
HAL Id: hal-03122623
https://hal.science/hal-03122623v1

Submitted on 27 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AbstractSDRs: Bring down the two-language barrier
with Julia Language for efficient SDR prototyping
Corentin Lavaud, Robin Gerzaguet, Matthieu Gautier, Olivier Berder

To cite this version:
Corentin Lavaud, Robin Gerzaguet, Matthieu Gautier, Olivier Berder. AbstractSDRs: Bring down
the two-language barrier with Julia Language for efficient SDR prototyping. IEEE Embedded Systems
Letters, 2021, 13 (4), pp.166-169. �10.1109/LES.2021.3054174�. �hal-03122623�

https://hal.science/hal-03122623v1
https://hal.archives-ouvertes.fr

AbstractSDRs: Bring down the two-language barrier
with Julia Language for efficient SDR prototyping

Corentin LAVAUD∗, Robin GERZAGUET∗, Matthieu GAUTIER∗, Olivier BERDER∗.
∗ Univ Rennes, CNRS, IRISA, surname.name@irisa.fr

Abstract—This paper proposes a new methodology based
on the recently proposed Julia language for efficient Software
Defined Radio (SDR) prototyping. SDRs are immensely popular
as they allow to have a flexible approach for sounding, monitoring
or processing radio signals through the use of generic analog
components and lot of digital signal processing. As, in this
paradigm, most of the processing is done at software levels
(i.e. on a CPU), an efficient software methodology has to be
envisioned. Right now, most of the existing methods focus on low-
level languages (C or C++) for good runtime performance (at the
cost of easy prototyping) or high-level language (such as Python)
for flexibility (at the price of runtime performance). In this
article we propose a new methodology based on Julia language
that addresses this two-language problem and paves the way
for efficient prototyping without giving up runtime performance.
To prove the benefits of the proposed approach, a performance
benchmark with several optimisation levels compares the Julia
approach with C++ and Python.

Index Terms—Software Defined Radio, Julia language, fast
prototyping, benchmark

I. INTRODUCTION

It has been almost thirty years that the first definition of
a Software Defined Radio (SDR) has been proposed [1]. The
ideal paradigm of the SDR were introduced: every processing
part of the radio defined in digital domain with the exception
of the antenna and the analog-to-digital converters. Mitola
stressed the need of specific prototyping methodology, generic
hardware architectures and efficient software means. Through
years of research and thorough analysis, the myth of a pure
digital architecture fizzled out and analog and hardware parts
are still a major area of investigations joined together with
software methodologies [2].

To bridge the gap between hardware and software, many
different SDR architectures have been proposed: some based
on General Purpose Processor (GPP), Digital Signal Processor
(DSP) or on specific hardware such as Field Programmable
Gate Array (FPGA) [3]. More recently the advances in hard-
ware integration allow to have embedded SDR architectures
based on System on Chip (SoC) combining software and
hardware computational resources. This enlarges the scope
of embedded SDR applications as now they are capable to
capture modern wireless standards [4], exhibit cybersecurity
vulnerabilities [5] or apply specific real-time processes to
signals [6]. In any case, SDR has proved to be a precious
tool for prototyping (due to its reasonable cost and simple
configuration) and has also strong assets for pedagogy [7].

The question of its programmability is still open. On one
hand the general purpose processors embed more and more
computational capacity making a pure GPP-based approach
performant. On the other hand, hardware accelerators and
co-processors are still necessary when massive bandwidths
and harsh real-time constraints must be fulfilled. Some of
the modern SDR programming approaches propose to recon-
figure also the hardware parts through bindings or generic

glue interface [8]. Regarding programming semantic, low-
level languages (e.g. C++/C, Rust) offers very good runtime
performance but does not offer a good prototyping experience.
High-level languages (e.g. Python, Matlab) offer the desired
flexibility at the price of runtime performance. In practice, it
means that using SDR for efficient prototyping is often done
in two phases: first an exploration in a high-level language
and secondly an optimisation in a low-level language. This
is called the two-language problem. Note that it is sometimes
possible to encapsulate the optimized algorithms (at low-level)
into the high-level language but not without strong efforts and
non-negligible re-programming [9].

This is where Julia language [10] comes into play. Julia
is a programming language whose syntax is really close to
scripting languages but that offers really good performance
for various platforms as it is compiled through LLVM [11].
The Just In Time (JIT) compilation and the Multiple Dis-
patch (MD) feature bridge the gap between on one side
interactivity and code concision (required for easy exploration
and prototyping) and on the other side efficient compiled
code (for good runtime performance). To the best of the
authors knowledge, only few unmaintained and incomplete
works (such as SoapySDR.jl and liquidSDR.jl) are dedicated
to SDR prototyping in Julia language. We aim to fill this gap
by proposing AbstractSDRs.jl, a package to monitor, control
and interact with many different SDRs.

In this paper we introduce the key features that makes Julia
appealing for efficient prototyping with SDR. We introduce the
proposed ecosystem (e.g. AbstractSDRs.jl) and we compare
the performance results with a low-level language (C++) and
a high-level language (Python). To better stress the prototyping
capacity we also expose a minimal Julia code that instantiates
a radio and does some processing in a very concise manner.
We demonstrate the benefit of the proposed approach with
various levels of optimisation, keeping a simple syntax but
approaching the benchmark rate obtained with a low-level
language.

The paper is divided into four main parts. In Section II we
introduce the main useful characteristics of Julia language and
why it is suitable for efficient SDR prototyping. We present the
proposed SDR ecosystem in Julia in Section III and exposes
the benefit of the code concision. In section IV we assess
the performance of the proposed library and compare it other
languages. Section V eventually draws some conclusions.

II. MEANINGFUL POINTERS ON SDR WITH JULIA

Julia is a recent language that allows good performance
while keeping a flexible and convenient syntax. The purpose
here is not to present the language itself, and the interested
readers can have a look at [10] or [12], but to rather give
insights on why it is suitable for SDR prototyping.

A. Multiple dispatch

1) What it is: Julia has been built around several key
ideas. The main one is to propose a compiled language with
multiple dispatch, meaning that a function can be dynamically
dispatched based on the runtime type of its argument.

2) Why it is important: For performance. MD is the base-
line of Julia language and it has been demonstrated that Julia
uses it more than other languages [10]. It allows to have
high performance while keeping the code execution paths tight
and minimal. In our scope, it will also ensure the support of
many different SDR bindings trough a common Application
Programming Interface (API) while being sure that appropriate
function call is done, and this, at runtime. The second key
advantage is the possibility to efficiently use fixed point
processing [10] which is a often used output ADC format.

B. Dataflow type inference

1) What it is: the typing of code is determined by the flow
of data through it. It means that the code is applied to types
and not to the associated values. Note that the types can be
concrete, and, as it is stated in [10], ability to concretely type
code is closely related to being capable to properly execute
performance-critical code.

2) Why it is important: For performance. Vectorization
is not mandatory and we can write efficient loop in Julia.
It particularly eases the prototyping as efficient code does
not require intensive optimisation. This is particularly an
advantage for SDR as we will often have to cope with buffers
(i.e. data signals). With the use of this kind of efficient loops,
effortless porting of computational intensive processing can be
achieved.

C. Call to low-level languages

1) What it is: In Julia, C and Fortran functions can be
directly called without any additional glue code. It means that
calling low-level C function requires no code generation nor
additional compilation.

2) Why it is important: For portability. It has two key
properties. First, it will ease the use of heavily optimized
functions (already written in those languages) as bindings.
Well known and established libraries can thus be easily ported
to Julia. This is for instance the case of the FFTW library
associated to Fast Fourier Transform (FFT) [13]. Secondly, as
most of the SDR drivers are written in C language, it will
also pave the way for the integration of SDR bindings in Julia
without any performance penalty.

D. Multi-architecture and co-processors support

1) What it is: Julia supports different architectures. Regard-
ing GPP, it allows to use Julia on both x86 and ARM. Due
to the use of LLVM compilation engine, it is also possible
to compute Julia code on GPU leveraging the use of co-
processors [14].

2) Why it is important: For scalability. SDRs have many
different architectures and the same Julia code can be run on
these different devices. For instance, some devices are based
on ARM Cortex A9 with 32 bits architecture on which the long
term support of Julia works. In addition, as Julia is also very
effective on parallelisation (with same code enhanced through
macros), one can envision to use the same code as for high-
level simulations on computation grid as real-time processing
on embedded SDR.

E. Plotting tools and user interfaces

1) What it is: Julia language offers easy integration with
a strong ecosystem of plots (with various backends such
as ones from Python or GR) and the possibility to create
Web applications with custom parameters (such as sliders,
database exploration. . .). It means that a custom web app
can be easily deployed based on the core calculation (which
is computational effective) and a limited number of external
packages dedicated to web app porting (namely Interact.jl and
Blink.jl).

2) Why it is important: For interactivity. Albeit not being
as powerful and flexible as Gnuradio with the Gnuradio
companion initiative, this kind of integration is a precious tool
for prototyping. Indeed, it allows to have efficient and rapid
tools for monitoring, exploring and debugging data. On the
other hand it also paves the way for simple yet functional
demonstrators for dissemination or pedagogical purposes.

To conclude, thanks to several key properties, Julia offers
a highly appealing solution for SDR prototyping: high perfor-
mance without code rewriting, portability through low-level
call, scalability with multi-architecture support and interactiv-
ity through the large portfolio of plotting tools and web-based
frameworks. As there are still no initiative for SDR support we
propose in the next section an ecosystem for SDR management
in Julia.

III. PROPOSED ECOSYSTEM

A. Introducing AbstractSDRs.jl package

We introduce here a common API to monitor several
different SDR architectures. Each radio type is managed by
its own sub-package and a master package (AbstractSDRs.jl)
is dedicated to the gathering in a common interface. This kind
of nested package architecture guarantees both flexibility (each
sub-package can be independently modified) and extendability
(other packages can be added afterwards). The package is fully
open source and the current version can be found here [15].
In particular, the proposed approach is capable to monitor,
configure and transmit/receive samples:

• with Universal Software Radio Peripheral (USRP) from
Ettus Research. These SDRs are immensely popular and
several radios with various architecture (FPGA-based,
ARM-based) and can be monitored through the use of
UHD. In the proposed approach, the sub-package UHD-
Bindings wraps the C API in order to use all functions
defined in the low-level interface.

• with Analog Device Active Learning Module Pluto
(ADALM-Pluto), an SDR proposed by Analog Device
that uses a cortex A9 and the well known AD9361 as
the transceiver. The proposed sub-package AdalmPluto.jl
use some low-level C bindings of the driver supplied by
Analog device (IIO library).

• with data exchange between a host computer and a
remote computer (sub-package SDROverNetwork.jl). This
interface requires a Julia session with AbstractSDRs.jl and
is done through the use of ZeroMQ sockets in order to
configure the radio from the host PC and send/receive
the samples. This has two key advantages: i) allowing
efficient use of SoC-based SDR with x86 or ARM (for
instance the case the embed series of the USRP e.g. USRP
e310/e320) ii) enforcing the scalability of the proposed
approach with tree-based SDR network topology.

• with RTL-SDR dongles. Contrary to the other proposed
packages, the RTLSDR.jl sub-package has not been pro-
posed by the authors but has been incorporated into the
master package.

All these different use-cases are encapsulated in a common
API in AbstractSDRs.jl which can pave the way for easy
switch on different radios for prototyping. It is also to note
that extensions to support other SDR boards is quite straight-
forward thanks to the sub-module encapsulation and MD.

B. Simple syntax example

To better stress the prototyping through code concision, we
present here a simple example written in Julia code that opens
a radio, configure it and get samples. We also compute the
square modulus of the FFT as the processing unit. The code
example is depicted below:
using AbstractSDRs # SDR integration
using FFTW # FFT support
function main();

--- Radio parameter
sdr = :uhd; # Targeting USRP
fc = 2400e6; # Carrier Frequency [Hz]
bw = 16e6 # Bandwidth [Hz]
g = 30; # Gain [dB]
N = 1024; # Packet size [Samples]
--- Opening radio
radio = openSDR(sdr,fc,bw,g

;args="addr=192.168.10.13");
--- Loop on getting samples and processing
try

while(true)
y = recv(radio,N); # Get samples
z = abs2.(fft(y)); # Computation

end
catch exception

Waiting for <ctrl-c> from user
@info "Getting interruption";

end
--- Close the radio
close(radio);

end

Several important remarks can be made. The specific SDR
targeting is done through the symbol :sdr. Then, when
instantiating the SDR, ; is used to add special keyword
arguments. These arguments are optional and can be used
for specific parameters associated to the SDR (e.g FPGA
bitstream path, radio IP address,. . .). Third, processing part
leads to extreme code readibility while ensuring very good
runtime performance (see Section IV). Finally, note that the
code proposed in example is the more readable but not the
more efficient as there are allocations at every loop (in buffer
and FFT). Several optimisations can be done when calculating
the square modulus as described in next Section.

Finally, the proposed ecosystem has be extended with
application oriented packages, related to spectral analysis
(with AbstractSDRsSpectrum.jl) or FM radio receiver (with
AbstractSDRsFMReceiver.jl).

IV. BENCHMARK AND PERFORMANCE ASSESSMENT

In this section we propose some performance evaluation
using the proposed approach and compared to other classical
approaches used in the literature.

A. Benchmark properties

For this we choose to compare the performance offered
with the Julia-based AbstractSDRs.jl package against C++
and Python. For a fair comparison, the following important
statements have to be done:

• Performance is compared in terms of output rate after
processing. For every language, the number of samples
processed in a given amount of time is counted to deduce
the rate (or throughput).

• The proposed approach has been tested with the use of a
SDR X310 from Ettus Research as it allows the maximal
instantaneous bandwidth of 200 MHz.

• Performance is compared with C++ (low-level high per-
formance language) and Python (high-level language with
concise semantic). Note that here we do not have added
Gnuradio approach as the processing blocks should be
written in C++ (using SWIG) nor the Cython approach
as they fall into the two-language problem we have stated
beforehand.

• All the codes have been evaluated using one thread for
both sample acquisition and processing, and the -O3
flag for compilation (C++ and Julia). We also have used
different optimisations for both C++, Python and Julia
described afterwards.

• Rate performance is achieved by Monte Carlo simulation
with 20 independent runs of 10 seconds. All the code
used for the benchmark (in all languages) and versions
associated to the used modules can be found here [16].

• Sliding average of the square modulus of the FFT is
considered as the processing. The sliding window is
rectangular with 16 samples. For the three languages,
the FFT is computed with the use of FFTW with the
same compilation flags (and same output rate). Difference
between the languages lies in the implementation of the
square absolute and mainly how the sliding mean is
implemented.

B. Code versions definition

We define four versions of the code, the initial one L0 and
three optimisation levels (namely L1, L2 and L3). These three
optimisations levels are independent and will be sequentially
applied:

• L0 corresponds to the rapid prototyping (e.g the minimal
code version that allows a proper processing chain).

• L1 corresponds to L0 with algorithmic optimisations
namely by removing boundary checks in for loops,
using buffer pre-allocations and expliciting for loops for
square absolute and sliding average.

• L2 corresponds to L1 with optimisation on memory side
and corresponds to use of low-level containers for buffers
(i.e. static arrays).

• L3 corresponds to L2 with optimisation on processor
instructions and corresponds to the use of SSE and AVX
vectorial instructions [17] on the two for loops (absolute
value and sliding average).

As additional notes, L2 can not been fully applied on Python
and L3 vectorisation has been incorporated through the use of
JIT via Numba.

C. Comparison between versions

We evaluate the benefits of the proposed versions in Fig. 1.
In this figure, no radio has been used in order to point out the
maximal achievable rate

Regarding C++, the main gain has been achieved with the
use of static arrays (i.e. L2). The L3 vectorisation can help
to reach the maximal rate of 1.245 GS/s. It is also clear that

C++ Julia Python
0

500

1,000

1,500

L1

1,245 1,231

282

P
ro
ce
ss
in
g
th
ro
u
g
h
p
u
t
[M

S
/
s]

L0
L1
L2
L3

Fig. 1. Benchmark of the different versions.

the main benefit obtained with Python is based on the JIT
engine (i.e. L3). Regarding Julia, all the optimisation tricks
equally help to increase the throughput. The optimised rate
in Julia (1.231 GS/s) is comparable to C++ but with more
both rapid development time to L0 and easier application of
optimisations (i.e. from L0 to L3).

D. Benchmark with X310

We now include the SDR and we depict in Fig. 2 the
performance obtained with the use of the X310. The output
rate (i.e. after processing) in samples per second is evaluated
versus the rate provided by the SDR which explains the lower
rates encountered compared to Fig. 1. Worst performance is
obtained by Python L0 code as expected. Julia without any
optimisation performs better than Python (with a very similar
syntax) but is far from C++. Without any optimisation, the
three languages do not reach the 200 MS/s limit. When it
comes to the highest optimisation level, both C++ and Julia
achieve the maximal rate. It is not the case of Python (albeit
being JIT compiled).

Finally, albeit writing high-level code in Julia may not
directly lead to high performance, code optimisation (i.e. to
increase throughput) can be directly done in Julia language
with the use of macros. It makes rapid and straightforward
the transition from prototyping to high performance allowing
the language to address real-time high bandwidth processing.

0 50 100 150 200
0

50

100

150

200

SDR rate [MS/s]

O
u
tp
u
t
ra
te

[M
S
/s
]

C++ L0
C++ L3
Julia L0
Julia L3
Python L0
Python L3

Fig. 2. Benchmark for initial code and highest optimisation level code using
X310 device.

V. CONCLUSION

In this paper, we have presented a new methodology for
efficient SDR prototyping based on Julia language. We have
presented the key properties offered by Julia that make this
language appealing for SDR, namely high runtime perfor-
mance, easy portability, strong scalability and convenient
interactivity. These strong assets pave the way for efficient
prototyping with SDR, addressing the so called two-language
problem (rewriting high-level code in low-level language for
performance). The proposed open source ecosystem offers an
easy integration with different SDR types and ensure high
performance with extreme code concision. The benefits of the
approach (language and ecosystem) has been proven by use
of benchmarks that compare the rate performance with the
ones of C++ and Python. It means that rapid prototyping of
very large bandwidth and extensive computational processing
can be envisioned in real-time and through concise code even
in embedded SDRs bringing down the classic two-language
barrier encountered in prototyping.

REFERENCES

[1] J. Mitola, “Software radios: Survey, critical evaluation and future direc-
tions,” IEEE Aerospace and Electronic Systems Magazine, vol. 8, no. 4,
pp. 25–36, 1993.

[2] M. Palkovic, P. Raghavan et al., “Future software-defined radio plat-
forms and mapping flows,” IEEE Signal Processing Magazine, vol. 27,
no. 2, 2010.

[3] M. Dardaillon, K. Marquet, T. Risset, and A. Scherrer, “Software defined
radio architecture survey for cognitive testbeds,” in Proc. International
Wireless Communications and Mobile Computing Conference (IWCMC),
2012, pp. 189–194.

[4] S. Barmpounakis, N. Maroulis et al., “Network slicing-enabled RAN
management for 5G: Cross layer control based on SDN and SDR,”
Computer Networks, vol. 166, p. 106987, 2020.

[5] C. Lavaud, R. Gerzaguet, M. Gautier, and O. Berder, “Toward Real time
interception of Frequency Hopping Signals,” in Proc. IEEE International
Workshop on Signal Processing Systems, 2020.

[6] M. Shi, Y. Bar-Ness, and W. Su, “Blind OFDM systems parameters
estimation for software defined radio,” in Proc. IEEE International
Symposium on New Frontiers in Dynamic Spectrum Access Networks
(NFDSAN), 2007, pp. 119–122.

[7] A. M. Wyglinski, D. P. Orofino, M. N. Ettus, and T. W. Rondeau,
“Revolutionizing software defined radio: case studies in hardware,
software, and education,” IEEE Communications Magazine, vol. 54,
no. 1, pp. 68–75, 2016.

[8] M. Braun, J. Pendlum, and M. Ettus, “RFNoC: RF network-on-chip,”
in Proceedings of the GNU Radio Conference, vol. 1, no. 1, 2016.

[9] D. M. Beazley et al., “SWIG: An Easy to Use Tool for Integrating
Scripting Languages with C and C++.” in Tcl/Tk Workshop, vol. 43,
1996, p. 74.

[10] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM review, vol. 59, no. 1, pp.
65–98, 2017.

[11] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization (CGO). IEEE, 2004, pp. 75–86.

[12] J. Bezanson, J. Chen, B. Chung, S. Karpinski, V. B. Shah, J. Vitek,
and L. Zoubritzky, “Julia: Dynamism and performance reconciled by
design,” Proceedings of the ACM on Programming Languages, vol. 2,
pp. 1–23, 2018.

[13] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architecture
for the FFT,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), vol. 3, 1998, pp. 1381–1384.

[14] T. Besard, C. Foket, and B. De Sutter, “Effective extensible program-
ming: unleashing Julia on GPUs,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 4, pp. 827–841, 2018.

[15] Julia Telecom, “AbstractSDRs - Common API for Software Defined
Radio ,” 2020, https://github.com/JuliaTelecom/AbstractSDRs.jl.

[16] C. Lavaud, R. Gerzaguet, M. Gautier, and
O. Berder, “AbstractSDRsBenchmark repository,” 2020,
https://github.com/RGerzaguet/AbstractSDRsBenchmark.

[17] R. Karrenberg and S. Hack, “Whole-function vectorization,” in Interna-
tional Symposium on Code Generation and Optimization (CGO), 2011,
pp. 141–150.

	Introduction
	Meaningful pointers on SDR with Julia
	Multiple dispatch
	What it is
	Why it is important

	Dataflow type inference
	What it is
	Why it is important

	Call to low-level languages
	What it is
	Why it is important

	Multi-architecture and co-processors support
	What it is
	Why it is important

	Plotting tools and user interfaces
	What it is
	Why it is important

	Proposed ecosystem
	Introducing AbstractSDRs.jl package
	Simple syntax example

	Benchmark and performance assessment
	Benchmark properties
	Code versions definition
	Comparison between versions
	Benchmark with X310

	Conclusion
	References

