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FREELY FLOATING OBJECTS ON A FLUID GOVERNED BY

THE BOUSSINESQ EQUATIONS

G. BECK AND D. LANNES

Abstract. We investigate here the interactions of waves governed by a Boussi-

nesq system with a partially immersed body allowed to move freely in the ver-
tical direction. We show that the whole system of equations can be reduced to

a transmission problem for the Boussinesq equations with transmission condi-

tions given in terms of the vertical displacement of the object and of the average
horizontal discharge beneath it; these two quantities are in turn determined by

two nonlinear ODEs with forcing terms coming from the exterior wave-field.

Understanding the dispersive contribution to the added mass phenomenon al-
lows us to solve these equations, and a new dispersive hidden regularity effect

is used to derive uniform estimates with respect to the dispersive parameter.

We then derive an abstract general Cummins equation describing the motion
of the solid in the return to equilibrium problem and show that it takes an

explicit simple form in two cases, namely, the nonlinear non dispersive and
the linear dispersive cases; we show in particular that the decay rate towards

equilibrium is much smaller in the presence of dispersion. The latter situation

also involves an initial boundary value problem for a nonlocal scalar equation
that has an interest of its own and for which we consequently provide a general

analysis.

1. Introduction

1.1. General setting. Water waves have been studied quite intensively in the last
decades, from the theoretical, modeling, and numerical viewpoints. Even though
considerable progress has been made, the water waves equations (or free surface
Euler equations) remain too complex to be used for most applications and reduced
asymptotic models are used instead. In coastal regions in particular, shallow water
models are used. These models are simpler because they take advantage of the
vertical structure of the velocity field in shallow water to get rid of the dependance
on the vertical variable (see the review paper [27]): the equations are therefore d
dimensional instead of d + 1 dimensional for the water waves problem (d is the
horizontal dimension), and the problem is no longer a free boundary problem.
For instance, in dimension d = 1 and at first order with respect to the so-called
shallowness parameter (see Appendix A), one finds the nonlinear shallow water
equations

(1.1)

{
∂tζ + ∂xq = 0,

∂tq + ∂x
(

1
hq

2
)

+ gh∂xζ = − 1
ρh∂xP ,
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2 G. BECK AND D. LANNES

where ζ denotes the elevation of the surface with respect to the rest state, h = h0+ζ
the total height of the water column (h0 is the depth of the fluid at rest), and q is the
horizontal discharge, that is, the vertical integral of the horizontal velocity of the
fluid; we also denoted by ρ the constant density of the fluid and by P the pressure
at the surface. (for instance, a constant atmospheric pressure). This system is an
hyperbolic quasilinear system.
At second order with respect to the shallow water parameter, but under a weak
nonlinearity assumption, a popular model is the Boussinesq-Abbott system

(1.2)

{
∂tζ + ∂xq = 0,

(1− h2
0

3 ∂
2
x)∂tq + ∂x

(
1
hq

2
)

+ gh∂xζ = − 1
ρ∂xP ,

which can be seen as a dispersive perturbation of the nonlinear shallow water
equations (1.1). Other equivalent Boussinesq systems can be derived, and the
weak-nonlinearity assumption can be lifted, leading to the more complicated Serre-
Green-Naghdi equations; we refer to [27] for more details on these models that will
not be addressed in this paper.

Motivated by ship motion and more recently by applications to marine renew-
able energies (offshore wind energies, or wave energy convertors), several authors
addressed the issue of the interaction of waves with a floating object. This problem
adds another layer of complexity to the water waves problem because it involves
several other free boundary problems (the position of the object, the motion of the
contact line with the surface of the fluid) and CFD simulations such as Reynolds
Averaged Navier-Stokes (RANS) simulations are far from being able to simulate a
full sea state for a single floating object [13]. A less precise and less general, but
potentially much more efficient alternative is to develop an approach based on the
aforementioned reduced models; this study has to be understood as a step in this
direction.
Early studies considered infinitesimal motions and focused mainly on the stability
of the equilibrium of floating bodies [2, 20] and engineers use a phenomenological
linear integro-differential equation, the so-called Cummins equations [11, 30] to de-
scribe the motion of the floating object. In these linear models, the pressure P i

exerted by the fluid on the object is given by the (linear approximation of the)
Bernoulli equation,

−1

ρ
P i = gζw + ∂tΦ|z=ζw ,

where ζw is the parametrization of the wetted part of the floating body, and Φ
the velocity potential of the fluid. The first term of the right-hand side is called
hydrodynamic pressure, and the second one the dynamic pressure. The velocity
potential necessary to compute this latter is found by solving a Poisson equation
in the fluid domain with mixed boundary condition at the surface (homogeneous
Dirichlet on the free surface, non homogeneous Neumann on the bottom of the
object); finally the equations are complemented by the (linearized) kinematic equa-
tion ∂tζ = ∂zΦ|z=0

for the free surface ζ and by Newton’s equation for the motion
of the solid. A simpler linear shallow water approximation was also proposed in
dimension d = 1 in [20], basically consisting in replacing ∂zΦ|z=0

by −∂2
xΦ|z=0

in
the kinematic equation (see Remark 4.2 below).

The above formulation of the problem of waves interacting with a floating body
can easily be extended to the nonlinear case (see for instance [42] where Zakharov’s
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Hamiltonian formulation of the water waves problem is extended in the presence of
a floating object or, for instance [38, 12] for numerical studies). We do not provide
too many details here because we shall rather use the approach of [26] in which
the pressure P i exerted by the fluid on the object is understood as the Lagrange
multiplier associated to the constraint that, under the object, the surface of the
fluid coincides with the bottom of the object. More precisely, a formulation of
the water waves equations in term of the surface elevation ζ and the horizontal
discharge Q ∈ Rd was proposed in [26] that reads

(1.3)

{
∂tζ +∇ ·Q = 0,

∂tQ+∇ ·
( ´ ζ
−h0

V ⊗ V
)

+ gh∇ζ + 1
ρ

´ ζ
−h0
∇PNH = − 1

ρh∇P ,
where V is the horizontal component of the velocity field in the fluid domain,
P is the pressure at the surface, and PNH is the non hydrostatic pressure in the
fluid, and whose exact expression has no importance here. In the parts where the
object is not in contact with the water (the exterior region), P is the constant
atmospheric pressure and the right-hand side vanishes in the second equation. In
the region located under the object (the interior region), one has P = P i, which is
the Lagrange multiplier of the aforementioned constraint that can be written, using
the first equation, as

∇ ·Q = −∂tζw.
One must therefore handle a system of equations of ”compressible” type in the
exterior region, with a system of equation of ”incompressible” type in the interior
region; this coupling is reminiscent of what happens in other contexts for congested
flows [40]. Note that there are other ways of exploiting the fact that the pressure is a
Lagrange multiplier, as in [22] for instance where a discrete constrained variational
numerical scheme is proposed for the simulation of wave-buoy interactions in shallow
water.

The interest of this approach, whose relevance has been confirmed by compar-
isons with numerical simulations solving the fully nonlinear equations [38], is that
it is quite flexible; indeed, instead of the full water waves equations in (ζ,Q) for-
mulation (1.3), it is possible to implement it with simpler asymptotic models, and
even to numerical schemes. In this paper, we shall analyze the equations obtained
when this method is applied with the nonlinear shallow water equations (1.1) and,
more specifically, with the Boussinesq equations (1.2).
The equations obtained in the case of the nonlinear shallow water equations have
been studied and solved in [18]; the problem is surprisingly difficult because of the
dynamics of the contact points at the transition between the interior and the exte-
rior region. The problem can be reduced to a free boundary hyperbolic transmission
problem reminiscent of the one obtained for the stability of shocks [34, 36, 4], but
with the Rankine-Hugoniot condition replaced by a fully nonlinear condition. One
way to circumvent this difficulty is to consider floating objects with vertical side-
walls; in this case, the horizontal position of the contact points is no longer a free
boundary problem as it is known if the position of the object is known. This situ-
ation was considered for a solid allowed to move in vertical translation only in [26]
in dimension d = 1, and in [5] when d = 2 with a radial symmetry. In [33] the
same situation was considered with d = 1 in the presence of viscosity. This ap-
proach has also been used to model a wave energy convertor named the oscillating
water column in [7]. These references deal with the exact nonlinear shallow water
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equations with a constraint accounting for the presence of the floating body; it can
be interesting, especially for numerical simulations, to relax this constraint and use
techniques similar to those used to study low-Mach regimes in gases; this is the
approach followed in [15, 16].
The equations obtained in the case of the Boussinesq equations have been much
less studied. The reason is that while initial boundary value problems are quite well
understood for hyperbolic systems ([34, 36, 4], as well as [18] for more recent and
precise results in the specific case d = 1), there is no such theory for dispersive per-
turbations of such systems, such as the Boussinesq-Abbott equations (1.2). In [19]
and [8], the authors propose a system of two Boussinesq systems (one in the interior
region and one in the exterior region), while P i is numerically solved so that these
two sets of equations are compatible but the formulation used there does not allow
to write the simple explicit elliptic equation on P i used here and associated with the
constraint on the surface. The approach consisting in using constrained Boussinesq
equations to model the presence of a floating object has only been treated in [9],
with d = 1 and with a fixed object. Moreover, the Boussinesq system used there is
a variant of (1.2), physically less interesting but mathematically more convenient
because in the case of a fixed object the problem can then be reduced to a trans-
mission problem with linear transmission conditions; as we shall see, working with
(1.2) and/or a non fixed object leads to more complicated nonlinear transmission
conditions. One of the main features of [9] is that it shows the role of dispersive
boundary layers associated with the dispersive term of the Boussinesq equations
and that we will of course have to deal with here.
The goal of this paper is to treat the interaction of waves governed by the Boussinesq-
Abbott system (1.2) with an object with vertical sidewalls allowed to move freely
in the vertical direction. To this end, we need to address several issues. For the
modeling aspects, if the elliptic equation for P i is quite straightforward to derive,
the boundary conditions necessary to solve it are not clear and require some work;
one also needs to understand the coupling with Newton’s equations that govern
the motion of the solid, and in particular the influence of the dispersive terms on
the added mass phenomenon. The formulation of the whole set of equations in-
volved as a quite simple transmission problem for the Boussinesq-Abbott equations
is also of particular interest since it is very adapted for efficient numerical simula-
tions (work in progress) and can be used to provide a useful qualitative insight, as
shown here for the return to equilibrium problem (also called ”decay test”, it is a
standard benchmark used by engineers in particular to calibrate coefficients in the
Cummins equation). For the theoretical aspects, the contribution of the dispersive
effects to the added mass phenomenon (that where not treated in [9] because the
object was fixed) require special attention, and the nonlinear nature of the dis-
persive contribution in the transmission conditions make the derivation of uniform
energy estimate much more complicated than in [9]: we have to exploit a new type
of hidden regularity at the boundary, granted by the dispersive terms and that is
of independent interest for the analysis of initial boundary value problems in the
presence of dispersive terms. The dispersive terms induce also nonlocal effects in
the analysis of the return to equilibrium problem; this leads us to develop a general
study for the analysis of initial boundary value problems for nonlocal scalar equa-
tions that exhibits interesting phenomena when the ”local” limit is considered and
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a dispersive smoothing that can also be of interest in other contexts where nonlocal
scalar equations are involved.

1.2. Organization of the paper. Section 2 is devoted to the derivation of the
wave-structure interaction equations in the framework described above. We briefly
describe (in dimensionless form) in §2.1 the Boussinesq-Abbott system used to
describe the propagation of the waves and provide in §2.2 the dimensionless version
of Newton’s equations for a solid allowed to move only in the vertical direction.
We also need coupling conditions between the interior and exterior regions; they
are described in §2.3. The issue mentioned above for the boundary conditions on
the interior pressure P i is addressed in §2.4. It is then possible to solve for P i

and to reduce the equations in the interior region to a set of two ODEs on the
vertical displacement δ and on the horizontal average discharge 〈qi〉, with source
terms accounting for the coupling with the exterior wave field.
These elements are used in Section 3 to reduce all the equations involved in the
wave-structure interaction problem under consideration to a transmission problem,
see §3.1. The mathematical structure of this transmission problem is investigated
in §3.2 and §3.3 where a reformulation of the equations is proposed to exhibit the
nontrivial contribution of the dispersive terms to the added mass phenomenon. We
then show in §3.4 that the whole system can be reduced to an infinite dimensional
ODE, allowing us to establish well-posedness. In order to control the existence time
as the dispersive parameter µ goes to zero, we address in §3.5 the issue of uniform
estimates and exhibit in particular a new hidden regularity phenomenon associated
with the dispersive terms.

In Section 4 we describe a special configuration, the return to equilibrium (or
decay test), which is both of practical interest because it is a classical benchmark
for engineers, and theoretically interesting because it allows one to provide details
on the qualitative behavior of the solutions. In particular, we want to investi-
gate whether the solid motion is governed by the Cummins equation, an integro-
differential equation used by engineers, and whether we are able to generalize this
equation to the nonlinear framework. We show in §4.1 how to derive an abstract
evolution equation of Cummins-type to describe the solid motion. This abstract
equation turns out to reduce to a second order nonlinear scalar ODE in the non-
linear non dispersive case and to a linear integro-differential equation in the linear
dispersive case, see §4.2 and §4.3 respectively. The qualitative behavior of the
solutions is commented in both cases; in particular we numerically observe and
theoretically prove that the presence of dispersion makes the return to equilibrium
slower. It is also shown that the waves in the exterior domain can be found by
solving an initial boundary value problem for a Burgers equation in the nonlinear
case, and for a nonlocal perturbation of a linear transport equation in the dispersive
case.

The nonlocal initial boundary value problem just mentioned does not fit into
any general theory, and since similar problems are likely to appear in other con-
texts where nonlocal equations play a role, we address this issue in Section 5. We
consider a nonlocal perturbation of a scalar transport equation (we consider both
positive and negative velocity). We show the well-posedness of these problems, but
under one additional compatibility condition on the data. We explain why this
additional compatibility condition disappears as the dispersive parameters tends to
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zero and the nonlocal transport equations formally converges to the standard trans-
port equation. We also exhibit a smoothing effect associated with these nonlocal
initial boundary value problems.

Finally, the link between the equations with dimensions and their dimensionless
counterparts is made in Appendix A.

1.3. Notations. The horizontal axis R is decomposed throughout this paper into
an interior region I = (−`, `) and an exterior region E = E+ ∪ E− with E− =
(−∞,−`) and E+ = (`,∞), and two contact points x = ±`. For any function f
admitting left and right limits at ±`, we use the following notations:

• restriction to the interior domain fi = f |I ,
• restriction to the exterior domain fe = f |E ,
• exterior jump JfK and interior jump JfiK defined as

(1.4) JfK = fe(`)− fe(−`), JfiK = fi(`)− fi(−`),
• exterior average 〈f〉 and interior average 〈fi〉 defined as

(1.5) 〈f〉 =
1

2

(
fe(`) + fe(−`)

)
, 〈fi〉 =

1

2

(
fi(`) + fi(−`)

)
,

• exterior trace at the boundary points of a function f ,

f± := (fe)|x=±` = lim
x→(±`)±

f(x).

• In dimensionless variables, the bottom of the floating object is parametrized
by εζw(t, x), the water height at equilibrium under the object is hex(x) <
1, and εδ(t) denotes at time t the distance of the center of mass to its
equilibrium position. These quantities are related by the relation

εζw(t, x) = εδ(t) +
(
heq(x)− 1

)
.

We also need to introduce the following functional spaces and notations:

• if f is a function of time, we sometimes use the notations ḟ = d
dtf and

f̈ = d2

dt2 f ,

• For all f ∈ L2(E), we simply write |f |2 the associated norm,
• for all n ∈ N, we denote by Hn(E) the standard Sobolev space on E , and

define

Hn := Hn+1(E)×Hn+2(E),

• for all η0 ∈ R, we denote

Cη0 := {s ∈ C |Re(s) > η0},
• for all s = η + iω ∈ C (η, ω ∈ R), we denote by

√
s the square root with

positive real part.

2. Derivation and analysis of the wave-structure interaction
equations

This section is devoted to the derivation of wave-structure interaction equations
in the case of a floating object allowed to move freely in the vertical direction (see
Figure 1), and using a nonlinear dispersive wave model to describe the propagation
of the waves. To this end, we follow the strategy of [26] where it was proposed to
see the pressure P i exerted by the fluid on the object as the Lagrange multiplier
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associated with the constraint that under the object, the surface of the water co-
incides with the bottom of the floating object. The first step, considered in §2.1,
is to choose the model used to describe the propagation of waves; we choose here
the Boussinesq-Abbott system which is a nonlinear dispersive set of equations com-
monly used to model wave propagation. We then write in §2.2 the dimensionless
version of Newton’s equations for a solid allowed to move only in the vertical di-
rection. The way these two systems of equations are coupled is described in §2.3.
One of the coupling conditions turns out to be that the total (fluid+solid) energy
of the system has to be conserved at the order of precision of the model; it is shown
in §2.4 that this imposes boundary conditions on the interior pressure P i. These
boundary conditions allow one to solve the pressure equation in the interior region
(under the object); it follows that in this region, all the equations can be reduced to
a set of two ODEs on the vertical displacement δ and on the horizontal average 〈qi〉
of the horizontal discharge; source terms in these ODEs account for the coupling
with the exterior wave field.

zG
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Figure 1. The physical configuration (dimensionless variables)

2.1. The equations for the fluid. We consider in this paper weakly nonlinear
waves in shallow water, that are known to be described with a good accuracy by
Boussinesq-types systems and that are of interest for a wide range of applications.
To be more precise, let us define the dimensionless nonlinearity parameter ε and
the shallowness parameter µ as

ε =
a

H
, µ =

H2

L2
,

where a is the typical amplitude of the waves, L their typical horizontal scale and
H the depth at rest. The shallowness assumption means that µ � 1 and the
statement that we have a weak nonlinearity means that ε = O(µ). Under this
latter assumption, Boussinesq systems are approximations of the full free surface
Euler equations at order O(µ2) (see for instance [25, 27] for more details on the
derivation and full justification of these models). There are actually many different
Boussinesq systems that are formally equivalent since they differ only one from each
other by terms of order O(µ2), which do not affect the precision of the model. One
of the most popular of these Boussinesq systems is the so-called Boussinesq-Abbott
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system [1, 14], which reads, in dimensionless variables (see Appendix A) and when
a pressure Patm + P (where Patm is a constant reference value for the atmospheric
pressure) is applied at the surface,

(2.1)

{
∂tζ + ∂xq = 0

(1− µ
3 ∂

2
x)∂tq + ε∂x

(
1
hq

2
)

+ h∂xζ = − 1
εh∂xP

(h = 1 + εζ).

Here, εζ is the dimensionless surface elevation with respect to its rest position,
h = 1 + εζ is the dimensionless water height, and q is the horizontal discharge (the
vertical integral of the horizontal velocity). In general, the pressure at the surface
is a constant atmospheric pressure and ∂xP = 0, so that the right-hand side in the
second equation of (2.1) vanishes; we present the general system here because it is
relevant in the presence of a floating body, under which the pressure is no longer
equal to the atmospheric pressure (see §2.4 below). Note that P can be nontrivial
in other contexts, for instance when one wants to study the impact of atmospheric
disturbances on the waves [35].
What makes the Boussinesq-Abbott system an interesting model is that it is a
dispersive perturbation of the nonlinear shallow water equations written in conser-
vative form {

∂tζ + ∂xq = 0

∂tq + ε∂x
(

1
hq

2
)

+ h∂xζ = − 1
εh∂xP ;

its drawback is that local (and global) conservation of energy is only satisfied at
order O(εµ). Defining the local energy density e and the local energy flux F as

(2.2)

{
e(ζ, q) = 1

2ζ
2 + 1

2
1
hq

2 + µ 1
6h (∂xq)

2,

F(ζ, q) = q
(
ζ + 1

εP + ε 1
2
q2

h2 − µ 1
3h∂x∂tq

)
,

one has indeed

(2.3) ∂te + ∂xF =
1

ε
P∂xq + εµR,

with R given by

(2.4) R =
1

6h2
(∂xq)

3 +
1

3h2
q(∂t∂xq)∂xζ;

the right-hand-side of (2.3) is formally of size O(εµ) when P = 0 and therefore
of size O(µ2) in the weakly nonlinear regime ε = O(µ). Setting µ = 0 in (2.2)
and (2.3), one recovers the exact local conservation of energy associated with the
nonlinear shallow water equations.

Remark 2.1. In the second equation of the Boussinesq-Abbott system, one can
replace ε∂x( 1

hq
2) by ε∂x(q2) up to a term of order O(ε2) which is of order O(µ2)

in the weakly nonlinear regime. At order O(µ2) and when P = 0, the following
system is therefore formally equivalent to the Boussinesq-Abbott system (2.1),

(2.5)

{
∂tζ + ∂xq = 0,

(1− µ
3 ∂

2
x)∂tq + ε∂x(q2) + h∂xζ = 0.

This system is no longer a dispersive perturbation of the nonlinear shallow water
equations because the nonlinear terms are not the same, but it was used in [9]
because it satisfies an exact local conservation of energy,

(2.6) ∂tẽ + ∂xF̃ = 0,
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but for a slightly different energy/flux pair,

ẽ =
1

2
ζ2 +

1

2
q2 +

ε

6
ζ3 +

1

6
µ(∂xq)

2,

F̃ = q
(
ζ + ε

2

3
q2 + ε

1

2
ζ2 − µ1

3
∂x∂tq

)
;

in spite of this convenient property, we prefer to work with the Boussinesq-Abbott
system (2.1) rather than (2.5) because, contrary to ẽ, e is an asymptotic expansion
of the mechanical energy of the waves associated with the full water waves equations
(see for instance §6.3.1 in [25]).

2.2. The equations for the solid. We refer to Appendix A for the derivation of
the dimensionless Newton equations that we state here. We recall that we consider
here a floating object with vertical lateral walls located, in dimensionless coordi-
nates, at x = ±` (` > 0) and allowed to move only vertically (heave motion). At
time t, the part of the bottom of the object in contact with the fluid is parametrized
in dimensionless variables by a function εζw (the subscript w stands for the ”wetted”
part of the object), with

(2.7) ζw(t, x) = δ(t) +
1

ε

(
heq(x)− 1

)
,

where εδ(t) measures the vertical deviation of the object from its equilibrium posi-
tion and heq the distance at equilibrium between the bottom of the object and the
bottom of the fluid layer.
Denoting by P i(t, x) the pressure exerted by the fluid on the object at the point
(x, εζw(t, x)) of the wetted surface, Newton’s equation describing the vertical mo-
tion of the floating object under the action of its weight and of the hydrodynamic
forces can be written as (see Appendix A)

(2.8) τ2
buoyδ̈ +

1

ε
m =

1

ε

1

2`

ˆ `

−`
P i(t, x)dx,

where 2πτbuoy is the dimensionless buoyancy period (see Appendix A) and m the
dimensionless mass which, by virtue of Archimedes’ principle, satisfies the relation

(2.9) m =
1

2`

ˆ `

−`
(1− heq).

A convenient equivalent formulation of Newton’s equation is obtained by introduc-
ing the hydrodynamic pressure Πi defined in the interior region (−`, `) as

(2.10) Πi(t, x) = P i(t, x) + εζw(t, x);

using (2.7), Newton’s equation (2.8) is then equivalent to

(2.11) τ2
buoyδ̈ + δ =

1

ε

1

2`

ˆ `

−`
Πi(t, x)dx.

Remark 2.2. - One can of course add an external force to the right-hand side of
(2.11).
- In the case of an object with prescribed motion, the function δ is known, and
there is no need to use (2.8).
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One naturally associates its mechanical energy Esolid with the object, which is
the sum of its potential and kinetic energies. In dimensionless form, it is given by

Esolid = 2`
(1

ε
mδ +

1

2
τ2
buoyδ̇

2
)
.

The variations of the mechanical energy of the solid are due to the hydrodynamic
forces; more precisely, we have

d

dt
Esolid = 2`δ̇

(1

ε
m+ τ2

buoyδ̈
)

and therefore, using (2.8)

(2.12)
d

dt
Esolid =

(1

ε

ˆ `

−`
P i

)
δ̇.

2.3. The wave-structure equations. We recall that the Boussinesq-Abbott equa-
tions with a relative pressure P exerted at the surface are given by

(2.13)

{
∂tζ + ∂xq = 0

(1− µ
3 ∂

2
x)∂tq + ε∂x

(
1
hq

2
)

+ h∂xζ = − 1
εh∂xP ;

among the three quantities involved in (2.13), namely, ζ, q and P , only two are not
constrained, but not always the same ones. To make a more precise statement, we
must distinguish between the interior domain I = (−`, `) which is the projection
on the horizontal axis of the region where the surface of the water is in contact with
the object, and the exterior domain E = (−∞,−`) ∪ (`,∞), where it is in contact
with the air:

• In the exterior domain, the surface of the fluid is free, but the pressure
is constrained. In absence of surface tension, the pressure at the surface
should match the atmospheric pressure which we assume to be constant.
Recalling that if f is a function on R, we denote by fe its restriction to the
exterior domain E , we have therefore

(2.14) P e = 0

while ζe and qe must solve the standard Boussinesq-Abbott system

(2.15)

{
∂tζe + ∂xqe = 0

(1− µ
3 ∂

2
x)∂tqe + ε∂x

(
1
he
q2
e

)
+ he∂xζe = 0,

for t ≥ 0, x ∈ E .

• In the interior domain, we have a symmetric situation in the sense that the
pressure is free but the surface of the water is constrained: by definition of
the interior domain, it should coincide with the bottom of the object which
is parametrized by εζw(t, x). Recalling that fi denotes the restriction of a
function f to the interior domain I, we have therefore

(2.16) ζi = ζw,

with ζw given by (2.7) while qi and P i must solve

(2.17)

{
∂xqi = −δ̇
∂tqi + ε∂x

(
1
hw
q2
i

)
+ hw∂xζw = − 1

εhw∂xP i,
for t ≥ 0, x ∈ I,

with hw = 1 + εζw and where we used the fact ∂tζw = δ̇ and that ∂2
xqi = 0.
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The constraints (2.14) and (2.16) together with the systems of equations (2.15) and
(2.17) and Newton’s equation (2.11) are not enough to fully determine (ζ, q, P ) in
both regions E and I, and the position δ(t) of the object. Indeed coupling conditions
between the exterior and interior regions are required:

• Continuity of the discharge, namely,

(2.18) qi(t,±`) = qe(t,±`),

• Conservation of the total energy at the order of precision of the model. As
already noticed in [9] in the case of a fixed object, (2.18) is not enough
to obtain a closed set of equations. In [9], where the system (2.5) was
used, the exact equation (2.6) for the local conservation of energy was
used and a boundary condition for the pressure was derived by imposing
the exact conservation of the energy of the fluid, or equivalently, since the
solid was considered fixed, of the energy of the fluid+solid system. In the
present case where the object is allowed to move, this condition becomes
more complex and because the local conservation of the energy (2.3) is
only satisfied at order O(εµ) for the Boussinesq-Abbott system (2.1), the
additional conditions must be stated as

(2.19) The total energy of the fluid+solid system is conserved at order O(εµ),

We show in §2.4.1 below how to derive boundary conditions on P i at ±`
from this condition.

The remaining of this section and Section 3 are devoted to the proof of the fact
that the constraints (2.14) and (2.16), the systems of equations (2.15) and (2.17),
the coupling conditions (2.18) and (2.19), together with Newton’s equation (2.11)
form a well-posed system of equations (in a sense made precise below) that fully
determines (ζ, q, P ) in both regions E and I, as well as the position δ(t) of the
floating object.

2.4. The equations in the interior domain and the solid motion. As said
above, in the interior domain I = (−`, `), the surface elevation is constrained (one
has ζi = ζw with ζw given by (2.7)) but the surface pressure is an unknown quantity,
denoted by P i. As seen in (2.17), the mass conservation equation and the constraint

on the free surface also imply that in the interior domain, one has ∂xqi = −δ̇ and
therefore

(2.20) qi(t, x) = −xδ̇ + 〈qi〉(t)

where the mean horizontal discharge 〈qi〉 is a function of time that needs to be
determined.

We show in §2.4.1 how to derive equations for the interior pressure; these equa-
tions can be used to make more explicit the equation for the displacement δ of the
floating object, exhibiting in particular the added mass phenomenon (see §2.4.3);
the case of the mean discharge 〈qi〉 is finally handled in §2.4.2.

2.4.1. The interior pressure. We first show how the condition (2.19) on the con-
servation of the total energy can be used to find the boundary values of the in-
terior pressure at x = ±`. The energy Efluid of the fluid can be decomposed into
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two parts corresponding to the exterior and interior regions, respectively denoted
E = (−∞,−`) ∪ (`,∞) and I = (−`, `),

Efluid =

ˆ
E
ee +

ˆ
I
ei,

with e as in (2.2), while we recall that the mechanical energy of the solid is given
by

Esolid = 2`
(1

ε
mδ +

1

2
τ2
buoyδ̇

2
)
;

the total energy of the fluid+solid system is

Etot = Efluid + Esolid.

The following Proposition shows that if the energy flux F introduced in (2.2),
namely,

F(ζ, q) = q
(
ζ +

1

ε
P + ε

1

2

q2

h2
− µ 1

3h
∂x∂tq

)
,

is continuous across the contact points x = ±` then the total energy is conserved
up to O(εµ) terms.

Proposition 2.1. Any regular enough solution of the wave-structure equations
(2.11) and (2.14)-(2.17) satisfies

d

dt
Etot = JFe − FiK + εµ

( ˆ
I
Ri +

ˆ
E
Re

)
,

with F as in (2.2) and R as in (2.4).

Proof. For the sake of clarity, we simply denote by O(εµ) instead of εµ
( ´
I Ri +´

E Re

)
in the computations below. One computes

d

dt
Efluid =

ˆ
E
∂tee +

ˆ
I
∂tei

= −
ˆ
E
∂xFe −

ˆ
I
(∂xFi −

1

ε
P i∂xqi

)
+O(εµ),

where we used the approximate conservation of local energy (2.3). Recalling the

definition (1.4) of the exterior and interior jumps, and since ∂xqi = −δ̇, this yields

d

dt
Efluid = JFeK− JFiK−

(1

ε

ˆ `

−`
P i

)
δ̇ +O(εµ).

Together with (2.12), this directly gives the result. �

The following corollary shows that if the coupling condition (2.18) is satisfied
then the condition (2.19) on the conservation of the total energy reduces to imposing
boundary condition at x = ±` on the interior pressure P i or equivalently on the
interior hydrodynamic pressure Πi given by (2.10), namely,

Πi = P i + εζw.

Corollary 2.1. Assume that in addition the condition (2.18) on the continuity
of the discharge is satisfied, and that the traces Π±i of the interior hydrodynamic
pressure at x = ±` are given by

(2.21)
1

ε
Π±i = ζ±e + G±e −G±i
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where Πi is as defined in (2.10) and

(2.22) G = ε
1

2

q2

h2
− µ

3h
∂x∂tq.

Then one has
d

dt
Etot = εµ

( ˆ
I
R +

ˆ
E
R
)
.

Remark 2.3. Recalling that the first equation of (2.17) implies

qi = −xδ̇ + 〈qi〉, ∂x∂tqi = −δ̈,
and that ζi = ζw with ζw given by (2.7) (so that hw = heq + εδ), we have

G±i = δ + ε
1

2

(〈qi〉 ∓ `δ̇)2

h2
w

+
µ

3hw
δ̈,

which does not depend on any other unknown of the problem than the functions δ
and 〈qi〉.
Proof. From the proposition, it is enough to show that under the assumptions of
the corollary, one has

JFe − FiK = 0.

Using the hydrodynamic pressure Π = P + εζ, one can write

F = q
(1

ε
Π + G

)
with G as in the statement of the corollary. Using the identity

JfgK = JfK〈g〉+ 〈f〉JgK,
and remarking that the continuity of q at ±` implies that 〈q〉 = 〈qi〉 and JqK = JqiK,
this yields

JqiK
[
〈Ge −Gi +

1

ε
(Πe −Πi〉

]
+ 〈qi〉

[
JGe −Gi +

1

ε
(Πe −Πi)K

]
= 0.

Since JqiK and 〈qi〉 are two uncorrelated functions of time, this leads us to impose
JΠiK and 〈Πi〉, and therefore Π±i = ± 1

2

(
JΠiK± 2〈Πi〉

)
,

1

ε
Π±i = ζ±e + G±e −G±i ,

where we also used the fact that Πe = εζe. �

We can rewrite the second equation of the Boussinesq equations (2.17) in the
interior domain using the hydrodynamic pressure Πi introduced in (2.10) under the
form

(2.23) ∂tqi + ε∂x
( 1

hw
q2
i

)
= −1

ε
hw∂xΠi;

differentiating this equation with respect to x and substituting ∂t∂xqi = −δ̈, one
obtains a second order elliptic equation for Πi, while Corollary 2.1 provides non ho-
mogeneous Dirichlet boundary conditions. The resolution of this elliptic boundary
value problem is straightforward and fully determines Πi.
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Proposition 2.2. The hydrodynamic interior pressure Πi is the unique solution of
the elliptic problem

(2.24)

{
−∂x( 1

εhw∂xΠi) = −δ̈ + ε∂2
x

(
1
hw
q2
i

)
,

1
εΠi|x=±` = ζ±e + G±e −G±i

where hw(t, x) = heq(x) + εδ(t) and G is as in (2.22).

2.4.2. An equation for 〈qi〉. We have already seen that in the interior region, the
equation for the conservation of mass in the fluid shows that the discharge is given
by qi = −xδ̇ + 〈qi〉. The following proposition shows that 〈qi〉 is determined by an
ODE with a source term related to the wave field in the exterior domain. Note
that Ge accounts for the contribution of the nonlinear and of the dispersive terms
of this exterior wave field.

Proposition 2.3. Assume that heq is an even function. Then if P i and qi solve
the interior fluid equations (2.17) and if the interior pressure satisfies the boundary
conditions given in Corollary 2.1, then 〈qi〉 satisfies the ODE

(2.25) α(εδ)
d

dt
〈qi〉+ εα′(εδ)δ̇〈qi〉 = − 1

2`
Jζe + GeK

with G as in (2.22) and
(2.26)

α(εδ) =
1

2`

ˆ `

−`

1

heq(x) + εδ
dx, and α′(εδ) = − 1

2`

ˆ `

−`

1

(heq(x) + εδ)2
dx.

Remark 2.4. The assumption that the bottom parametrization is symmetric with
respect to the vertical axis {x = 0} simplifies the computations but is not necessary.
It could be handled as in [26] for the hyperbolic (µ = 0) case.

Proof. Let us first state some relations that will be used throughout this proof and
that can easily be deduced from the first equation of (2.17),

qi = −xδ̇ + 〈qi〉, ∂2
x∂tqi = 0, Jq2

i K = −4`δ̇〈qi〉,
1

2`

ˆ `

−`

qi

hw
= α〈qi〉,

the last relation stemming from the assumption that the bottom of the object is
symmetric with respect to the vertical axis {x = 0}.
Rewriting the momentum equation as in (2.23), namely,

∂tqi + ε∂x
( 1

hw
q2
i

)
= −1

ε
hw∂xΠi;

dividing by hw = ζeq + εδ and integrating between −` and ` one obtains

2`α
d

dt
〈qi〉+ εJ

q2
i

h2
w

K + ε

ˆ `

−`

∂xhw

h3
w

q2
i = −1

ε
JΠiK.

Using the relations derived above, this gives

2`α
d

dt
〈qi〉 − 4ε`〈 1

h2
w

〉δ̇〈qi〉 − 2ε
(ˆ `

−`

x∂xhw

h3
w

)
δ̇〈qi〉 = −1

ε
JΠiK.

The result then follows upon remarking that (see Corollary 2.1, Remark 2.3 and
use the fact that ζeq is even)

J
1

ε
ΠiK = Jζe + GeK + 2ε`〈 1

h2
w

〉δ̇〈qi〉
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and (after integration by part)

α′(εδ) = −〈 1

h2
w

〉 − 1

`

ˆ `

−`

x∂xhw

h3
w

.

�

2.4.3. Reformulation of the equation for the solid motion. We recall that the solid
motion is governed by Newton’s equation that can be put under the form (2.11),
namely

τ2
buoyδ̈ + δ =

1

ε

1

2`

ˆ `

−`
Πi(t, x)dx.

Now that the interior hydrodynamical pressure Πi is fully determined by Propo-
sition 2.2, it is possible to rewrite this equation in a more explicit form, namely,
a second order nonlinear ODE on δ with a source term coming from the exterior
wave field.

Proposition 2.4. Assume that heq is an even function. For smooth enough solu-
tions of the wave-structure equations (2.11), (2.14)-(2.18) and (2.21), the displace-
ment δ of the floating object solves the ODE

(2.27) τµ(εδ)2δ̈ + δ − εβ(εδ)δ̇2 − ε

2
α′(εδ)〈qi〉2 = 〈ζe + Ge〉,

with G as in (2.22) and α′(εδ) as in Proposition 2.3, and where τµ(εδ) and β(εδ)
are given by

τµ(εδ)2 = τ2
buoy +

1

2`

ˆ `

−`

x2

heq(x) + εδ
dx+

1

3
µ〈 1

heq + εδ
〉,(2.28)

β(εδ) =
1

2

1

2`

ˆ `

−`

x2

(heq(x) + εδ)2
dx.(2.29)

Remark 2.5. Recalling that 2πτbuoy is the dimensionless buoyancy period defined
through

τ2
buoy =

h2
0

L2
m,

where m is the dimensionless mass (see Appendix A), one can write (2.28) under
the form

τµ(εδ)2 =
h2

0

L2

(
m+ma(εδ)

)
where ma(εδ) acts as an added mass,

(2.30) ma(εδ) =
L2

2`h2
0

ˆ `

−`

x2

heq(x) + εδ
dx+

1

3
〈 1

heq + εδ
〉.

The buoyancy period is therefore affected by the added mass phenomenon, that is,
by the fact that when it moves in a fluid, a solid not only has to accelerate its own
mass but also the mass of the fluid around it. One can check from (2.30) that, in
shallow water, the added mass can actually be larger than the proper mass of the
solid, a fact that has been noticed in ocean engineering [43]. One deduces from
(2.28) that the added mass effect increases the value of the buoyancy period.
Note also that the last term in (2.28) is due to the presence of the dispersive term
in the equations. This is not the only contribution of dispersion to the added mass
effect. As we shall see later (see Remark 3.2), dispersion induces a qualitatively
new added mass effect in the form of a coupling with the equation on 〈qi〉.
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Proof. For the sake of conciseness, we use here the notation
ffl `
−` = 1

2`

´ `
−` f . New-

ton’s equation (2.11) can be written

τ2
buoyδ̈ + δ =

1

ε

1

2`

ˆ `

−`
Πi(t, x)dx

= −1

ε

 `

−`
x∂xΠi(t, x)dx+ 〈1

ε
Πi〉,(2.31)

where we used an integration by parts to derive the second equation. In order to
compute the integral in the right-hand-side, let us remark that from Proposition
2.2 we get

−1

ε
∂x
(
hw∂xΠi

)
= −δ̈ + ε∂2

x

( 1

hw
q2
i

)
.

Integrating this relation, there is a constant c0 such that

−1

ε
∂xΠi = − x

hw
δ̈ + ε

1

hw
∂x
( 1

hw
q2
i

)
+
c0
hw

.

Recalling that heq (and therefore hw = heq + εδ) is an even function, and using
(2.20), we get

−1

ε

 `

−`
x∂xΠi = −

(  `

−`

x2

hw

)
δ̈ + ε

 `

−`

x

hw
∂x
( 1

hw
q2
i

)
= −

(  `

−`

x2

hw

)
δ̈ + ε

(
−
 `

−`

x2

hw
∂x
( x
hw

)
+ 〈 x

2

h2
w

〉
)
δ̇2

+ ε
(
−
 `

−`

1

hw
∂x
( x
hw

)
+ 〈 1

h2
w

〉
)
〈qi〉2.

We now need the following lemma.

Lemma 2.1. The following identities hold (with hw = heq + εδ)

−
 `

−`

x2

hw
∂x
( x
hw

)
dx+

1

2
〈 x

2

h2
w

〉 = β(εδ)

−
 `

−`

1

hw
∂x
( x
hw

)
dx+

1

2
〈 1

h2
w

〉 =
1

2
α′(εδ).

Proof of the lemma. For the first identity, one just has to remark that

−
 `

−`

x2

hw
∂x
( x
hw

)
= −

 `

−`

x2

h2
w

− 1

2

 `

−`
x3∂x

( 1

h2
w

)
=

1

2

 `

−`

x2

h2
w

− 1

2
〈 x

2

h2
w

〉,

the last identity stemming from an integration by parts.

For the second identity, since α′(εδ) = −
ffl `
−`

1
h2
w

, we just have to remark that

−
 `

−`

1

hw
∂x
( x
hw

)
= −

 `

−`

1

h2
w

− 1

2

 `

−`
x∂x

( 1

h2
w

)
= −1

2

 `

−`

1

h2
w

− 1

2
〈 1

h2
w

〉,

the last line following from an integration by parts. �
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Corollary 2.1 and Remark 2.3 imply that

〈1
ε

Πi〉 = 〈ζe + Ge〉 − ε〈
1

2

〈qi〉2 + `2δ̇2

h2
w

〉 − 1

3
µ〈 1

hw
〉δ̈,

so that we can deduce from (2.31) and the lemma that(
τ2
buoy +

 `

−`

x2

hw
+

1

3
〈 1

hw
〉µ
)
δ̈ + δ = εβδ̇2 + ε

1

2
α′〈qi〉2 + 〈ζe + Ge〉,

which is the result stated in the proposition. �

3. Wave-structure interaction as a transmission problem

Taking advantage of the analysis performed in the previous section, our aim
here is to formulate the wave-structure interaction equations under the form of a
transmission problem and to study this latter. The transmission problem, formed
by the Boussinesq-Abbott equations in both components of the exterior domain
coupled with transmission conditions involving forced ODEs on δ and 〈qi〉, is made
explicit in §3.1. A toy model for this transmission problem (with more standard
transmission conditions) if then proposed in §3.2; based on this analysis, a first
reformulation of the wave-structure transmission problem is performed in §3.3, ex-
hibiting in particular a nontrivial contribution of the dispersive terms to the added
mass phenomenon. In §3.4, a second reformulation is proposed, in which we show
that the whole system can be recast as an ODE; taking advantage of this structure,
we show that the wave-structure equations are well-posed. The existence time thus
obtained is however not uniform with respect to the dispersive parameter µ; we
therefore address in §3.5 the issue of proving uniform estimates and establish a
conditional uniform estimate as well as uniform estimates for equations linearized
around non trivial states. To this end, we exhibit a new hidden regularity phenom-
enon granted by the dispersive terms.

We shall use the following notations throughout this section.

Notation 1.
- For the sake of clarity we simply write f instead of fe when dealing with the
restriction of a function f to the exterior domain E . To avoid any confusion, we
still keep the subscript and write fi for the restriction to the interior domain I.
- Dispersive boundary layers play a central role in the analysis performed in this
section. Since their decay rate is

√
µ/3, it is convenient to introduce the parameter

κ as

κ =

√
µ

3
.

- We shall denote by fsw the momentum flux associated with the shallow water
equations, namely,

(3.1) fsw =
h2 − 1

2ε
+ ε

q2

h
= ζ + ε

(1

2
ζ2 +

q2

h

)
,

so that the Boussinesq-Abbot equations (2.1) in the exterior domain can be written
in more compact form{

∂tζ + ∂xq = 0

(1− κ2∂2
x)∂tq + ∂xfsw = 0,

for t ≥ 0, x ∈ E .
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3.1. Derivation of a wave-structure transmission problem. Recalling that
the interior discharge is given by qi(t, x) = −xδ̇(t)+〈qi〉(t), the continuity condition
(2.18) on the discharge can be equivalently written under the form

JqK = −2`δ̇ and 〈q〉 = 〈qi〉,
where we recall that the jump J·K and average 〈·〉 are defined in (1.4) and (1.5).
The analysis performed in Section 2 shows that the wave-structure equations (2.13)-
(2.19) can be reduced to a transmission problem for the Boussinesq-Abbott system
written on both components of the exterior domain E . This is summarized in the
following theorem.

Theorem 3.1. Assume that ζeq is an even function and let fsw be as in (3.1).
For smooth enough solutions, the resolution of the wave-structure equations (2.11),
(2.14)-(2.18) and (2.21) is equivalent to the resolution of the standard Boussinesq-
Abbott system

(3.2)

{
∂tζ + ∂xq = 0

(1− κ2∂2
x)∂tq + ∂xfsw = 0,

for t ≥ 0, x ∈ E ,

on both components of the exterior domain E and with transmission conditions

(3.3) 〈q〉 = 〈qi〉 and JqK = −2`δ̇,

and where 〈qi〉 and δ solve

α(εδ)
d

dt
〈qi〉+ εα′(εδ)δ̇〈qi〉 = − 1

2`
Jζ + GK,(3.4)

τµ(εδ)2δ̈ + δ − εβ(εδ)δ̇2 − ε1

2
α′(εδ)〈qi〉2 = 〈ζ + G〉,(3.5)

where we recall that

G = ε
1

2

q2

h2
− κ2 1

h
∂x∂tq,

and that α(εδ) is as in Proposition 2.3, and τµ(εδ) and β(εδ) as in Proposition 2.4.

The energy of the fluid in the exterior domain, associated with (3.2) is

(3.6) Eext =
1

2

ˆ
E

(
ζ2 +

1

h
q2 + κ2 1

h
(∂xq)

2
)
,

and we also introduce an ”interior energy” that depends only on Z = (〈qi〉, δ, δ̇),
(3.7) Eint = `

(
δ2 + τµ(εδ)2δ̇2 + α(εδ)〈qi〉2

)
.

They satisfy the following energy estimate in which we do not seek to close the
estimate by providing a control of the residual term; this more delicate issue is
addressed in §3.5 below.

Proposition 3.1. Under the assumptions of Theorem 3.1, the following energy
estimate holds,

d

dt

[
Eext + Eint

]
+ εκ2`〈 1

(heq + εδ)2
〉δ̇3 = 3εκ2

ˆ
E
R,

where we recall that R = 1
6h2 (∂xq)

3 + 1
3h2 q(∂t∂xq)∂xζ.
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Proof. There are two ways to derive the energy estimate of the proposition. The
first one consists in multiplying the two equations of (3.2) by ζ and q respectively

and integrating by parts, and multiplying (3.4) and (3.5) by 〈qi〉 and δ̇ respectively,
and adding the resulting identities. The second method is to deduce it from the
approximate conservation of the total energy established in Corollary 2.1, namely,

(3.8)
d

dt
Etot = 3εκ2

( ˆ
I
R +

ˆ
E
R
)
,

and Etot can be written as

Etot = Eext +

ˆ
I
ei + Esolid with Esolid = 2`

(1

ε
mδ +

1

2
τ2
buoyδ̇

2
)
,

where we recall that e = 1
2ζ

2 + 1
2

1
hq

2 +κ2 1
2h (∂xq)

2. Since in the interior region, one

has qi = −xδ̇+ 〈qi〉 and ζi = ζw with ζw given by (2.7), namely, ζw = δ+ 1
ε (heq−1),

one deducesˆ
I
R =

d

dt

[( ˆ `

−`

1

6εhw
− `

3ε
〈 1

hw
〉
)
δ̇2
]
− `

3
〈 1

h2
w

〉δ̇3,

ˆ
I
ei =

(heq − 1)2

2ε2
− 2`

1

ε
mδ + `δ2 + 〈qi〉2

ˆ `

−`

1

2hw
+ κ2δ̇2

ˆ `

−`

1

2hw
,

where we used Archimedes’ principle (2.9) for the second term in the right-hand
side of the second identity. Plugging these identities into (3.8) yields the result. �

3.2. Study of a general transmission problem for the Boussinesq-Abbott
system. Before addressing the transmission problem derived in the previous sec-
tion, where the transmission conditions involve ODEs that are coupled with the
solution of the transmission problem itself, it is instructive to study a simpler,
yet quite general, transmission problem, where the transmission conditions are
given in terms of known functions. More precisely, we consider in this section the
Boussinesq-Abbott equations

(3.9)

{
∂tζ + ∂xq = 0

(1− κ2∂2
x)∂tq + ∂xfsw = 0,

for t ≥ 0, x ∈ E

(with κ2 = µ/3 and fsw as in (3.1)) on both components of the exterior domain E
and with transmission conditions

(3.10) 〈q〉 = f and JqK = 2g,

where f, g ∈ C1(R+) are known functions.

Remark 3.1. One can see the boundary value problem on the half-line (`,∞){
∂tζ + ∂xq = 0

(1− κ2∂2
x)∂tq + ∂xfsw = 0,

for t ≥ 0, x > `,

with boundary condition q|x=` = f as a particular case of the transmission problem
(3.9)-(3.10). Indeed, it suffices to extend ζ and q as ζ(t,−x) = ζ(t, x) and q(t,−x) =
−q(t, x) for all x > ` and to take g = 0. The associated initial boundary value
problem has been considered in [21] in the linear case (ε = 0, so that fsw = ζ) using
Fokas’ unified transform method. This initial boundary value problem has also
been considered both theoretically and numerically, but with a boundary condition
on ζ rather than q, in [28].
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In the case where µ = 0 (the shallow-water equation), it is well known that the
initial boundary value problem associated with (3.9)-(3.10) is locally well-posed in
Hn(E)×Hn(E) (n ≥ 2) provided that n compatibility conditions are satisfied (see
for instance [18] or the lecture notes [29]). The presence of the dispersive term
−µ3 ∂2

x∂t makes things different; as observed in [9, 28] in related situations, a single
compatibility condition is enough to obtain a regular solution because dispersion
smoothes the solution by creating a dispersive boundary layer of order O(κ).

Indeed, it is possible to reduce (3.9)-(3.10) to an ODE. To perform this, it is
necessary to introduce the regularizing operators R0 and R1 defined as the inverses
of (1−κ2∂2

x) with homogeneous Dirichlet and Neumann data respectively at x = ±`,
that is,

(3.11) R0f = u and R1f = v,

where

(3.12)

{
(1− κ2∂2

x)u = f,

u|x=±` = 0,
and

{
(1− κ2∂2

x)v = f,

(∂xv)|x=±` = 0.

In the statement below, we denote

Hn = Hn+1(E)×Hn+2(E).

Proposition 3.2. Let f, g ∈ C1(R+), n ∈ N, and U in = (ζ in, qin) ∈ Hn be such
that

inf(1 + εζ in) > 0, 〈qin〉 = f(0) and JqinK = 2g(0).

Then for all κ > 0, there is T > 0 such that the system (3.9)-(3.10) has a unique
solution (ζ, q) ∈ C1([0, T [;Hn) with initial data U in.

Proof. The key ingredient of the proof is to reformulate the problem as an ODE.

Lemma 3.1. Let T > 0, (f, g) ∈ C1([0, T ]) and U = (ζ, q) ∈ C1([0, T ];H0) be such
that inf [0,T ]×E 1 + εζ > 0, and such that the transmission conditions are initially
satisfied

〈q|t=0〉 = f(0) and Jq|t=0K = 2g(0).

Then U solves (3.9)-(3.10) if and only it solves

(3.13)

{
∂tζ = −∂xq,
∂tq = −∂xR1fsw +

(
ḟ ± ġ

)
e−

1
κ |x∓`|.

Proof of the lemma. Recalling that R0 is the inverse of (1 − κ2∂2
x) with Dirichlet

boundary conditions on each side of E , the second equation of (3.9) is equivalent to

(3.14) ∂tq = −R0∂xfsw + (ḟ ± ġ)e−
1
κ |x∓`| on E±.

Using the fact that R0∂x = ∂xR1 we obtain the expected equation (3.13). The only
thing left to prove is therefore that if (3.14) is satisfied, and if the transmission
condition (3.10) holds at t = 0, then it holds for all time. This is obvious after
remarking that one readily gets from (3.14) that

d

dt
〈q〉 = ḟ and

d

dt
JqK = 2ġ.

�
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Proving that (3.13) is actually an ODE also requires the following lemma which
can classically be established by multiplying both equations of (3.12) by u and
integrating by parts.

Lemma 3.2. The operators R`, κ∂xR` and κ2

2 ∂
2
xR` for ` = 0, 1 are bounded oper-

ators on L2(E), with operator norm smaller than one.

Let O denote the open subset of Hn of the U = (ζ, q) such that infE(1 + εζ) > 0.
Let us also write (3.13) in compact form as

d

dt
U = Φ(U),

where Φ = (φ1, φ2) and

φ1 = −∂xq, φ2 = −∂xR1fsw +
(
ḟ ± ġ

)
e−

1
κ |x∓`|.

Since ∂xR1 : Hn → Hn+1 is a bounded operator (as a consequence of Lemma
3.2), we can deduce from standard trace and product estimates in Sobolev spaces
that Φ is a smooth mapping from O to Hn and the local existence follows from
Cauchy-Lipschitz theorem. �

3.3. Reformulation of the wave-structure transmission problem. The quan-
tities JGK and 〈G〉 that appear as source terms in the differential equations (3.4)
and (3.5) for 〈qi〉 and δ depend themselves on these two terms; indeed, in order
to compute JGK and 〈G〉, one must solve the transmission problem (3.2)-(3.3) in
which the transmission conditions are given in terms of 〈qi〉 and δ.
In the nondispersive case (µ = 0, shallow water equations), this dependence is of
lower order and JGK and 〈G〉 can be treated as source terms in the ODEs for 〈qi〉
and δ (see Remark 3.2 below). A new phenomenon appears in the presence of dis-
persion: these quantities contain leading order terms in the differential equations
for δ and 〈qi〉. As for the added mass coefficient, they cannot therefore be treated
as source terms, both theoretically and numerically. This issue is addressed in the
following theorem where we essentially show that JGK and 〈G〉 can be decomposed
as the sum of explicit leading order terms and lower order terms JHK and 〈H〉 that
can be treated as source terms. We recall that we denote respectively by R0 and
R1 the inverses of (1 − κ2∂2

x) with homogeneous Dirichlet and Neumann data at
x = ±` (see (3.11, 3.12)).

Theorem 3.2. Assume that ζeq is an even function and let fsw be as in (3.1).
For smooth enough solutions, the resolution of the wave-structure equations (2.11),
(2.14)-(2.18) and (2.21) is equivalent to the resolution of the standard Boussinesq-
Abbott system

(3.15)

{
∂tζ + ∂xq = 0

(1− κ2∂2
x)∂tq + ∂xfsw = 0,

for t ≥ 0, x ∈ E ,

on both components of the exterior domain E and with transmission conditions

(3.16) 〈q〉 = 〈qi〉 and JqK = −2`δ̇,

and where 〈qi〉 and δ solve the coupled system of ODEs

(3.17) Tµ(εδ, εζ±)
d

dt

(〈qi〉
δ̇

)
+

(
εα′(εδ)δ̇〈qi〉

δ − ε
(
β(εδ)δ̇2 + 1

2α
′(εδ)〈qi〉2

)) =

(
− 1

2`JHK
〈H〉

)
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with β(εδ) as defined in (2.29), and with H = H(ζ, q) given by

(3.18) H(ζ, q) =
1

2
ε

(
1

h
ζ2 − q2

h2

)
+

1

h
R1fsw,

while Tµ(εδ, εζ±) is the invertible matrix given by

(3.19) Tµ(εδ, εζ±) =

(
α(εδ) + 1

`κ〈 1
h 〉 − 1

2κJ
1
hK

− 1
2κJ

1
hK τµ(εδ)2 + `κ〈 1

h 〉

)
,

where we recall that τµ(εδ) and α(εδ) are defined in (2.28) and (2.26) respectively.

Remark 3.2. The difference between (3.17) and the evolution equations (2.27) and
(2.25) on δ and 〈qi〉, is that a new contribution to the added mass effect (see Remark
2.5) coming from the dispersive term has been exhibited. It is of interest to note
that the dispersive terms not only provide a quantitative contribution to the added
mass effect, but also a qualitative one since it induces a new coupling between the
equations on 〈qi〉 and δ. This is not the case in the non dispersive case where
the matrix Tµ(εδ, εζ±) is diagonal and the equations are only coupled through the
nonlinear and source terms, namely,{

α(εδ) ddt 〈qi〉+ εα′(εδ)δ̇〈qi〉 = − 1
2`Jζ + ε 1

2
q2

h2 K,
τ0(εδ)2δ̈ + δ − εβ(εδ)δ̇2 − ε

2α
′(εδ)〈qi〉2 = 〈ζ + ε 1

2
q2

h2 〉
(this system can either be derived directly as in [26, 33, 5], or formally be derived
from (3.17) by setting κ = 0 and observing that limκ→0R1f|x=±` = f(±`)).
Proof. Taking into account the transmission conditions (3.16), the formula (3.14)
for ∂tq becomes

(3.20) ∂tq = −R0∂xfsw + (
d

dt
〈qi〉 ∓ `δ̈)e−

1
κ |x∓`| on E±.

We then obtain after differentiating in space, multiplying by 1/h and taking the
jump,

κ2J
1

h
∂t∂xqK = −κ2J

1

h
∂xR0∂xfswK− 2κ〈 1

h
〉 d
dt
〈qi〉+ `κJ

1

h
Kδ̈.

Therefore the evolution equation (3.4) on 〈qi〉 is equivalent to

−κ2J
1

h
∂xR0∂xfswK− 2κ〈 1

h
〉 d
dt
〈qi〉+ `κJ

1

h
Kδ̈ = Jζ + ε

1

2

q2

h2
K + 2`

(
α
d

dt
〈qi〉+ εα′δ̇〈qi〉

)
and therefore(
`α+κ〈 1

h
〉
) d
dt
〈qi〉−

1

2
`κJ

1

h
Kδ̈+ε`α′(εδ)δ̇〈qi〉 = −1

2

(
κ2J

1

h
∂xR0∂xfswK+Jζ+ε

1

2

q2

h2
K
)
.

Remarking further that R0∂x = ∂xR1, where R1 is the inverse of (1 − κ2∂2
x) with

Neumann boundary conditions on each side of E , one can write

κ2∂xR0∂xfsw =
µ

3
∂2
xR1fsw

= −fsw +R1fsw,

so that a first ODE on 〈qi〉 and δ̇ is given by

(3.21)
(
`α(εδ) + κ〈 1

h
〉
) d
dt
〈qi〉 −

1

2
`κJ

1

h
Kδ̈ = −ε`α′(εδ)δ̇〈qi〉 −

1

2
JHK,
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with H given by

H(ζ, q) = ζ +
1

2
ε
q2

h2
− 1

h

(
1−R1

)
fsw,

or equivalently, by the formula given in (3.18).

Similarly, differentiating (3.20) with respect to x, multiplying by 1/h and taking
the average yields

κ2〈 1
h
∂t∂xq〉 = −κ2〈 1

h
∂xR0∂xfsw〉 −

1

2
κJ

1

h
K
d

dt
〈qi〉+ `κ〈 1

h
〉δ̈,

which we can plug into (2.27) to obtain

(3.22)
(
τµ(εδ)2 + `κ〈 1

h
〉
)
δ̈−1

2
κJ

1

h
K
d

dt
〈qi〉 = −δ + εβ(εδ)δ̇2 +

ε

2
α′(εδ)〈qi〉2 + 〈H〉.

The result therefore follows from (3.20), (3.21) and (3.22).
�

3.4. Reduction to an ODE. It was remarked in [9] in the case of a fixed struc-
ture (and for the simpler Boussinesq system (2.5)) that the transmission problem
could be reduced to an ODE. We show here that this remains true in the case of
a freely floating structure and for the Boussinesq-Abbott system. In the statement
below, we assume that (ζ, q) ∈ H with H = H1(E)×H2(E); this regularity ensures
that the traces of ζ, q and ∂xq are well defined at ±`. Note also that the con-
dition inf(t,x)∈[0,T ]×R h(t, x) > 0 means that inf(t,x)∈[0,T ]×E{1 + εζ(t, x)} > 0 and
inf(t,x)∈[0,T ]×I{heq(x) + εδ(t)} > 0; this is therefore a condition on ζ and on δ.

Proposition 3.3. For U = (ζ, q) ∈ C1([0, T ];H) and Z = (〈qi〉, δ, δ̇) ∈ C1([0, T ];R3)
such that inf [0,T ]×R h > 0, and

Jq|t=0
K = −2`δ̇(0), 〈q|t=0

〉 = 〈qi〉(0),

the system (3.15)–(3.17) is equivalent to

(3.23)


∂tζ = −∂xq,
∂tq = −∂xR1fsw +

(
Q(Z, JHK)∓ `D(Z, 〈H〉)

)
e−

1
κ |x∓`|,

d
dtZ = Z

(
Z, 〈H〉, JHK

)
,

where the first two equations are cast on E±, H is defined in (3.18) and where

Z(Z, 〈H〉, JHK) :=
(
Q(Z, JHK), δ̇,D(Z, 〈H〉)

)T
, with(

Q(Z, JHK)
D(Z, 〈H〉)

)
= Tµ(εδ, εζ±)−1

(
−ε`α′(εδ)δ̇〈qi〉 − 1

2JHK
−δ + εβ(εδ)δ̇2 + ε 1

2α
′(εδ)〈qi〉2 + 〈H〉

)
.

Proof. Let us remark first that if the initial data satisfy Jq|t=0
K = −2`δ̇(0) and

〈q|t=0
〉 = 〈qi〉(0) then the transmission condition (3.3) is equivalent to

(3.24)
d

dt
JqK = −2`δ̈ and

d

dt
〈q〉 =

d

dt
〈qi〉.

As already noticed in (3.20), the second equation of (3.15) together with the jump

condition d
dtJqK = −2`δ̈ is equivalent to

∂tq = −R0∂xfsw + (
d

dt
〈qi〉 ∓ `δ̈)e−

1
κ |x∓`| on E±.
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Using the fact that R0∂x = ∂xR1 and replacing d
dt 〈qi〉 and δ̈ by the formula provided

by (3.17), one obtains the result. �

Using the fact that (3.23) is an ODE on the space Hn×R3, with Hn = Hn+1(E)×
Hn+2(E), we obtain the following well-posedness result for the wave-structure in-
teraction problem.

Theorem 3.3. For n ≥ 0, consider initial data U in = (ζ in, qin) ∈ Hn and Zin =
(〈qi〉in, δ0, δ1) ∈ R3 satisfying inf hin > 0. Then for all ε ∈ [0, 1] and κ > 0, there is
T > 0 such that the system (3.23) has a unique solution in (U, Z) ∈ C1([0, T [;Hn×
R3) with initial data (U in, Zin), which in addition belongs to C∞([0, T [;Hn × R3).
Moreover, if T ∗ denotes the maximal existence time and T ∗ <∞, one has

lim sup
t→T∗

[∣∣(ζ, q, 1

1 + εζ
)(t)
∣∣
L∞(E)

+ |δ̇(t)|+ |〈qi〉(t)|+
∣∣ 1

1 + εδ(t) + εζeq

∣∣
L∞(I)

]
= +∞.

Remark 3.3. Since the relations (3.24) obviously hold for the solution, the trans-
mission condition

〈q〉 = 〈qi〉 and JqK = −2`δ̇

are satisfied for all time if the initial data satisfy

JqinK = −2`δ1, 〈qin〉 = 〈qi〉in.

Proof. Let O denote the open subset of Hn×R3 of the (U, Z) = (ζ, q, 〈qi〉, δ, δ̇) such
that infR h > 0 (as already explained in the comments before Proposition 3.3, this
latter is a condition on ζ in the exterior domain, and on δ in the interior domain).
Let us also write (3.23) in compact form as

d

dt
(U, Z) = Φ(U, Z)

where Φ = (φ1, φ2, φ3, φ4, φ5) and

φ1 = −∂xq, φ2 = −∂xR1fsw +
(
Q∓ `D

)
e−

1
κ |x∓`|,

φ3 = Q(Z, JHK), φ4 = δ̇, φ5 = D(Z, 〈H〉).
From standard trace and product estimates in Sobolev spaces, Φ is a smooth map-
ping from O to Hn × R3 and the local existence follows from Cauchy-Lipschitz
theorem. From Moser type estimates, we also get

(3.25) |Φ(U, Z)|Hn×R3 ≤ Cµ
(
|ζ, q, 1

h
|L∞(E), |〈qi〉, δ, δ̇|, |

1

hi
|L∞(I)

)
|(U, Z)|Hn×R3 ,

with Cµ a smooth non decreasing function of its arguments. Classically, this means
that if the maximal existence time is finite, one of the arguments of Cµ has to blow

up. Remarking further that δ cannot blow up in finite time without δ̇ also blowing
up, one gets the result. �

3.5. Uniform estimates. Theorem 3.3 shows that the equations are locally well-
posed, but the existence time is not uniform with respect to ε and µ (or equivalently
κ) and may shrink to zero when these parameters become very small. It is however
possible to derive a uniform estimate on a time interval of size O( 1

ε ) under the

assumption that (ζ, q) remains uniformly bounded in W 1,∞(E). This estimate is
a generalization of the estimate one can derive for the Boussinesq equations on
the full line (see Step 0 of the proof), and implies in particular that for a time
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scale O(1/ε) the solid cannot touch the bottom if ζ, q and their first order spatial
derivatives remain bounded.

Theorem 3.4. Assume that the assumptions of Theorem 3.3 are satisfied and let
M0 > 0 be such that

inf
E∪I

( 1

hin

)
+ |(ζ in, qin, κ∂xq

in)|2 + |(〈qi〉in, δ0, δ1)| ≤M0,

and assume moreover that there are T > 0 and M > 0 such that the solution
provided by Theorem 3.3 exists on [0, T ] and that |(ζ, q)|L∞([0,T ]×W 1,∞(E)) ≤M .

Then there exists T1 = T1(M0,M) > 0 such that for all 0 ≤ t ≤ min{T , 1
εT1}, one

has

inf
E∪I

( 1

h

)
+ |(ζ, q, κ∂xq)(t)|2 + |(〈qi〉, δ, δ̇)(t)| ≤ C

(
M0

)
,

with C(·) a nondecreasing function of its argument.

Remark 3.4. The time T1 and the upper bound C(M0) only depend on M0 and M ;
in particular they are uniform with respect to (ε, κ) ∈ (0, 1)2.

Proof. For the sake of clarity, we generically denote throughout this proof by C(·)
a nondecreasing function of its arguments that does not depend on ε nor κ, but
whose exact expression may differ form one line to another. We also recall that
κ2 = µ/3.
Step 0. Energy estimates for the Boussinesq equations on the full line. For the sake
of clarity we first explain here how to derive an energy estimate for the Boussinesq
equations (2.1) when they are cast on the full line R. More precisely, we show that
if (ζ, q) is a smooth solution on a time interval [0, T ] on which h ≥ hmin > 0, then

∀t ∈ [0, T ], EBouss(t) ≤ EBouss(0) exp
(
εtC

( 1

hmin
, |(ζ, q)|L∞([0,T ];W 1,∞(R))

))
,

where EBouss is the energy associated with the Boussinesq system,

EBouss =
1

2

ˆ
R

(
ζ2 +

1

h
q2 + κ2 1

h
(∂xq)

2
)
.

Using (2.3), one readily gets that

d

dt
EBouss = 3εκ2

ˆ
R
R with R =

1

6h2
(∂xq)

3 +
1

3h2
q(∂t∂xq)∂xζ,

so that

κ2

ˆ
R
R ≤ C

( 1

hmin
, |(∂xζ, ∂xq)|L∞(R)

)(
κ2| 1√

h
∂xq|2L2(R) + | 1√

h
q|2|κ2∂x∂tq|L2(R)

)
.

Now, using the second equation of the Boussinesq system, one has

(3.26) κ2∂x∂tq = −κ2(1− κ2∂2
x)−1∂2

xfsw,

and therefore,

|κ2∂x∂tq|L2(R) ≤ C(
1

hmin
, |(ζ, q)|L∞(R))|(ζ,

1√
h
q)|L2(R).

It is then straightforward to deduce that

d

dt
EBouss ≤ εC(

1

hmin
, |(ζ, q)|W 1,∞)EBouss,
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which yields the energy estimate stated above.
We shall follow the general scheme of this proof for our wave-structure system; the
main difference are that some control are needed for the quantities δ, δ̇ and 〈qi〉
associated with the interior region, and one has to consider an initial boundary
value problem instead of a simple initial value problem for the Boussinesq system;
in particular, (3.26) is no longer valid and boundary terms make the analysis more
delicate.
Step 1. Adaptation for the wave-structure system, assuming that h ≥ hmin on
E for some hmin > 0. We shall work here with the formulation (3.2)-(3.5) of the
problem, as derived in Theorem 3.1. The quantity EBouss used in Step 0 is here
replaced by Eext, which is also the integral of the local density of energy e but on
the exterior region E instead of the whole line R, see (3.6), and we also need the
interior energy Eint defined in (3.7). As shown in Proposition 3.1, we have

d

dt

[
Eext + Eint

]
+ εκ2`〈 1

h2
i

〉δ̇3 = 3εκ2

ˆ
E
R.

Controlling R as in Step 0, we have

(3.27)
d

dt

[
Eext + Eint

]
+ εκ2`〈 1

h2
i

〉δ̇3 ≤ εC
( 1

hmin
, |(∂xζ, ∂xq)|∞

)
Eext + ε|κ2∂x∂tq|22

(recall that the notation | · |2 stands for | · |L2(E)), and, as in the previous step,

the key point is to control |κ2∂x∂tq|2. Because of the boundaries, and as shown by
Proposition 3.3, (3.26) must be replaced by

∂t∂xq = −∂2
xR1fsw ∓

1

κ
q̇±e
− 1
κ |x∓`|,

where we recall that q± = q|x=±` , so that

κ2|∂x∂tq|2 . |κ2∂2
xR1fsw|2 + κ3/2|(q̇−, q̇+)|.

Since κ2∂2
xR1 : L2 → L2 is uniformly bounded (with respect to κ), the first term

in the right-hand-side can be controlled exactly as in (3.26), so that one gets from
(3.27) that

d

dt

[
Eext + Eint

]
+ εκ2`〈 1

h2
i

〉δ̇3

≤ εC
( 1

hmin
, |(ζ, q)|W 1,∞

)
Eext + εκ3|(q̇−, q̇+)|2.(3.28)

To close the estimate, we still need a control on |(q̇−, q̇+)|.
Step 2. Control of |(q̇−, q̇+)|. According to Proposition 3.3, one has

(3.29) |(q̇−, q̇+)| ≤
(
|Q|+ `|D|

)
,

with Q and D defined in Proposition 3.3. We remark first that 〈H〉 and JHK, with
H as defined in (3.18), can be controlled as

|〈H〉|+ |JHK| ≤ C
( 1

hmin
, |ζ|∞

)[
ε
(
1 + δ̇2 + 〈qi〉2

)
+ |(R1fsw)±|

]
.

with (R1fsw)± = (R1fsw)|x=±` . Let us now remark that for all f ∈ L2(E), one has

(R1f)± = κ−1

ˆ
E±

exp(− 1

κ
|x∓ `|)f(x)dx



FREELY FLOATING OBJECT WITH THE BOUSSINESQ EQUATIONS 27

so that

(3.30) |(R1f)±| ≤ (2κ)−1/2|f |2.
It follows from the above that

|〈H〉|+ |JHK| ≤ C
( 1

hmin
, |(ζ, q)|∞

)[
ε
(
1 + δ̇2 + 〈qi〉2

)
+

1

κ1/2
|(ζ, q)|2

]
.

We directly deduce from the definition of Q and D provided in Proposition 3.3 and
(3.29) that

|(q̇−, q̇+)| ≤C
( 1

hmin
, |(ζ, q)|∞

)[
|δ|+ ε

(
1 + δ̇2 + 〈qi〉2

)
+

1

κ1/2
|(ζ, q)|2

]
.(3.31)

Step 3. We show here that one can choose T1 such that the assumption h ≥ hmin >
0 is satisfied on min{T , 1

εT1}. Indeed, since by assumption infE hin > 0, there exists

hmin > 0 such that infE hin ≥ 2hmin. Since ∂tζ = −∂xq, one can write

h(t, x) = hin(x)− ε
ˆ t

0

∂xq(s, x)ds

and choosing T1 > 0 such that εT1M ≤ hmin yields the result.
Step 4. Conclusion. Using (3.31) in (3.28), and plugging the resulting estimate
into (3.27), one obtains that

d

dt

[
Eext + Eint

]
≤ εF

(
Eext + Eint

)
,

for some smooth function F that does not depend on κ ∈ (0, 1) and ε ∈ (0, 1). From
the theorem of comparison for ODEs, one deduces that is possible to choose T1 > 0
such that Eext+Eint is uniformly bounded from above by a constant depending only
on M0 on the time interval min{T , 1

εT1}. We have already seen that h ≥ hmin > 0
on E over this time interval. Taking a smaller T1 if necessary, one gets similarly
that hi ≥ hmin > 0 on I. The results follows. �

Theorem 3.4 is only a conditional result, since it assumes that the solution re-
mains uniformly bounded in W 1,∞(E). This is the equivalent of the basic L2-
estimate for hyperbolic initial boundary value problems. In the hyperbolic frame-
work, the next natural steps would be to obtain a similar control on the time
derivatives of the solution by the initial value of these time derivatives, to express
these latter quantities in terms of spatial derivatives of the initial data, and finally
to use some ellipticity property to control space-derivatives in terms of time deriva-
tives. By Sobolev embedding, one could then control the W 1,∞(E) by energy norms
and obtain an unconditional result (see for instance [18] or the lecture notes [29]
for the implementation of this strategy for the shallow water equations).
In the presence of dispersion, this strategy is much more delicate to implement;
controlling the initial value of the time derivatives in terms of spatial derivatives
of the initial data, and recovering information on the space derivatives from the
control of the time derivatives is considerably more difficult than in the hyperbolic
case. This program has been achieved in [9], where well-posedness is established for
a time scale O(1/ε), uniformly with respect to µ (or, equivalently, κ), but for the
formally equivalent Boussinesq system (2.5) instead of (2.1), and for a fixed object
– these two conditions made possible the reduction to a transmission problem with
linear transmission conditions. The situation here is made more complicated for at
least three reasons:
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• The floating object is not fixed and one needs to understand its coupling
with the exterior wave field and in particular the dispersive contribution to
the added mass effect;
• The contribution of the dispersive term in the transmission conditions (3.3)-

(3.5), namely − µ
3h∂x∂tq, is nonlinear (in [9], it is given by the linear expres-

sion −µ3 ∂x∂tq); as shown below, this is why we need the hidden regularity
effect exhibited here;
• The energy conservation is not exact as in [9]. Proposition 3.1 shows that

the residual is formally small, namely, of order O(εκ2) but it is not obvious
at all that it can be controled by the natural energy of the system.

A full proof of the uniform well-posedness for (3.2)-(3.5) requires considerable work
and would probably double the size of this paper; we therefore postpone it for
future work. We want however to address here the issue of energy estimates for
the linearized equations since this might be where the main difference with respect
to [9] lays, and because it exhibits a phenomenon of independent interest that can
be interpreted as a dispersive equivalent of the trace estimates obtained in the
hyperbolic case through Kreiss symmetrizers.

In order to understand where the difficulty comes from, let us remark that
when one applies ∂jt (j ≥ 1) to the linear expression −µ3 (∂x∂tq)±, one finds

−µ3 (∂x∂t(∂
j
t q))± which is the same term with q replaced by ∂jt q. The transmis-

sion conditions one has to deal with in [9] for the time derivatives of the solution
have therefore the same structure as the original one, and can be dealt with using
the basic L2-estimate (the equivalent of Theorem 3.4). Now, when applying ∂jt to
the nonlinear term − µ

3h (∂x∂tq)± = µ
3h (∂2

t ζ)±, one finds

∂jt
( µ

3h
(∂2
t ζ)±

)
=
µ

3h
(∂2
t (∂jt ζ))±

− µεj
3
∂t
(∂tζ
h2

∂jt ζ
)
± +

µε

3

[
j∂t(

∂tζ

h2
)− ∂2

t ζ

h2

]
∂jt ζ±.(3.32)

The first term in the right-hand side of this expression is the same as the original
one with ζ replaced by ∂jt ζ, but the other two are new and they involve the trace

of ∂jt ζ and ∂j+1
t ζ at x = ±`. These quantities cannot be controlled by the energy

norms of (∂jt ζ, ∂
j
t q) and require a specific treatment that we now describe and which

is based on a hidden regularity effect of a completely different nature as the one,
based on Kreiss symmetrizers, that is used in the hyperbolic case get control on
the trace of the solution (see for instance [37, 4, 18]).

We consider a system linearized around a couple of functions (ζ, q) (typically the
exact solution), and with source terms f , g1 and g2 in the linearized momentum
and transmission conditions equations respectively, namely,

(3.33)

{
∂tζ + ∂xq = 0,

(1− κ2∂2
x)∂tq + (h− ε2 q

2

h2 )∂xζ + 2ε
q

h∂xq = εf,

with the transmission conditions

(3.34) 〈q〉 = 〈qi〉 and JqK = −2`δ̇,
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where 〈qi〉 and δ̇ are provided by the linear ODEs

α(εδ)
d

dt
〈qi〉+ εb1[Z] · Z = − 1

2`
Jζ + G + εκ2

(
c2[ζ]ζ + ∂t(c1[ζ]ζ)

)
K + εg1,(3.35)

τµ(εδ)2δ̈ + δ + εb2[Z] · Z = 〈ζ + G + εκ2
(
c2[ζ]ζ + ∂t(c1[ζ]ζ)

)
〉+ εg2,(3.36)

where ck[ζ] (k = 1, 2) is a smooth function of ζ, ∂tζ, . . . , ∂
k
t ζ and, recalling that

Z = (〈qi〉, δ, δ̇)T,

b1[Z] =
(
α′(εδ)δ̇,

d

dt

(
α′(εδ)〈q

i
〉
)
, α′(εδ)〈q

i
〉
)T

b2[Z] =
(
− α′(εδ)〈q

i
〉, 2 d

dt

(
τµ(εδ)τµ

′(εδ)δ̇
)

+ β′(εδ)δ̇
2 − ε

2
α′′(εδ)〈q

i
〉2,−2β(εδ)δ̇

)T

,

while G is given by

(3.37) G = −ε2
q2

h3 ζ + ε
q

h2 q − κ2 1

h
∂x∂tq.

Remark 3.5. If (ζex, qex) denotes an exact solution to the wave-structure equations

(3.2)-(3.5), then for all j ≥ 1, the time derivatives (∂jt ζex, ∂
j
t qex) solve a system of

the form (3.33)-(3.36), with (ζ, δ) = (ζex, qex), (ζ, q) = (∂jt ζex, ∂
j
t qex) and, according

to (3.32),

c1[ζex] = −j ∂tζex

h2
ex

and c2[ζex] =
[
j∂t(

∂tζex

h2
ex

)− ∂2
t ζex

h2
ex

]
,

while f , g1 and g2 lower order commutator terms; for instance for j = 1,

f = ∂t
(
ζex − ε

q2
ex

h2
ex

)
∂xζex and g1 = g2 = 0.

The following theorem shows that the linearized problem (3.33)-(3.36) is well-
posed, and provides a control on the augmented energy Eaugm defined as

(3.38) Eaugm = |Z|2 + |(ζ, q, κ∂xq)|22 + εκ3|(ζ−, ζ+)|2 + εκ5|(ζ̇−, ζ̇+)|2;

this energy contains the energy Eext + Eint used in the proof of Theorem 3.4 but
provides in addition a control on the traces of ζ± and their first time derivative.
This is a hidden regularity property granted by the dispersive terms. For the sake
of clarity, in the following statement, we simply write cj instead of cj [ζ].

Theorem 3.5. Let (ζ, q) ∈ C1(R+ × E) and assume that (c1, ∂tc1, c2)|x=±` and

(Z, Ż) are continuous functions of time. Let also M > 0 be such that

|(ζ, ∂tζ, ∂xζ, q, ∂xq)|L∞(R+×E) ≤M and |(c1, c2, Z, Ż)|L∞(R+) ≤M
and assume that there exists hmin > 0 and cmin > 0 such that

inf
R+×E

h ≥ hmin and inf
R+×E

(
h− ε2

q2

h2

)
≥ cmin.

Then for all (ζ in, qin) ∈ L2×H1(E) and all Zin ∈ R3, there exists a unique solution
(ζ, q, Z) in C1(R+;L2×H1(E)×R3) to (3.33)-(3.36) with initial data (ζ in, qin, Zin).

Moreover, ζ|x=±` exist in W 1,∞
loc (R+) and there are constants C0 = C0( 1

hmin
, 1
cmin

)

and C = C(C0,M) such that if εκC < 1, the following estimate holds for all t > 0,

Eaugm(t) ≤ C0

[
Eaugm(0) + εC

ˆ t

0

(
|f |22 + |(g1, g2)|2

)]
exp(
√
εCt).
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Remark 3.6. Without the extra control provided by the theorem on the hidden trace
regularity of ζ, one could not close the energy estimate. Hidden regularity at the
boundary for hyperbolic systems was already noticed in [32] and can be obtained
in many cases by using Kreiss symmetrizers that make the boundary condition
maximal dissipative. The hidden regularity is granted here by the dispersion (rather
than a Kreiss symmetrizer), but it is of a different nature since it provides a control
for each time t of the traces, as opposed to an L2-norm in time for maximally
dissipative hyperbolic systems (see for instance [4, 37] and, more related to the
present context, [18, 29], as well as [3] for a generalization of Kreiss’ approach
to a class of linear dispersive equations that does not cover the linear version of
the Boussinesq-Abbott system). Note also that even with this hidden regularity,
the equations (3.33)-(3.36) do not obviously make sense because (3.35) and (3.36)
involve the traces ∂x∂tq|x=± . This difficulty is removed if we rather work with the
equivalent formulation (3.44) derived in the proof.

Remark 3.7. The constants C0 and C involved in the statement of the theorem
depend only on hmin, cmin and M ; in particular, they are uniform with respect to
ε ∈ (0, 1) and κ ∈ (0, 1) (equivalently, with respect to µ). The theorem provides
therefore uniform estimates over a large time scale, namely, O(ε−1/2), which is
however shorter than the O(ε−1) time scale classically associated with the existence
time of solutions to Boussinesq system on the full line. This is due to the necessity of
controlling the traces of the solution at x = ±`. Note that the O(ε−1/2) time scale
is the same as the one obtained in [31] for the existence of a Boussinesq system
on the full line using dispersive methods. Using other methods, it was however
later proved [41, 10] that the time scale O(ε−1) could be reached. The O(ε−1) time
scale was also attained in [9] for the Boussinesq system (2.5) in the presence of a
fixed object, but, as explained above, no control of the traces is needed there. It
is therefore an open question to assess whether the shorter time scale O(ε−1/2) of
Theorem 3.5 is dictated by the dispersive control of the traces, or wether it is only
a technical limitation.

Remark 3.8. This theorem furnishes uniform bounds for the time derivatives to the
solutions of (3.2)-(3.5) (see Remark 3.5); as explained above, this is the key step
towards well-posedness on a uniform time-scale, and it differs strongly from the
linear estimates of [9] because of the necessary control of the trace of the solution.
The other steps of the proof are expected to be more similar to [9] and for the sake
of conciseness, we prefer to treat them in a separate work.

Proof. Throughout this proof, for the sake of clarity, we use the same notations
C0 = C0( 1

hmin
, 1
cmin

) and C = C(C0,M) for various constants that may differ from
one line to another. In the first four steps of the proof, we establish the energy
estimate stated in the theorem for smooth solutions of the problem. We then prove
existence and uniqueness of regular solutions in Step 5, and extend this result to
the regularity considered in the theorem using a density argument and the control
of the trace of ζ at the boundaries furnished by the energy estimate.
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Step 1. Defining the analogous for the linearized equations of the energies Eext

and Eint defined in (3.6) and (3.7), namely,

Eext =

ˆ
E

1

2h

(
h− ε2

q2

h2

)
ζ2 +

1

2h
q2 +

κ2

2h
(∂xq)

2

Eint = `α(εδ)〈qi〉2 + `τµ(εδ)2δ̇2 + `δ2,

the first step is to prove the following lemma. Note that the inequality stated in the
lemma corresponds to (3.27) in the proof of Theorem 3.4. As explained above, the
nonlinear structure of the dispersive terms in the transmission conditions makes
the analysis of the linearized equations more delicate. The last two terms in the
estimate stated in the lemma come from the subprincipal terms involving c1[ζ]
and c2[ζ] in (3.35) and (3.36) and that are not present in the original (nonlinear)
equations. Note in particular the appearance of the traces ζ± = ζ|x=±` that cannot
be controlled by the energy norm Eext. Another consequence of these subprincipal
terms is that, in the left-hand-side of (3.39), the energy Eext+Eint must be modified
by adding non signed trace terms.

Lemma 3.3. The following inequality holds (denoting cj = cj [ζ]),

d

dt

[
Eext + Eint + εκ2

(
〈qi〉Jc1ζK− 2`δ̇〈c1ζ〉

)]
≤ ε
(
|κ2∂t∂xq|22 + |f |22 + |(g1, g2)|2

)
+ εC

(
Eext +

(
1 +

κ√
ε

)
Eint + κ3ε1/2|(ζ−, ζ+)|2

)
+ ε1/2κ|(q̇−, q̇+)|2.(3.39)

Proof of the lemma. Multiplying the first equation of (3.33) by 1
h (h − ε2 q

2

h2 )ζ and

the second one by 1
hq and integrating by parts, one obtains after some computations

(3.40)
d

dt
eext + ∂x

(
q(ζ + G)

)
= εr + 3εκ2R

with G as in (3.37) and

eext =
1

2h

(
h− ε2

q2

h2

)
ζ2 +

1

2h
q2 +

κ2

2h
(∂xq)

2,

r = −ε∂x
( q2

h3

)
ζq +

[
∂x
( q
h2

)
− 1

2h2 (∂tζ)
]
q2 +

1

h
fq,

R = − 1

6h2 (∂tζ)(∂xq)
2 +

1

3h2 (∂xζ)q(∂t∂xq).

Integrating (3.40) over E and remarking that JqGK = 〈q〉JGK + JqK〈G〉, we get from
the transmission conditions (3.34) that

d

dt
Eext − 〈qi〉Jζ + GK + 2`δ̇〈ζ + G〉 = ε

ˆ
E
r + 3εκ2

ˆ
E
Rµ.

With (3.35) and (3.36), this yields

d

dt

(
Eext + Eint

)
=− 2ε`

(
b1(Z) · Z〈qi〉+ b2(Z) · Zδ̇

)
− εκ2〈qi〉Jc2ζ + ∂t(c1ζ)K + 2εκ2`δ̇〈c2ζ + ∂t(c1ζ)〉

+ ε

ˆ
E
r + 3εκ2

ˆ
E
R + 2ε`

(
g1〈qi〉+ g2δ̇

)
.
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Decomposing

−〈qi〉J∂t(c1ζ)K + 2`δ̇〈∂t(c1ζ)〉 =∂t
(
− 〈qi〉Jc1ζK + 2`δ̇〈c1ζ〉

)
−
(
− d

dt
〈qi〉Jc1ζK + 2`δ̈〈c1ζ〉

)
,

using that εκ2ab . ε1/2κa2+ε3/2κ3b3, and remarking that | ddt 〈qi〉|+|δ̈| . |(q̇−, q̇+)|,
one readily gets the result. �

The next step consists in controlling the term |κ2∂x∂tq|2 that appears in (3.39).
This step is an adaptation of Step 1 in the proof of Theorem 3.4 that does not
require any qualitative change. Rewriting the second equation of (3.33) as

(1− κ2∂2
x)∂tq + ∂xfsw = εf̃ ,

with

f
sw

= (h− ε2
q2

h2 )ζ + 2ε
q

h
q and f̃ = f + ∂x

(
(ζ − ε

q2

h2 )
)
ζ + 2∂x

( q
h

)
q,

we get as in Step 1 of the proof of Theorem 3.4 that, on E±,

(3.41) ∂t∂xq = −∂2
xR1fsw + ε∂xR0f̃ ∓ q̇±

1

κ
exp

(
− 1

κ
|x∓ `|

)
.

Recalling that κ2∂2
xR1 and κ∂xR0 are uniformly bounded operator on L2(E), we

deduce that

|κ2∂x∂tq|2 ≤ C E
1/2
ext + |f |2 + κ3/2|(q̇+, q̇−)|;

with (3.39), this yields,

d

dt

[
Eext + Eint + εκ2

(
〈qi〉Jc1ζK− 2`δ̇〈c1ζ〉

)]
≤ ε
(
|f |22 + |(g1, g2)|2

)
+εC

(
Eext + (1 +

κ

ε1/2
)Eint+κ

3ε1/2|(ζ−, ζ+)|2
)

+ ε1/2κ|(q̇−, q̇+)|2;(3.42)

this inequality should be compared with (3.28) in the proof of Theorem 3.4. The
coefficient ε1/2κ in front of |(q̇−, q̇+)|2, inherited from (3.39), is much larger than
the coefficient εκ3 in (3.28); moreover, a control on the traces of ζ at the boundary
is also needed.
Step 2. Control on |(q̇+, q̇−)|. We show here that

(3.43) |q̇+|+|q̇−| ≤ C
(
|Z|+εκ2|(ζ+, ζ−, ζ̇+, ζ̇−)|+ 1

κ1/2
|(ζ, q)|2 +ε|f |2 +ε|(g1, g2)|

)
;

the main difference with (3.31) in the proof of Theorem 3.4 is the presence in the
right-hand side of a term involving the traces ζ± and their time derivatives, but the

strategy of the proof is quite similar. Recalling that qi = −xδ̇ + 〈qi〉, it suffices to

prove that |δ̈| and | ddt 〈qi〉| are bounded from above by the right-hand side of (3.43).
Following a procedure similar to the one used to derive (3.31), we get, using the
fact that −κ2∂2

xR1 = 1−R1 in (3.41) and with the definition (3.37) of G that, on
E±,

ζ + G + εκ2
(
c2ζ + ∂t(c1ζ)

)
= H− εκ2 1

h
∂xR0f̃ ± κ

1

h
q̇± exp

(
− 1

κ
|x∓ `|

)
,

with

H = −ε
q

h2 q + εκ2
(
c2ζ + ∂t(c1ζ)

)
+

1

h
R1fsw.
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Replacing ζ + G + εκ2
(
c2ζ + ∂t(c1ζ)

)
by the above expression in (3.35) and (3.36)

yields the following linearized version of (3.17),

Tµ
d

dt

( 〈qi〉
δ̇

)
+

(
0
δ

)
+ ε

(
b1[Z] · Z
b2[Z] · Z

)
=

(
− 1

2`JH− εκ2 1
h∂xR0f̃K + εg1

〈H− εκ2 1
h∂xR0f̃〉+ εg2

)
,(3.44)

where Tµ = Tµ(εδ, εζ±), see (3.19). From the above definition of H, one gets with

the trace estimate (3.30) that

|H±| ≤ C ×
(
ε|Z|+ εκ2|(ζ±, ζ̇±)|+ 1

κ1/2
|(ζ, q)|2

)
.

Inverting the matrix Tµ, we therefore get

| d
dt
〈qi〉|+ |δ̈| ≤ C

(
|Z|+ εκ2|(ζ+, ζ−, ζ̇+, ζ̇−)|+ 1

κ1/2
|(ζ, q)|2 + ε|f |2 + ε|(g1, g2)|

)
,

and we thus obtain (3.43).
From (3.42), we therefore get

d

dt

[
Eext + Eint+εκ

2
(
〈qi〉Jc1ζK− 2`δ̇〈c1ζ〉

)]
≤ εC

( 1

ε1/2
Eext + (1 +

κ

ε1/2
)Eint

+ |f |22 + |(g1, g2)|2 + κ3ε1/2|(ζ−, ζ+)|2 + ε3/2κ5|(ζ̇−, ζ̇+)|2
)
.

In order to control the singular ε−1/2 term in front of Eext, which is due to the
subprincipal terms in the linearized transmission conditions, one has to change the
ε in front of the right-hand side into a ε1/2 (this is the reason why the estimate of
the theorem is only valid over a O(ε−1/2) time scale), leading to

d

dt

[
Eext + Eint+εκ

2
(
〈qi〉Jc1ζK− 2`δ̇〈c1ζ〉

)]
≤ ε1/2C

(
Eext + Eint

+ ε1/2|f |22 + ε1/2|(g1, g2)|2 + εκ3|(ζ−, ζ+)|2 + ε2κ5|(ζ̇−, ζ̇+)|2
)

;(3.45)

contrary to Step 4 in the proof of Theorem 3.4, this inequality is not enough to derive
an energy estimate; we still need to find a control on the trace terms ε1/2κ3/2|ζ±|
and εκ5/2|ζ̇±| . ε1/2κ5/2|ζ̇±| that appear in the right-hand side of (3.45); such a
control is also necessary to absorb the non signed perturbation of the energy that
appears in the left-hand side.
Step 3. Control on ε1/2κ3/2|ζ±| and ε1/2κ5/2|ζ̇±|. Introducing a trace energy as

Etrace :=
1

2

[
κ2(ε1/2κ3∂tζ±)2 + (h− ε2

q2

h2 )±(ε1/2κ3ζ±)2
]
,

we show here that

(3.46)
d

dt
Etrace ≤ ε1/2C

(
Eext + Eint + Etrace + ε1/2|f |22 + ε1/2|(g1, g2)|22

)
.

Recalling that ∂2
t ζ = −∂t∂xq, one gets, evaluating (3.41) at x = ±`, that

∂2
t ζ± +

1

κ2

(
h− ε2

q2

h2

)
±ζ± = − ε

κ2
(2
q

h
)±q± +

1

κ2
(R1fsw)± − ε(∂xR0f̃)± ±

1

κ
q̇±
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Since we want a control on ε1/2κ3/2ζ±, we multiply both sides of the equation by
εκ5∂tζ±, using the trace estimate (3.30) and observing that |q±| . |Z|, one readily
deduces (3.46).
Step 4. Conclusion. Summing up (3.45) and (3.46), one obtains

d

dt

[
Eext + Eint + Etrace + εκ2

(
〈qi〉Jc1ζK− 2`δ̇〈c1ζ〉

)]
≤ ε1/2C

(
Eext + Eint + Etrace + ε1/2|f |22 + ε1/2|(g1, g2)|2

)
.(3.47)

We can now notice that εκ2
(
〈qi〉Jc1ζK−2`δ̇〈c1ζ〉

)
is a lower order term in the sense

that
εκ2|〈qi〉Jc1ζK− 2`δ̇〈c1ζ〉| ≤ ε1/2κ1/2C

(
Eint + Etrace

)
,

so that it can be absorbed by the sum of the three energies when εκ is small enough
to have ε1/2κ1/2C < 1. For instance, if ε1/2κ1/2C < 1/2, and denoting

Ẽ := Eext + Eint + Etrace,

one obtains after a Gronwall estimate

Ẽ(t) ≤ 3
[
Ẽ(0) + εC

ˆ t

0

(
|f |22 + |(g1, g2)|2

)]
exp(
√
εCt).

Since moreover there exists a constant C0 = C0( 1
hmin

, 1
cmin

) such that

Ẽ ≤ C0

(
|Z|2 + |(ζ, q, κ∂xq)|22 + εκ3|(ζ−, ζ+)|2 + εκ5|(ζ̇−, ζ̇+)|2

and
|Z|2 + |(ζ, q, κ∂xq)|22 + εκ3|(ζ−, ζ+)|2 + εκ5|(ζ̇−, ζ̇+)|2 ≤ C0Ẽ,

one deduces the estimate stated in the theorem.
Step 5. Well-posedness. By a straightforward adaptation of the proof of Theorem
3.3, one can observe that (3.33)-(3.36) can be reformulated as an ODE for (ζ, q, Z) ∈
H1×H2(E)×R3 and prove existence and uniqueness of a solution in this space by
Cauchy-Lipschitz’s theorem. For data in (ζ, q, Z) ∈ L2 ×H1(E)×R3, this strategy
does not work directly because the traces ζ± that appear in the component of the

ODE (3.44) for 〈qi〉 and δ̇ cannot be controlled by the L2 norm of ζ. However, the
energy estimate just proved provides such a control and one can obtain the result
by a classical density argument (as used for instance in the proof of Theorem 3.1.1
in [36], for hyperbolic initial boundary value problems where the control on the
trace is furnished by using a Kreiss symmetrizer). �

4. Return to equilibrium

We now deal with a specific kind of wave-structure interaction that was called
the return to equilibrium problem in [26] and is commonly referred to as ”free decay
test” in engineering. This a situation where the solid is released at zero speed from
an out of equilibrium position (δ(t = 0) 6= 0), in a fluid that is at rest. The solid
then oscillates vertically and its motion sends waves outwards; by this process, the
solid loses energy and its oscillations are damped so that the solid asymptotically
stabilizes to its equilibrium position. Engineers use this free decay test because by
measuring the oscillations of the object, they deduce some buoyancy properties of
the object. More precisely, assuming that the motion of the object satisfies the
phenomenological Cummins equation [11, 30]

(4.1) Mδ̈ + k ∗ δ̇ + aδ = 0
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with M,a ∈ R+ and k ∈ L1
loc(R+), they calibrate these coefficients with exper-

imental measurements. These measurements are also used to propose nonlinear
extensions to (4.1) (by fitting coefficients with ad hoc nonlinear terms) [39].

Our goal in this section is to study this problem from a mathematical viewpoint,
by proposing a qualitative analysis of the solutions to the transmission problem
(3.2)-(3.5) in the particular configuration corresponding to the return to equilibrium
problem. This approach is expected to lead in some cases to an equation of the
form (4.1), which would provide an analytic description of the coefficients involved,
and also to nonlinear extensions that could be of interest to engineers.

This program was initiated and achieved in [26] for the (non dispersive) nonlin-
ear shallow water equations, where it was found that δ solves a nonlinear second
order ODE without integro-differential term. Still working with the shallow water
equations but in horizontal dimension d = 2, assuming radial symmetry and ne-
glecting the nonlinear effects in the exterior region, it was shown in [6] that the
equation on δ should contain an integro-differential term. Such a term is also nec-
essary for the nonlinear shallow water equations in dimension d = 1 if viscosity is
taken into account [33]. The goal of this section is to investigate the contribution
of the dispersive terms of the Boussinesq system to the equation satisfied by δ in
this specific configuration of the return to equilibrium problem.

From now, we assume that the initial data correspond to the configuration of
the return to equilibrium problem, namely,

(4.2) q(t = 0) = ζ(t = 0) = 0 and δ(t = 0) = δ0, δ̇(t = 0) = 0.

Notation 2. We use throughout this section the same notations as in Section 3,
namely, we write κ =

√
µ/3 and denote by fsw the momentum flux of the nonlinear

shallow water equations,

fsw =
h2 − 1

2ε
+ ε

q2

h
= ζ + ε

(1

2
ζ2 +

q2

h

)
.

We also recall that the buoyancy frequency τbuoy is defined in Appendix A.

We introduce in §4.1 two Cummins operators that allow us to derive an abstract
evolution equation for the solid. We then investigate two specific cases where it is
possible to derive an explicit expression of these operators. The non dispersive case
(ε 6= 0, µ = 0) is considered in §4.2 where it is shown that the motion of the object
can be found by solving a simple nonlinear second order scalar ODE. Waves can
then be described by solving an initial boundary value problem for a scalar Burgers
equation. The opposite case, namely, the linear dispersive case (ε = 0, µ 6= 0) is
addressed in §4.3; here again, it is possible to derive an explicit expression for the
Cummins operators leading us to an integro-differential Cummins-type equation for
the motion of the solid; qualitative properties of the solutions, such as their decay
rate are then investigated. Finally, it is shown that the motion of the waves can be
found by solving a nonlocal (in space) perturbation of the transport equation.

4.1. The general Cummins equation. Quite obviously, any smooth solution
of the transmission problem (3.2)-(3.5) with initial condition (4.2) is such that ζ
is an even function while q is odd – such solutions will be called “symmetric”.
This implies that 〈qi〉 = 0 and that the transmission problem can be reduced into a
simpler boundary value problem stated in the following direct corollary of Theorem
3.1.
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Corollary 4.1. Any smooth symmetric solution to the transmission problem (3.2)-
(3.5) solves the following boundary value problem on the half-line (`,∞),

(4.3)

{
∂tζ + ∂xq = 0

(1− κ2∂2
x)∂tq + ∂xfsw = 0,

for t ≥ 0, x ∈ E+,

with boundary condition

q|x=` = −`δ̇,(4.4)

where δ solves the ODE

(4.5) (τµ(εδ)2 + `κ
1

h+
)δ̈ + δ = εβ(εδ)δ̇2 + H+,

where h+ = h|x=` , H+ = H|x=` and we recall that H = H(ζ, q) with

H(ζ, q) =
1

2
ε
( 1

h
ζ2 − q2

h2

)
+

1

h
R1fsw,

and that τµ(εδ) and β(εδ) are defined in Proposition 2.4, namely,

τµ(εδ)2 = τ2
buoy +

1

`

ˆ `

0

x2

heq(x) + εδ
dx+

κ2

heq(`) + εδ
,

β(εδ) =
1

2

1

`

ˆ `

0

x2

(heq(x) + εδ)2
dx.

We know by Proposition 3.2 that if f is a given C1 function of time then there
is a unique solution (ζ, q) to (4.3) with boundary condition q|x=` = −`f with initial
condition corresponding to the return to equilibrium problem, namely, (ζ, q)(t =
0) = (0, 0). It is in particular possible to compute the trace of ζ at x = `, so that
the following definition makes sense.

Definition 4.1 (Cummins operators). Let ε ∈ R+, µ = κ2/3 > 0. Let also f ∈
C1(R+) and T > 0, and (ζ, q) ∈ C1

(
[0, T ;H1(E+)×H2(E+)

)
be a solution to (4.3)

with boundary condition q|x=` = −`f and initial condition (ζ, q)(t = 0) = (0, 0).
We define the Cummins operators cε,µ and Cε,µ as

cε,µ[f ] := ζ|x=` and Cε,µ[f ] := −H(ζ, q)|x=` .

Remark 4.1. The Cummins operators can be defined for more general cases, for
instance, the solution (ζ, q) to the initial boundary value problem needs only to be
regular near the boundary x = ` (regular enough for the trace to make sense). This
allows one to extend the definition of the Cummins operators in the case µ = 0, as
done in §4.2 below.

Corollary 4.2. The ODE (4.5) can be reformulated in a compact form as what we
shall refer to as the Cummins equation

(4.6)
(
τµ(εδ)2 + `κ

1

1 + εcε,µ[δ̇]

)
δ̈ + δ+Cε,µ[δ̇] = εβ(εδ)δ̇2,

with initial conditions δ(0) = δ0 and δ̇(0) = 0.

The equation (4.6) is compact but not simple since the Cummins operators
are nonlinear nonlocal operators which require the resolution of the equations
for the fluid in the exterior domain. In order to get some qualitative insight on
the Cummins equation, we describe it in two limiting cases: in the nonlinear non



FREELY FLOATING OBJECT WITH THE BOUSSINESQ EQUATIONS 37

dispersive case (ε > 0, not necessarily small, and µ = 0), and in the linear, dispersive
case (ε = 0 and µ > 0, not necessarily small). Note that in both cases, it is not

necessary to compute the first Cummins operator cε,µ[δ̇] and that it is possible to

provide an explicit expression of the second one Cε,µ[δ̇].

4.2. The nonlinear non dispersive case. Neglecting the dispersive effects is
equivalent to setting µ = κ2/3 = 0 in the equations (4.3)-(4.6) ; in particular,
the model considered for the propagation of the waves is now the shallow water
equations

(4.7)

{
∂tζ + ∂xq = 0

∂tq + ε∂x
(

1
hq

2
)

+ h∂xζ = 0,
for t ≥ 0, x ∈ E+,

the boundary condition is unchanged

q|x=` = −`δ̇,(4.8)

and the ODE solved by δ is simplified into

(4.9) τ0(εδ)2δ̈ + δ+Cε,0[δ̇] = −ετ0(εδ)τ ′0(εδ)δ̇2,

where we used the fact that β(εδ) = −2τ0(εδ)τ ′0(εδ) when µ = 0 (see (2.28) and
(2.29)), and where the definition of the second Cummins operator has been extended
to the case µ = 0 as

Cε,0[δ̇] := −
(
ζ + ε

1

2

q2

h2

)
|x=`

;

the fact that this definition makes sense follows from the decomposition of the
shallow water invariants into Riemann invariants, as shown in the proof of the
following theorem where an explicit expression of the Cummins operator is provided.
This theorem is a reformulation of Corollary 1 in [26], but with a slight difference
in the function γ, so that we reproduce a sketch of the proof1.

Theorem 4.1. Let T > 0, δ ∈ C2([0, T ]) and (ζ, q) be a continuous, piecewise C1

solution of (4.7)-(4.9) on [0, T ]×(`,∞) satisfying the non vanishing depth condition

inf
[0,T ]×E

h > 0 and inf
[0,T ]×I

heq + εδ > 0.

If moreover ` εδ̇ < 2r0, with r0 := 4
27 , we have

√
h = σ0(ε `2 δ̇) with the real function

σ0(r) =
1

3

(
1 + C−(r) + C+(r)

)
, C±(r) =

3

2

(
− 4r + 2r0 ± 4

√
r(r − r0)

)1/3

,

and the Cummins operator Cε,0 is given explicitly by

(4.10) Cε,0[δ̇] = −ε−1
(
σ0(ε

`

2
δ̇)− 1

)(
3σ0(ε

`

2
δ̇)− 1

)
=: `δ̇+εδ̇2γ(εδ̇),

where γ : (−∞, 2r0) → R is a smooth function such that γ(0) = 1
4`

2 and whose
exact expression is given in (4.11) below.

1The difference comes from the fact that in [26], the choice of the boundary condition for
the interior pressure was made by assuming that the jump of pressure at the contact point was

purely hydrostatic; as in [33, 5], we rather use here a choice of the boundary condition on the
pressure which is consistent with the approach used throughout this paper and motivated by the
conservation of total energy, as explained in Corollary 2.1. With the choice of [26], one would

have Cε,0[δ̇] = −ζ|x=` and consequently −`δ̇ − εδ̇2γ(εδ̇) = 1
ε

(σ0(ε `
2
δ̇)2 − 1).
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Proof. The proof of Corollary 1 of [26] is based on the fact that the shallow water
equations can be put in diagonal form,

∂tR+ (
√
h+ ε

q

h
)∂xR = 0 and ∂tL− (

√
h− ε q

h
)∂xL = 0,

where R and L are respectively the right and left Riemann invariants

R =
q

h
+

2

ε
(
√
h− 1) and L =

q

h
− 2

ε
(
√
h− 1).

One then notices that with the initial and boundary conditions considered here, L
vanishes identically on (`,∞), which allows one to find

√
h in terms of q as a root

of the third order polynomial equation in σ,

σ3 − σ2 − ε1

2
q = 0.

If −ε 1
2q < r0, then, as discussed in [26], the relevant root is σ0(−ε 1

2q).

Recalling that q|x=` = −`δ̇, we have
√
h = σ0(ε `2 δ̇). Moreover, L = 0 implies

ε
1

2

q2

h2 |x=`
= 2 ε−1

(
σ0(ε

`

2
δ̇)− 1

)2

.

Remarking that ζ|x=` = 1
ε (σ0(ε `2 δ̇)

2 − 1), one gets(
ζ + ε

1

2

q2

h2

)
|x=`

= ε−1(σ0 − 1)(3σ0 − 1)

=: −`δ̇−εδ̇2γ(εδ̇),(4.11)

where we used the fact that σ0(0) = −σ′0(0) = 1. The fact that γ(0) = 1
4`

2 follows
from the observation that σ′′0 (0) = −4. �

A first corollary is that the motion of the solid can be reduced to a simple
nonlinear ODE, provided that the initial displacement satisfies an upper bound
ensuring that the velocity of the object does not become too big.

Corollary 4.3. Under the assumptions of the theorem, and with the same nota-
tions, let us assume moreover that

ε2δ2
0 < τ0(ε|δ0|)2

(2r0

`

)2
.

Then, using the notations of the theorem, the motion of the solid is found by solving
the nonlinear second order ODE

(4.12) τ0(εδ)2δ̈ + `δ̇ + δ + ε
(
τ0(εδ)τ ′0(εδ) + γ(εδ̇)

)
δ̇2 = 0,

with initial condition δ(0) = δ0, δ̇(0) = 0.

Remark 4.2. In the linear case (ε = 0), this equation is almost the same as (3.2.12)
in [20], the only difference being that the author neglected the buoyancy frequency
τbuoy in the expression for τ0(0).

Proof. One just needs to check that the condition `εδ̇ < 2r0, which ensures by
Theorem 4.1 that the Cummins operator takes the form (4.10), is satisfied for all

times. Since at t = 0, one has δ̇ = 0, we now that this condition is satisfied for small
times. Since moreover one can deduce from Proposition 3.1 (by setting µ = 0) that

(4.13) τ0(εδ)2δ̇2 + δ2 ≤ δ2
0 ,
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one deduces that |δ| ≤ |δ0| and therefore that δ̇2 ≤ τ0(ε|δ0|)−2δ2
0 . The assumption

made in the statement of the corollary therefore grants the result. �

The interest of reducing the motion of the solid to an ODE on the surface
displacement is that it is possible to solve it even in situations when singularity
arise in the exterior domain (typically, when shock happen). It is in particular
possible to obtain a global existence result for the ODE (4.12), while such a result
cannot be expected for strong solutions to the full transmission problem (4.7)-(4.9)
due to shock formation. Note that the first condition on δ0 means that at t = 0,
the solid neither touches the bottom nor is lifted from a height greater than the
height of the water column under the object when it is at equilibrium.

Proposition 4.1. Let δ0 ∈ R be such that

inf
I
heq − ε|δ0| > 0 and ε|δ0| < τ0(ε|δ0|)

2r0

`
.

Then there exists a unique global solution δ ∈ C∞(R+) to the ODE (4.12) with

initial condition (δ, δ̇)|t=0
= (δ0, 0).

Remark 4.3. A byproduct of the proof is that Cε,0[δ̇] δ̇ ≥ 0 and that this quantity
corresponds to the energy transferred at each instant to the exterior fluid domain,
that is, with the notations of Proposition 3.1, one has

d

dt
Eext = Cε,0[δ̇]δ̇ ≥ 0.

Remark 4.4. The second condition of the proposition is a smallness condition on
δ0, but this condition is not restrictive as it allows δ0 to be of size O(ε−1). As
communicated to us by the author it is possible, under stricter smallness conditions,
to prove exponential decay of the solution of ODEs related to (4.12) using techniques
developed in [24].

Proof. There exists a positive time T > 0 such that on [0, T ), there is a solution

δ such that infI heq + εδ > 0 and `εδ̇ < 2r0. We want to show that one can take
T = +∞. As in the proof of Corollary 4.3, this follows from (4.13). We therefore
need to prove that (4.13) holds, without appealing to Proposition 3.1 as in the proof
of Corollary 4.3, but by direct manipulations on the solution to the ODE (4.12).
We need the following two lemmas.

Lemma 4.1. The function σ0 is decreasing on (−∞, r0).

Proof of the lemma. By construction, one has for all r < r0,

σ0(r)3 − σ0(r)2 + r = 0;

differentiating this identity yields

σ′0(r)(3σ0(r)2 − 2σ0(r)) = −1,

so that σ0(r) and 3σ0(r)2 − 2σ0(r) have opposite sign. It is therefore enough to
prove that 3σ0(r)2 − 2σ0(r) > 0 for all r < r0. Since σ0(0) = 1, this quantity is
positive at r = 0 and must therefore vanish if it changes sign. This means that for
some r1 < r0, one must have σ0(r1) = 0 or σ0(r1) = 2

3 . Using the cubic equation
solved by σ0(r1), this implies that r1 = 0 or r1 = r0. Both cases have to be excluded
because σ0(0) = 1 6= 0 and r1 < r0 by assumption. The result follows. �
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Lemma 4.2. If δ̇ 6= 0 and ε`δ̇ < 2r0, the Cummins operator satisfies

Cε,0[δ̇] δ̇ > 0.

Proof of the lemma. Recalling that from (4.10), one has

Cε,0[δ̇] δ̇ = −ε−1(σ0(ε
`

2
δ̇)− 1)(3σ0(ε

`

2
δ̇)− 1)δ̇,

the conclusion follows from the previous lemma and the observation that σ0(0) = 1
and σ0(r0) = 2/3. �

We can now use the second lemma to conclude: multiplying (4.9) by δ̇ and
integrating in time yields

τ0(εδ)2δ̇2 + δ2 = δ2
0 −

ˆ t

0

Cε,0[δ̇]δ̇ < δ2
0 ,

which implies (4.13); the proposition is therefore proved. �

The following Corollary then shows that, once the ODE (4.12) has been solved,
the solution in the exterior domain reduces to a simple initial boundary value
problem for a scalar Burgers-type equation. This is a simple byproduct of the proof
of Theorem 4.1 where it was shown that the nonlinear shallow water equations were
reduced to the scalar equation on the right-going Riemann invariant.

Corollary 4.4. Under the assumptions of Corollary 4.3, q is found in the exterior
domain by solving the initial boundary value problem

∂tq +
(
− σ′0(− ε2q)σ0(− ε2q)

)−1
∂xq = 0 (t > 0, x > `),

q|t=0
= 0,

q|x=` = −`δ̇,
with δ furnished by Proposition 4.1, while ζ is given in terms of q by the algebraic
expression

(4.14) ζ =
1

ε
(σ0(−εq/2)2 − 1).

Remark 4.5. More generally, if one wants to compute the waves created by an
object in forced motion, one must solve the same equations as in the corollary, but
with δ corresponding to this forced motion rather than given by Proposition 4.1.

4.3. The linear dispersive case. We have studied in the previous section the
situation where dispersive effects could be neglected (µ = κ2/3 = 0) in front of the
nonlinear effects. We consider here the opposite situation where nonlinear effects
are negligible (ε = 0) but the dispersive effects are taken into account. That is,
we consider the linear approximation to (4.3)-(4.5). The model considered for the
propagation of the waves is therefore

(4.15)

{
∂tζ + ∂xq = 0

(1− κ2∂2
x)∂tq + ∂xζ = 0,

for t ≥ 0, x ∈ E+,

the boundary condition is unchanged

q|x=` = −`δ̇,(4.16)

and the ODE solved by δ is simplified into

(4.17) (τ2
µ + `κ)δ̈ + δ + C0,µ[δ̇] = 0,
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where we recall that according to the definition of the Cummins operator (see
Definition 4.1 and (3.18)),

C0,µ[δ̇] := −(R1ζ)|x=` ,

and where, for the sake of clarity, we simply write throughout this section

τ2
µ = τµ(0)2 = τ2

buoy +
1

`

ˆ `

0

x2

heq
+ κ2 1

heq
.

We know by Theorem 3.3 that for all n ∈ N and T > 0, there exists a unique
solution (ζ, q, δ) ∈ C∞([0, T ];Hn ×R) of (4.15)-(4.17) with initial conditions (4.2);
we want here to analyze the behavior of this solution. As for the nonlinear non
dispersive case in the previous section, we first provide an explicit expression for the
Cummins operator, from which we are able to derive an uncoupled scalar equation
for the evolution of δ, whose solution can be used to find ζ and q in the exterior
domain through the resolution of a simpler scalar initial boundary value problem.
All the equations involved in this section are linear, the difficulty coming from their
nonlocal nature.

4.3.1. Preliminary material. In order to give an explicit representation of the Cum-
mins operator C0,µ, we first need to recall the definition of the Bessel functions Jn
(§8.41 in [17])

Jn(t) =
1

π

ˆ π

0

cos
(
nθ − t sin θ

)
dθ;

we also define the causal convolution kernels K0
µ and K1

µ as

(4.18) K0
µ(t) =

1

κ
J0(

t

κ
) and K1

µ(t) =
1

t
J1(

t

κ
), for all t ≥ 0,

and use the following standard notation for the convolution of time causal functions,

∀t ≥ 0, f ∗ g(t) =

ˆ t

0

f(t− s)g(s)ds.

We also need to use the Laplace transform with respect to the time variable,
which we define as

L : q 7→ q̂,

where

L[q](s) =

ˆ ∞
0

q(t)e−stdt with s ∈ C0 := {s ∈ C |Re(s) > 0}.

We shall in particular use the following properties on Bessel functions [17]

(4.19) L−1
( 1√

1 + κ2s2

)
= K0

µ(t) and L−1
( 1√

1 + κ2s2 + κs

)
= K1

µ(t),

with K0
µ and K1

µ as defined in (4.18).
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4.3.2. Analysis of the equations. Using the linear structure of the equations, one
can obtain an explicit expression for the Cummins operator C0,µ.

Theorem 4.2. The Cummins operator C0,µ is given explicitly by

C0,µ[δ̇] := `K1
µ ∗ δ̇,

where K1
µ is defined in (4.18).

Proof. Applying the Laplace transform to the equations (4.15) and (4.16), which
is possible since all the functions are continuous and bounded in time (as a con-
sequence of Proposition 3.1), and taking into account that ζ|t=0

= q|t=0
= 0, this

yields

(4.20)

{
sζ̂ + ∂xq̂ = 0

(1− κ2∂2
x)sq̂ + ∂xζ̂ = 0,

and q̂|x=` = −`̂̇δ.
This is an ODE for (ζ̂, q̂) on the half-line (`,∞) that can be explicitly solved in

terms
̂̇
δ (note that a representation of the solution in terms of the Laplace transform

in space is also possible [21] but not adapted to our purpose here; see also [3] for
other types of linear dispersive equations); the formula of the lemma below provides
”right-going” solutions to the linear Boussinesq equations and it is therefore no

surprise that the relationship between ζ̂ and q̂ is the same as the one that arises
when imposing transparent boundary conditions as in [23].

Lemma 4.3. There is one and only one solution (ζ̂, q̂) to (4.20) that does not grow
exponentially at infinity; it is given byq̂(s, x) = −` ̂̇δ(s)e− s√

1+κ2s2
(x−`)

,

ζ̂(s, x) =
1√

1 + κ2s2
q̂(s, x),

where the square root is taken in order to have positive real part.

Proof of the lemma. From (4.20), one deduces

(4.21) ∂2
xq̂(s)−

s2

1 + κ2s2
q̂(s) = 0,

and there are therefore two constants A(s) and B(s) such that

q̂(s, x) = A(s)e
− s√

1+κ2s2
x

+B(s)e
s√

1+κ2s2
x
.

Since exponentially increasing functions are not allowed, we have B(s) = 0 and
thus

q̂(s, x) = A(s)e
− s√

1+κ2s2
x
.

Then using the boundary condition on q̂ at x = `, we find the expected formula for

q̂. By using the first equation of (4.20), we get the formula for ζ̂. �

Let us now remark that for all f ∈ L2(E+), one has

(R1f)|x=` = κ−1

ˆ
E+
e−κ

−1(x−`)f(x)dx
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so that, using the lemma,

Ĉ0,µ[δ̇](s) = −(R1ζ̂)|x=`

=
`
̂̇
δ(s)

κ
√

1 + κ2s2

ˆ
E+
e
−
(

1
κ+ s√

1+κ2s2

)
(x−`)

dx.

It follows that

Ĉ0,µ[δ̇](s) =
`√

1 + κ2s2 + κs

̂̇
δ(s).

Using (4.19), this yields

C0,µ[δ̇] = `K1
µ ∗ δ̇;

note also for future use that we also get from the lemma that

ζ(t, x) = K0
µ ∗ q.

�

As in Corollary 4.3 in the non dispersive case, it is possible to determine the
motion of the solid by the resolution of a single scalar equation on δ; due to the
presence of the dispersive terms however, this equation is no longer an ordinary
differential equation but an integro-differential equation.

Corollary 4.5. The motion of the floating object for the problem (4.15)-(4.17) can
be found directly by solving the linear second order integro-differential equation,

(4.22)
(
τ2
µ + `κ

)
δ̈ + `K1

µ ∗ δ̇ + δ = 0,

with initial conditions δ(0) = δ0 and δ̇(0) = 0.

Remark 4.6. In [33], the authors consider the linearized shallow-water equations
with some viscosity ν. More precisely, they consider (4.15) with −ν∂2

xq instead of
−κ2∂2

x∂tq in the second equation and find the following Cummins equation

(4.23) τ2
µ δ̈+

√
ν`δ(

3
2 ) +νδ̇+`Fν ∗ δ̇+δ = 0 with Fν := L−1

[
1√

1 + νs+
√
νs

]
,

and where δ( 3
2 ) stands for the fractional derivative of order 3/2 of δ. This equation

shares some similarities with (4.22), in particular the convolution term, although

with a different kernel (note that one gets K̂1
µ(s) by replacing νs by κ2s2 in F̂µ(s)).

One the contrary, there is in (4.23) a viscous damping term νδ̇ that has no equivalent

in (4.22). Note finally that the fractional derivative term
√
ν`δ(

3
2 ) in (4.23) can be

related to the added mass term `κδ̈ in (4.22). Indeed, in the analysis of [33],

this fractional derivative is the leading order term of a convolution term `F ∗ δ̇
with F̂ (s) =

√
1 + νs. In the dispersive case, the same analysis would give a

symbol
√

1 + κ2s2 and the leading order term of the same convolution would be
the dispersive added mass term `κδ̈.

In the linear non dispersive case (ε = µ = 0), Corollary 4.3 shows that the motion
of the object is governed by the same equation as a damped harmonic oscillator;
the return to equilibrium occurs therefore at an exponential rate. In the presence of
dispersion, Corollary 4.5 states that the motion of the solid is now governed by the
integro-differential equation (4.22) and numerical simulations (see Figure 2) suggest

that the decay gets slower as the dispersion parameter κ =
√
µ/3 increases. This
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.

Figure 2. Return to equilibrium: evolution of δ(t) with increasing
value of κ and δ0 = 1, τbuoy = 1/6, heq = 1.

issue is addressed in the following proposition. In particular, the fact that δ belongs
to H2(R+) implies that δ and δ̇ tend to zero at infinity, but the third point of the
proposition shows that the decay cannot be stronger than O(t−3/2) (as opposed
to the exponential convergence rate in the linear non dispersive case), bringing a
theoretical confirmation to the above numerical observations.

Proposition 4.2. i. There is a unique solution δ ∈ C2(R+)∩W 1,∞(R+) to (4.22)

with initial data δ(0) = δ0 and δ̇(0) = 0.
ii. Moreover, δ ∈ H2(R+), but for k ∈ {0, 1, 2}, tδ(k) 6∈ L2(R+).
iii. For all α > 0 and k ∈ {0, 1, 2} and for all c > 0 and T0 > 0, there exists t > T0

such that

|δ(k)(t)| > ct−
3
2−α.

Remark 4.7. The dispersive delay (convolution) term in (4.22) is responsible for
the slow decay of the solution. Indeed, in the non dispersive limit case κ = 0, the
branching points s = ±iκ−1 disappear from the transfer function Ĥµ derived in
(4.24) below, which then becomes

Ĥ0(s) :=
τ2
0 s+ `

τ2
0 s

2 + s`+ 1
,

whose poles have a strictly negative real part, hence an exponential decay for δ.

Proof. Since the kernel K1 belongs to L1(R+) (recall that the Bessel function J1(t)
decays like O(t−1/2)), the proof of the first part of the proposition does not raise
any particular problem. To prove the second part of the proposition, we need a

careful analysis of the transfer function Ĥµ defined by the relation δ̂ = Ĥµδ0. Since
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(δ, δ̇) ∈ C ∩ L∞(R+), the Laplace transform of δ and δ̇ are well defined on C0 an
after remarking that

κs+
1√

1 + κ2s2 + κs
=
√

1 + κ2s2,

the Laplace transform of δ is, owing to (4.22),

(4.24) δ̂ = Ĥµ(s)δ0 where Ĥµ(s) :=
τ2
µs+ `

√
1 + κ2s2

τ2
µ s

2 + s`
√

1 + κ2s2 + 1
.

Lemma 4.4. The transfer function Ĥµ defined in (4.24) is holomorphic on C0

and admits only two branching points at ±iκ−1. Moreover all the zeros of the
denominator in (4.24) have strictly negative part.

Proof of the lemma. We denote by P the holomorphic function on C0

P (s) := τ2
µ s

2 + s`
√

1 + κ2s2 + 1,

where the square root stands for the square root with positive real part. Since P has
only two singularities which are the branching points ±iκ−1, we can extend it an-
alytically on all the complex plane except on the cuts i(−∞,−κ−1) and i(κ−1,∞),
and extend it continuously by a function P ∗ on the imaginary axis by

P ∗(iω) :=

{
1− τ2

µ ω
2 + iω`

√
1− κ2ω2 |ω| ≤ κ−1,

1− τ2
µ ω

2 − |ω|`
√
κ2ω2 − 1 |ω| > κ−1.

We first show that s cannot be purely imaginary, then that if a zero is real, it must
be strictly negative, and finally that if a zero is not a real number, it must satisfy
<(s) < 0.
Step 1. The zeros of P cannot be purely imaginary. Indeed, if ω were we solution
of P ∗(iω) = 0, then, from the expression of P (iω) given above, ω2 would be a real
root of the second order polynomial

(τ4
µ − `2κ2)X2 + (`2 − 2τ2

µ)X + 1.

But the discriminant of this polynomial is ∆ = `4 + 4`2(κ2 − τ2
µ) < −`2/3 (since

τ2
µ > κ2 + `2/3), which is negative, implying that the polynomial cannot have any

real root.
Step 2. The zeros of P cannot belong to R+ from the simple observation that
P (η) > 0 for all η ∈ R+.
Step 3. The zeros of P cannot have positive real part. In order to prove this, we
show here that =(P (s)) 6= 0 for all s = η + iω with s /∈ iR ∪ R (the case s ∈ R+

having been dealt with in Step 2). The imaginary part of P (s) is given by

=[P (s)] = 2τ2
µ η ω + η `=[

√
1 + κ2s2] + ω `<[

√
1 + κ2s2].

By definition of the square root, <[
√

1 + κ2s2] ≥ 0 and the sign of =[
√

1 + κ2s2] is
the same as the sign of the product η ω. The following table summarizes the sign
of some quantities in different cases (where + stands for strictly positive, − stands
for strictly negative and ind. signifies that the sign is indeterminate).
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η ω 2τ2 η ω η=[
√

1 + κ2s2] ω<[
√

1 + κ2s2] =[P (s)]
- - + - - ind.
- + - + + ind.
+ - - - - -
+ + + + + +

Therefore, if η > 0 then =[P (s)] is either strictly positive or strictly negative, so
that it does not vanish.

�

Using Lemma 4.4, we can extend continuously the transfer function Ĥµ on the
imaginary axis by

Ĥ∗µ(iω) =


τ2
µiω + `

√
1− κ2ω2

−τ2
µ ω

2 + iω`
√

1− κ2ω2 + 1
δ0, |ω| ≤ κ−1,

τ2
µiω + i`sign(ω)

√
κ2ω2 − 1

−τ2
µ ω

2 − |ω|`
√
κ2ω2 − 1 + 1

δ0, |ω| > κ−1.

Integrating |Ĥ∗µ(iω)|2 over R we get

ˆ
R
|Ĥ∗µ(iω)|2dω =

ˆ κ−1

−κ−1

|Ĥ∗µ(iω)|2dω +

ˆ
|ω|>κ−1

|Ĥ∗µ(iω)|2dω.

The first integral is obviously finite (the denominator in (4.24) does not vanish on

iR). The second integral is also finite since |Ĥ∗µ(iω)|2 ∼
|ω|→∞

ω−2. Then Ĥµ belongs to

the standard Hardy space H2(C0) and by the Paley-Wiener theorem (see Theorem
5.1 below), one has δ ∈ L2(R+).
The same reasoning can be applied to

̂̇
δ =

(
−1

τ2
µ s

2 + s`
√

1 + κ2s2 + 1

)
δ0

and ̂̈
δ =

(
−s

τ2
µ s

2 + s`
√

1 + κ2s2 + 1

)
δ0

so that δ̇ and δ̈ also belong to L2(R+).
Let us now prove that u(t) := tδ(t) does not belong to L2(R+). Denoting by U the
Laplace transform of u, one has

U(s) := (−1)

(
d

ds

)
Hµ(s)δ0 on C0,

and the following extension to the imaginary axis holds,

U∗(iω) =


(−1)

(
d

dω

)
τ2
µiω + `

√
1− κ2ω2

−τ2
µ ω

2 + iω`
√

1− κ2ω2 + 1
δ0, |ω| ≤ κ−1,

(−1)

(
d

dω

)
τ2
µiω + i`sign(ω)

√
κ2ω2 − 1

−τ2
µ ω

2 − |ω|`
√
κ2ω2 − 1 + 1

δ0, |ω| > κ−1.



FREELY FLOATING OBJECT WITH THE BOUSSINESQ EQUATIONS 47

But U is no longer bounded on the imaginary axis as it contains two non isolated
singularities (of order −1/2 is the Puiseux series expansion) at ±iκ−1; the integral

ˆ κ−1

−κ−1

|U∗(iω)|2dω

is not finite and thus U /∈ H2(C0). By the Paley-Wiener theorem, this implies that
u /∈ L2(R+). The same reasoning can be applied to

V (s) = (−1)

(
d

ds

)( −1

τ2
µ s

2 + s`
√

1 + κ2s2 + 1

)
δ0

and

W (s) = (−1)

(
d

ds

)( −s
τ2
µ s

2 + s`
√

1 + κ2s2 + 1

)
δ0,

which are respectively the Laplace transforms of tδ̇ and tδ̈. This completes the
proof of the second point of the proposition.
Let us now prove the third point by contradiction. Assuming that there exists
C > 0 such that for t large enough

|δ(k)(t)| ≤ Ct− 3
2−α,

one gets

|tδ(k)(t)|2 ≤ Ct−1−2α

which implies tδ(k) ∈ L2(R+), which contradicts the second point. �

In the non dispersive case, we showed in Corollary 4.4 that once the motion of the
object is known, it is possible to find q in the exterior domain by solving an initial
boundary value problem for a Burgers-type scalar equation. This remains true in
the present dispersive linear case, but the initial boundary value problem one has
to solve is now nonlocal in time. Note that as in Remark 4.5, the corollary can
easily be generalized to describe the waves created by an object in forced motion.

Corollary 4.6. The return to equilibrium problem for the linear Boussinesq equa-
tions (4.15)-(4.17) with initial condition (4.2) can be equivalently formulated as a
scalar nonlocal initial boundary value problem on q

(4.25)


∂xq +K0

µ ∗ ∂tq = 0 (t > 0, x > `),

q|t=0
= 0,

q|x=` = −`δ̇,
where K0

µ is defined in (4.18) while ζ is given in terms of q by a convolution in time

(4.26) ζ = K0
µ ∗ q,

with δ furnished by Proposition 4.2.

Remark 4.8. The nonlocal initial boundary value problem (4.25) is not standard.
The most convenient way to handle it is to see it as an evolution equation with
respect to x rather than t; it then becomes a particular case of the nonlocal initial
boundary value problems considered in Section 5. It is in particular a consequence
of Theorem 5.2 below that (4.25) admits a unique solution q ∈ C(R+

x ;H1(R+
x )) ∩

C1(R+
x ;L2(R+

x )). Moreover, Proposition 5.2 and Corollary 5.1 imply that the so-
lution if actually of class C2(R+ ×R+) and infinitely regular with respect to time,
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showing that the dispersive terms induce a smoothing effect. Indeed, when κ = 0,
the first equation in (4.25) becomes

(4.27) ∂tq + ∂xq = 0

and the solution to the initial boundary value problem, explicitly given by

q(x, t) =

{
−`δ̇(t− (x− `)) for t− (x− `) ≥ 0

0 for t− (x− `) < 0,

does not belong to C1(E+ × R+) because δ̈(0) = − 1
τ2
µ
6= 0.

5. The initial boundary value problem for a class of nonlocal
transport equations

As shown in the previous section, the analysis of the return to equilibrium prob-
lem in the linear dispersive case leads to a nonlocal generalization of the transport
equation. The analysis of the initial value problem for such equations is not stan-
dard and we address it in this section. Since this subject is of interest in its own, we
work here with more standard notations. More precisely, we consider an evolution
with respect to the time variable and a nonlocal term with respect to the space
variable (this is the reverse in §4.3). The domain of consideration is the quadrant
{x ≥ 0, t ≥ 0}. The typical initial boundary value we shall consider is therefore of
the form, 

∂tu+K ∗x ∂xu = f,

u|x=0
= u,

u|t=0
= uin.

for some convolution kernel K to be made precise later.
After presenting some technical material in §5.1.1 for the functional setting and

the Laplace transform, we remind in §5.2 some very classical facts on the initial
and/or boundary value problems for the standard transport equation, making a
distinction between the case of a positive and a negative velocity. The nonlocal
generalizations of these transport problems, in which ∂xu is replaced by a nonlocal
term K∗x ∂xu, are addressed in §5.3; in particular similarities and differences (such
as the presence of an additional compatibility condition and a smoothing effect)
with their local counterparts are commented.

NB. To avoid confusions with the computations performed in §4.3 where the
Laplace transform û was taken with respect to time (with dual variable s) we
denote throughout this section by ũ the Laplace transform with respect to x (with
dual variable p = α+ iξ).

5.1. Functional setting and a brief reminder on the Laplace transform.
We gather here some definition of functional spaces that play an important role in
the analysis of initial boundary value problems, as well as some classical facts on
the Laplace transform.
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5.1.1. Functional setting. In the study of initial boundary value problems for hy-
perbolic systems of equations, the space Xn plays a central role; it is defined for all
n ∈ N as

Xn =

n⋂
j=0

Cj(R+
t ;Hn−j(R+

x ));

in particular, for all u ∈ Xn, one can define for all t ≥ 0 the quantity

|||u(t, ·)|||n := sup
j+k≤n

|∂jt ∂kxu(t, ·)|L2(R+).

Let us also define Yn as

Yn =

n⋂
j=0

W j,1
loc (R+

t ;Hn−j(R+
x )).

When working with nonlocal transport equations, it is convenient to introduce
weighted versions of these spaces. For any a ∈ R, and k ∈ N, we introduce therefore

L2
a(R+) := {u ∈ L2

loc(R+), |u|L2
a

:=
( ˆ

R+

e−2ax|u(x)|2dx
)1/2

<∞},

Hk
a (R+) := {u ∈ L2

a(R+), |u|Hka :=

k∑
l=0

|∂lxu|L2
a
<∞},

and denote by Xna and Yna the weighted version of the spaces Xn and Yn obtained
by replacing all L2(R+

x ) based spaces by their L2
a(R+

x ) analogue: we also write

|||u(t, ·)|||a,n := sup
j+k≤n

|∂jt ∂kxu(t, ·)|L2
a(R+).

5.1.2. Some results on the Laplace transform. For all u ∈ L1
loc(R+), the Laplace

transform is defined by

ũ(p) =

ˆ ∞
0

e−pxu(x)dx,

for all p = α + iξ ∈ C such that this integral converges absolutely. Using for all
a ∈ R the notation

Ca = {p ∈ C,<p > a},
we can define the Hardy space

H2(Ca) :=
{
U holomorphic on Ca ; ||U ||2H2(Ca) := sup

α>a

ˆ
R
|U(α+ iξ)|2dξ <∞

}
.

Every function U ∈ H2(Ca) admits a boundary trace denoted U∗ on a + iR, that
belongs to L2(a+ iR), and H2(Ca) is a Hilbert space for the scalar product

〈F,G〉H2(Ca) =
1

2π

ˆ ∞
−∞

F ∗(a+ iξ)G∗(a+ iξ)dξ.

Recalling that the weighted space L2
a(R+) is defined in the previous section, we can

state the well-known Paley-Wiener theorem.

Theorem 5.1. Let a ∈ R. The Laplace-transform

L :
L2
a(R+)→ H2(Ca)

u 7→ ũ

is an isometry between Hilbert spaces.
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Recalling that

d̃u

dx
(p) = pũ(p)− u(0)

(whenever these quantities make sense), we also have the following characterization
of the weighted Sobolev spaces Hk

a (R+).

Proposition 5.1. Let k ∈ N and (u0, . . . , uk−1) ∈ Rk. The following assertions
are equivalent,

i. One has u ∈ Hk
a (R+) and for all 0 ≤ j ≤ k − 1, limx→0+ ∂jxu(x) = uj.

ii. For all 0 ≤ j ≤ k, the mapping p 7→ pj ũ(p) −∑j−1
i=0 p

j−1−iui belongs to
H2(Ca) (with the sum taken to be zero if j = 0).

Moreover, for all 0 ≤ j ≤ k, one has ∂̃jxu = pj ũ(p)−∑j−1
i=0 p

j−1−iui.

5.2. Reminder on the standard transport equation. Let us start with some
considerations on the standard initial boundary value problem for the transport
equations ∂tu+ ∂xu = f (referred to as right-going case) and ∂tu− ∂xu = f (left-
going case).

5.2.1. The right-going case. We consider here the following initial boundary value
problem

(5.1)


∂tu+ ∂xu = f,

u|x=0
= u,

u|t=0
= uin,

with f ∈ Y1, uin ∈ H1(R+) and u ∈ H1
loc(R+). In order for (5.1) to admit a

solution u ∈ X1 = C(R+
t ;H1(R+

x )) ∩C1(R+
t ;L2(R+

x )), and therefore continuous on
[0,∞)× [0,∞), it is necessary that

u(t = 0) = uin(x = 0).

This compatibility condition is actually sufficient to ensure the existence and unique-
ness of such a solution. Even if the data are more regular, i.e. if f ∈ Yn,
uin ∈ Hn(R+) and u ∈ Hn

loc(R+) for some n > 1, one cannot expect in general
the solution to be in Xn. It is a general feature of first order hyperbolic systems
that such a regularity is achieved if and only if n algebraic compatibility conditions
are satisfied (see for instance [4, 36, 37, 18]). Of course, the situation is the same if
we choose to work in the weighted space Xna since the presence of the weight changes
the integrability properties at infinity, but not local regularity. In the present case,
this can easily be checked on the following explicit representation of the solution

(5.2) u(t, x) = uin(x− t) + u(t− x) +

ˆ t

0

f(t′, x− t+ t′)dt′,

where uin, u and f(t, ·) are extended by zero in order to be considered as functions
defined on the full line R instead of R+.

5.2.2. The left-going case. It is well-known that an initial boundary value problem
similar to (5.1) is ill-posed for the left-going transport equation ∂tu − ∂xu = f .
Indeed, the initial value problem (without boundary condition)

(5.3)

{
∂tu− ∂xu = f,

u|t=0
= uin,
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is well posed, and the solution can be explicitly written as

(5.4) u(t, x) = uin(x+ t) +

ˆ t

0

f(t′, x+ t− t′)dt′;

in particular, the boundary value u is given in terms of uin and f through the
relation

u(t) = uin(t) +

ˆ t

0

f(t′, t− t′)dt′

and therefore cannot be freely prescribed. Note that using this relation in (5.4),
one can express the solution in terms of the boundary data instead of the initial
data, namely,

(5.5) u(t, x) = u(x+ t)−
ˆ x

0

f(x+ t− x′, x′)dx′.

This proves in particular that the following boundary value problem (without initial
condition)

(5.6)

{
∂tu− ∂xu = f,

u|x=0
= u,

is also well-posed for the left-going transport equation.
We note finally that for the initial value problem (5.3) as well as for the boundary
value problem (5.6) (which are essentially the same by switching the variables t
and x) the solution u belongs to X1 if the data are smooth enough without having
to impose any compatibility condition, contrary to what we saw for the right-going
case.

5.3. The nonlocal transport equation. The aim of this section is to investigate
the behavior of nonlocal perturbations of the right-going and left-going transport
equations respectively given by

(5.7) ∂tu+K0
µ ∗x ∂xu = f and ∂tu−K0

µ ∗x ∂xu = f,

where ∗x stands for the causal convolution with respect to the space variable,

∀x ∈ R+, f ∗x g(x) =

ˆ x

0

f(x− x′)g(x′)dx′

and with the Bessel kernel K0
µ as in (4.18); in particular, we recall that

K̃0
µ(p) =

1√
1 + κ2p2

(κ2 = µ/3).

Remark 5.1. Though we consider here the Bessel kernel K0
µ, the results of this

section can easily be adapted to other kernels.

An important feature of the family (K0
µ)µ>0 is that it formally converges to the

Dirac mass at x = 0 as µ → 0, so that the nonlocal transport equations (5.7)
formally converge to the standard right-going and left-going transport equations
respectively, namely,

∂tu+ ∂xu = f and ∂tu− ∂xu = f.

A natural question is therefore to ask whether the nonlocal initial and/or boundary
value problems have a similar behavior to the behavior of their local counterpart
described in §5.2.
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5.3.1. The right-going case. We want to address in this section the same kind of
initial boundary value problem as (5.1), but where the space derivative is now
replaced by a nonlocal term, namely, we consider

(5.8)


∂tu+K0

µ ∗x ∂xu = f,

u|x=0
= u,

u|t=0
= uin.

As for (5.1), if there exists a solution u ∈ X1 (or more generally in the weighted
version X1

a with a ≥ 0) to (5.8), then it is continuous at x = t = 0 and the data
must therefore satisfy the same compatibility condition

(5.9) u(t = 0) = uin(x = 0)

as for the standard transport equation.
There is however a new compatibility condition that arises here. Indeed, since K0

µ ∈
L1

loc(R+), the trace of K0
µ ∗x ∂xu at x = 0 is well defined if ∂xu ∈ C(R+

t ;L2
loc(R+

x )),
and it must be equal to zero by definition of the convolution. Taking the trace of
the first equation in (5.8), one therefore finds the following additional compatibility
condition for the existence of solutions with the aforementioned regularity,

(5.10) ∀t ∈ R+, ∂tu(t) = f(t, 0).

Remark 5.2. The similar procedure applied to the standard transport problem (5.8)
yields the relation

∂xu(t, 0) = −∂tu(t) + f(t, 0),

which is not a compatibility condition but an information on the behavior of the
trace of ∂xu at the boundary.

If these two compatibility conditions are satisfied, the theorem below shows the
well-posedness of the nonlocal initial boundary value problem (5.8). We recall that
the functional spaces have been defined in §5.1.1; note also that we have to work
in weighted spaces here in order to compensate the slow decay of K0

µ at infinity

(which is of order O(|x|−1/2) and that more information on the regularity of the
solution is given in Corollary 5.1 below.

Theorem 5.2. Let a > 0 and f ∈ Y1
a, uin ∈ H1

a(R+
x ) and u ∈ W 1,1

loc (R+
t ). Assume

moreover that the compatibility conditions (5.9) and (5.10) hold. Then there exists
a unique solution u ∈ X1

a to the nonlocal initial boundary value problem (5.8), and
there exists ca > 0 such that, for all t ∈ R+,

|u(t, ·)|H1
a(R+

x ) ≤ e−cat|uin|H1
a(R+

x ) +

ˆ t

0

e−ca(t−t′)[|f(t′, ·)|H1
a(R+

x ) + |K0
µ|L2

a
|u(t′)|

]
dt′.

If moreover u = 0 then the result still holds with a = ca = 0.

Proof. For the sake of clarity, we simply write K instead of K0
µ. Taking the Laplace

transform of (5.8) with respect to space, one gets that

∂tũ+ K̃(p)(pũ− u) = f̃ on R+.
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Solving this ODE with initial condition ũ|t=0
= ũin, one gets the following expression

for ũ, for all p ∈ Ca and t ∈ R+,

ũ(t, p) = e−pK̃(p)tũin(p) +

ˆ t

0

e−pK̃(p)(t−t′)f̃dt′ +
ˆ t

0

e−pK̃(p)(t−t′)K̃(p)u(t′)dt′

=: ũ1 + ũ2 + ũ3.(5.11)

Since the Paley-Wiener Theorem 5.1 states that the Laplace transform is an isom-
etry between L2

a(R+) and H2(Ca), the following lemma shows that both u1 and u2

belong to C(R+
t ;L2

a(R+
x )) if uin ∈ L2

a(Rx) and f ∈ L1
loc(R+

t ;L2
a(R+

x )).

Lemma 5.1. Let a ≥ 0. For all U ∈ H2(Ca), the mapping

R+ → H2(Ca)

t 7→
(
p 7→ e−pK̃(p)tU(p)

)
is well defined and continuous, and for all t ∈ R+, ‖e−pK̃(p)tU‖H2(Ca) ≤ ‖U‖H2(Ca).

If moreover a > 0 then there exists ca > 0 such that for all t ∈ R+,

‖e−pK̃(p)tU‖H2(Ca) ≤ e−cat‖U‖H2(Ca).

Proof of the lemma. Except for the last assertion, we consider only the case a =
0 since the case a > 0 can easily be deduced from it. From the definition of
H2(C0) and Lebesgue’s dominated convergence theorem, it is sufficient to prove that

e−pK̃(p)t is holomorphic and bounded on C0. The fact that it is holomorphic directly

stems from the explicit expression K̃(p) = (1 + κ2p2)−1/2. For the boundedness,

this is a consequence of the fact that <(pK̃(p)) ≥ 0 on C0, as we now prove. For
all p = α+ iξ ∈ C0, one computes

(5.12) <(pK̂(p)) =
α<(

√
1 + κ2p2) + ξ=(

√
1 + κ2p2)

|
√

1 + κ2p2|2
.

Since <(
√

1 + κ2p2) is positive (by definition of the square root) and the sign of

=(
√

1 + κ2p2) is the same as the sign of the product α ξ, one gets the result.

Since we have proved that <(pK̃(p)) ≥ 0 on C0, the last assertion follows if we

can prove that <(pK̃(p)) does not vanish on Ca if a > 0. Since both terms in the

numerator in (5.12) are positive, both must vanish if <(pK̃(s)) vanishes. Since α > 0

on C0, this implies that there should be p = α+iξ ∈ Ca such that <(
√

1 + κ2p2) = 0

and ξ=(
√

1 + κ2p2) = 0, which is obviously not possible. �

Remarking that for any a > 0, one has K̂ ∈ H2(Ca), it is also a direct consequence
of the lemma that there is ca > 0 such that

‖ũ3‖H2(Ca) ≤ ‖K̃‖H2(Ca)

ˆ t

0

e−ca(t−t′)|u(t′)|dt′.

Together with the results already proved on ũ1 and ũ2, we deduce (see the Paley-
Wiener Theorem 5.1 below) that

|u(t, ·)|L2
a(R+

x ) ≤ e−cat|uin|L2
a(R+

x ) +

ˆ t

0

e−ca(t−t′)[|f(t′, ·)|L2
a(R+

x ) + |K|L2
a
|u(t′)|

]
dt′.

In order to conclude the proof of the theorem, we still need to control ∂xu and ∂tu.
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• Control of ∂xu. We want to show that ∂xu ∈ C(R+
t ;L2

a(R+
x )), or equiva-

lently that ∂̃xu ∈ C(R+
t ;H2(Ca)). Since ∂̃xu = pũ− u, we consider

pũ(t, p) = e−pK̃(p)tpũin(p) +

ˆ t

0

e−pK̃(p)(t−t′)pf̃dt′ +
ˆ t

0

e−pK̃(p)(t−t′)pK̃(p)u(t′)dt′.

Writing pũin = ∂̃xuin + uin(0), pf̃(t, p) = ∂̃xf(t, p) + f(t, 0), we can remark
thatˆ t

0

e−pK̃(p)(t−t′)pK̃(p)u(t′)dt′ =

ˆ t

0

∂t′
(
e−pK̃(p)(t−t′))u(t′)dt′

= u(t)− e−pK̃(p)tu(0)−
ˆ t

0

e−pK̃(p)(t−t′)∂tu(t′)dt′,

from which we deduce that

∂̃xu(t, p) =e−pK̃(p)t∂̃xuin(p) +

ˆ t

0

e−pK̃(p)(t−t′)∂̃xfdt′

+ e−pK̃(p)t
(
uin(0)− u(0)

)
+

ˆ t

0

e−pK̃(p)(t−t′)(f(t′, 0)− ∂tu(t′)
)
dt′.

While the first two components of the right-hand side belong to C(R+
t ;H2(Ca))

by Lemma 5.1, the last two ones do not, unless the compatibilty conditions
given in the statement of the Theorem are satisfied, in which case these two
components cancel and the result follows together with the upper bound

|∂xu(t, ·)|L2
a
≤ |∂xuin|L2

a
+

ˆ t

0

e−ca(t−t′)|∂xf(t′, ·)|L2
a
dt′.

• Control of ∂tu. Using the equations, one has

|∂tu|L2
a
≤ |K ∗x ∂xu|L2

a
+ |f |L2

a

≤ |K|L1
a
|∂xu|L2

a
+ |f |L2

a
,

with L1
a = L1(R+, e−axdx), showing as needed that ∂tu ∈ C(R+

t ;L2
a(R+

x )).

The theorem follows easily. �

Remark 5.3. As explained above in Remark 5.1, the initial boundary value prob-
lem (5.8) can be seen as a nonlocal perturbation of the standard transport problem
(5.1) toward which it formally converges when µ→ 0. There seems however to be
some discrepancy because two compatibility conditions, namely, (5.9) and (5.10),
are needed to ensure the existence of solutions u ∈ X1

a to (5.8), while the sole
compatibility condition (5.9) is sufficient to get a similar result for the standard
transport problem (5.1). One should explain why the second compatibility condi-
tion (5.10) disappears in the formal limit µ = 0.
The reason is that (5.10) is here to ensure continuity of the solution at the bound-
ary x = 0. Indeed, by the initial value theorem, we know that limx→0+ u(t, x) =
limp∈Ca,|p|→∞ pũ(t, p), and we therefore get from the Laplace representation for-
mula (5.11) that

lim
x→0+

u(t, x) = e−
t
κuin(0) +

ˆ t

0

e−
t−t′
κ f(t′, 0)dt′ +

ˆ t

0

e−
t−t′
κ

1

κ
u(t′)dt′
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where we used the fact that limp∈Ca,|p|→∞ pK̃(p) = κ−1; after an integration by
parts, the right-hand side can be written

u(t) + e−
t
κ

(
uin(0)− u(0)

)
+

ˆ t

0

e−
t−t′
κ

(
f(t′, 0)− ∂tu(t′)

)
dt′,

so that, if the first compatibility condition (5.9) is satisfied, one has

lim
x→0+

u(t, x)− u(t) =

ˆ t

0

e−
t−t′
κ

(
f(t′, 0)− ∂tu(t′)

)
dt′,

which is nonzero if the second compatibility condition is not satisfied, hence a lack
of continuity at x = 0 (there would therefore be a Dirac mass at x = 0 is the
expression for ∂xu(t, ·) that would therefore not be in L2

a(R+
x ) as seen in the proof).

However, one readily observes that

lim
µ→0

ˆ t

0

e−
t−t′
κ

(
f(t′, 0)− ∂tu(t′)

)
dt′ = 0 (κ2 = µ/3),

so that this discontinuity shrinks to zero in the limit µ → 0, explaining why the
second compatibility condition is no longer necessary in the endpoint case µ = 0.

Before going further, we recall that there are two possibilities to define frac-
tional derivatives of order α ∈ (0, 1) on R+ using the convolution kernel Kα(x) =
x−α/Γ(1− α) with α ∈ (0, 1) and Γ the Euler Gamma function, namely, the
Riemann-Liouville and Caputo derivatives, defined respectively as

Dα
RLu = ∂x

(
Kα ∗x u) and Dα

Cu = Kα ∗x ∂xu.
In the nonlocal initial boundary value problem (5.8), the space derivative ∂xu in the
standard transport equation has been replaced by the nonlocal term K0

µ∗∂xu which
can be considered as a generalized derivative of Caputo type, with the kernel Kα
replaced by the Bessel kernel K0

µ. It is noteworthy that working with the Riemann-

Liouville version of this operator, namely ∂x
(
K0
µ ∗x u), the situation is drastically

different. Indeed, as shown in the following proposition, it is not possible to impose
a boundary data anymore since the knowledge of the initial data suffices to fully
determine the solution; in other words, the initial value problem

(5.13)

{
∂tu+ ∂x

(
K0
µ ∗x u) = f,

u|t=0
= uin,

is well posed on R+
t ×R+

x . In particular, the trace of the solution at the boundary
x = 0 is determined by f and uin and therefore cannot be imposed. We also show
that if the data uin and f are smoother, then the solution is in X2

a, but generally
not in X3

a or higher in the absence of additional compatibility condition (but we
show however that the regularity in time can be higher).

Proposition 5.2. Let a > 0, n = 1 or 2, and f ∈ Yna and uin ∈ Hn
a (R+

x ). Then
there exists a unique solution u ∈ Xna to the nonlocal initial boundary value problem
(5.13). Moreover, one has u(t, ·)|x=0

= u(t) for all t ∈ R+, with u(t) given by

u(t) = e−
t
κuin(0) +

ˆ t

0

e−
t−t′
κ f(t′, 0)dt′.

If in addition f ∈ Cq(R+
t ;Hn

a (R+
x )) for some q ∈ N then one also has u ∈

Cq+1(R+
t ;Hn

a (R+
x )).
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Remark 5.4. Comparing the representation of the solution given in (5.14) below
to the representation of the solution to the initial boundary value problem (5.8)
given in (5.11), one can check that they are both the same if u = 0, which is not
surprising since one can compute

∂x(K0
µ ∗x u)(t, x) = (K0

µ ∗x ∂xu)(t, x) +K0
µ(x)u(t),

so that the Caputo and Riemann-Liouville nonlocal initial boundary value problem
coincide when u = 0.

Proof. As previously done, we simply write K = K0
µ. Taking the Laplace transform

of (5.13) one readily gets

(5.14) ũ(t, p) = e−pK̃(p)tũin(p) +

ˆ t

0

e−pK̃(p)(t−t′)f̃(t′, p)dt′;

by the initial value theorem, one gets that limx→0+ u(t, x) = u(t), with u as in the
statement of the theorem.
For all j and l, one deduces from the above formula for ũ that

pj ∂̃ltu = (−pK̂(p))l
[
e−pK̂(p)tpj ũin+

ˆ t

0

e−pK̃(p)(t−t′)pj f̃
]
+

l∑
m=1

(−pK̂(p))l−mpj ∂̃m−1
t f.

Replacing in this expression

pj ṽ = ∂̃jxv +

j−1∑
i=0

pj−1−i(∂ixv)|x=0

for v = uin, f̃ , ∂̃m−1
t f , we obtain

pj ∂̃ltu =

j−1∑
i=0

pj−1−iUli(p) + Flj(t, p)

(using the convention that the summation is zero if j − 1 < 0) with

Uli(p) :=(−pK̃(p))l
(
∂ixu

in(0) +

ˆ t

0

e−pK̃(p)(t−t′)(∂ixf)(t′, 0)dt′
)

+
l∑

m=1

(−pK̃(p))l−m(∂m−1
t ∂ixf)|x=0

and

Flj(t, p) := (−pK̂(p))l
[
∂̃jxuin +

ˆ t

0

e−pK̃(p)(t−t′)∂̃jxf
]

+

l∑
m=1

(−pK̂(p))l−m ˜∂m−1
t ∂jxf.

Remarking that lim|p|→∞ pK̂(p) = κ−1, and introducing uli = lim|p|→∞ Uli(p),
namely,

uli = (−κ)−l
(
∂ixu

in(0) +

ˆ t

0

e−
t−t′
κ (∂ixf)(t′, 0)dt′

)
+

l∑
m=1

(−κ)−l+m(∂m−1
t ∂ixf)|x=0

(of course, u00 = u), we can write

pj ∂̃ltu−
j−1∑
i=0

pj−1−iuli(p) =

j−1∑
i=0

pj−1−i(Uli(p)− uli)+ Flj(t, p).
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From Proposition 5.1, we can deduce that ∂jx∂
l
tu belongs to C(R+

t ;L2
a(R+

x )) if the
right-hand side of the above equality is in C(R+

t ;H2(Ca)). This is obvious for
Flj under the assumptions made in the statement of the proposition (see Lemma
5.1); for the summation, the problem reduces to determine whether the mapping

p 7→ pj−1
(
pK̂(p)−κ−1

)
belongs toH2(Ca) or not. This mapping being holomorphic

on Ca, we just need to check that it is square integrable on a+ iR. Recalling that

K̂(p) = 1√
1+κ2p2

, and using the fact that for all p ∈ Ca one has
√
p2 = p, one

has pj−1
(
pK̂(p) − κ−1

)
∼ − 1

2κ3 p
j−3 at infinity; the mapping is therefore square

integrable on a+ iR if and only if j ≤ 2, hence the results. �

As a corollary, we can exhibit a smoothing effect for the nonlocal transport
problem (5.8) that does not exist for the standard transport problem (5.1). Indeed,
as one can easily check on the explicit expression (5.2), even if the data uin, u and
f are very smooth, the solution is not C1(R+×R+) if the additional compatibility
condition ∂tu(0) = −∂xuin(0) + f(0, 0) is not imposed. There is a smoothing effect
for the nonlocal problem in the sense that the solution constructed in Theorem
5.2 actually belongs to X3

a ⊂ C2(R+ × R+) without any additional compatibility
condition if the data are smooth enough. Note that using the last statement of
Proposition 5.2, the proof shows that additional regularity in time on ∂xf would
yield additional regularity in time on ∂xu.

Corollary 5.1. Under the assumptions of Theorem 5.2, if moreover f ∈ Yna , uin ∈
Hn
a (R+

x ) and u ∈ Wn,1
loc (R+

t ) for n = 2 or 3, then the solution u provided by the
theorem belongs to Xna .

Proof. Taking the space derivative of the nonlocal transport equation in (5.8), it is
easy to see that v = ∂xu solves the initial boundary value problem{

∂tv + ∂x
(
K ∗x v) = ∂xf,

v|t=0
= ∂xu

in.

It follows therefore from Proposition 5.2 that ∂xu ∈ Xn−1. We are therefore left
to prove that ∂jt u ∈ C(R+

t ;L2
a(R+

x )) for 1 ≤ j ≤ n; this easily follows from the
observation that

∂jt u = −K ∗x ∂j−1
t ∂xu+ ∂j−1

t f

and from the fact that K ∈ L1
a(R+). �

5.3.2. The left-going case. As for the right-going case in the previous section, we
want to consider a nonlocal perturbation of the standard transport problem in
which the space derivative ∂x is replaced by a nonlocal term K0

µ ∗ ∂x. As recalled
in §5.2, for the standard left-going transport equation, one has to consider either
the initial value problem or the boundary value problem. While both cases are
symmetric in the case of the standard transport equation, this is no longer the case
and, as we shall see, the boundary value problem leads simpler expressions. We
therefore consider here its nonlocal analogue (see Remark 5.6 below for the nonlocal
analogue of the initial value problem),

(5.15)

{
∂tu−K0

µ ∗x ∂xu = f,

u|x=0
= u.
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As for the boundary value problem (5.6) for the standard left-going transport equa-
tion, there is no compatibility condition like (5.9) since uin is not prescribed. On
the other hand, the analysis leading to the second compatibility condition (5.10)
remains valid, and it is still necessary to have

(5.16) ∀t ∈ R+, ∂tu(t) = f(t, 0)

in order to expect a solution u that belongs to X1. In the statement below, we use
the notation

H1
a(R+

t × R+
x ) := H1(R+

t ;L2
a(R+

x )) ∩ L2(R+
t ;H1

a(R+
x ))

(note that the assumptions on the time dependence of f and u are chosen in order
to ensure the convergence of the integral term over the range (t,+∞) and that they
could easily be weakened).

Theorem 5.3. Let a > 0, f ∈ H1
a(R+

t ×R+
x ), and u ∈ H1(R+

t ). Assume moreover
that the compatibility condition (5.16) holds. Then there exists a unique solution
u ∈ X1

a to the nonlocal boundary value problem (5.15), and there exists ca > 0 such
that, for all t ∈ R+,

|u(t, ·)|H1
a(R+

x ) ≤
ˆ ∞
t

eca(t−t′)[|f(t′, ·)|H1
a(R+

x ) + |K0
µ|L2

a
|u(t′)|

]
dt′.

Proof. Still denoting K = K0
µ and following the same procedure as for the proof of

Theorem 5.2, one readily finds that

ũ(t, p) = −
ˆ ∞
t

epK̃(p)(t−t′)(f̃(t′, p)− K̃(p)u(t′)
)
dt′;

as for the right-going case, one can check that the compatibility condition (5.16) is
necessary for the continuity of the solution at x = 0. We omit the proof which is
an easy adaptation of the proof of Theorem 5.2. �

Remark 5.5. As for the standard boundary transport problem (5.6), the initial data
is determined in terms of the source term f and the boundary data u by evaluating
the Laplace representation formula given in the proof at t = 0, namely,

(5.17) ũin(p) = −
ˆ ∞

0

e−pK̃
0
µ(p)t′

(
f̃(t′, p)− K̃0

µ(p)u(t′)
)
dt′.

In the limit case µ = 0 (and therefore K̂µ(p) = 1), one can check that the repre-
sentation formula of the proof is equivalent to (5.5); the additional compatibility
condition (5.16) that is not necessary for (5.6) also disappears at the limit along a
mechanism similar to the one described in Remark 5.3.

Remark 5.6. For the standard left-going transport equation, the initial value prob-
lem (5.4) and the boundary value problem (5.5) can be treated in a totally sym-
metric case by switching the variables t and x. The presence of the nonlocal term
breaks this symmetry, and the nonlocal initial value problem would be more deli-
cate to deal with than the boundary value problem addressed above. In particular,
one would need to find u in terms of f and uin by solving the nonlocal equation
(5.17).



FREELY FLOATING OBJECT WITH THE BOUSSINESQ EQUATIONS 59

Appendix A. Non dimensionalization of the equations

We show here how to derive the dimensionless equations of motion used through-
out this paper. To begin with, the Boussinesq-Abbott system describing the prop-
agation of weakly nonlinear waves in a fluid of mean depth h0 and with a pressure
Patm + P exerted at the surface (Patm is a constant reference value for the atmo-
spheric pressure) is given by

(A.1)

{
∂tζ + ∂xq = 0,

(1− h2
0

3 ∂
2
x)∂tq + ∂x

(
1
hq

2
)

+ gh∂xζ = −hρ∂xP (h = h0 + ζ).

Remark A.1. Introducing the hydrodynamic pressure Π as

(A.2) Π = P + ρgζ,

and alternative formulation of (A.1) is

(A.3)

{
∂tζ + ∂xq = 0,

(1− h2
0

3 ∂
2
x)∂tq + ∂x

(
1
hq

2
)

= −hρ∂xΠ;

we shall sometimes use this alternative formulation under the floating object.

Let us now consider the equations for the solid. We recall that we consider here
a floating object with vertical lateral walls located at x = ±` (` > 0) and allowed to
move only vertically (heave motion). There is therefore only one degree of freedom
for the motion of the solid which can be fully deduced from the signed distance
δ(t) between the center of mass G =

(
xG, zG(t)

)
and its equilibrium position Geq =

(xG, zG,eq), namely, δ = zG(t)− zG,eq.
Let us also assume that the water depth below the object is given at equilibrium
by a nonnegative single valued function x 7→ heq(x); the part of the bottom of the
object in contact with the water (the wetted surface) is therefore given at all time
t by the graph of the function ζw defined as

(A.4) ζw(t, x) = δ(t) + heq(x)− h0.

Newton’s equation for a body of mass m that only moves vertically and subject to
gravity and hydrodynamic forces is given by

(A.5) mδ̈ +mg =

ˆ `

−`
P i(t, x)dx,

where P i(t, x) is the pressure exerted by the fluid on the object at the point
(x, ζw(t, x)). Note that at equilibrium, the pressure is hydrostatic, P i = −ρg(heq−
h0), so that

m = ρ

ˆ `

−`
(h0 − heq(x))dx (Archimedes’ principle),

and we can rewrite Newton’s equation under the form

mδ̈ =

ˆ `

−`

(
P i(t, x) + ρg(heq − h0)

)
dx.

By definition of the hydrodynamic pressure, its value Πi in the interior domain
(−`, `) is given by

Πi = P i + ρgζw,
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from which we infer, using (A.4),

(A.6) τ2
buoyδ̈ + δ =

1

2ρg`

ˆ `

−`
Πi(t, x)dx,

where 2πτbuoy is the buoyancy period defined through

τ2
buoy =

m

2`ρg
.

We now proceed to derive dimensionless versions of (A.1), (A.4), (A.5). We
recall that h0 denotes the water depth at rest, and also denote by a and L the
typical amplitude of the waves and a typical horizontal scale respectively. For the
Boussinesq-Abbott equations (A.1), we use the following scalings

x̃ =
x

L
, z̃ =

z

h0
, t̃ =

t

L/
√
gh0

, ζ̃ =
ζ

a
, q̃ =

q

a
√
gh0

, P̃ =
P

ρgh0

and consequently h̃ = 1 + εζ̃. We also introduce the nonlinearity and shallowness
parameters ε and µ as

ε =
a

h0
, µ =

h2
0

L2
.

For the sake of clarity the tildes used to denote dimensionless quantities are omitted
throughout this paper. The system (A.1) thus becomes

(A.7)

{
∂tζ + ∂xq = 0,

(1− 1
3µ∂

2
x)∂tq + ε∂x

(
1
hq

2
)

+ h∂xζ = − 1
εh∂xP (h = 1 + εζ).

Remark A.2. The dimensionless form of the hydrodynamic pressure is naturally

Π̃ =
Π

ρgh0
= P̃ + εζ̃,

so that the dimensionless version of the alternative formulation (A.3) is (omitting
the tildes)

(A.8)

{
∂tζ + ∂xq = 0,

(1− µ
3 ∂

2
x)∂tq + ε∂x

(
1
hq

2
)

= −hε ∂xΠ;

In order to derive the dimensionless versions of (A.4), (A.5) and (A.5), we also
need the following scalings

ζ̃w =
ζw
a
, δ̃ =

δ

a
, h̃eq =

heq

h0
, m̃ =

m

2`ρh0
, τ̃buoy =

τbuoy

L/
√
gh0

, ˜̀=
`

L

so that, omitting again the tildes for the sake of readability, we can rewrite (A.4)
and (A.5) as

(A.9) ζw(t, x) = δ(t) +
1

ε

(
heq(x)− 1

)
.

and

(A.10) τ2
buoyδ̈ +

1

ε
m =

1

ε

1

2`

ˆ `

−`
P i(t, x)dx;
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note that in these dimensionless coordinates, the coordinates of the vertical sides of
the object are x = ±` and that Archimedes’ principle reads in dimensionless form
as

m =
1

2`

ˆ `

−`
(1− heq).

Finally, the dimensionless version of A.6 is

τ2
buoyδ̈ + δ =

1

ε

1

2`

ˆ `

−`
Πi(t, x)dx.
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Institut de Mathématiques de Bordeaux, CNRS UMR 5251 et Université de Bordeaux,
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