by later action of
reward-related dopamine release, thereby associating specific trajecto
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ries with behaviorally and temporally distant rewarding outcomes
(Shindou et al., 2019).

A particular form of reward-related preplay was observed in an
eight-arm radial maze WM task (Sasaki et al., 2018). There, sparsely
active (less than 0.1 Hz) spatially non-selective DG granule cells consis-
tently increased firing at multiple arm ends, after the onset of reward.
Interestingly, at the ends of successive arm visits on a given trial, CA3
cells with fields on not yet visited arms were preferentially active. This
is consistent with CA3 representing the remaining goal locations to be
visited. Therefore, within the trisynaptic loop, DG, in cooperation with
CA3 and CA1, could thus be implicated in generating neural firing pat-
terns supporting future goal-directed behavior. The exact mechanisms of
this remain to be elucidated.

Other offline sequential activations also have implications for action
selection and decision-making. At strategic locations such as junctions
on a T-maze, rats may briefly pause and look back and forth as if delib-
erating over the path to choose. This pause-and-look behavior is called
vicarious trial and error (VTE) (Tolman, 1948), suggesting that the rat
was anticipating the future. Indeed, during VTE, even though the rat is
immobile, the hippocampal PC activities alternate between serial rep-
resentations of the paths towards the two goals. Neurons fire in rapid
sequences, or 'sweeps', lasting 150 ms (Johnson and Redish, 2007).
These sequences are accelerated relative to actual locomotion, and can
occur seconds prior to the actual displacement. More recent experiments
suggest parallels to the human process of deliberation prior to deci-
sion making (Redish, 2016). This anticipatory firing occurs during hip-
pocampal theta oscillations, in contrast with awake SWR-related predic-
tive activity presented above.

In humans, awake reactivations transiently destabilized representa-
tions, and may thus provide a window of opportunity to update repre-
sentations with new information. Conversely reactivation during SWS
immediately strengthened them, and may serve to incorporate hip-
pocampal information within preexisting representations outside the HS
(Diekelmann et al., 2011).

4.3. Electrophysiological correlates of episodic memory in humans

‘Episodic’ memories of past experiences include information about
what happened, and its spatial and temporal context: where and when
it happened (Tulving, 2002). Recalling when an event occurred im-
plies a representation of the historical sequence of ‘landmark’ events
experienced by the subject. These may be referenced ordinally or as
veridical dates. The process of recall inspired the metaphor of mental
time travel (Suddendorf et al., 2009; Roberts, 2006; Roberts et al.,
2008), possibly involving internally generated cell assembly sequences
prompted by the event to be recalled, or simply spontaneously. The
‘when’ information can then be extracted from the conjunctive 'what/
when/where' content of the episodic memory. Interestingly, this is not
limited to humans since experimental evidence in scrub jays (Clayton
and Dickinson, 1998) and in rats (Babb and Crystal, 2006) indicates
that they may be able to date past events, and thus to have a form of
episodic memory.

Work described above from the rodent literature suggests that the
human medial temporal lobe (MTL) promotes episodic memory retrieval
by reinstating neural representations present in other cortical areas dur-
ing the original experience. (Note that in much of the human literature,
for technical reasons, the hippocampal system and associated areas are
described together as MTL.) Deep electrode recordings in epileptic pa-
tients have uncovered electrocorticographic correlates of episodic mem-
ory recall. In these studies, semantic memory, as word lists or verbal
paired associates, is used in the service of episodic memory.

In studies by Manning et al., 2011 and Miller et al. (2013),
subjects were exposed to lists of items. When they recalled particular

items, the electrocorticographic ‘signatures’ in MTL not only resembled
the one during the original presentation, but also resembled those for
previous and subsequent items as well. This is referred to as a ‘temporal
contiguity’ effect, wherein recollection of an item is facilitated by the
presentation or spontaneous recall of another item that occurred close in
time to the item just recalled (Howard and Kahana, 1999). Folkerts
et al. (2018) showed subjects 100 photographs and, after a delay, they
were asked whether photos had been seen previously, or not. Remem-
bering with high confidence a probe from the list again reinstated the
same population vector of simultaneous recorded single unit activity in
MTL that was observed during the first exposure. The population vector
on these test trials was also more similar to the population vector for
photos that had been presented close to the time of the original probe,
another example of temporal contiguity in brain representations (Folk-
erts et al., 2018). The authors interpreted this as evidence for a neural
‘jump back in time’ associated with remembering.

This context reinstatement holds also for spatial-temporal events dur-
ing navigation. A link between place cells and episodic memory in hu-
mans is provided by a study in a virtual reality maze where each place
was associated with an item. Miller et al. (2013) first identified place
cells in the hippocampus of implanted subjects during free navigation.
Then, when subjects spontaneously recalled an item, the associated hip-
pocampal place cell was also activated, even though subjects were not
instructed to recall the location in the maze. This is consistent with
'where' contextual information being recalled in conjunctive episodic
memories.

Other studies have focused on the neural basis of MTL-mediated
reinstatement of experience-related activity during recall. These dia-
logues between MTL and associated cortical areas could be coordinated
through coupled ripple-like activity in hippocampus and cortex. In pa-
tients performing a paired-associates verbal memory task, Vaz et al.
(2019) observed single unit burst activity in middle temporal gyrus
(MTG) associated with medial temporal lobe (MTL) ripples. Sequences
of spiking in MTG neurons during encoding were repeated during recall.
Furthermore, in correct trials, bursting events in a time window after
MTL ripples manifested greater replay of the sequences present during
encoding. During correct memory trials only, the distributed pattern of
neural activity present during encoding was robustly reinstated in an
item-specific manner. While there was no explicit sequencing of behav-
ior in the task, there still may be stereotyped sequential aspects to the
neural processing in respective brain areas, and this might be coded in
the spike sequences. These results are consistent with the Jadhav et al.
(2012) finding that awake ripples support spatial memory in rats. In the
same verbal task, Yaffe et al. (2014) found reinstatement of oscillatory
activity patterns, in particular in theta and high gamma bands in elec-
trodes in MTL, and other cortical areas. Temporal contiguity was also
observed here, consistent with mental time travel during recall.

The dynamics of MTL interactions with other cortical areas was ex-
amined by Watrous et al., 2013. They studied phase coherence of
slow oscillations (an estimate of functional connectivity) recorded be-
tween subdural (local) EEG electrodes placed above the parahippocam-
pal gyrus (PHG, which interfaces hippocampus with cortex), parietal
and frontal cortical areas in patients performing a virtual taxi navi-
gation task. Recall of temporal information was associated with syn-
chrony at 8 Hz, while 2 Hz corresponded to retrieval of spatial mem-
ories. Temporal recall selectively implicated parahippocampal connec-
tivity with inferior parietal lobe, consistent with the latter’s activation
in a working memory task (Marshuetz et al., 2006). Again, this is
consistent with hippocampal-mediated reactivation of relevant brain ar-
eas during recall. Thus, MTL acts as a hub in these interactions with
PFC, PP and MTG, with possible complementary functions for hip-
pocampus proper (e.g., differentiating between competing contextual
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representations) and PHG (e.g., integrating scene-specific context) (Co-
para et al., 2014).

In conclusion, in humans, episodic memory recall, characterized by
representations of events embedded in their spatial-temporal context,
is associated with the reinstatement of the distributed patterns of ac-
tivity elicited by the first occurrence of the event, as well as immedi-
ately previous and subsequent patterns, a signature of a jump back in
time. The fact that synchronous theta and fast gamma oscillations (rip-
ples) in MTL and adjacent temporal association cortices are observed
both during sequence encoding, or replay/preplay in animals and during
episodic memory recall in humans, supports the hypothesis that awake
preplay/replay in animals could be considered homologous to neural ac-
tivity underlying human episodic memory processing.

4.4. Models of sequential 'offline’ replay within the HS

In the CA3 field of the HS, it is hypothesized that single triggers
could set off long sequences of experience-related activity patterns via
its recurrent collateral network (Gardner-Medwin, 1976; Mc-
Naughton and Morris, 1987). Compared to cortical associative areas,
these collaterals are more widespread with lower connectivity, favor-
able to reactivation of sparse activity patterns. Indeed, in the CA3 re-
current network, single cell firing can trigger population activity (Miles
and Wong, 1983; Fujisawa et al., 2006). Potential reverberation of
activity in the CA3 recurrent loops, as well as in the hippocampal cir-
cuit, could maintain information for several hundreds of milliseconds re-
quired for the association between two successive behavioral events or
stimuli.

Some models emphasize the importance, for sequence learning, of
heterosynaptic connections upon the CA3 and CA1 fields. This approach
will be developed in Section 5, in relation with transitions. Some other
models use Continuous Attractor Neural Networks (CANN) and their re-
current connections, for example, in Itskov et al.’s (2011) model of time
cells. Experimental results strongly suggest that recurrent networks ei-
ther in CA3, EC layer III, or neocortex play an important role in the gen-
eration of sequences. The confirmation of chaotic dynamics at the micro-
scopic level of neural membranes (Aihara et al., 1990), but also at the
macroscopic level of the EEG (Freeman, 1987) motivated some authors
to implement chaotic dynamics in recurrent neural networks, as a gener-
alization of CANN. In neuroscience applications, the term 'chaotic neural
networks’ extends to systems that receive external inputs (as opposed to
closed systems that are extremely sensitive to initial conditions), and are
characterized by trajectories of neural states dependent on noise and, to
some extent, external stimuli (’tamed’ chaos). The class of state-depen-
dent network models presented here supposes that hippocampal-cortical
networks are inherently capable of processing temporal-spatial stimuli.
They encode time as a result of an interaction between external stimuli
and the state- and time-dependent properties related to ongoing activity
and hidden states (short-term synaptic plasticity, slow IPSPs, etc). Some
of these Random Recurrent Network (RRN) models are presented next.

Sequential activation of neurons within the HS can be viewed as the
expression of dynamical chaotic attractors in a recurrent network of in-
terconnected pyramidal cells such as in CA3 or EC layer III. Yet, here
the trigger is not necessarily a single event, as in time cell models, but
a repetitive sequence of external or internal events. Tsuda (2009) pro-
posed such a model of event and sequence coding in CA3. In the state
space of a chaotic system generated by auto-associative recurrent net-
works, the trajectory followed by the solutions of the system between
unstable chaotic attractors of different types constitutes a chaotic itin-
erancy (Tsuda, 2001). During learning, memory traces of sequences of
events are formed in CA3 by Milnor attractors which are unstable along
particular directions (Fig. 11). The transition from memory to mem-
ory is performed via the chaotic dynamics of the network. The proposed

Fig. 11. Chaotic itinerancy as a model of sequential learning and replay (illustrated in the
state space of the chaotic model). Inhibitory neurons in a recurrent network destabilize
attractors. Noise or inputs lead the system to a new attractor, generating chaotic itiner-
ancy and the successive association of memories. A, C, and E are fixed point attractors; D
is a cyclic attractor (the limit cycle may correspond to oscillatory activity of neurons); B
and F are chaotic attractors. These are all Milnor attractors, i.e., along a given trajectory
direction. The dynamical system may leave one attractor state and converge to another.
Adapted from Tsuda (2001), with permission.

link to neurophysiology relies on a mechanism involving GABAergic in-
hibition. The inclusion of inhibitory neurons in an auto-associative net-
work does not suppress its attractors, but, rather, destabilizes them, in-
ducing itinerancy (Table 1).

Buonomano and Maass (2009) and Laje and Buonomano
(2013) propose temporal and spatial processing models belonging to
the class of state-dependent networks, based on RRNs with chaotic
dynamics providing a reservoir of dynamical states. As in the previ-
ous model, spatial-temporal computations are inextricably linked, and
emerge from the interaction between external events, the inherent dy-
namics of cortical networks, and the time-dependent properties of neu-
rons. Information is encoded in evolving neural trajectories, rather than
in fixed point attractors, as originally proposed by Hopfield, 1982). In
contrast with the previous model, learning takes place both on the re-
current synapses of the network and on the synapses between the recur-
rent network and the output pathways. The learning procedure occurs
off-line, which could correspond to the reactivation of the hippocam-
pal system during sleep, although this was not explicitly evoked by the
authors. Instead, their main biological reference is to cortical networks.
This system can predict both the timing of events and the dynamics of a
trajectory. Previously, Daucé et al., 1998 proposed a chaotic recurrent
neural network model for learning sequences. This model simulated the
CA3 field of the HS, and was applied in a navigation paradigm (Daucé
et al., 2002.

Next in Section 5.1, we extend the spectral timing model (Grossberg
and Merrill, 1996) for coding not just time intervals, but timed se-
quences of any type, on the basis of heterosynaptic associations (Andry
et al., 2001; Banquet et al., 2001, 2002; Gaussier et al., 1998).

5. Transitions, cognitive maps and sequence representations

In the perspective of timing and sequence learning, we developed a
global model using the concepts of transitions and cognitive maps. The
complete presentation of this global model is out of the scope of the
present article. A sketch of the model will be presented, highlighting
the features related to timing and sequence learning. The issue of HS
temporal processing for learning sequences is explored in terms of cod
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Table 1
Overview of timing and sequencing functions with non-comprehensive bibliography.

Timing and Sequences Processes Structure
Representative
References

2 Timing 2.1 Interval
Tracking

CA1/CA3 Berger and
Thompson,
1978; Burton
et al., 2009;
Hok et al.,
2005,
McEchron
and
Disterhoft,
1997;
Solomon et
al., 1986

2.2 Tiling by
Time Cells

CA1 Gill et al.,
2011; Kraus
et al., 2013;
MacDonald
et al., 2011;
MacDonald
et al., 2013;
Modi et al.,
2014;
Pastalkova et
al., 2008;
Shahbaba et
al., 2019

CA3 Sabariego et
al., 2019;
Salz et al.,
2016

MEC Heys and
Dombeck,
2018

2.3 Ramping LEC Tsao et al.,
2018

3 Online Sequence Processing 3.1
Prospective
and
Retrospective
Coding

CA1 Ainge et al.,
2007;
Catanese et
al., 2014;
Ferbinteanu
and Shapiro,
2003; Frank
et al., 2000;
Lee et al.,
2006; Smith
and
Mizumori,
2006; Wood
et al., 2000

3.2 θ
Sequences
and Phase
Precession

CA1 Allen et al.,
2016; Foster
and Wilson,
2007;
Gupta et al.,
2012; Skaggs
and
McNaughton,
1996;
O’Keefe and
Recce, 1993;
Terada et al.,
2017

Timing and Sequences Processes Structure
Representative
References

3.3 Stimulus
Order and
Timing by
Neural
Populations

CA1/CA2 Allen et al.,
2016; Cai et
al., 2016;
Ezzyat and
Davachi,
2014;
Ginther et
al., 2011;
Hsieh et al.,
2014;
Mankin et
al., 2012,
2015; Manns
et al., 2007;
Rubin et al.,
2015; Ziv et
al., 2013

4 Offline Sequence Replay 4.1
Sequential
Activation
during Sleep
Replay

CA3/CA1 Dragoi and
Tonegawa,
2011;
Girardeau et
al., 2009;
Kudrimoti et
al., 1999; Lee
and Wilson,
2002; Louie
and Wilson,
2001;
Nádasdy et
al., 1999;
Silva et al.,
2015; Wilson
and
McNaughton,
1994; Ylinen
et al., 1995

4.2 Awake
Replay

CA1 Ambrose et
al., 2016;
Davidson
et al., 2009;
Diba and
Buzsáki,
2007;
Johnson and
Redish,
2007; O’Neill
et al., 2006;
Pfeiffer and
Foster, 2013;
Sasaki et al.,
2018; Singer
and Frank,
2009

4.3 Episodic
Memory

Babb and
Crystal,
2006;
Clayton,
1998; Copara
et al.. 2014;
Folkerts et
al., 2018;
Miller, 2013;
Roberts, 2002;
Vaz et al.,
2019;
Watrous et
al., 2013;
Yaffe, 2013

ing transitions. Our hippocampal-inspired neural network models (Ban-
quet et al., 1997, 2005; Gaussier et al., 2002, 2019; Hirel et
al., 2013) aimed to achieve three goals. First, the architecture should
combine the essential processing features of the different hippocampal
fields (Fig. 12), organized into an entorhinal-hippocampal closed loop,
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Fig. 12. Schematic representation of the entorhinal-hippocampal loop in the model. Su-
perficial layers of lateral (L) and medial (M) entorhinal cortex (EC) receive information
from the perirhinal (PR) and parahippocampal (PH) cortices, respectively. EC layer II
transmits information to the DG granule cells and CA3 pyramidal cells, which also receive
input from DG. CA3 pyramidal neurons connect to other CA3 neurons by recurrent col-
laterals and to CA1. CA1 also receives direct connections from EC layer III. CA1 connects
to subiculum (SUB) and directly to deep EC layers. Subicular connections to EC layer V
close both the hippocampal loop through a one-way connection from layer V to EC super-
ficial layers. Direct connections link subiculum to prefrontal cortex (PF) and accumbens
(AC). Semicircular terminals represent modifiable synapses. Adapted from Banquet et al.
(2005), with permission.

embedded in a hippocampal-neocortical closed system (Fig. 13). The
integrated system should function coherently, where the output of each
structure serves as input to the downstream structures. Second, the hip-
pocampo-entorhinal loop performs spatio-temporal processing of events
and places, while the efferent projections store this information in
the cortex over the long term. Third, this hippocampal-inspired model
serves as a control system for autonomous agents, permitting its validity
to be tested by their performance during goal-directed navigation, and
delay estimation under physical constraints of the real world.

The model’s central concept of coding transitions combines the no-
tions of time intervals and sequences. There were two reasons for this
construct. First, the patterns processed during behavior are rarely static,
but rather are temporally dynamic (e.g., optic flow). Second, the pop-
ulation response of hippocampal or cortical networks does not simply
code the current event, but rather generates a representation of each in-
coming event in the context of the previous events (Buonomano and
Merzenich, 1995). Transition cells code the association between two
successive events, such as occupying adjacent place fields, by integrat-
ing the direction of the movement between them. Transition representa-
tions combine externally-driven localization signals with internally-gen-
erated path integration and can be elementary components of longer se-
quences or trajectories. The underlying mechanism of transitions could
correspond to mere synaptic facilitation between cells coding consecu-
tive events or with overlapping place fields, or to establish a distributed
population code. The two processes are not exclusive, and could corre-
spond to two different phases of learning.

5.1. Sequence learning model with transition cells

The core architecture of our model is based upon fundamental el-
ements coding transitions between events (including places occupied)
and it performs sequence learning, timing and navigation (Banquet et
al., 1997, 2005; Gaussier et al., 2002, 2007, 2019; Hirel et al.,
2013). Thus these transition cells are basic processing elements with
a temporal component. We assume that the lateral and medial EC su-
perficial layers respectively receive 'what’ information from the perirhi-
nal cortex and 'where’ information from the parahippocampal cortex
(Fig. 12). This conjunction creates landmark representations in EC (see
Connor and Knierim, 2017). A constellation of such landmarks main-
tained in buffers in EC is sufficient to establish place representations in
EC and downstream hippocampus. DG granule cells maintain informa-
tion during delays. Potential alternatives to maintain this information

between two successive events could involve reverberation in DG-CA3
circuit or in CA3 recurrent collaterals. Thus, they signal to CA1 infor-
mation about previous states, while information about current states is
transmitted through the direct pathway. Through repeated activation,
transitions from previous to current states could become encoded by
plasticity of heterosynaptic CA3 and CA1 synaptic connections. Thus,
transitions can be learned in CA3, with distinct codes for transitions be-
tween states (e.g., places, odors) AB, CB, DB, etc. (with states A, C and
D being adjacent in time, or time and space, to B). This could be con-
sidered to correspond to an implementation of retrospective coding at
point B from different trajectories (Frank et al., 2000; Wood et al.,
2000). This would be prospective as well, because of the extensive CA3
recurrent connectivity, the activation of any transition to point B primes
all other transitions accessible from B (which were previously experi-
enced during exploration) (Ainge et al., 2007; Frank et al., 2000).
In the case of delays, learned sequences, or navigation, these potential
transitions are then transmitted through the Schaffer collaterals to the
CA1 field which, in conjunction with top-down input from the activated
path on the cortical map (Fig. 13), bias the activity in favor of that
transition most relevant for the currently relevant delay, sequences, or
navigation plan resulting from activation of the representation of the de-
lay duration, final event or goal position. In the case of a learned de-
lay, this would trigger successive activation of appropriate time cells.
Finally, for coding successive sets of sequences, the transitions are inte-
grated as chunks that are transmitted to cortical areas such as mPFC and
posterior parietal cortex, where they are combined into maps, undergo-
ing a process of abstraction (e.g., path equivalence in deep EC layers;
Frank et al., 2000; Fig. 4).

In the case of navigation, at any given place, several actions can be
possible. As a consequence, the recognition of this place is not sufficient
to trigger the appropriate action. In contrast, each transition concerns
only a single step forward in the sequence. Hence, a small top-down
bias in favor of the appropriate transition allows its associated action,
event, or time cell sequence to prevail over the others possible. For this,
a subthreshold activation of the representation of the delay endpoint,
final event in the sequence, or goal location is differentially diffused
through the cortical map, and a top-down signal is then transmitted to
EC and CA1 (Fig. 13). This biases the selection of the sequence leading
to the endpoint in time and space. The combination of this bottom-up
and top-down signaling closes the hippocampal-cortical loop.

5.2. A timing and sequencing model with transition cells

An extension of the previous model is based on the same core ar-
chitecture, but is more oriented towards timing and sequence learning
(Banquet et al., 1997, 2001; Gaussier et al., 1998). We general-
ized the navigation paradigm to temporal sequences of events, and also
episodic memory (Fig. 14). In order to model delay activity in CA1 and
mPFC (Hirel et al., 2013) DG granule cells are also endowed with
the capacity for spectral timing (Grossberg and Merrill, 1992), in a
manner comparable to time cells. Such coding could be derived from
LEC ramping activity (Tsao et al., 2018). The sequenced events can
include salient environmental stimuli (Hirel et al., 2013) such as the
light-sound sequences of Terada et al. (2017). Waniek (2020) attrib-
utes multiscale coding of transitions to MEC grid cells which then would
provide this information to downstream hippocampal cells.

5.3. Experimental support

Several experimental results are consistent with transition coding in
the HS. The hippocampal representation of a specific location can de-
pend on the accessibility of other places in the immediate environment
(Alvernhe et al., 2008). Some CA1 place cells are activated indepen
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Fig. 13. Schematic representation of the hippocampal-prefrontal loop. In this architecture for navigation control, EC superficial layers receive external inputs from associative cortices. DG
'orthogonalizes’ the inputs and activates delay neurons that maintain information between two successive events. A, B, C, and D code places, or any other event, including the delay and
duration of a time cell activation. CA3 associates two successive events and learns transitions BC and BD that are transmitted to CA1, accumbens (ACC) and prefrontal cortex (PF), where
they help code trajectories to the goals (or endpoints) G1 and G2. This benefits from prefrontal cortex (PF) top-down signaling of the active trajectory on the map, permitting selection of
the appropriate transition among all possible choices. ACC and PF learn, store, and implement temporal-spatial sequences. Reprinted from Banquet et al. (2002), with permission.

Fig. 14. A model for timing and sequence learning engaging spectral timing. Multi-modal signals (e.g. vision, sound, odometry, etc.) are integrated in EC. A Winner-Take-All (WTA) com-
petition ensures that the activity of the most active neuron is transmitted to DG. In contrast with the original model where transitions were learned in CA3, here CA3 learns to predict
the next EC state depending on the time elapsed. Transitions between EC states are learned in CA1 where the memory of the current EC state comes from ECIII (perforant path) and
the predicted EC state comes from CA3. A WTA mechanism in nucleus accumbens (ACC) selects the most active transition and the corresponding motor action. Hippocampal output is
transferred to the ACC. Adapted from Hirel et al. (2013), with permission.

dently of the metric of the environment, but rather in relation to its
topology (Dabaghian et al., 2014). Moreover, position coding in CA1
and CA3 occurs only while the animal is moving. On the other hand,
CA2 codes for position during immobility (Kay et al., 2016) and
codes temporal changes better than changes in spatial context (Mankin

et al., 2015). The anticipatory or hypothesis-testing function attrib-
uted to CA3 in our model, concerning the states or places accessible
from the current state, is consistent with both the preferential firing of
CA3 cells with place fields on not-yet-visited arms of an eight arm ra-
dial maze (Sasaki et al., 2018) and with CA3 neurons firing corre
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sponding to the alternative trajectories at a choice point in a maze, dur-
ing VTE (Johnson and Redish, 2007). Finally, those models that use
temporal context to disambiguate sequences (Howard and Kahana,
2002; Howard et al., 2005) can be viewed as a generalization of the
concept of transition. Contiguity effects in human MTL are also consis-
tent with transition coding; the immediate temporal context is coded
along with the event.

6. Synthesis and discussion

The behavioral aspects and possible functional significance of sev-
eral types of temporal and order processing in the HS have been re-
viewed. Relevant models provided some hints on the underlying mech-
anisms. Cell properties (e.g., time constants, delay activity which is ulti-
mately based on membrane properties, and ion channel dynamics, etc.)
are complemented by other processes relying on population dynamics
and network properties, like connectivity changes, recurrent connec-
tions, and loops. Nevertheless, most models combine both levels of ex-
planations to varying degrees.

6.1. Tracking time

6.1.1. Delay activity and time cells
Several hippocampal-dependent tasks involve tracking delay inter-

vals, maintaining information over a delay, and memory and recall of
the order of events. For example, trace conditioning requires an evalu-
ation of elapsed time for optimal task performance. For these functions,
some earlier studies found maximal activity of HS neural populations at
the end of the delay period (Berger and Thompson, 1978; Hok et
al., 2007; McEchron et al., 2003). There is sparse or no evidence of
tonic or ramping activity in the hippocampus proper, although these can
be found in entorhinal cortex, striatum and neocortex (Egorov et al.,
2002; Fransén et al., 2006; Khamassi et al., 2008). On the other
hand, numerous studies have shown that the HS does have time cells
which provide a population code with their tiling responses, even dur-
ing trace conditioning (Modi et al., 2014). Time cells could code for
'what’ happened and 'when’. They could also track elapsed time, and
be coordinated for information storage necessary for task performance
at the end of the delay. Finally, self-generated assembly sequences dis-
engaged from external or body-related constraints could support mental
time travel (cf., Section 4.3)

These results are consistent with the spectral timing model (Gross-
berg and Merrill, 1992) which provides a mechanism to transform
transient patterns of neuronal activation into a more permanent LTM
store engraved in the strength of synaptic weights. This model also sug-
gests that the weighted summation of the spectral timing activity of time
cells could lead to the emergence of ramping activity (Fig. 3, bottom).
This last mechanism still awaits experimental verification.

Other related models invoke cortical oscillators tuned to different
frequencies and these converge on striatal spiny neurons which inte-
grate these signals (Catalin et al., 2009; Matell et al., 2003). These
plausible alternatives raise the question of the relation between paral-
lel timing systems. Some authors make a distinction between an auto-
matic timing system for discrete, discontinuous events in the millisec-
ond range, involving cerebellum and motor systems; versus a continu-
ous-event, cognitively-controlled system on the time scale of seconds in-
volving prefrontal and parietal cortices. In this context, the hippocampal
timing system clearly belongs to the second category. Some results (Sec-
tion 2.1) suggest that the HS could provide timing information to cor-
tical structures, mPFC in particular (Burton et al., 2009; Hok et al.,
2013). Conversely, mPFC could control temporal processing in striatal
structures, including dorsomedial striatum (Emmons et al., 2017) and
ventral striatum (Khamassi et al., 2008).

The mathematical framework of the Laplace transform of inputs by
a set of leaky integrators with different time constants (Howard et al.,

2014) is implemented by a two or three layer neural network. This
framework is sufficiently general and powerful to account for both spa-
tial and temporal aspects of hippocampal processing in terms of con-
junctive processing. In the temporal domain, it accounts in particular for
the retrospective activity of PCs and the scalar property of time cells.
Rescaling temporal sequences takes place via a simple modulation of the
cortical gain control (Liu et al., 2019).

6.1.2. Multiscale timing by ramping activity in LEC
Two models propose how the LEC ramping activity could depend on,

or contribute to other time codes such as time cells, decorrelation of ac-
tivity of neural populations over time, and even ramping responses in
neocortex and striatum. First, these results suggest that the spectral tim-
ing model (Grossberg and Merrill, 1992) could operate at large time
scales. This model integrates the discrete events of the 'spectral cells’
through a weighted summation to obtain ramp-like activity, which can
be recorded in structures downstream of hippocampus such as PFC and
striatum (Emmons et al., 2017, Khamassi et al., 2008). Conversely,
the Rolls and Mills, 2019 model , differentiates, by competitive inhi-
bition, a spectral combination of LEC cells’ ramping activity, in order to
produce hippocampal time cells with different time constants. Indeed,
both processes could successively happen at different processing stages.

6.2. ’Online’ timing and sequence learning during active behavior

6.2.1. Theta-gamma oscillations and sequential organization of events
Theta phase modulation of gamma power is the most conspicuous in-

stance of cross-frequency coupling in the HS at a micro-time scale. Sev-
eral, not necessarily exclusive, consequences resulting from theta and
theta-gamma interactions (reviewed by Colgin, 2013) include: 1) fa-
cilitation of inter-regional interactions (Benchenane et al., 2010; Hy-
man et al., 2010; Kim et al., 2011); 2) grouping together signals
containing related information (Buzsáki, 2006; Gupta et al., 2012;
Lisman and Idiart, 1995); and 3) providing synchronization at time
intervals propitious for fostering changes in synaptic strength (Green-
stein et al., 1988; Larson et al., 1986). Thus, they could coordi-
nate linking together representations of short sequences of successive
events into longer sequences. But, simultaneously, they act as a tem-
poral scaffold for segregating event-coding assembly sequences in the
phase space. The time window corresponding to the membrane constant
(10−30 ms) of downstream reader neurons that segregate cell assem-
blies (Buzsáki, 2010; Buzsáki and Moser, 2013), spike time-depen-
dent plasticity window and the time constants of GABA and AMPA re-
ceptors (whose interactions generate the gamma oscillations) are of the
same order of magnitude. This opens the possibility for hippocampal
cells coding the same spatial position or item to form a distinct assembly
in the time window of theta-modulated gamma oscillation.

This leads to respective neurons firing successively on the descend-
ing, trough, and ascending phases of the theta oscillation to represent se-
quences of the past, current and future positions of the animal’s journey
(Fig. 8A), or sequential events of the task (Fig. 8B). Hence, the spike
time lags of overlapping PCs in the theta cycle scale are correlated with
the distances of their corresponding place field peaks in physical space.
This forms the basis of time-compressed representation of travelled dis-
tances in the temporal domain.

Finally, as suggested by earlier models (O’Keefe and Recce, 1993),
the frequency interference pattern known as phase precession could re-
sult from an oscillation frequency of the waxing-waning spike activ-
ity of hippocampal pyramidal cells being faster than the frequency of
the background population expressed by the local field potential theta
rhythm. However this is hardly compatible with the results of Zugaro
et al. (2005) which showed that extra-hippocampal inputs are crucial
for phase precession.
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In an alternative hypothesis, within each cycle, the interplay be-
tween internally-driven look-ahead process and externally-driven activa-
tion could facilitate the impact of phase precession on Hebbian learning
of the sequence. A recurrent network can be activated by both heterosy-
naptic and intrinsic recurrent connections, as found in CA3 or EC layer
III.

A place cell (population) that just fired during a trajectory has an
enhanced capacity to subsequently prime another one to fire (Hebb,
1949), anticipating the learned forthcoming place field in the same tra-
jectory. This can be considered as a cued memory retrieval of the im-
minent event which had previously occurred in the same situation. Ac-
cording to Colgin et al. (2009), this anticipated firing would rely on
CA3 inputs to CA1 PCs during the appropriate phase of slow gamma
(40 Hz) oscillations. As the animal progresses through the just antici-
pated place field, external stimuli drive spike activity until arrival at the
center of the place field. There, 'externally-driven’ peak firing of CA1
PCs would depend on direct EC layer III inputs to CA1 during a fast
gamma (100 Hz) oscillation phase, taking place at the trough (coding
the present) of a theta wave (Colgin et al., 2009). Thus, the spike burst
of a specific PC is elicited earlier and earlier in the phase of successive
theta cycles (phase precession).

A hybrid model proposes an oscillation-based phase precession in
MEC cells that induces look-ahead in hippocampal neurons, reinforced
by sequence learning in CA3 (Maurer and McNaughton, 2007). The
role of MEC in the organization of hippocampal firing patterns is contro-
versial. For some authors, MEC inputs to the hippocampus are required
for the temporal organization of hippocampal firing patterns. Thus, pre-
cise neuronal sequences in the theta cycle (and the cognitive functions
related to them) depend on intact MEC function (Schlesiger et al.,
2015). Nevertheless, Sabariego et al. (2019) provided evidence that
MEC is required for WM, but not necessary to sustain hippocampal time
cell activity during delay periods.

The anatomical and functional relationships between the HS and as-
sociated structures such as mPFC, posterior parietal cortex, retrosplenial
cortex and ACC during timing and sequence learning or performance
are out of the scope of this review. Nevertheless, their close functional
relationships and theta-timed integration are considered important for
learning and recall. HS and mPFC oscillations are coherent in the theta
band during successful trials in a spatial WM task (Jones and Wilson,
2005), during a delayed non-match to position task (Hyman et al.,
2010), during rule learning in a Y-maze (Benchenane et al., 2010),
and after learning an object-place association (Kim et al., 2011). Theta
coherence between the HS and dorsolateral striatum increases after ac-
quisition of a tone-cued T-maze task (DeCoteau et al., 2007). Theta
coupling between the HS and the lateral amygdala is correlated with
fear memory retrieval (Seidenbecher et al., 2003). This theta cou-
pling between structures is thus pervasive, implicating a variety of cog-
nitive functions. This would coordinate communication among struc-
tures wherein excitability is elevated in downstream neurons when up-
stream neurons are active. The relatively long time scale of theta (~140
ms) tolerates long synaptic delays necessary for coupling of widely dis-
tributed brain regions.

6.2.2. Ordering of events by changes in active neural populations
The order of a few events can be encoded by a population of neu-

rons at the meso-scale of a few seconds. Yet, simultaneous recordings
of the activity of large populations of neurons, e.g. by calcium imaging,
have provided evidence of a gradually changing activity of the popula-
tion over long intervals of hours, days, or even weeks, along with a par-
tial turnover in the set of neurons in the population. This process has
been documented during delays at the level of the time cells (Mau et
al., 2018), and also at the level of PCs during free behavior in differ-
ent arenas (Mankin et al., 2012; Ziv et al., 2013). This phenomenon

is interpreted as a possible timestamp of the events for ordering events
on the macro-time scale in episodic memory.

6.3. Replay and memory consolidation

6.3.1. Sharp wave ripples, and episodic memory consolidation
Many studies have demonstrated a correlation between SWRs and

memory. The rate of ripple occurrence increases following training on
a spatial discrimination task, or after a change in task contingencies,
and this is associated with improved performance (Ramadan et al.,
2009). Selective suppression of SWRs impairs learning, providing evi-
dence of a causal role of SWRs for memory consolidation (Ego-Sten-
gel and Wilson, 2010; Girardeau et al., 2009). Behavioral and neu-
roimaging studies in humans, in particular with the ‘remember/know’
or the ‘what-where-when’ paradigms (Rugg and Yonelinas, 2003),
confirm that SWS strengthens episodic memory of temporal context for
explicit recollection, whereas implicit familiarity-based or recognition
judgments remain unaffected.

Decreased neocortical input to HS during the hyperpolarized cor-
tical down-state of sleep could favor SWR emergence, which in turn,
would facilitate down-to-up transitions. Recurrent connections within
the HS become more active because of reduced cholinergic suppression.
The ensuing endogenous activation of CA3 fields and consecutive CA1
SWRs preferentially target the recently active neural populations. The
high level of synchronous activation within CA3 during SWRs favors
the spread of activation to CA1, EC deep layers and neocortex. This
would facilitate consolidation of memory traces through synaptic mod-
ifications. Indeed, SWRs and prefrontal cortical sleep spindles are cor-
related (Siapas and Wilson, 1998), and artificial increases in spin-
dle-ripple synchrony improve recall (Maingret et al., 2016).

During ripples, there is activation of neural sequences correspond-
ing to recent experience, but also to remote trajectories (Karlsson and
Frank, 2009), or non-local trajectories to the goal (Gupta et al.,
2010). These results are consistent with a potential role in the con-
solidation or completion of the cognitive map through covert reactiva-
tion of the relevant circuits (Banquet et al., 2005; Gaussier et al.,
2002). Awake ripples are also required for normal spatial learning (Jad-
hav et al., 2012). During awake SWRs, the fast component of the SWR
(O’Keefe and Nadel, 1978), acts as a pacemaker for the spike se-
quences of selected neurons (Ylinen et al., 1995) in CA3 and CA1.
These spike sequences are coordinated both within and across hemi-
spheres. During SWRs, increases in slow gamma (20−50 Hz) power and
synchrony entrain CA3 and CA1 spiking, and predict higher quality re-
play of previous experiences (Carr et al., 2012). This transient syn-
chronization in awake memory replay could foster coordinated memory
reactivation across the hippocampal network.

6.3.2. REM sleep and procedural memory
Neurons from the EC deep layers projecting to the neocortex become

selectively active during hippocampal SWRs (Chrobak and Buzsáki,
1994), both during sleep and the quiet awake state. But this direction-
ality of information transfer should reverse during REM sleep, which,
like the awake state, is characterized by the dominance of hippocampal
theta and cortical high frequency oscillations.

During the awake state, high levels of ACh and norepinephrine in
neocortex and subcortical structures mediate tonic suppression of CA1
outputs (Hasselmo et al., 1997; Hasselmo and McGaughy, 2004),
and thus may limit signaling from HS to cortex. But the impact of exter-
nal novel inputs on HS activity and the feedforward connections through
HS is preserved. The information flow from neocortex to HS is rein-
forced (Hasselmo, 1999). This neuromodulator configuration also at-
tenuates the internally-driven activation of the HS pathways by sup-
pressing excitatory glutamatergic transmission from CA3 to CA1 (Her-
reras et al., 1988; Hounsgaard, 1978). This dominant cortical-hip
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pocampal flow of activity fosters input from the environment during the
awake state, and could bias the competition between externally-driven
and internally-driven activation of the parahippocampal and neocortical
networks. Interferences of reactivated memories on processing external
inputs would thus be diminished.

As in the awake state, during REM there is hippocampal theta and
cortical fast frequency activity. High levels of ACh in the hippocampus
contrast with lower levels of both ACh and norepinephrine in neocortex.
This could favor communication between cortical regions, and also fa-
cilitate cortical-to-hippocampal signaling. Thus, REM activity could re-
flect neocortical activation of hippocampal circuits and constitute a later
stage of memory consolidation. REM sleep could facilitate the slower in-
terleaving, in neocortex, of the newly acquired episodic memories with
preexisting representations of similar episodes (Stickgold, 2000; Stick-
gold and Walker, 2005), perhaps as semantic memories.

Several experimental results point to the specific contribution of
REM sleep to a later 'third stage’ of memory consolidation. As evoked
in Section 4.1, in a task repeated on successive days, hippocampal fir-
ing patterns during REM episodes prior to the behavioral session re-
sembled those of the previous day, and were also correlated with pat-
terns during performance that day. This suggests a recall of repeated re-
mote experience which influences ensuing performance (Kudrimoti et
al., 1999; Louie and Wilson, 2001), possibly leading to procedural
or habit memory formation. Second, the time scale of the sequences re-
activated during REM sleep are longer than the time scales of replay
during SWRs (Kudrimoti et al., 1999; Wilson and McNaughton,
1994), Also, REM reactivation replays waking activity at approximately
the same speed (Louie and Wilson, 2001), in contrast to the accel-
erated replay during SWRs. This suggests that HS sequence activations
during REM involve a specific network-dependent mechanism for encod-
ing temporal information at these longer time scales, in contrast with
the events coded in the precession of a few theta cycles or SWR reacti-
vations described above. The 'real-time’ durations of the (pre- or) re-ac-
tivated sequences seems commensurate to those of the stored sequences
in the respective cortical structures. Third, REM sleep suppression in hu-
mans affects only the acquisition of procedural memories (see Stickgold
et al., 2001, for a review). After overtraining, these cortical sequences
may become critical for the HS-independent performance of procedural
tasks and habitual behavior in general (Banquet et al., 2016; Karni
et al., 1994). Finally, hippocampal lesions only slow down learning the
eight arm maze (Jarrard, 1995), but do not usually prevent procedural
learning. This indicates that the supporting structures for this slower ac-
quisition are extra-hippocampal, e.g., cortical-striatal.

These results support the existence of REM related mechanisms for
the consolidation of memories for repeated, highly similar experiences.
Yet, for navigation, sequencing and other complex behaviors, this
process would occur after initial acquisition and consolidation stages.
This interpretation builds upon the standard memory consolidation the-
ory, which concerns declarative memories with explicit retrieval. It as-
sumes that the mechanisms of consolidation are similar for the episodic
and semantic types of declarative memory. Like the trace transformation
theory (Nadel and Moscovitch, 1997; Winocur et al., 2010), our
proposal points to the possible transformation of an episodic represen-
tation through overlapping repeated reactivations leading to abstract se-
mantic and schema-like representations, independent of the HS for their
retrieval. A similar mechanism could generate the formation of proce-
dural and habit memories.

7. Conclusion

This review of behavioral, electrophysiological, brain imaging and
theoretical bases for timing and sequence learning in HS leads to a few
conclusions.

First, concerning timing, three distinct complementary processes oc-
cur: 1) at a meso-scale, the 'tiling’ time cells seem to carry informa-
tion on 'what’ happened 'when’, as well as tracking elapsing time dur-
ing delays; 2) at a macro-scale, the population activity and composition
changes could 'time stamp’ events for an episodic memory 'time line’; 3)
at any time scale, the inherent timing of ramping cells in LEC could be
at the origin of the two others processes.

Second, concerning sequences, there are three distinct processes: 1)
Online, the HS represents consecutive events as sequences, either at the
scale of phase sequences, or, at a macro-scale, through the drift of activ-
ity in neural populations or the turnover in the neurons composing these
populations; 2) HS can endogenously generate sequential activation of
neural assemblies during delays, as time cell sequences in particular, in
order to bridge the gap between significant events, and possibly during
recollection of the past and planning future behavior; 3) Offline, dur-
ing rest or sleep SWR episodes following behavior, the HS can reactivate
neural population sequences, thus fostering permanent storage of infor-
mation in LTM. Whatever the state of the sleep-waking cycle in animals
and humans, synchronized oscillations coordinate both local (gamma)
and distal (theta) neural activity interactions between HS and associa-
tive cortices. A spectral fingerprint of large-scale neural interactions sup-
ports a spectro-temporal multiplexing process to learn, store and retrieve
spatial-temporal contexts encoded in interconnected neural populations.

Third, timing and sequencing are tightly linked. Sequences unfold
necessarily through time, and conversely two successive elements of a
sequence constitute the boundaries for time intervals and elapsed time.
However, sequences unfolding at different speeds do not always need
precise timing of each of their component intervals. Remarkably, so-
phisticated behaviors (like imitation, language prosody, song, music per-
formance or dance) share a subtle combination of sequential ordering
of discrete events along with precise timing of their succession. These
processes require coordination of past, present and future, and therefore
implicate memory and planning, i.e., time travel in the future. HS ac-
tivity indeed codes elapsed time, intervals, or sequences, and is a likely
contributor to representing such temporal processes. Yet, other systems,
in particular those involved in implementing appropriate actions, such
as prefrontal-striatal loops and cerebellum, are likely to participate in
tight coordination with HS for these temporal functions, thus yield-
ing well-coordinated behaviors. The respective contributions of these
structures and their interplay remain to be further explored, and are a
promising subject for future research.
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