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Introduction

With the growth of cloud computing, plenty of proprietary cloud APIs have emerged which made it hard for cloud costumers to switch between different cloud providers. To tackle the problem of this cloud provider lock-in, consortia have been formed to develop common standards for interfacing with cloud resources. The Open Cloud Computing Interface (OCCI) [START_REF] Nyrén | Open Cloud Computing Interface -Core[END_REF], developed by the Open Grid Forum (OGF)1 ,2 , thereby aims to provide a standardized managing interface, enabling the customer to manage cloud resources. It has been initially published in 2010 and several open-source implementations have been developed since then supporting all major open-source cloud middleware frameworks, including OpenStack 3 , OpenNebula4 and CloudStack 5 .

At a higher level of abstraction, the Organization for the Advancement of Structured Information Stan-dards (OASIS) 6 developed the Topology and Orchestration Specification for Cloud Applications (TOSCA), a template format that aims to standardize the definition of application topologies for cloud orchestration. As such, it enables the customer to define the topology of the cloud application in a reusable manner and to deploy it on TOSCA compliant clouds. TOSCA has been initially published in 2013 and major industrial cloud providers such as IBM Cloud are supporting it [START_REF] Breiter | Software Defined Environments based on TOSCA in IBM Cloud Implementations[END_REF]. In contrast to OCCI, TOSCA does not define how the topologies are programmatically created on the cloud infrastructure and leaves the implementation to the cloud provider. The latter is a complex and errorprone task, it requires expertise in the technical details of the target cloud API.

While the approaches of TOSCA and OCCI are different, both define a model for cloud resources. The goal of this work is to identify the conceptual similarities and differences between the two models and provide a mapping between them where possible. Such a mapping is the first step for building a fully model-driven cloud-provider agnostic cloud orchestrator that leverages both TOSCA and OCCI for portable application and infrastructure provisioning and deployment.

An initial mapping of the two standards was introduced in [START_REF] Glaser | Model Driven Cloud Orchestration by Combining TOSCA and OCCI[END_REF]. In this article, we extend this mapping to support a complete coverage of both standards and we concretely implement our approach based on Model-Driven Engineering (MDE) techniques to conceive with a high level of abstraction, verify, deploy and adapt cloud applications. The similarities and differences between the two standards are defined via transformation rules between the concepts of their metamodels. These rules are outputted as a TOSCA model, called TOSCA Extension, that defines the necessary information about the characteristics and the management of cloud applications based on TOSCA. TOSCA Extension conforms to the OCCIware metamodel [START_REF] Merle | A Precise Metamodel for Open Cloud Computing Interface[END_REF][START_REF] Zalila | A Model-Driven Tool Chain for OCCI[END_REF] written in Ecore. In fact, the OCCIware approach [START_REF] Zalila | Modeldriven Cloud Resource Management with OCCIware[END_REF] proposes an enhanced metamodel for OCCI and a whole tool chain for managing cloud resources. We leverage MDE in our approach since it has proven to be quite advantageous and is the mostly adopted methodology to rise in abstraction from the implementation level to the model level. It also reduces the cost of developing complex systems thanks to its ability of validation and artifacts generation.

Proposing a metamodel for a cloud API plays an important role to capture the expectations of this API and to a priori validate the correctness of its cloud configurations. These metamodels are manually designed so far, which is prohibitively labor intensive, time consuming and error-prone. To address this issue, we propose to 6 https://www.oasis-open.org generate a model-driven specification, i.e., TOSCA Extension, from the documentation of TOSCA written in YAML. This is a work of reverse engineering [START_REF] Rugaber | Model-Driven Reverse Engineering[END_REF], which is the process of extracting knowledge from a man-made documentation and re-producing it based on the extracted information. TOSCA Extension is at the base of construction of TOSCA Studio which is a tool chain for TOSCA based on the OCCIware approach. TOSCA Studio is implemented in the form of a set of Eclipse plugins. It mainly contains a TOSCA Designer allowing users to design, edit and validate TOSCA-based cloud applications, as well as an OCCI Orchestrator allowing users to deploy these applications on IaaS Clouds and manage them, following a models@run.time approach [START_REF] Blair | Models@ run.time[END_REF]. TOSCA-Studio is publicly available online 7 .

In other words, we propose a standard-based and model-driven orchestrator for cloud applications. We extend the features introduced in [START_REF] Glaser | Model Driven Cloud Orchestration by Combining TOSCA and OCCI[END_REF] in the following ways:

we propose an automated, extensive and extensible approach for mapping TOSCA types towards OCCI types, we propose an automated, extensive and extensible approach for mapping predefined TOSCA topologies towards deployable OCCI configurations, we provide TOSCA Studio, a model-driven environment for graphically designing and verifying cloud applications using TOSCA concepts, and we provide an integrated plugin that ensures a concrete deployment and runtime management of these applications using an OCCI API.

Our contribution targets several audiences. It is useful for TOSCA users since we provide an additional tool for designing and deploying TOSCA topologies, and for the developers of orchestrators since we provide a technical contribution that could inspire them to build their own tool and easily map TOSCA topologies towards a uniform cloud API. Finally, our approach shows that the mapping between two cloud standards is real, which is interesting, in terms of knowledge, for researchers and educators working in this field.

The remainder of this paper is structured as follows. First, we briefly introduce the models of TOSCA and OCCI in Section 2. Then we provide a conceptual comparison, a mapping between the two models and preliminaries about model-driven orchestration in Section 3. In Section 4, we implement our approach and provide a model-driven environment, called TOSCA Studio where the cloud user can design, verify and deploy cloud configurations. These configurations are deployed and maintained via the OCCI Orchestrator. Three feasibility stud-ies are discussed in Section 5. Section 6 presents the learned lessons from combining the two standards and providing a standard-based and model-driven environment for managing cloud applications. We compare our contribution to related work in Section 7. Finally, we draw our conclusions and give an outlook on future work in Section 8.

TOSCA and OCCI

Both TOSCA and OCCI define languages for modeling cloud resources. Since they hence provide a model for modeling they can be seen as metamodels [START_REF] Omg | MDA Guide rev. 2.0[END_REF]. We introduce these metamodels in the following.

TOSCA

According to its specification [START_REF]Topology and Orchestration Specification for Cloud Applications (TOSCA) 1.2[END_REF], TOSCA is "a language to describe service components and their relationships using a service topology, and it provides for describing the management procedures that create or modify services using orchestration processes". Therefore, it is able to describe both the service structure as well as the management processes. As the time of this writing, two versions of TOSCA exist. The first is based on XML [START_REF]Topology and Orchestration Specification for Cloud Applications (TOSCA) 1.2[END_REF], and the second is based on YAML [START_REF]TOSCA Simple Profile in YAML Version 1.0[END_REF]. While for TOSCA XML a XML Schema Definition (XSD) schema exists, the TOSCA YAML version lacks of a formal metamodel. A simplified metamodel of TO-SCA is depicted in Fig. 1.

Service_template captures the structure and the life cycle operations of the application. It consists of a Topol-ogy_template and a Plan. Plans define how the cloud application is managed and deployed. Topology_templates contain Entity_templates, which are Node_templates that define e.g., the virtual machines or application components, Relationship_templates that encode the relationships between the Node_templates, e.g., that a certain application component is deployed on a certain virtual machine, or Group_templates8 that allow to define groups of Node_templates, which e.g. should be scaled together. Additionally, TOSCA defines the Entity_templates Capability and Requirement. Capabilities are used to define that a Node_template has a certain ability, e.g., providing a container for running applications, and Requirements are used to define that a certain Node_template requires a certain Capability of another Node_template. All Entity_templates can have Properties, e.g., an IP address for a virtual machine, and a certain type that references an Entity_type. The Entity_type defines the allowed Properties through Property_definitions, and have Interfaces, which define the Operations that can be executed on instances implementing the type, e.g., the termination of a certain application component, or the restart of a virtual machine. Operations have Parameters that define their input and output. In addition to parameters for operations, TOSCA also allows to define input parameters for Plans. Many types inherit from Entity_type such as Node_type and Relationship_type. The former is a reusable entity that defines the type of one or more Node Templates and the latter defines the connection between the node types. We provide more information in Section 3. Besides this abstract metamodel, the TOSCA YAML specification defines normative types that should be supported by each TOSCA conforming cloud orchestrator. These normative types include e.g., base types for cloud services and virtual machines. More details on the model elements can be found in [START_REF]TOSCA Simple Profile in YAML Version 1.0[END_REF] and [START_REF]Topology and Orchestration Specification for Cloud Applications (TOSCA) 1.2[END_REF].

OCCI

According to the OGF, "OCCI is a Protocol and API for all kinds of Management tasks. It was originally initiated to create a remote management API for IaaS model based services, allowing for the development of interoperable tools for common tasks including deployment, autonomic scaling and monitoring" 9 . The OCCI specification comprises several parts: OCCI Core model, OCCI Extensions, OCCI Renderings and OCCI Protocols. The OCCI Core Model [START_REF] Nyrén | Open Cloud Computing Interface -Core[END_REF] defines a model for cloud resources and their dependencies. In addition to the OCCI Core Model, OCCI Extensions define extensions of the core model to be used for a specific domain. Several extensions are already standardized, e.g., the OCCI Infrastructure Extension [START_REF] Metsch | Open Cloud Computing Interface -Infrastructure[END_REF], which defines compute, network and storage resources for IaaS clouds, and the OCCI Platform Extension for the Platformas-a-Service (PaaS) domain, that defines additional resources for the Platform Service level. The extensions also define the links that can be established between the resources, for instance StorageLink, which connects a compute resource to a storage resource and NetworkInterface and IPNetworkInterface which connects a compute resource to a network resource. Finally, OCCI Renderings define how the OCCI Core Model can be interacted with, e.g., the OCCI HTTP Protocol [START_REF] Nyrén | Open Cloud Computing Interface -HTTP Protocol[END_REF] that defines how OCCI resources can be managed over the Templates of a specific kind are constrained to be linked to Types of the same kind, e.g., an instance of Node_Template can only be linked to an instance of Node_Type, etc. HTTP protocol. The OGF does not provide a formal metamodel for OCCI. This gap has been addressed by the OCCIware approach [START_REF] Zalila | A Model-Driven Tool Chain for OCCI[END_REF][START_REF] Zalila | Modeldriven Cloud Resource Management with OCCIware[END_REF] and we adopt the OC-CIware metamodel in the scope of this work. The OC-CIware metamodel defines precise semantics of OCCI Core which is composed of eight elements that are represented in the grey boxes of Fig. 2. The Category is the base type for all other classes and provides the necessary identification mechanisms. Categories have Attributes that are used to define the properties of a certain class, e.g., the IP address of a virtual machine. Three classes are derived from Category: Kind, Action, and Mixin. Kind defines the type of a cloud entity, e.g., a compute resource and Mixins define how an entity can be extended. Both have Actions that define which actions can be executed on an entity. The cloud entities themselves are modeled by the class Entity, which provides the base class for cloud Resources, e.g., virtual machines, and Links that define how the resources are connected. Moreover, the OCCIware metamodel explicitly introduces, among others, the two key concepts: Extension and Configuration as represented in the blue boxes of Fig. 2. An OCCI Extension represents a specific domain such as infrastructure, platform, security, etc. and an OCCI Configuration defines a running sys-tem, i.e., an instance model . It represents an instantiation of one or several OCCI extensions. The yellow boxes of the metamodel represent the DataType concepts that define exact types of the attributes such as StringType, RecordType, ArrayType, etc. In addition, the OCCIware metamodel introduces the Constraint notion (pink box in Fig. 2) allowing the cloud architect to express business constraints related to each cloud computing domain. The constraints can be imposed on OCCI Kinds and Mixins.

We provide Fig. 3 to better understand the correspondence between the two standards. First, we provide a simple TOSCA topology example, presented as a YAML file (1). This topology is composed of a tosca.nodes .Compute node named my_server and a tosca.nodes .BlockStorage node named my_storage. There is a relationship tosca.relationships.AttachesTo that connects these two nodes. Later on, we use Winery 10 to model this topology [START_REF] Breiter | Software Defined Environments based on TOSCA in IBM Cloud Implementations[END_REF]. Winery implements the visualization concept specified by Vino4TOSCA [START_REF] Breitenbücher | Vino4TOSCA: A Visual Notation for Application Topologies based on TOSCA[END_REF]. Eventually, we model the same topology in an OCCI dialect [START_REF] Glaser | Model Driven Cloud Orchestration by Combining TOSCA and OCCI[END_REF]. One can see that the tosca.nodes.Compute is translated into an OCCI Mixin that is applied on an OCCI Compute 10 https://winery.readthedocs.io/en/latest/user/ getting-started.html Fig. 2 A subset of OCCIware metamodel (adapted from [START_REF] Zalila | A Model-Driven Tool Chain for OCCI[END_REF]). resource. An OCCI Mixin can be seen as an interface that adds additional properties to a Resource, if required even at runtime. In this example, the tosca_nodes _Compute Mixin is applied to an OCCI Compute to add TOSCA specific properties like the type, distribution, version and diskSize. Due to these extending ca-pabilities of OCCI Mixins, we choose them to represent TOSCA concepts. In this section, we present our contribution that allows cloud application management by relying on TOSCA and OCCI. First, we give an overview of the proposed architecture and then we present how TOSCA concepts can be mapped to those of OCCI. We also describe how the automated generation of appropriate deployment artifacts can be achieved.

Overview

Our contribution ensures a standard-based approach to handle cloud applications in production environments. An overview of the proposed architecture is shown in Fig. 4. The architecture is composed of three parts: [START_REF] Nyrén | Open Cloud Computing Interface -Core[END_REF] The TOSCA Metamodel that is mapped to the OC-CIware Metamodel, (2) the TOSCA Topologies that are mapped to OCCIware Configurations and (3) the OCCI Orchestrator. The TOSCA Metamodel provides an expressive model for cloud applications by relying on an appropriate formalization of TOSCA concepts. The concepts of this model are mapped to OCCIware concepts (cf. Sections 3.2.1 and 3.2.2 for more details). The TOSCA Topologies describe the structure of cloud applications. They instantiate the concepts of the TOSCA metamodel. These topologies are mapped to OCCI configurations that can be designed, edited, validated and deployed as cloud applications. Further information about TOSCA topologies can be found in Section 3.2.3. Finally, OCCI Orchestrator provides means to generate necessary OCCI artifacts and to deploy, via appropriate OCCI requests, the generated artifacts in the executing environment. Every artifact is handled in a seamless way thanks to the homogeneity provided by modeling principles.

To sum up, our approach uses MDE techniques in order to design, verify and deploy cloud applications at a high level of abstraction. In fact, our TOSCA Model describes explicitly concerns of a cloud application that can be instantiated and deployed in an executing environment, i.e., a IaaS Cloud.

Mapping the two standards

While both standards define a metamodel for cloud resources, their focuses are different. The focus of OCCI is to provide a standardized API and it does not define concepts to address reusability, composability, and scalability. Instances of OCCI are not meant to be stored persistently and to be reused later on as it is the goal of TOSCA. TOSCA on the other side does not define how the defined topology is deployed by means of API calls to the cloud provider as it is done with the OCCI HTTP rendering. Hence, both approaches have their strengths and weaknesses and it is worthwhile to investigate how to integrate them. The mapping between the two standards is possible and is done through three stages: (1) mapping of TOSCA normative types to the OCCIware metamodel, (2) mapping of TOSCA custom types to OCCIware mixins and (3) mapping of TOSCA instantiation concepts to OCCIware instantiation concepts. This mapping is proposed after a deep reading and understanding of both TOSCA and OCCI specifications. Each of the mapping stages will be detailed in the following subsections.

TOSCA metamodel & normative types to OCCIware metamodel

We base our mapping on the TOSCA YAML specification [START_REF]Topology and Orchestration Specification for Cloud Applications (TOSCA) 1.2[END_REF] that defines the TOSCA normative types, and on the OCCIware metamodel [START_REF] Zalila | Modeldriven Cloud Resource Management with OCCIware[END_REF]. We chose the TOSCA YAML specification since it has a more concise syntax, is easier to read and is widely adopted by the community comparing to the TOSCA XML specification. TOSCA normative types model several types of components, called nodes, that interact through relationships. In the following, we present the main concepts of TOSCA and how they can be related to OCCI concepts. The entirety of this mapping is presented in Table 1.

-Entity_type is an abstract concept used to define reusable elements in TOSCA, such as Node_type, Requirement_type, Relationship_type, Pol-icy_type and Capability_type. This matches the purpose of attributes of OCCI Kinds or Mixins. Each Entity_type may have a description field that provides a description of the entity and a de-rived_from field that defines the parent this new entity derives from. They match the concepts of description and parent in OCCI, respectively. Each Entity_type may also have properties or attributes that define the properties that a certain entity is allowed to have. In our approach, we can map all the elements that inherit from Entity_types, namely Node_types and Relationship_types to OCCI mixins. Their properties become attributes in OCCI.

-Property & Attribute define the properties that a certain Entity_type is allowed to have. This matches the purpose of OCCI Attributes. A property definition should have a type, which matches the DataType concept in OCCI. Constraints can be applied to the attribute type, like the valid_values constraint that limits the property value to values declared in a list, and the greater_or_equal con-straint indicating the number of an attribute. For example, CPU that represents a characteristic of an entity, e.g., Compute, is greater_or_equal than 2. These two constraints (valid_values and greater_or _equal ) become an EnumerationType declaration and a minInclusive value in OCCI, respectively. A property may have several optional fields, for example the required field that indicates if a property is required or not can be matched to the required concept in OCCI.

-Node_type defines the possible types of building blocks for constructing a cloud application, e.g., virtual machines, network, middleware, etc.. The node types are separately defined for reusability purpose.

In fact, the defined node types can be reused when a developer or an application architect wants to define the topology of a cloud application. Further information about the instantiation of the node types are given in Section 3.2.3. The Node_type concept matches a Mixin applied to a Kind Resource in OCCI. For example, tosca.nodes.BlockStorage becomes a mixin applied to Storage kind in OCCI. tosca.nodes.WebServer becomes a mixin that depends on tosca.nodes.SoftwareComponent mixin. The latter is in turn applied to Component kind in OCCI.

-Requirement_type defines that a certain Node_type requires a certain capability of another Node_type. This is encoded as Object Constraint Language (OCL) [START_REF] Jos | The Object Constraint Language: getting your models ready for MDA[END_REF] constraints in OCCI mixins.

-Capability_type extends an Entity_type with a certain ability, e.g., providing an operating system for a processor or a container for a server. This concept complies to the concept of an OCCI Mixin.

For example, tosca.capabilities.OperatingSystem becomes a mixin that represents the operating system of a certain node. It defines information regarding of the operating system such as its type, distribution and version.

-Relationship_type encodes the relationships between the Node_types, e.g., it encodes that a specific application component is deployed on a specific virtual machine. This becomes a Mixin applied to a Kind Link in OCCI. For example, tosca.relationships.AttachesTo becomes a mixin applied to StorageLink in the OCCI Infrastructure extension.

-Data_type defines complex data types of TOSCA properties. This concept matches the OCCIware RecordType concept which is used to define structures. For example, NetworkInfo becomes a record type which contains data about the network attribute. Each RecordType has at least one Record-Field which represents a field of the record. In our example, networkid and networkname are record fields of the network attribute and expect a string type value.

-Interface_type defines the allowed Operations that can be executed on Node_type or on a Rela-tionship_type. This becomes a Mixin that contains only Actions in OCCI. For example, tosca.interfaces.node.lifecycle.Standard becomes a mixin that contains information which operations can be performed on a node type, e.g., create, configure and delete.

We can map all the elements that inherit from En-tity_types, namely Node_types, Requirement_types, Relationship_types, , Datatype_types, Interface_types and Capability_types to OCCI mixins. However, TOSCA introduces some additional concepts, such as Group_types, Policy_types, and Artifact_types, that have no oneto-one correspondents in OCCI. This issue is out of the scope of this article.

TOSCA custom types to OCCIware mixins

The TOSCA specification defines basic root types called TOSCA normative types. These are default types for describing the cloud infrastructure and application. We showed in Section 3.2.1 how we mapped these concepts to the OCCIware metamodel. However, most of the application components are not part of the normative types but extend the TOSCA normative types. These are the custom types. They are defined in several YAML files that are scattered over the internet in GitHub repositories. In fact, during our study, we observed that the community around TOSCA is quite active. Several projects, such as Alien4Cloud 11 , Cloudify 12 , CELAR 13 , SeaClouds 14 , DICER 15 and INDIGO-DataCloud 16 have raised. Each project has been defining new TOSCA custom types or modifying existing types according to its need. In our approach, we parse these projects and we automatically map TOSCA custom types to OCCIware mixins, since custom types inherit from TOSCA normatives types. However, some of these custom types appear to be duplicated but with different names. In fact, there is no centralized repository for all these types, which leads to an inconsistent use of TOSCA types across organizations. For example, tosca.nodes.Mysql 17 

TOSCA instantiation concepts to OCCIware instantiation concepts

The TOSCA specification allows the definition of a cloud application by reusing a set of nodes that are connected to other nodes using relationships. For the definition of provisionable elements, TOSCA defines some ready-touse topologies that represent popular cloud applications and describe their deployment. A topology is a composition of multiple nodes that may be connected through relationships. Hence, topologies use the concepts of En-tity_templates, namely Node_templates, Rela-tionship_templates and Group_templates. We explain in the following, how TOSCA topologies can be mapped to OCCIware configurations and we provide a summary in Table 3.

-A Topology_template defines a reusable and portable representation of the structure of an application to facilitate understanding of its functional components and eliminating unnecessary details. It consists of a set of Node_templates and Rela-tionship_templates. Each Topology_template is mapped into a Configuration in OCCI.

-A Node_template specifies the occurrence of a node in a topology template. Each Node_template The mapping detailed above is used to propose a fully model-driven cloud orchestrator which we define in the next subsection.

Model-driven cloud orchestration

To deploy the cloud application specified in the TOSCA topology, we use a combined approach of TOSCA and OCCI, as shown in Fig. 4. By utilizing both standards we benefit from their individual advantages while neglecting their drawbacks. Namely the matured design time capabilities of TOSCA topologies combined with the uniform interface provided by OCCI allowing to instantiate the desired cloud application using the process depicted in Fig. 5. Based on the modeled TOSCA topology, an OCCI Platform Independent Model (PIM) is generated, i.e., a (PIM) OCCIware Configuration. The resulting configuration, containing the modeled TOSCA resources as OCCI elements, then serves as input for the OCCI Orchestration process initially described in [START_REF] Erbel | Comparison and Runtime Adaptation of Cloud Application Topologies based on OCCI[END_REF]. In general, the concept resembles a models@run.time approach [START_REF] Blair | Models@ run.time[END_REF] which derives imperative steps from a declarative description in order to adapt the running system. In the following the transformation, as well as the derivation of required OCCI requests to reach the state of the designed cloud configuration are described in more detail. 

PIM to PSM Transformation

To allow for an automated deployment of the OCCI configuration on the target environment, a Platform Specific Model (PSM) is generated from the (PIM) OCCIware Configuration that contains all information required for the deployment. To generate the (PSM) OCCIware Configuration, a Model-to-Model transformation (M2M) transformation is applied that can be configured to add cloud provider specific information. The information to be added largely depends on the elements introduced within the OCCI extensions used to handle cloud provider specifics. For example, in the extension of Paraiso et al. [START_REF] Paraiso | Model-Driven Management of Docker Containers[END_REF] specialized Compute entities are designed offering attributes that can be filled to provision VMs on individual cloud providers.

In the presented approach, the transformation is mainly used to ensure a correct functionality of the orchestration process. This comprises the addition of a mixin to each infrastructural resource which relates the OCCI id to the id assigned by the cloud provider allowing for a concrete mapping between the modeled and actual resource running in the cloud. Additionally, the transformation adds a management network to the OCCI configuration that serves two purposes. Firstly, it ensures a connection between the OCCI interface and each modeled VM which is needed to deploy the modeled OCCI components via configuration management scripts. Secondly, it fulfills the requirement of specific cloud providers, such as Openstack, to declare a network to which a newly provisioned VM gets connected.

It should be noted that the transformation may be used to incorporate further provider specifics, e.g., by adding OCCI Resource and Operating system templates [START_REF] Metsch | Open Cloud Computing Interface -Infrastructure[END_REF] describing available sizes and images for VMs by the target environment over OCCI terms and schemes. Finally, the resulting OCCI configuration serves as input for the orchestration process as described in the following.

After the transformation, the orchestration process extracts the current cloud deployment in form of an OCCI Runtime Configuration, and compares it to the desired cloud deployment. Based on this comparison a M2M is triggered that generates a Provisioning and Deployment Plan (see e.g., [START_REF] Erbel | Comparison and Runtime Adaptation of Cloud Application Topologies based on OCCI[END_REF], [START_REF] Breitenbücher | Combining Declarative and Imperative Cloud Application Provisioning Based on TOSCA[END_REF] or [START_REF] Lushpenko | Using Adaptation Plans to Control the Behavior at Runtime[END_REF] for automatic deployment and provisioning workflow generation). Within this plan the OCCI requests required to manage cloud resources are sequenced in order to bring the cloud resources into the desired state. It should be noted that the OCCI requests are gener-ated from the elements contained within the (PSM) OCCIware Configuration. Finally, the provisioned and deployed OCCI model can be again extracted and synchronized to validate whether the design time concepts and constraints, specified in the TOSCA model, are met. We exemplify the proposed orchestration process in Section 5.

Orchestration Process

To derive required adaptive steps, the current and desired cloud deployment need to be investigated. As a first step the orchestration process extracts the current cloud deployment in form of an OCCI Runtime Configuration, and compares it to the desired one. During the comparison each individual resource of the new and actual deployment are matched to each other based on their identity, i.e. their id and kind. Based on the match, each entity is identified as already existing, to be deleted, updated or added resulting in the corresponding instructions that need to be send to the OCCI interface. While entities marked as to be updated get their values adjusted in the runtime model and resources marked as to be deleted get undeployed and deprovisioned, the resources to be added need to be provisioned in the correct order. To sequence the provisioning requests, a M2M is performed on the input model generating a Provisioning and Deployment Plan. As a first step within this transformation, a provisioning order graph [START_REF] Breitenbücher | Combining Declarative and Imperative Cloud Application Provisioning Based on TOSCA[END_REF] is generated. This graph describes the dependencies between modeled cloud resources based on the kind of links between them. Thereafter, we remove the updated and existing resources from the graph, as they are already present in the currently deployed runtime model [START_REF] Erbel | Comparison and Runtime Adaptation of Cloud Application Topologies based on OCCI[END_REF]. As a final step, this graph is transformed into an UML activity diagram containing a sequence of provisioning actions to follow. Hereby, each action in the diagram refers to an OCCI entity from which the requests are formed. The resulting activity diagram is interpreted by the orchestration process which is responsible for sending the provisioning requests to the OCCI interface. After the activity diagram has been interpreted successfully, the runtime model has reached the new desired state with the infrastructural resources being started. Then the deploy, configure and start action is triggered on each application within the runtime model resulting in the deployment of the individual application components. The provisioned and deployed OCCI model can be subsequently extracted and synchronized to validate whether the design time concepts and constraints, specified in the TOSCA model, are met. We exemplify the proposed orchestration process in Section 5. 4 Implementation: TOSCA Studio

Our approach for managing cloud applications by relying on TOSCA topologies and the OCCIware framework and API is implemented through TOSCA Studio. TOSCA Studio is a model-driven tool chain for modeling and deploying cloud application topologies encoded by the TOSCA standard based on the OCCIware approach. It relies on a metamodel, called TOSCA Extension, defining the static semantics for the TOSCA standard in Ecore and OCL [START_REF] Jos | The Object Constraint Language: getting your models ready for MDA[END_REF] and conforming to the OCCIware Metamodel. More specifically, TOSCA Studio is implemented as a set of Eclipse plugins that are publicly available 21 . It mainly contains a TOSCA Designer that provides users facilities for designing, editing, validating TOSCA-based cloud applications, and an OCCI Orchestrator that allows users to deploy and manage these applications. In this section, we detail each of our solution main components: TOSCA Extension, TOSCA Designer, and OCCI Orchestrator.

TOSCA Extension

The mapping between the original TOSCA metamodel (in YAML) and OCCIware metamodel, detailed in Section 3.2, is encoded as an OCCI extension for TOSCA (called the TOSCA Extension), as depicted in the purple box in Fig. 6. TOSCA Extension captures all the necessary information related to the characteristics and management of TOSCA-based cloud applications. TOSCA Extension is represented in the form of a diagram in Fig. 7. This diagram was designed with OC-CIware Studio, our open source model-driven development environment dedicated to OCCI [START_REF] Zalila | A Model-Driven Tool Chain for OCCI[END_REF][START_REF] Zalila | Modeldriven Cloud Resource Management with OCCIware[END_REF]. TOSCA Extension is conceptually divided into three levels.

The top level represents the OCCI Core model, encoded with the Eclipse Modeling Framework (EMF). The middle level contains OCCI standardized extensions, which are OCCI Infrastructure, OCCI Platform and OCCI SLA. It also contains Model-Driven Configuration Management of cloud Applications with OCCI (MoDMaCAO) [START_REF] Korte | Model-Driven Configuration Management of Cloud Applications with OCCI[END_REF], which is an enhanced version of the standardized OCCI Platform extension. The bottom level represents TOSCA concepts, which extend the Infrastructure, MoDMaCAO and SLA extensions, in the form of mixins. TOSCA Extension is quite rich in concepts. It contains 68 mixins, 10 of which extend the Infrastructure extension, 33 extend the MoDMaCAO extension and 4 extend the SLA extension. The remaining concepts extend the generic Resource and Link types from the OCCI Core model. Fig. 7 illustrates how TOSCA mixins extend already existing OCCI extensions, and shows the graphical output of a subset of the TOSCA Extension. For example, tosca_nodes_Compute extends OCCI Infrastructure. It contains an OCL constraint SourceMustBeSoftwareComponent which enforces that the Compute instance cannot run if it is not linked to a SoftwareComponent instance. It also depends on three other mixins tosca_capabilities_Container, tosca_capabilities_OperatingSystem and tosca_capabilities_Endpoint, and therefore inherits their attributes. TOSCA Extension also defines exact types thanks to the DataType system provided by the OCCIware metamodel. The EMF validator then checks the type constraints that are attached to the attribute. For example, scalarSizeMinOneMB is translated into a NumericType, especially an Integer, containing the following constraint: minInclusive = 1.

To implement TOSCA Extension, we implemented a YAML parser in Java, using yamlbeans 22 library. In fact, we provide an algorithm that infers TOSCA Extension from YAML specifications. This automated extraction allows a better modeling of TOSCA concepts. So far, existing models are manually designed, which is prohibitively labor intensive, time consuming and error-prone. To address this issue, we propose a novel approach to automatically infer model-driven specification from YAML specification files of TOSCA standard. First, using the OCCI API, we create a model, i.e., an OCCI extension. Then, the algorithm loads the content of the YAML specification files using yamlbeans library. The types in these YAML file are grouped semantically: nodes, relationships, capabilities, data, etc. The algorithm runs through each of this group, then for each TOSCA type it builds the corresponding OCCI mixin. For each type, the algorithm matches its information (derived_from, description, attributes, require- ments, etc.) to corresponding OCCI concepts. If an attribute requires a type that has not been defined yet, the algorithm keeps the name of this type memory. When defined, the latter will be assigned to this attribute. Eventually, we add the new mixin to the model under construction and so on. This model represents our TOSCA Extension.

Readers can find the parser code as well as our precise TOSCA Extension on GitHub23 .

TOSCA Designer

Our approach allows cloud architects to visualize, edit and verify configured instances of cloud applications using TOSCA types defined in TOSCA Extension. To do so, we provide TOSCA Designer, which is a specific graphical modeler of both OCCI extensions and configurations for TOSCA. This tool is implemented on top of the Eclipse Sirius framework. A screenshot of our TOSCA Designer is depicted in Fig. 8. Frame [START_REF] Nyrén | Open Cloud Computing Interface -Core[END_REF] shows the Eclipse Model Explorer used to navigate through a TOSCA project containing a TOSCA Model. Frame (2) gives a perspective or a global view of the modeled topologies. Frame (3) contains the topology elements. Frame (4) contains the Eclipse properties editor for visualizing and modifying attributes of This tool can be used in two ways: 1. It can take as input any existing TOSCA topology, translate it into an OCCI configuration for TOSCA and graphically represent it. To do so, we implemented a config-generator, which parses any existing TOSCA topology_template written in YAML and transforms it into an OCCI configuration that conforms to the TOSCA Extension. More specifically, OCCI configuration instantiates the normative and custom types defined in TOSCA Extension.

It can design cloud applications from scratch using

TOSCA types from the palette of TOSCA Designer. Finally, TOSCA Designer checks the validity of cloud application configurations by checking all the constraints defined by used TOSCA mixins. If a constraint is false, the cloud architect must correct its cloud application configuration. When all the constraints are true, the TOSCA-based cloud application can be deployed using OCCI Orchestrator.

OCCI Orchestrator

To provision and deploy the transformed TOSCA application over an OCCI interface, either the required OCCI requests can be generated using TOSCA Studio and manually sequenced or the presented OCCI Orchestration process can be used. An implementation of the orchestration process is publicly available 24 . While the presented orchestration process can be generally applied on any kind of OCCI API, such as the OpenStack OCCI Interface (OOI) used in [START_REF] Erbel | Comparison and Runtime Adaptation of Cloud Application Topologies based on OCCI[END_REF], the implementation got enhanced to focus on the OCCI API provided by the OCCIware Runtime 25 . The OCCIware Runtime is a server that maintains a runtime model of the currently deployed cloud system which is utilized by the orchestrator. Moreover, the OCCIware Runtime server follows a plugin-based architecture for OCCI extensions modeled with OCCIware, such as the TOSCA extension. Based on these extensions, connector skeletons can be generated that can be filled to interpret incoming OCCI requests. Among others, this mechanism is used to translate incoming OCCI infrastructure requests to the proprietary interface of the cloud provider. While our implementation provides a connector to an OpenStack Cloud, connector skeletons to further cloud providers can be easily modeled and generated within TOSCA Studio. Moreover, to address multi-cloud deployments, extensions such as the one presented in [START_REF] Paraiso | Model-Driven Management of Docker Containers[END_REF] can be created to model on which specific cloud provider a VM should be provisioned including required attributes.

To perform the deployment of modeled components, the MoDMaCAO framework [START_REF] Korte | Model-Driven Configuration Management of Cloud Applications with OCCI[END_REF] is used, providing a connector which implements lifecycle operations for OCCI Applications and Components. These operations trigger the execution of configuration management scripts to deploy applications on top of VMs as specified within the generated OCCI configuration. Therefore, the framework provides a generic component mixin that can be extended. Each specialized component mixin is linked to the configuration management script to be executed which is deposited on the OCCIWare Runtime server making them reusable for multiple cloud deployments. In addition to typical configuration management features, the framework allows to use modeled attributes as well as runtime information, e.g., attributes of linked components and machines, within the configuration management scripts. It should be noted that the specialized component mixins, such as the ones shown in Table 2 are automatically generated during the TOSCA to OCCI transformation. To perform the tasks specified within the configuration management scripts, the OCCIware Runtime server needs to be connected to the VMs to be configured which is ensured by the PIM to PSM transformation. In general, for the application deployment process the orchestrator only sends a request to the OCCI API triggering the start action of the applications to be deployed. The execution of the management scripts to deploy the modeled application is then handled by the MoDMaCAO framework. To ensure that all infrastructure requirements of the cloud topology to be deployed are met, the application deployment is only performed when the provisioned infrastructure, reflected in the runtime model, conforms to the designed state of the OCCIware configuration to be deployed.

Within TOSCA-Studio, the transformation, as well as the deployment process can be directly enacted on top of modeled or generated OCCI Configurations which allows to easily model, manage and deploy cloud resources.

Case Studies

To evaluate the proposed approach, we selected three case studies that represent popular distributed cloud applications: a WordPress application 26 , a Node Cellar application 27 and a Multi-Tier application with Elasticsearch Logstash Kibana (ELK) stack 28 . We chose the first two case studies because they are medium size which proves that our approach is able to handle real applications and allow us to present them in a clear manner. Moreover, these two case studies are widely used in the community. WordPress is one of the most adopted Content Management System (CMS) in industry and it is used as an example in TOSCA official specification [START_REF]Topology and Orchestration Specification for Cloud Applications (TOSCA) 1.2[END_REF], and NodeCellar is a prominent and interactive LAMP stack application that is used in Alien4Cloud and Cloudify projects. In order to prove that our approach can support larger systems, we chose the Multi-Tier use case which represents a complex system composed of ELK stack together with a NodeCellar application. We relied on existing TOSCA YAML topologies for WordPress 29 and Node Cellar 30 . For our third use case, we adapted the Multi-Tier example presented in TOSCA official specification [START_REF]Topology and Orchestration Specification for Cloud Applications (TOSCA) 1.2[END_REF]. We only replaced the PaypalPizzaStore web application by the NodeCellar application since the former is not available anymore. We demonstrate how our approach can design, validate and deploy these applications, and we provide a configuration model for each.

To provision and deploy the modeled cloud configurations, we used the presented model-driven cloud orchestration process. Hereby, we connected the OCCI Orchestrator to a private Openstack cloud to provision modeled infrastructure resources. To perform the deployment of the individual components, the MoD-MaCAO framework is used. The latter executes scripts of Ansible 31 ,for which we utilized and updated already existing deployment artifacts used in the TOSCA topologies to deploy, configure, and start modeled application components.

WordPress

WordPress is an open source CMS that allows to build custom web applications based on Apache as the web server, MySQL as the relational database management system and PHP as the object-oriented scripting language. TOSCA allows to define such types, and therefore it allows to define a WordPress application. A screenshot of the WordPress topology as defined in TOSCA YAML file is depicted in Fig. 9.

To validate our approach, the config-generator reuses the mixin types defined by the TOSCA Extension to be able to model a WordPress system. It is done with the help of the following mixins:

-The tosca.nodes.WordPress mixin type abstracts the notion of a WordPress CMS and depends on the tosca.nodes.WebApplication mixin type, which depends on the MoDMaCAO Component mixin type.

29 https://github.com/alien4cloud/samples/tree/master/ topology-wordpress 30 https://github.com/alien4cloud/samples/tree/master/ topology-nodecellar 31 https://www.ansible.com/ The WordPress component is connected to the PhP and MySQL components via ConnectsTo links (c5 and c7). The WordPress is hosted on the Apache component via a HostedOn link (c6). Each component is placed on one VM via a PlacementLink (p1 to p4). Finally, the properties of all the components and VMs are configured. For the sake of brevity, we omit the depiction of Attributes of the components in this model. For illustration, we only keep the attributes of ComputeWww. We can notice that its properties declared in the YAML file of Fig. 9, i.e., the architecture, the number of cores, the speed, the memory, the protocol, the type, the distribution and the disk size, have been correctly automatically set in the model.

Node Cellar

The Node Cellar application is a sample JavaScript application that allows to manage (retrieve, create, update, delete) the wines in a wine cellar database. A Node Cellar application can be described using TOSCA types, as depicted in the TOSCA YAML file is depicted of Fig. 11. Fig. 12 shows the model of a Node Cellar application that corresponds to the topology in Fig. 11. It is composed of three components (nodecellar, nodejs and mongodb) deployed on two VMs (NodejsHost and MongoHost). OCCI resources and links are represented by boxes in green and orange color, respectively. The application resource is connected to the three component resources via ComponentLinks (c1 to c3). The Nodecellar component is connected to the Mon-goDB component via a ConnectsTo link (c4). The NodeCellar is hosted on the Nodejs component via a HostedOn link (c5). Each component is placed on one VM via a PlacementLink (p1 to p3). Finally, the properties of all the components and VMs are configured. For the sake of brevity, we omit the depiction of Attributes of the components in this model. For illustration, we only keep the attributes regarding the ports used by MongoD and Nodecellar. We can notice that the ports values declared in the YAML file of Fig. 11 have been correctly automatically set in the model.

Multi-Tier

This use case shows the ELK stack being used in a typical manner to collect, search and monitor/visualize data from a running application. This use case builds upon our NodeCellar application (cf. Section 5.2) as the one being monitored. We successfully describe a Multi-Tier application using TOSCA types, as depicted in the TOSCA YAML file of Fig. 13.

Besides the mixins used to describe a NodeCellar Configuration (cf. Section 5.2), the Multi-Tier Configuration encompasses the following mixins:

-The tosca.nodes.SoftwareComponent. Elastic All the five mixins defined above depend on the tosca.nodes.SoftwareComponent mixin type which depends on the MoDMaCAO Component mixin type.

We show in Fig. 14 the Multi-Tier configuration that corresponds to the YAML topology in Fig. 13. It is composed of nine components (nodecellar, elasticsearch, logstash, kibana, app_collectd, app_ rsyslog, nodejs, mongo_db, mongo_dbms) deployed on six VMs (elastic_server, logstash_server, ki bana_server, NodejsHost, app_server, mongo_ server). Similarly to the two previous use cases, OCCI resources and links are represented by boxes in green and orange color, respectively. The application resource is connected to the nine component resources via Com-ponentLinks (c1 to c9). Each component is placed on one VM via a PlacementLink (p1 to p9). app_collectd and app_rsyslog share the same VM, as well as mongo_db and mongo_dbms. For brevity, we omit the Attributes of the components in this model. It should be noted, that instead of the management network a designated network may be modeled that connects the individual Compute nodes. In addition to the management network, the transformation adds general information to the model, e.g., default SSH keys, user data, flavor and images to be used by the VMs to be spawned, which eases the modeling process. After the transformation, the current cloud deployment is extracted in form of an OCCI model from the OCCIware runtime. Based on the current and desired topology, a provisioning plan is generated [START_REF] Erbel | Comparison and Runtime Adaptation of Cloud Application Topologies based on OCCI[END_REF] that sequences the OCCI requests required to provision and deploy the depicted model. Hereby, the requests are sequenced in such a manner that each Resource is provisioned first, i.e., Compute, Network, Application, and Component. Thereafter, link requests are performed connecting the individual resources with each other. While resources of the platform layer can be immediately linked, Compute nodes have to be in an active state before they can be connected to networks or storage. These states, amongst others, are reflected in the runtime model and used by the orchestration process. Once the infrastructure has been completely provisioned, i.e., every Compute node being active and connected to the management network, the modeled Applications are deployed. At this point in time, each application including its components are in an undeployed state. Then, depending on the use case, the orchestration process triggers the start action on the WordPress, Multi-Tier or Node Cellar application. This lifecycle management action is implemented by the MoDMaCAO framework and triggers the execution of a set of configuration management scripts using the management network provided by the PIM to PSM transformation. Within these scripts, it is described how to deploy, configure, and start the individual configuration management scripts of the WordPress, and Node Cellar components. In case of the WordPress use case this comprises wordpress, php, apache, and mysql, while in the Node Cellar use case, configuration management scripts describing the management of mongod, nodecellar and nodejs are used. Additionally, in the Multi-Tier use case, the components elasticsearch, logstash, and kibana are employed. Within this deployment process, the installation and execution dependency are respected as modeled within the OCCI model describing the dependencies of the individual components to be deployed, and thus the order in which they get started. A visual documentation of the deployment process of each use case is available in the GitHub repository 32 .

Lessons Learned

Based on our experience with TOSCA and OCCI, we identified two major feedback:

Compatibility between TOSCA & OCCI. Relying a cloud solution on standards is quite advantageous since the latter result of a collective agreement, which means they are accepted in the community, and they also are good in defining the key actions and characteristics of cloud providers. With the implementation of TOSCA Studio and our three case studies we have successfully demonstrated that both standards can be used orthogonally to implement a model-driven cloud orchestration process. We have seen that both provide a similar extension strategy, which can be exploited to achieve their compatibility. The two standards have a different focus: TOSCA provides higher level concepts such as the grouping of elements, the definition of policies, and capabilities and requirements, while OCCI provides concepts that mimic runtime behavior, e.g., Mixins that allow to adapt model elements at runtime and a uniform API that allows to create the defined elements on the target cloud infrastructure. TOSCA provides a richer set of modeling elements, while OCCI is built around a core model which is easier to understand and extend. In this work, we have successfully demonstrated that the two standards can complement each other, using the strength of TOSCA at design time to model cloud applications and the strengths of OCCI to actually render API calls from the model to actually provision and deploy the defined cloud resources in a cloud environment.

Model-driven design and orchestration of existing cloud applications. Using MDE principles, we provided TOSCA Studio, a complete standard-based framework for modeling cloud applications as resources and then concretely provisioning these resources from the cloud. For this, we exploited several assets of MDE such as model transformation when we map TOSCA to OCCI and when we transform the PIM to PSM, model verification when we define structural constraints on TOSCA Extension, tooling when we provide TOSCA Studio to have a graphical support of the configurations, and artifacts generation when we generate scripts that provision the necessary resources from the cloud. The cherry on the top is the ability of our approach to reuse existing TOSCA topologies and seamlessly ensure their deployment using OCCI API, without any required changes. This does prove the compatibility of our approach with TOSCA and OCCI. This framework was successfully tested on three existing applications Word-Press, Node Cellar and Multi-Tier. We believe it can handle every existing TOSCA topology, even it may require sometimes to enrich TOSCA Extension by adding new TOSCA types.

Related Work

Besides TOSCA, several other orchestration template formats exist, which have been developed by different cloud providers or communities, e.g., OpenStacks Heat Orchestration Template Language33 and the Amazon's CloudFormation template format 34 . They are not considered in this paper, since our focus is on interoperability of TOSCA and OCCI. We detail in the following the state-of-the-art of the works around TOSCA and those around OCCI, as well as the works that tackle the integration of standards.

Around TOSCA Andrikopoulos et al. define the GEneralized Topology Language (GENTL) [START_REF] Vasilios Andrikopoulos | A GENTL Approach for Cloud Application Topologies[END_REF] with the aim to provide a generic modeling language that can easily be mapped to other concrete, e.g., provider-specific modeling languages that subsequently allow for automated provisioning of the defined resources including TOSCA. They use this language to support the costefficient design of application distribution across different cloud provider offerings [START_REF] Vasilios Andrikopoulos | Design Support for Cost-Efficient Application Distribution in the Cloud[END_REF]. Also Wurster et al. [START_REF] Wurster | The Essential Deployment Metamodel: a Systematic Review of Deployment Automation Technologies[END_REF] propose an Essential Deployment Metamodel (EDMM) which is inspired by TOSCA to provide a generic language for declarative cloud deployment models. Cloudify 35 is an open source orchestration and management framework for cloud applications lifecycle. It is also based on TOSCA and provides a commercial Web Interface that enables the developer to create deployments and execute workflows. Furthermore, web based modeling tools for TOSCA like Winery [START_REF] Kopp | Winery-a modeling tool for tosca-based cloud applications[END_REF] exist that visualizes topology models using the Vino4TOSCA language [START_REF] Breitenbücher | Vino4TOSCA: A Visual Notation for Application Topologies based on TOSCA[END_REF] that can be provisioned and deployed using OpenTOSCA [START_REF] Breitenbücherand | The Open-TOSCA Ecosystem -Concepts & Tools. European Space project on Smart Systems, Big Data[END_REF]. Within OpenTOSCA, a uniform interface is defined providing an invocation mechanism for management operations offered by node types [START_REF] Wettinger | Unified Invocation of Scripts and Services for Provisioning, Deployment, and Management of Cloud Applications Based on TOSCA[END_REF]. While this approach addresses the issue of handling a multitude of proprietary interfaces in TOSCA, OCCI provides a uniform interface by design. Hirmer et al. [START_REF] Hirmer | Automatic Topology Completion of TOSCAbased Cloud Applications[END_REF] proposed an approach that completes automatically partial TOSCA topologies in order to make them deployable. The goal is to let the user to be focus on the business-logic and not on technical details. The automatic completion of an uncomplete TOSCA topology is done in two steps: First, it fullfills the requirements. Then it checks the completness of the topology by trying to automatically provision it. If it is not provisionable, the TOSCA runtime returns a TOSCA topology with missing templates. These missing templates are added to the topology and the first step is repeated, since there are new requirements. Brabra et al. [START_REF] Brabra | Model-driven orchestration for cloud resources[END_REF] propose a model-driven approach based on TOSCA to design resource-related artifacts regardless of specific De-vOps tools. The approach enables a new model-driven translation technique that serves to translate the designed artifacts using TOSCA into DevOps specific artifacts and provides connectors that intend to establish the bridge between DevOps-specific artifacts and the DevOps tools. While a multitude of approaches are based on TOSCA, non of the named approaches consider a connection to OCCI that allows models to be executable inside a Models@run.time interpreter framework. With the Eclipse Incubation Project Cloud Application Management Framework (CAMF) [START_REF] Loulloudes | Enabling Interoperable Cloud Application Management through an Open Source Ecosystem[END_REF], Loulloudes et al. attempt to build a whole IDE to manage cloud applications with the help of TOSCA. In the scope of the project different adapters have been developed to deploy the defined TOSCA topology on multiple clouds. However, no model-driven mapping and interaction with OCCI is provided. Regarding the modeling of cloud applications, several extensions to UML have been developed to capture cloud application specifics, e.g., [START_REF] Bergmayr | UML-based Cloud Application Modeling with Libraries, Profiles, and Templates[END_REF], [START_REF] Kamali | UCC: UML profile to cloud computing modeling: Using stereotypes and tag values[END_REF], [START_REF] Guillén | A UML Profile for Modeling Multicloud Applications[END_REF]. In addition, Bergmayr et al. [START_REF] Bergmayr | From Architecture Modeling to Application Provisioning for the Cloud by Combining UML and TOSCA[END_REF] show how to convert refined UML models to TOSCA templates. Their approach is also based on an Ecore metamodel generated from the TOSCA XSD. These works consider the modeling of cloud applications, but do not take the mapping to certain API calls into account.

Around OCCI A metamodel for OCCI was defined with help of EMF by [START_REF] Merle | A Precise Metamodel for Open Cloud Computing Interface[END_REF], and enhanced by [START_REF] Zalila | Modeldriven Cloud Resource Management with OCCIware[END_REF], to provide a common basis for the generation and conformance testing of OCCI tools. This metamodel is used by [START_REF] Paraiso | Model-Driven Management of Docker Containers[END_REF] to model the deployment of applications with help of containers. It is also applied to define a unified metamodel to manage elasticity in the cloud [START_REF] Al-Dhuraibi | Modeldriven elasticity management with occi[END_REF]. These works have been published in scope of the OCCIware 36 project, that aims to provide a fully integrated IDE to support the whole cloud application management life cycle on multiple clouds based on OCCI. Apart from the OCCIware project, approaches exist that utilize OCCI which, e.g, focus on the PaaS layer [START_REF] Yangui | An OCCI Compliant Model for PaaS Resources Description and Provisioning[END_REF]. Still, interoperability with TOSCA is not considered.

Around standards integration Carrasco et al [START_REF] Carrasco | Towards a Flexible Deployment of Multi-Cloud Applications Based on TOSCA and CAMP[END_REF] aim at improving the management and the deployment of multi-cloud applications by combining two standards: TOSCA and CAMP. Their approach is based on model transformations and allows users to describe their cloud applications according to the distribution of modules and deploy these modules over different clouds. Their approach is done in two phases: describing the multicloud application using Winery and then they transform the TOSCA topology into a CAMP-compliant YAML file in order to deploy the application. Later on, Carrasco et al. [START_REF] Carrasco | Deployment over Heterogeneous Clouds with TOSCA and CAMP[END_REF] present an automated approach for the migration of cloud applications components. This approach relies on the trans-cloud framework [START_REF] Carrasco | Trans-cloud: CAMP/TOSCA-based Bidimensional Cross-Cloud[END_REF], which is based on the TOSCA topology descriptions and the API of Cloud Application Management for Platforms (CAMP) standard [START_REF]Cloud Application Management for Platforms (CAMP) 1.1[END_REF]. The main difference between TOSCA-Studio and their approach is the used standards. Similar to OCCI, CAMP provides a common API for managing cloud providers. However, CAMP targets the deployment of cloud applications on top of PaaS resources, whereas OCCI is suitable for provisioning IaaS, PaaS and SaaS resources. In contrast to [START_REF] Carrasco | Deployment over Heterogeneous Clouds with TOSCA and CAMP[END_REF], we focus on the deployment and runtime reconfiguration of cloud applications and not on the migration of these applications. Moreover, we propose a resource-based approach, whereas Carrasco et al. propose a component-based approach.

Conclusion

Many cloud standards have emerged to cope with the diversity of cloud providers and the heterogeneity encountered in the cloud ecosystem. These standards have different focus work at different levels. In this article, we argued that TOSCA and OCCI standards are complementary and we presented an approach to combine TOSCA and OCCI for model and standard driven cloud orchestration. We defined an exhaustive and automated mapping between the metamodel elements of TOSCA and OCCI and we adopted this mapping for generating a model for TOSCA that conforms to the OC-CIware metamodel (TOSCA Extension). We also proposed TOSCA Studio, a dedicated model-driven environment for designing applications with TOSCA using TOSCA Designer, and for deploying these modeled applications in production environments and adapting them at runtime using OCCI Orchestrator. Furthermore, we used this approach to support the adaptation of models at runtime to keep the model of the infrastructure and the application deployment consistent with its actual state in the cloud. This will also allow us to react to changes in the model or in the cloud. We also provided three feasibility studies and showed how WordPress, Node Cellar and Multi-Tier applications can be modeled and concretely deployed using our approach.

For future work, we plan to support deployment on PaaS by modifying the OCCI orchestrator in order to make requests on a PaaS provider such as Force.com or Cloud Foundry, and to connect to existing SaaS offerings. We also aim to provide a formal verification of TOSCA Extension by using formal specification languages such as Alloy [START_REF] Jackson | Software Abstractions: logic, language, and analysis[END_REF]. Alloy allows to specify TOSCA Extension using first order-logic and to reason about this specification in order to verify desired properties [START_REF] Challita | Specifying Semantic Interoperability between Heterogeneous Cloud Resources with the FCLOUDS Formal Language[END_REF]. Moreover, by adopting a model-driven approach and automation in our mapping process, it is possible to incorporate changes to both evolving standards and to provide an extensible playground for new concepts. Hence, we aim to extend our catalog of transformation rules by continuously parsing new emerging TOSCA types and adding them to TOSCA Extension. We also aim to support more automated transformation of predefined TOSCA topologies into OCCI configurations. Finally, we plan to conduct a round-trip validation of the deployed application against the designed model, i.e., the configuration.
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Table 1

 1 TOSCA2OCCI mapping: metamodeling level TOSCA metamodel & normative types OCCIware metamodel

	Entity_type	Mixin
	description	description
	derived_from	parent
	Property & Attribute	Attribute
	default	default
	required	required
	type	DataType
	constraints	regular expressions
	valid_values	EnumerationType
	greater_or_equal	minInclusive
	min_length	minLength
	Node_type	Mixin applied to Resource
	nodes.BlockStorage	Mixin applied to Storage Resource
	nodes.ObjectStorage	Mixin applied to Storage Resource
	nodes.Compute	Mixin applied to Compute Resource
	nodes.SoftwareComponent	Mixin applied to Component Resource
	nodes.WebServer	Mixin that depends on nodes.SoftwareComponent Mixin
	nodes.WebApplication	Mixin applied to Component Resource
	nodes.DBMS	Mixin that depends on nodes.SoftwareComponent Mixin and on Database Mixin
	nodes.Database	Mixin applied to Component Resource
	nodes.LoadBalancer	Mixin applied to Resource
	nodes.container.Runtime	Mixin that depends on nodes.SoftwareComponent Mixin
	nodes.container.Application	Mixin applied to Component Resource
	Requirement_type	OCL Constraint
	Relationship_type	Mixin applied to Link
	relationships.AttachesTo	Mixin applied to StorageLink Link
	relationships.ConnectsTo	Mixin applied to ComponentLink Link
	relationships.DependsOn	Mixin applied to ComponentLink Link
	relationships.HostedOn	Mixin applied to ComponentLink Link
	relationships.RoutesTo	Mixin that depends on relationships.ConnectsTo Mixin
	Datatype_type	RecordType
	datatypes.Credential	CredentialRecordType
	datatypes.network.NetworkInfo	NetworkInfoRecordType
	datatypes.network.PortDef	PortDefRecordType
	datatypes.network.PortInfo	PortInfoRecordType
	datatypes.network.PortSpec	SHORT

Interface_type

Mixin (with 0 attribute and only actions) interfaces.node.lifecycle.Standard Mixin applied to Resource interfaces.node.lifecycle.Standard/start() Component/start() or Storage/online() or Compute/start() interfaces.node.lifecycle.Standard/stop() Component/stop() or Storage/offline() or Compute/stop() interfaces.relationship.Configure Configure Mixin applied to Link Operation Action Capability_type Mixin applied to Resource or Link

  and tosca.nodes.Database.MySQL18 , Rsyslog19 and tosca.nodes.SoftwareComponent .Rsyslog 20 are two couples of redundant node types that are semantically equivalent but differently defined. In our approach, we collected 30 custom TOSCA types defined in TOSCA projects and mapped them automatically and exhaustively to OCCIware mixins. We show in Table2a subset of the TOSCA custom types automatically mapped to OCCIware mixins. In order to add new custom types, a Cloud developer has to provide a YAML file that contains the definition of his/her own types. These types must inherit from the TOSCA normative types using the clause "derived_from". Then, within TOSCA Studio, he/she can parse the YAML file to automatically generate the corresponding OCCIware mixins that are usable by TOSCA-Studio to design and deploy cloud applications.By mapping TOSCA normative types, defined in the YAML specification, and the diverse added custom types, to those of OCCIware metamodel, we designed a TOSCA Model which conforms to the OCCIware metamodel.

	11 http://alien4cloud.github.io
	12 https://cloudify.co
	13 https://github.com/CELAR/c-Eclipse
	14 http://www.seaclouds-project.eu/
	15 https://github.com/dice-project/DICER
	16 https://www.indigo-datacloud.eu
	17 https://github.com/alien4cloud/samples/blob/master/
	mysql/mysql-type.yml#L24

18 

http://docs.oasis-open.org/tosca/ TOSCA-Simple-Profile-YAML/v1.0/ TOSCA-Simple-Profile-YAML-v1.0.html tosca.

  Node_type and instantiates the semantics of its properties, attributes, requirements, capabilities and interfaces. It gets to be transformed into a Resource with a MixinBase in an OCCI Configuration. A MixinBase refers to a Mixin and instantiates the attributes of the referenced mixin outside the owner entity in order to separate the entity attributes from the mixin ones.

	-A Relationship_template specifies the occur-
	rence of a relationship between nodes in a topology
	template. Each Relationship_template refers to
	a Relationship_type and instantiates the seman-
	tics of its properties, attributes, interfaces, etc. It
	can be transformed into a Link with a MixinBase
	in an OCCI Configuration.

19 https://github.com/openstack/tosca-parser/blob/ master/toscaparser/tests/data/custom_types/nested_ rsyslog.yaml 20 https://github.com/openstack/tosca-parser/blob/ master/toscaparser/tests/data/custom_types/rsyslog.yaml refers to a -A Group_template defines a group of nodes that share some semantics, e.g. an autoscaling group is a group of Virtual Machines (VMs) that would be scaled together. It can be transformed into a number of Resources and Links in OCCI.

Table 2

 2 Subset of TOSCA2OCCI mapping: metamodeling level

	TOSCA custom types		OCCIware mixins
	nodes.Apache		Mixin that depends on nodes.WebServer Mixin
	nodes.SoftwareComponent.Collectd	Mixin that depends on nodes.SoftwareComponent Mixin
	nodes.HACompute		Mixin that depends on nodes.Compute Mixin
	nodes.Database.Mysql		Mixin that depends on nodes.Database Mixin
	nodes.DBMS.MySQL		Mixin that depends on nodes.DBMS Mixin
	nodes.Container.Application.Docker	Mixin that depends on nodes.container.Application Mixin
	nodes.SoftwareComponent.Elasticsearch	Mixin that depends on nodes.SoftwareComponent Mixin
	nodes.SoftwareComponent.Logstash	Mixin that depends on nodes.SoftwareComponent Mixin
	nodes.SoftwareComponent.Kibana	Mixin that depends on nodes.SoftwareComponent Mixin
	nodes.AbstractMysql		Mixin that depends on nodes.Database Mixin
	nodes.network.Network		Mixin applied to Network Resource
	nodes.network.Port		Mixin applied to Network Resource
	nodes.Nodejs		Mixin that depends on nodes.WebServer Mixin
	nodes.WebApplication.PayPalPizzaStore Mixin that depends on nodes.WebApplication Mixin
	nodes.PHP		Mixin that depends on nodes.SoftwareComponent Mixin
	nodes.SoftwareComponent.Rsyslog	Mixin that depends on nodes.SoftwareComponent Mixin
	nodes.Wordpress		Mixin that depends on nodes.WebApplication Mixin
	nodes.Nodecellar		Mixin that depends on nodes.WebApplication Mixin
	nodes.MongoD		Mixin that depends on nodes.DBMS Mixin
	Table 3 TOSCA2OCCI mapping: modeling level
	TOSCA instantiation concepts	OCCIware metamodel
	Topology_template	Configuration
	Node_template	Resource with a MixinBase
	Relationship_template	Link with a MixinBase

https://www.ogf.org/ogf/doku.php/start

All URLs have been last retrieved on January 27, 2021.

http://www.openstack.org

http://opennebula.org

https://cloudstack.apache.org

https://github.com/occiware/TOSCA-Studio

Group_templates and Group_types are currently part of the TOSCA YAML rendering, but not part of the TOSCA XML specification.
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https://github.com/occiware/TOSCA-Studio

https://gitlab.gwdg.de/rwm/de.ugoe.cs.rwm.docci

https://github.com/occiware/MartServer

https://fr.wordpress.com

http://nodecellar.coenraets.org

https://www.elastic.co/fr/elastic-stack

https://github.com/occiware/TOSCA-Studio

https://wiki.openstack.org/wiki/Heat

https://aws.amazon.com/cloudformation

https://cloudify.co/
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Availability Readers can find TOSCA Studio including TOSCA Extension, the model-driven designer and orchestrator at: https: //github.com/occiware/TOSCA-Studio.