
HAL Id: hal-03122437
https://hal.science/hal-03122437v2

Submitted on 15 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Initials and the Fundamental Theorem of Tropical
Partial Differential Geometry

Sebastian Falkensteiner, Cristhian Emmanuel Garay-Lopez, Mercedes Haiech,
Marc Paul Noordman, François Boulier, Zeinab Toghani

To cite this version:
Sebastian Falkensteiner, Cristhian Emmanuel Garay-Lopez, Mercedes Haiech, Marc Paul Noordman,
François Boulier, et al.. On Initials and the Fundamental Theorem of Tropical Partial Differential
Geometry. Journal of Symbolic Computation, 2023, 115C, pp.53-73. �10.1016/j.jsc.2022.08.005�. �hal-
03122437v2�

https://hal.science/hal-03122437v2
https://hal.archives-ouvertes.fr


On Initials and the Fundamental Theorem of Tropical Partial
Differential Algebraic Geometry

Sebastian Falkensteiner

Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Austria.

Cristhian Garay-López
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Abstract

Tropical Differential Algebraic Geometry considers difficult or even intractable problems in Dif-
ferential Equations and tries to extract information on their solutions from a restricted structure
of the input. The Fundamental Theorem of Tropical Differential Algebraic Geometry and its
extensions state that the support of power series solutions of systems of ordinary differential
equations (with formal power series coefficients over an uncountable algebraically closed field
of characteristic zero) can be obtained either, by solving a so-called tropicalized differential sys-
tem, or by testing monomial-freeness of the associated initial ideals. Tropicalized differential
equations work on a completely different algebraic structure which may help in theoretical and
computational questions.

We show here that both of these methods can be generalized to the case of systems of partial
differential equations, this is, one can go either with the solution of tropicalized systems, or test
monomial-freeness of the ideal generated by the initials when looking for supports of power
series solutions of systems of differential equations, regardless the (finite) number of derivatives.
The key are the vertex sets of Newton polytopes, upon which relies the definition of both tropical
vanishing condition and the initial of a differential polynomial.
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Solutions, Newton Polytope, Arc Spaces, Tropical Differential Equations, Initial of Differential
Polynomials.

1. Introduction

Given an algebraically closed field of characteristic zero K, we consider the partial differen-
tial ring (Rm,n,D), where

Rm,n = K[[t1, . . . , tm]]{x1, . . . , xn}

and D = ( ∂
∂tk

: k = 1, . . . ,m) for n,m ≥ 1 (see Section 2 for definitions). Up to now, tropical
differential algebra has been limited to the study of the relation between the set of solutions
Sol(G) ⊆ K[[t]]n of differential ideals G in R1,n and their corresponding tropicalizations, which
are certain polynomials p with coefficients in a tropical semiring T1 = (Z≥0 ∪ {∞},+,min ) with
a set of solutions Sol(p) ⊆ P(Z≥0)n, or with the additional characterisation of the differential
version of the fundamental theorem in terms of monomial containment of tropical initial ideals.
See (Grigoriev, 2017), (Aroca et al., 2016) and (Hu and Gao, 2020).

In sum, the solutions S ∈ Sol(p) can be found by looking at the evaluations p(S ) ∈ T1 where
the usual tropical vanishing condition holds, or, by checking the monomial-freeness of a certain
tropical initial ideal (Hu and Gao, 2020).

In this paper, which is an extended version of (Falkensteiner et al., 2020), we consider the
case m > 1 of these two methods. On this account, we work with elements in Zm

≥0, which
requires new techniques. We show that considering the Newton polytopes and their vertex sets
is the appropriate method for formulating and proving our generalization of the Fundamental
Theorem of Tropical Differential Algebraic Geometry. We remark that in the case of m = 1 the
definitions and properties presented here coincide with the corresponding ones from both (Aroca
et al., 2016) and (Hu and Gao, 2020, Theorem 1, Lemma 3), therefore this work can indeed be
seen as a generalization.

The problem of finding power series solutions of systems of partial differential equations has
been extensively studied in the literature, but is very limited in the general case. In fact, we know
from (Denef and Lipshitz, 1984, Theorem 4.11) that there is already no algorithm for deciding
whether a given linear partial differential equation with polynomial coefficients has a solution or
not. The Fundamental Theorem, as it is stated in here, helps to find necessary conditions for the
support of possible solutions.

The last two sections of this paper contain the additional material, in which we extend the
notion of initial ideals of a differential ideal to the partial case (m > 1), and we present the
corresponding extension of the Fundamental Theorem about monomial containment.

The structure of the paper is as follows. In Section 2 we cover the necessary material from
partial differential algebra. In Section 3 we introduce the semiring of supports P(Zm

≥0), the semir-
ing of vertex sets Tm and the vertex homomorphism Vert : P(Zm

≥0) −→ Tm. In Section 4 we
introduce the support and the tropicalization maps. In Section 5 we define the set of tropical
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differential polynomials Tm,n, the notion of tropical solutions for them, and the tropicalization
morphism trop: Rm,n → Tm,n. The main result is Theorem 25, which is proven in Section 6. The
proof we give here differs essentially from the one in (Aroca et al., 2016) for the case of m = 1.
In Section 7 we give some examples to illustrate our results. The last part of the paper extends
the previous work Falkensteiner et al. (2020). In Section 8 we define and prove basic properties
of the initial part of a differential polynomial and of the initial ideal of a differential ideal. In
Section 9 we extend the Fundamental Theorem with an extra characterization in terms of these
initial ideals. The main result is Theorem 45, in which we present in a unified form the three
descriptions of the same class of objects.

In the following we will use the conventions that for a set S we denote by P(S ) its power set,
and by K we denote an algebraically closed field of characteristic zero.

2. Partial differential algebra

Here we recall the preliminaries for partial differential algebraic geometry. The reference
book for differential algebra is (Kolchin, 1973).

A partial differential ring is a pair (R,D) consisting of a commutative ring R with unit and
a set D = {δ1, . . . , δm} of m > 1 derivations which act on R and are pairwise commutative. We
denote by Θ the free commutative monoid generated by D. If J = ( j1, . . . , jm) is an element of
the monoid Zm

≥0 = (Zm
≥0,+, 0), we denote Θ(J) = δ

j1
1 · · · δ

jm
m the derivative operator defined by J.

If ϕ is any element of R, then Θ(J)ϕ is the element of R obtained by application of the derivative
operator Θ(J) on ϕ.

Let (R,D) be a partial differential ring with R ⊇ Q and x1, . . . , xn be n differential inde-
terminates. The monoid Θ acts on the differential indeterminates, giving the infinite set of the
derivatives which are denoted by xi,J with 1 ≤ i ≤ n and J ∈ Zm

≥0. Given any 1 ≤ k ≤ m
and any derivative xi,J , the action of δk on xi,J is defined by δk(xi,J) = xi,J+ek where ek is the
m-dimensional vector whose k-th coordinate is 1 and all other coordinates are zero. One denotes
R{x1, . . . , xn} the ring of the polynomials, with coefficients in R, the indeterminates of which are
the derivatives. More formally, R{x1, . . . , xn} consists of all R-linear combinations of differential
monomials, where a differential monomial in n independent variables of order less than or equal
to r is an expression of the form

EM :=
∏

1≤i≤n
||J||∞≤r

xMi,J

i,J (1)

where J = ( j1, . . . , jm) ∈ Zm
≥0, ||J||∞ := maxi{ ji} = max(J) and M = (Mi,J) ∈ (Z≥0)n×(r+1)m

.
The pair (R{x1, . . . , xn},D) then constitutes a differential polynomial ring. A differential

polynomial P ∈ R{x1, . . . , xn} induces an evaluation map from Rn to R given by

P : Rn → R, (ϕ1, . . . , ϕn) 7→ P|xi,J=Θ(J)ϕi ,

where P|xi,J=Θ(J)ϕi is the element of R obtained by substituting Θ(J)ϕi for xi,J .
A zero or solution of P ∈ R{x1, . . . , xn} is an n-tuple ϕ = (ϕ1, . . . , ϕn) ∈ Rn such that P(ϕ) = 0.

An n-tuple ϕ ∈ Rn is a solution of a system of differential polynomials Σ ⊆ R{x1, . . . , xn} if it is a
solution of every element of Σ. We denote by Sol(Σ) the solution set of the system Σ.

A differential ideal of R{x1, . . . , xn} is an ideal of that ring which is stable under the action
of Θ. A differential ideal is said to be perfect if it is equal to its radical. If Σ ⊆ R{x1, . . . , xn}, one
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denotes by [Σ] the differential ideal generated by Σ and by {Σ} the perfect differential ideal
generated by Σ, which is defined as the intersection of all perfect differential ideals containing Σ.

For m, n ≥ 1, we will denote by Rm the partial differential ring

(K[[t1, . . . , tm]],D)

where D = { ∂
∂t1
, . . . , ∂

∂tm
}, and by Rm,n the partial differential ring (Rm{x1, . . . , xn},D). The proof

of the following proposition can be found in (Boulier and Haiech, 2019).

Proposition 1. For any Σ ⊆ Rm,n, there exists a finite subset Φ of Σ such that Sol(Σ) = Sol(Φ).

3. The semirings of supports and vertex sets

In this part we introduce and give some properties on our main idempotent semirings, namely
the semiring of supports P(Zm

≥0), the semiring of vertex sets Tm and the map Vert : P(Zm
≥0)→ Tm

which is a homomorphism of semirings.
Recall that a commutative semiring S is a tuple (S ,+,×, 0, 1) such that (S ,+, 0) and (S ,×, 1)

are commutative monoids and additionally, for all a, b, c ∈ S it holds that

1. a × (b + c) = a × b + a × c;
2. 0 × a = 0.

A semiring is called idempotent if a + a = a for all a ∈ S . A map f : S 1 −→ S 2 between
semirings is a morphism if it induces morphisms at the level of monoids.

For m ≥ 1, we denote by P(Zm
≥0) the idempotent semiring whose elements are the subsets of

Zm
≥0 equipped with the union X∪Y as sum and the Minkowski sum X +Y = {x+y : x ∈ X, y ∈ Y}

as product. We call it the semiring of supports. For n ∈ Z≥1 and X ∈ P(Zm
≥0), the notation nX

will indicate X + · · · + X︸        ︷︷        ︸
n times

. By convention we set 0X = {(0, . . . , 0)}.

We define the Newton polytope N(X) ⊆ Rm
≥0 of X ∈ P(Zm

≥0) as the convex hull of X + Zm
≥0.

We call x ∈ X a vertex if x < N(X \ {x}), and we denote by Vert X the set of vertices of X.
The following lemma shows that the subset relation between Newton polytopes are preserved

in a weaker form, which will be needed later in the extension of the Fundamental Theorem. As a
consequence we will obtain that Newton polytopes are equal if and only if its vertices are equal.

Lemma 2. Let S ,T ∈ P(Zm
≥0) such that N(T ) ⊂ N(S ). Then N(T ) ∩ Vert(S ) ⊂ Vert(T ).

Consequently, if N(T ) = N(S ), then Vert T = Vert S .

Proof. Let s ∈ Vert S and we assume that s ∈ N(T \ {s}). Then there are ti ∈ T \ {s}, wi ∈ Zm
≥0

and positive λi ∈ R adding up to 1 such that

s =
∑

i

λi(ti + wi).

Since ti ∈ N(S ), we can write the ti as

ti =
∑

j

µi, j(si, j + zi, j),
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where si, j ∈ S , zi, j ∈ Zm
≥0 and µi, j ∈ R are positive and adding up to 1. Thus,

s =
∑
i, j

λiµi, j(si, j + zi, j + wi) =
∑
i, j

λiµi, jsi, j + v,

where v is a vector with non-negative coordinates. By excluding in the sum those summands si, j

which are equal to s, we obtain

s = cs +
∑
i, j

si, j,s

λiµi, jsi, j + v

where c =
∑

i, j:si, j=s λiµi, j ∈ [0, 1]. If c < 1 we can solve the equation above for s to get

s =
∑
i, j

si, j,s

λiµi, j

1 − c
si, j +

v
1 − c

.

The coefficients for the si, j are positive and sum to 1, so the summation in the right hand side
gives an element of N(S \ {s}). Since N(S \ {s}) is closed under adding elements of Rm

≥0, and
the coordinates of v/(1− c) are non-negative, we then find that s ∈ N(S \ {s}) in contradicting to
the assumption that s is a vertex of S . If c = 1, then all si, j are equal to s and we get s = s + v.
Therefore, v = 0 and ti = s for each i, and in particular s ∈ T \ {s}, which is a contradiction. So
we conclude that s < N(T \ {s}) and s is a vertex of T .

For the second part of this lemma we obtain from N(T ) ∩ Vert(S ) ⊂ Vert(T ) and Vert(S ) ⊂
N(S ) = N(T ) that Vert(S ) ⊂ Vert(T ). The relation Vert(T ) ⊂ Vert(S ) follows similarly and
completes the proof.

Lemma 3. Let X ∈ P(Zm
≥0). Then N(Vert X) = N(X).

Proof. By Dickson’s lemma (Cox et al., 2007, chap. 2, Thm 5), there is a finite subset S ⊆ X with
X ⊆ S + Zm

≥0. For such S , it holds that N(X) = N(S ) and by Lemma 2, we get Vert X = Vert S .
Therefore, replacing X by S , we may assume that X is finite.

We proceed by induction on #X. Indeed, if X = ∅, the statement is obvious. Let X be an
arbitrary finite set. If every element of X is a vertex of X, then N(X) = N(Vert X) is trivially
true. Else, take x ∈ X \ Vert X and let Y = X \ {x}. Then N(X) = N(Y) by definition, so
applying Lemma 2 again we obtain Vert X = Vert Y . Since #Y < #X, we may apply the induction
hypothesis to Y , and get that N(X) = N(Y) = N(Vert Y) = N(Vert X).

Corollary 4. For X,Y ∈ P(Zm
≥0) we have Vert X = Vert Y if and only if N(X) = N(Y).

Lemma 5. For X,Y ∈ P(Zm
≥0), we have

Vert(Vert(X) ∪ Vert(Y)) = Vert(Vert(X) ∪ Y) = Vert(X ∪ Vert(Y)) = Vert(X ∪ Y)

and

Vert(Vert(X) + Vert(Y)) = Vert(Vert(X) + Y) = Vert(X + Vert(Y)) = Vert(X + Y).
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Proof. Let ∗ be either ∪ or +. We have the following diagram of inclusions

Vert(X) ∗ Y

%%
Vert(X) ∗ Vert(Y)

((

66

// X ∗ Y

X ∗ Vert(Y)

99

We show that these four sets generate the same Newton polytope. For this, it is enough to show
that X ∗ Y ⊆ N(Vert(X) ∗ Vert(Y)).

For ∗ = ∪, we have X ⊆ N(Vert X) ⊆ N(Vert(X) ∪ Vert(Y)) and similarly Y ⊆ N(Vert(X) ∪
Vert(Y)). Hence, X ∪ Y ⊆ N(Vert(X) ∪ Vert(Y))

Now suppose that ∗ = +. Let t ∈ X + Y , and write t = x + y with x ∈ X and y ∈ Y . Using the
inclusions X ⊆ N(Vert X) and Y ⊆ N(Vert Y), there are xi ∈ Vert(X), y j ∈ Vert(Y), ui, v j ∈ Zm

≥0
and αi, β j ∈ R≥0 satisfying

∑
i αi = 1 and

∑
j β j = 1 such that

t =
∑

i

αi(xi + ui) +
∑

j

β j(y j + v j).

Rewriting this gives
t =

∑
i, j

αiβ j(xi + y j + ui + v j).

For each pair i, j, the expression between parentheses is an element of Vert(X) + Vert(Y) + Z≥0
and the coefficients are non-negative and sum up to 1. This shows that t ∈ N(Vert(X) + Vert(Y)),
which ends the proof of the inclusions.

The next result shall be needed later.

Lemma 6. Let X,Y ∈ P(Zm
≥0), and let t ∈ Vert(X + Y). Then there is a unique x ∈ X and unique

y ∈ Y such that t = x + y. Moreover, x and y are vertices of X and Y respectively.

Proof. By Lemma 5 we have Vert(X + Y) ⊂ Vert(X) + Vert(Y). Therefore, t is the sum of a
vertex of X and a vertex of Y . Thus it only remains to prove uniqueness. Therefore, suppose
that t = x + y = x′ + y′ with x, x′ ∈ X and y, y′ ∈ Y . Suppose x , x′. Then also y , y′, and
x + y′ , t , x′ + y. So we have that x′ + y ∈ X + Y \ {t} and also x + y′ ∈ X + Y \ {t}. But then

t =
1
2

(x′ + y) +
1
2

(x + y′) ∈ N(X + Y \ {t})

contradicting that t is a vertex of X + Y .

Example 7. An element X ∈ P(Zm
≥0) generates a monomial ideal which contains a unique min-

imal basis B(X) (see e.g. (Cox et al., 2007)). In general, Vert(X) ⊂ B(X) and this inclusion may
be strict. Consider the set X = {A1 = (1, 4), A2 = (2, 3), A3 = (3, 3), A4 = (4, 1)} ⊆ Z2

≥0. The
Newton polytope N(X) can be visualized as in Figure 1 and Vert(X) = {A1, A4} which is a strict
subset of B(X) = {A1, A2, A4}.
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Figure 1: The Newton polytope of X. The vertex set of X is {A1, A4}.

We deduce from Corollary 4 that the map Vert : P(Zm
≥0) −→ P(Zm

≥0) is a projection operator
in the sense that Vert2 = Vert.

Definition 8. We denote by Tm the image of the operator Vert, and call its elements vertex sets.
For S ,T ∈ Tm, we define

S ⊕ T = Vert(S ∪ T ) and S � T = Vert(S + T ).

Corollary 9. The set (Tm,⊕,�) is a commutative idempotent semiring, with the zero element ∅
and the unit element {(0, . . . , 0)}.

Proof. The only things to check are associativity of ⊕, associativity of � and the distributive
property. The associativity of ⊕ and � follows from the equalities

S ⊕ (T ⊕ U) = Vert(S ∪ T ∪ U) = (S ⊕ T ) ⊕ U

and
S � (T � U) = Vert(S + T + U) = (S � T ) � U

which are consequences of Lemma 5. The distributivity follows from

S � (T ⊕ U) = Vert((S + T ) ∪ U) = Vert((S + T ) ∪ (S + U)) = (S � T ) ⊕ (S � U).

Corollary 10. The map Vert is a homomorphism of semirings.

Proof. Follows directly from Lemma 5 and Corollary 9.

4. The support map and the tropicalization map

We consider the differential ring Rm from Section 2, and the semirings P(Zm
≥0), Tm from

Section 3. In this part we introduce the support and the tropicalization maps, which are related
by the following commutative diagram

Rm
Supp //

trop
""

P(Zm
≥0)

Vert
��

Tm

If J = ( j1, . . . , jm) is an element of Zm
≥0, we will denote by tJ the monomial t j1

1 · · · t
jm
m . An

element of Rm is of the form ϕ =
∑

J∈Zm
≥0

aJtJ with aJ ∈ K.
7



Definition 11. The support of ϕ =
∑

aJtJ ∈ Rm is defined as

Supp(ϕ) = {J ∈ Zm
≥0 | aJ , 0}.

For a fixed integer n, the map which sends ϕ = (ϕ1, . . . , ϕn) ∈ Rn
m to Supp(ϕ) = (Supp(ϕ1), . . . ,Supp(ϕn)) ∈

P(Zm
≥0)n will also be denoted by Supp. The set of supports of a subset T ⊆ Rn

m is its image under
the map Supp:

Supp(T ) = {Supp(ϕ) | ϕ ∈ T } ⊆ P(Zm
≥0)n

Definition 12. The map that sends each series in Rm to the vertex set of its support is called the
tropicalization map

trop: Rm → Tm

ϕ 7→ Vert(Supp(ϕ))

Lemma 13. The tropicalization map is a non-degenerate valuation in the sense of (Giansiracusa
and Giansiracusa, 2016, Definition 2.5.1). This is, it satisfies

1. trop(0) = ∅, trop(±1) = {(0, . . . , 0)},
2. trop(ϕ · ψ) = trop(ϕ) � trop(ψ),
3. trop(ϕ + ψ) ⊕ trop(ϕ) ⊕ trop(ψ) = trop(ϕ) ⊕ trop(ψ),
4. trop(ϕ) = ∅ implies that ϕ = 0.

Proof. The first point is clear. For the second point, note that the Newton polytope has the
well-known homomorphism-type property (see (Sturmfels, 1996, Lemma 2.2))

N(Supp(ϕ · ψ)) = N(Supp(ϕ)) +N(Supp(ψ)) = N(Supp(ϕ) + Supp(ψ)).

Hence, the vertices of the left hand side coincide with the vertices of the right hand side. This
gives trop(ϕ·ψ) = Vert(N(Supp(ϕ)+Supp(ψ))). That this is equal to trop(ϕ)�trop(ψ) follows from
Lemma 5. The third point follows from the observation that Supp(ϕ + ψ) ⊆ Supp(ϕ) ∪ Supp(ψ)
and Corollary 10. The last point follows from the fact that the empty set is the only set with
empty Newton polytope.

Remark 14. It is important to remark that for m > 1, the valuation trop is not a classical (Krull)
valuation, since the idempotent sum operation of the semiring Tm is not induced by a total order.
Thus we need to develop new methods to work with this formalism.

Definition 15. For J = ( j1, . . . , jm) ∈ Zm
≥0, we define the tropical derivative operator Θtrop(J) : P(Zm

≥0)→
P(Zm

≥0) as

Θtrop(J)T :=
{

(t1 − j1, . . . , tm − jm)

∣∣∣∣∣∣ (t1, . . . , tm) ∈ T,
ti − ji ≥ 0 for all i

}
.

For example, if T is the grey part in Figure 2 left and J = (1, 2), then informally Θtrop(J)T is
a translation of T by the vector −J and then keeping only the non-negative part. It is represented
by the grey part in Figure 2 right.

Since K is of characteristic zero, for all ϕ ∈ Rm and J ∈ Zm
≥0, we have

Supp(Θ(J)ϕ) = Θtrop(J)Supp(ϕ). (2)

Consider a differential monomial EM as in (1) and S = (S 1, . . . , S n) ∈ P(Zm
≥0)n. We can now

define the evaluation of EM at S as

EM(S ) =
∑

1≤i≤n
||J||∞≤r

Mi,JΘtrop(J)S i ∈ P(Zm
≥0). (3)

8
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Figure 2: The operator Θtrop(J) for J = (1, 2) applied to T .

Lemma 16. Given ϕ = (ϕ1, . . . , ϕn) ∈ Rn
m and a differential monomial EM , we have trop(EM(ϕ)) =

Vert(EM(Supp(ϕ))).

Proof. By applying Vert to equation (2), we have

trop(Θ(J)ϕi) = Vert(Θtrop(J)Supp(ϕi)). (4)

Using the multiplicativity of trop, equation (4) and Corollary 10, we obtain

trop(EM(ϕ)) =
⊙

i,J

trop(Θ(J)ϕi)�Mi,J

=
⊙

i,J

Vert(Θtrop(J)Supp(ϕi))�Mi,J

= Vert(EM(Supp(ϕ))).

Remark 17. If P =
∑

M αMEM ∈ Rm,n and ϕ = (ϕ1, . . . , ϕn) ∈ Rn
m, then we can consider the

upper support US (P, ϕ) of P at ϕ as

US (P, ϕ) =
⋃
M

(
Supp(αM) + Supp(EM(ϕ))

)
∈ P(Zm

≥0).

We now compute the vertex set of US (P, ϕ) by applying the operation Vert and Corollary 10
to the above expression to find

Vert
(
US (P, ϕ)

)
=

⊕
M

trop(αM) � trop(EM(ϕ))

=
⊕

M

trop(αM) � Vert(EM(Supp(ϕ))),

since trop(EM(ϕ)) = Vert(EM(Supp(ϕ))) by Lemma 16. This motivates the definition of tropical
differential polynomials in the next section.

5. Tropical differential polynomials

In this section we define the set of tropical differential polynomials Tm,n and the correspond-
ing tropicalization morphism trop: Rm,n → Tm,n. Let us remark that in the case of m = 1 the

9



definitions and properties presented here coincide with the corresponding ones in (Aroca et al.,
2016). Moreover, later in Section 7 we illustrate in Example 29 the reason for the particular
definitions given here.

Definition 18. For a set S ∈ P(Zm
≥0) and a multi-index J ∈ Zm

≥0 we define

ValJ(S ) = Vert(Θtrop(J)S ).

Note that for ϕ ∈ Rm and any multi-index J this means that

ValJ(Supp(ϕ)) = trop(Θ(J)ϕ).

In particular, ValJ(Supp(ϕ)) = ∅ if and only if Θ(J)ϕ = 0. It follows from Corollary 10 that

Vert(EM(S )) =
⊙
1≤i≤n
||J||∞≤r

ValJ(S i)�Mi,J .

Definition 19. A tropical differential monomial in the variables x1, . . . , xn of order less or equal
to r is an expression of the form

εM =
⊙
1≤i≤n
||J||∞≤r

x�Mi,J

i,J

where M = (Mi,J) ∈ (Z≥0)n×(r+1)m
.

A tropical differential monomial εM induces an evaluation map from P(Zm
≥0)n to Tm by

εM(S 1, . . . , S n) = Vert(EM(S )) =
⊙

i,J

ValJ(S i)�Mi,J

where ValJ(S i) is given in Definition 18 and EM(S ) as in (3). Let us recall that, by Corollary 9,
we can also write

εM(S 1, . . . , S n) = Vert
(∑

i,J

ValJ(S i)�Mi,J

)
.

Definition 20. A tropical differential polynomial in the variables x1, . . . , xn of order less or
equal to r is an expression of the form

p = p(x1, . . . , xn) =
⊕
M∈∆

aM � εM

where aM ∈ Tm, aM , ∅ and ∆ is a finite subset of (Z≥0)n×(r+1)m
. We denote by Tm,n =

Tm{x1, . . . , xn} the set of tropical differential polynomials.

A tropical differential polynomial p as in Definition 20 induces a map from P(Zm
≥0)n to Tm

by
p(S ) =

⊕
M∈∆

aM � εM(S ) = Vert
(⋃

M∈∆

(aM + εM(S ))
)

The second equality follows again from Corollary 10. A differential polynomial P ∈ Rm,n of
order at most r is of the form

P =
∑
M∈∆

αMEM

10



where ∆ is a finite subset of (Z≥0)n×(r+1)m
, αM ∈ K[[t1, . . . , tm]] and EM is a differential monomial

as in (1). Then the tropicalization of P is defined as

trop(P) =
⊕
M∈∆

trop(αM) � εM ∈ Tm,n

where εM is the tropical differential monomial corresponding to EM .

Definition 21. Let G ⊆ Rm,n be a differential ideal. Its tropicalization trop(G) is the set of
tropical differential polynomials {trop(P) | P ∈ G} ⊆ Tm,n.

Lemma 22. Given a differential monomial EM and ϕ = (ϕ1, . . . , ϕn) ∈ K[[t1, . . . , tm]]n, we have
that

trop(EM(ϕ)) = εM(Supp(ϕ)).

Proof. Follows from notations and Lemma 16.

The following tropical vanishing condition is a natural generalization of the case m = 1, but
now the evaluation p(S ) consists of a vertex set instead of a single minimum.

Definition 23. Let p =
⊕

M∈∆ aM � εM be a tropical differential polynomial. An n-tuple S ∈
P(Zm

≥0)n is said to be a solution of p if for every J ∈ p(S ) there exists M1,M2 ∈ ∆ with M1 , M2
such that J ∈ aM1 � εM1 (S ) and J ∈ aM2 � εM2 (S ). Note that in the particular case of p(S ) = ∅, S
is a solution of p.

For a family of differential polynomials H ⊆ Tm,n, S is called a solution of H if and only if
S is a solution of every tropical polynomial in H. The set of solutions of H will be denoted by
Sol(H).

Proposition 24. Let G be a differential ideal in the ring of differential polynomials Rm,n. If
ϕ ∈ Sol(G), then Supp(ϕ) ∈ Sol(trop(G)).

Proof. Let ϕ be a solution of G and S = Supp(ϕ). Let P =
∑

M∈∆ αMEM ∈ G and p = trop(P) =⊕
M∈∆ aM � εM , where aM = trop(αM). We need to show that S is a solution of p. Let J ∈ p(S )

be arbitrary. By the definition of ⊕, there is an index M1 such that

J ∈ aM1 � εM1 (S ).

Hence, by Lemma 22, and multiplicative property of trop Lemma 13

J ∈ Vert(Supp(αM1 EM1 (ϕ))).

Since P(ϕ) = 0, there is another index M2 , M1 such that

J ∈ Supp(αM2 EM2 (ϕ)),

because otherwise there would not be cancellation. Since J is a vertex of p(S ), it follows that J
is a vertex of every subset of N(p(S )) containing J and in particular of N(Supp(αM2 EM2 (ϕ))).
Therefore,

J ∈ aM2 � εM2 (S )

and because J and P were chosen arbitrary, S is a solution of G.

11



6. The Fundamental Theorem

Let G ⊂ Rm,n be a differential ideal. Then Proposition 24 implies that Supp(Sol(G)) ⊆
Sol(trop(G)). The main result of this paper is to show that the reverse inclusion holds as well if
the base field K is uncountable.

Theorem 25 (Fundamental Theorem). Let K be an uncountable, algebraically closed field of
characteristic zero. Let G be a differential ideal in the ring Rm,n. Then

Supp(Sol(G)) = Sol(trop(G)).

The proof of the Fundamental Theorem will take the rest of the section and is split into several
parts. First let us introduce some notations. If J = ( j1, . . . , jm) is an element of Zm

≥0, we define
by J! the component-wise product j1! · · · jm!. The bijection between KZm

≥0 and Rm given by

ψ : KZm
≥0 → Rm

a = (aJ)J∈Zm
≥0
7→

∑
J∈Zm

≥0

1
J!

aJtJ

allows us to identify points of Rm with points of KZm
≥0 . Moreover, if I ∈ Zm

≥0, the mapping ψ has
the following property:

Θ(I)ψ(a) =
∑

J∈Zm
≥0

1
J!

aI+JtJ

which implies
a = (Θ(I)ψ(a)|t=0)I∈Zm

≥0
.

Fix for the rest of the section a finite set of differential polynomials Σ = {P1, . . . , Ps} ⊆ G
such that Σ has the same solution set as G (this is possible by Proposition 1). For all ` ∈ {1, . . . , s}
and I ∈ Zm

≥0 we define

F`,I = (Θ(I)P`)|t1=···=tm=0 ∈ K
[
xi,J : 1 ≤ i ≤ n, J ∈ Zm

≥0
]

and
A∞ = {(ai,J) ∈ Kn×(Zm

≥0) : F`,I(ai,J) = 0 for all 1 ≤ ` ≤ s, I ∈ Zm
≥0}.

The set A∞ corresponds to the formal power series solutions of the differential system Σ = 0 as
the following lemma shows.

Lemma 26. Let ϕ ∈ K[[t1, . . . , tm]]n with ϕ = (ϕ1, . . . , ϕn), where

ϕi =
∑

J∈Zm
≥0

ai,J

J!
tJ .

Then ϕ is a solution of Σ = 0 if and only if (ai,J) ∈ A∞.

Proof. This statement follows from formula

P`(ϕ1, . . . , ϕn) =
∑

I∈Zm
≥0

F`,I((ai,J)i,J)
I!

tI ,

12



which is commonly known as Taylor formula for multivariate formal power series. To prove this
formula, first notice that for arbitrary P ∈ Rm,n we have P(ϕ)|t=0 = (P|t=0)((ai,J)i,J). Applying this
to P = Θ(I)(P`) for fixed I and `, we find that

Θ(I)(P`(ϕ))
∣∣∣
t=0 = (Θ(I)(P`)

∣∣∣
t=0)((ai,J)i,J) = F`,I((ai,J)i,J).

Therefore the coefficient of tI in P`(ϕ) is F`,I((ai,J)i,J)/I!, and this gives the formula above.

For any S = (S 1, . . . , S n) ∈ P(Zm
≥0)n we define

A∞,S = {(ai,J) ∈ A∞ : ai,J = 0 if and only if J < S i}.

This set corresponds to power series solutions of the system Σ = 0 which have support exactly
S . In particular, S ∈ Supp(Sol(G)) if and only if A∞,S , ∅.

The sets A∞ and A∞,S refer to infinitely many coefficients. We want to work with a finite
approximation of these sets. For this purpose, we make the following definitions. For each
integer k ≥ 0, choose Nk ≥ 0 minimal such that for every ` ∈ {1, . . . , s} and ||I||∞ ≤ k it holds that

F`,I ∈ K[xi,J : 1 ≤ i ≤ n, ||J||∞ ≤ Nk].

Note that for k1 ≤ k2 it follows that Nk1 ≤ Nk2 . Then we define

Ak = {(ai,J) ∈Kn×{1,...,Nk}
m

: F`,I(ai,J) = 0
for all 1 ≤ ` ≤ s, ||I||∞ ≤ k}

and
Ak,S = {(ai,J) ∈ Ak : ai,J = 0 if and only if J < S i}.

Proposition 27. Let S ∈ P(Zm
≥0)nand K be an uncountable algebraically closed field of charac-

teristic zero. If A∞,S = ∅, then there exists k ≥ 0 such that Ak,S = ∅.

Proof. Assume that Ak,S , ∅ for every k ≥ 0; we show that this implies A∞,S , ∅. We follow the
strategy of the proof of (Denef and Lipshitz, 1984, Theorem 2.10): first we use the ultrapower
construction to construct a larger field K over which a power series solution with support S
exists, and then we show that this implies the existence of a solution with the same support and
with coefficients in K. For more information on ultrafilters and ultraproducts, the reader may
consult (Becker et al., 1979). For each integer k ≥ 0, choose an element (a(k)

i,J )1≤i≤n,||J||∞≤Nk ∈ Ak,S .
Fix a non-principal ultrafilter U on the natural numbers N and consider the ultrapower K of K
along U. In other words, K = (

∏
r∈N K)/ ∼ where x ∼ y for x = (xr)r∈N and y = (yr)r∈N if and

only if the set {r ∈ N : xr = yr} is inU. We will denote the equivalence class of a sequence (xr)
by [(xr)]. We consider K as a K-algebra via the diagonal map K → K. Now for each i and J, we
may define ai,J ∈ K as

ai,J = [(a(k)
i,J : k ∈ N)]

where we set a(k)
i,J = 0 for the finitely many values of k with ||J||∞ > Nk. For all ` and I, we have

that F`,I((a
(k)
i,J )i,J) = 0 for k large enough, and so F`,I((ai,J)i,J) = 0 in K, because the set of k such

that F`,I((a
(k)
i,J )i,J) , 0 is finite. Moreover, for J ∈ S i we have, by hypothesis, a(k)

i,J , 0 for all

13



sufficiently large k, so ai,J , 0 in K. On the other hand, for J < S i we have a(k)
i,J = 0 for all k, so

also ai,J = 0.
Now we will use that K is uncountable. Consider the ring

R = K
[

xi,J : 1 ≤ i ≤ n, J ∈ Zm
≥0

x−1
i,J : 1 ≤ i ≤ n, J ∈ S i

]
/

(
F`,I : 1 ≤ ` ≤ s, I ∈ Zm

≥0
xi,J : 1 ≤ i ≤ n, J < S i

)
The paragraph above shows that the map R → K defined by sending xi,J to ai,J is a well-defined
ring map. In particular, R is not the zero ring. Let m be a maximal ideal of R. We claim that
K = R/m in the sense that the map K → R/m induced by the composition of the inclusion and
the projection K → R → R/m is an isomorphism. Indeed, R/m is a field, and as a K-algebra
it is countably generated, since R is. Therefore, it is of countable dimension as K-vector space
(it is generated as K-vector space by the products of some set of generators as a K-algebra). If
t ∈ R/m were transcendental over K, then by the theory of partial fraction decomposition, the
elements 1/(t−α) for α ∈ K would form an uncountable, K-linearly independent subset of R/m.
This is not possible, so R/m is algebraic over K. Since K is algebraically closed, we conclude
that K = R/m.

Now let bi,J ∈ K be the image of xi,J in R/m = K. Then by construction, the set (bi,J) satisfies
the conditions F`,I((bi,J)) = 0 for all ` and I, and bi,J = 0 if and only if J < S i. So (bi,J) is an
element of A∞,S , and in particular A∞,S , ∅.

Proof of Theorem 25. We now prove the remaining direction of the Fundamental Theorem by
contraposition. Let S = (S 1, . . . , S n) in P(Zm

≥0)n be such that A∞,S = ∅, i.e. there is no power
series solution of Σ = 0 in K[[t1, . . . , tm]]n with S as the support. Then by Proposition 27 there
exists k ≥ 0 such that Ak,S = ∅. Equivalently, the relation

V
(

F`,I : 1 ≤ ` ≤ s, ||I||∞ ≤ k
xi,J : 1 ≤ i ≤ n, J < S i, ||J||∞ ≤ Nk

)
⊆ V

( ∏
1≤i≤n
J∈S i
||J||∞≤Nk

xi,J

)

holds, where V denotes the implicitly defined algebraic set. By Hilbert’s Nullstellensatz, there is
an integer M ≥ 1 such that

E :=
( ∏

1≤i≤n
J∈S i
||J||∞≤Nk

xi,J

)M
∈

〈
F`,I : 1 ≤ ` ≤ s, ||I||∞ ≤ k
xi,J : 1 ≤ i ≤ n, J < S i, ||J||∞ ≤ Nk

〉
.

Therefore, there exist G`,I and Hi,J in K[xi,J : 1 ≤ i ≤ n, ||J||∞ ≤ Nk] such that

E =
∑

1≤`≤s
||I||∞≤k

G`,I F`,I +
∑

1≤i≤n
J<S i
||J||∞≤Nk

Hi,J xi,J .

Define the differential polynomial P by

P =
∑

1≤`≤s
||I||∞≤k

G`,IΘ(I)(P`).

14



Then P is an element of the differential ideal generated by P1, . . . , Ps, so in particular P ∈ G.
Since F`,I = Θ(I)(P`)|t=0, there exist hi ∈ Rm,n such that

P = E −
∑

1≤i≤n
J<S i
||J||∞≤Nk

Hi,J xi,J + t1h1 + . . . + tmhm.

Notice that the monomial E occurs effectively in P, since it cannot cancel with other terms in the
sum above. By construction we have trop(E)(S ) = {(0, . . . , 0)}. However, we have (0, . . . , 0) <
trop(Hi,J xi,J)(S ) because J < S i, and we have (0, . . . , 0) < trop(tihi)(S ) because the factor ti forces
the ith coefficient of each element of trop(tihi)(S ) to be at least 1. Hence, the vertex (0, . . . , 0)
in trop(P)(S ) is attained exactly once, in the monomial E, and therefore, S is not a solution of
trop(P). Since P ∈ G, it follows that S < Sol(trop(G)), which proves the statement.

7. Examples and remarks on the Fundamental Theorem

In this section we give an example to illustrate the results obtained in the previous sections.
Moreover, we show that some straight-forward generalizations of the Fundamental Theorem
from (Aroca et al., 2016) and our version, Theorem 25, do not hold. Also we give more directions
for further developments.

Example 28. Let us consider in R2,2 the system

Σ = {P1 = x2
1,(1,0) − 4 x1,(0,0) , P2 = x1,(1,1) x2,(0,1) − x1,(0,0) + 1 ,

P3 = x2,(2,0) − x1,(1,0)}.

By means of elimination methods in differential algebra such as the ones implemented in the
MAPLE DifferentialAlgebra package, it can be proven that

Sol(Σ) = {ϕ1(t1, t2) = 2 c0 t1 + c2
0 +
√

2 c0 t2 + t2
1 +
√

2 t1 t2 +
1
2

t2
2,

ϕ2(t1, t2) = c2 t1 + c1 +
1
2

√
2 (c2

0 − 1) t2 + c0 t2
1

+
√

2 c0 t1 t2 +
1
2

c0 t2
2

+
1
3

t3
1 +

1
2

√
2 t2

1 t2 +
1
2

t1 t2
2 +

1
12

√
2 t3

2},

where c0, c1, c2 ∈ K are arbitrary constants. By setting c0 = c2 = 0, c1 , 0, we obtain for
example that

({(2, 0), (1, 1), (0, 2)}, {(0, 0), (0, 1), (3, 0), (2, 1), (1, 1), (0, 3)})

is in Supp(Sol(Σ)).
Now we illustrate that by our results necessary conditions and relations on the support can

be found. Let (S 1, S 2) ∈ P(Z2
≥0)2 be a solution of trop([Σ]). Let us first consider

trop(P1)(S 1, S 2) = Vert(2 · Θtrop(1, 0)S 1 ∪ S 1).

If we assume that (0, 0) ∈ S 1, then (0, 0) is a vertex of S 1. By the definition of a solution of a
tropical differential polynomial, (0, 0) must be a vertex of the term 2 ·Θtrop(1, 0)S 1 as well, so we
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then know that (1, 0) ∈ S 1. Conversely, if (1, 0) ∈ S 1, then (0, 0) ∈ S 1 follows. This is what we
expect since the corresponding monomials in ϕ1 vanish if and only if c0 = 0.
Now consider

trop(Θ(1, 0)P1)(S 1, S 2) =

Vert(Θtrop(1, 0)S 1 + Θtrop(2, 0)S 1 ∪ Θtrop(1, 0)S 1).

If we assume that (0, 0) is not a vertex of this expression, which implies that (1, 0) < S 1, and
(k, 0) is a vertex in Θtrop(1, 0)S 1 for some k ≥ 1, then we obtain from the two tropical differential
monomials that necessarily (k, 0) = (2k − 1, 0). This is fulfilled only for k = 1 and hence,
(2, 0) ∈ S 1.

Another natural way for defining � and ⊕ in Section 3 would be to simply take the minimal
basis of the monomial ideal generated by the support of the series rather than the (possibly
smaller) vertex set, as we do. If we do this, then some intermediate results (and in particular
Proposition 24) do not hold anymore as the following example shows.

Example 29. Let {e1, . . . , e4} be the standard basis for Z4
≥0. We consider the differential ideal in

R4,1 = K[[t1, . . . , t4]]{x} generated by

P = xe3 xe4 + (−t2
1 + t2

2)xe1+e3 =
∂x
∂t3
·
∂x
∂t4

+ (−t2
1 + t2

2)
∂2x
∂t1∂t3

and the solution ϕ = (t1 + t2)t3 + (t1 − t2)t4. Then

Supp(ϕ) = {e1 + e3, e2 + e3, e1 + e4, e2 + e4}.

On the other hand, for S ∈ P(Z4
≥0) we obtain

trop(P)(S ) = Vert( Vert(Θtrop(e3)S + Θtrop(e4)S )
∪ Vert(2e1 + Θtrop(e1 + e3)S )
∪ Vert(2e2 + Θtrop(e1 + e3)S ).

If we set S = Supp(ϕ), we obtain

trop(P)(S ) = Vert( Vert({2e1, e1 + e2, 2e2}) ∪ {2e1} ∪ {2e2}).

Since
Vert({2e1, e1 + e2, 2e2}) = {2e1, 2e2},

every J ∈ trop(P)(S ), namely 2e1 and 2e2, occurs in three monomials in trop(P)(S ) and S is
indeed in Sol(trop(P)). Note that in the Newton polytope the point e1 + e2, which is not a vertex,
comes from only one monomial in trop(P)(S ). Therefore, it is necessary to consider the vertices
instead of the whole Newton polytope such that for instance Proposition 24 holds.

Remark 30. The Fundamental Theorem for systems of partial differential equations over a
countable field such as Q does in general not hold anymore by the following reasoning. Ac-
cording to (Denef and Lipshitz, 1984, Corollary 4.7), there is a system of partial differential
equations G over Q having a solution in C[[t1, . . . , tm]] but no solution in Q[[t1, . . . , tm]]. Tak-
ing K = Q as base field, we have Sol(trop(G)) , ∅ because Sol(trop(G)) = Supp(Sol(G)) is
non-empty in C, but Supp(Sol(G)) = ∅.
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In this paper we focus on formal power series solutions. A natural extension would be to con-
sider formal Puiseux series instead. The following example shows that with the natural extension
of our definitions to Puiseux series, the fundamental theorem does not hold, even for m = n = 1.

Example 31. Let us consider R1,1 = K[t]{x} and the differential ideal generated by the differential
polynomial

P = 2tx(1) − x(0) = 2t ·
∂x
∂t
− x.

There is no non-zero formal power series solution ϕ of P = 0, but ϕ = ct1/2 is for any c ∈ K a
solution. In fact, {ϕ} is the set of all formal Puiseux series solutions.

On the other hand, let S ∈ P(Z≥0). Then every point J in

trop(P)(S ) = Vert(Vert({1} + (Θtrop(1)S ) ∪ Vert(S ))

occurs in both monomials except if 0 ∈ S . Hence, for every S ∈ Sol(trop(P)) we know that
0 < S . For every I ≥ 0 we have that

Θ(I)P = 2tx(I+1) + (2I − 1)x(I) ∈ [P]

and

trop(Θ(I)P)(S ) = Vert(Vert({(1)} + (Θtrop((I + 1)S ) ∪ Vert(Θtrop(I)S )).

Similarly to above, every J ∈ trop(Θ(I)P)(S ) occurs in both monomials except if I ∈ S .
Therefore, I < S and so the only S ∈ P(Z≥0) with S ∈ Sol(trop([P])) is S = ∅. Hence,
Sol(trop([P])) = {∅} = Supp(Sol([P])).

Now we want to consider formal Puiseux series solutions instead of formal power series
solutions. Now let us set for S ∈ Qm and J = ( j1, . . . , jm) ∈ Zm

≥0, the set Θtrop(J)S defined as{
(s1 − j1, . . . , sm − jm)

∣∣∣∣∣∣ (s1, . . . , sm) ∈ S ,
∀1 ≤ i ≤ m, si < 0 or si − ji < Z<0

}
This is the natural definition, since only in the case when the exponent of a monomial is a
non-negative integer, the derivative can be equal to zero. We have that Θtrop(J)(Supp(ψ)) =

Supp(Θ(J)ψ) for all Puiseux series ψ. For ValJ and the operations � and ⊕ the definitions remain
unchanged.

Let Q ∈ [P]. Then
Q =

∑
k∈I

Qk · Θ(Ik)P

for some index-setI and Qk ∈ Rm,n. For every Ik we know that Supp(ϕ) = {(1/2)} ∈ Sol(trop(Θ(Ik)P)).
Let α ∈ Q ∩ (0, 1). Then for every J ∈ trop(Θ(Ik)P) ∈ Z≥0 we have that Θtrop(J){(1/2)} =

Θtrop(J){(α)} + {(1/2 − α)}. Thus, {α} ∈ Sol(trop(Θ(Ik)P)). Since

trop(Qk · Θ(Ik)P) = trop(Qk) � trop(Θ(Ik)P),

the solvability remains by multiplication with Qk. Therefore, {α} ∈ Sol(trop(Qk · Θ(Ik)P)) and
consequently, {α} ∈ Sol(trop([P])). However, {α} < Supp(Sol([P])) = {∅, {1/2}} for α , 1/2.

We remark that P is an ordinary differential polynomial and by similar computations as here,
the straight-forward generalization from formal power series to formal Puiseux series fails for
the Fundamental Theorem in (Aroca et al., 2016) as well.
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We conclude this section by emphasizing that the Fundamental Theorem may help to find
necessary conditions on the support of solutions of systems of partial differential equations, but
in general it cannot be completely algorithmic. In fact, according to (Denef and Lipshitz, 1984,
Theorem 4.11), already determining the existence of a formal power series solution of a linear
system with formal power series coefficients is in general undecidable.

8. Initial parts and initial ideals

In this section we introduce the notion of initial of a differential polynomial and discuss
some of its properties. We also define and discuss initial ideals. These definitions generalize
those presented in (Hu and Gao, 2020) from the ordinary to the partial case.

We use the following notations through the remainder of the section: We write p = trop(P) if
P ∈ Rm,n, S = Supp(ϕ) if ϕ ∈ Rn

m, and ε = trop(E) if E is a differential monomial. Additionally,
let a =

∑
I∈Ω αI tI ∈ Rm \ {0} with αI ∈ K \ {0} and hence, Ω = Supp(a) , ∅. Given S ∈ P(Zm

≥0),
we denote by a|S =

∑
I∈Ω∩S αI tI the restriction of a to S .

Definition 32. Let a =
∑

I∈Ω αI tI ∈ Rm \ {0} with αI ∈ K \ {0}. We denote by a = a|Vert(Ω) the
restriction of a to the vertices of its support.

It is worth noting that a is a polynomial, and that trop(a) = trop(a).
According to Theorem 25, given a differential ideal G ⊂ Rm,n and S ∈ P(Zm

≥0)n, for checking
the existence of a solution ϕ ∈ Rn

m of G with support S the following input is required:

1. the vertex set p(S ) for every P ∈ G, and
2. the monomials aMEM such that trop(aMEM)(S ) contributes to p(S ), where P =

∑
M aMEM .

Given P ∈ Rm,n, we construct some sort of localization of P at S , denoted inS (P), which
records these local properties of p evaluated at S . We will call this object the initial of P (with
respect to S ), and we will show later in Lemma 37 that this is the case.

Definition 33. Let P =
∑

M∈Λ aMEM ∈ Rm,n and S ∈ P(Zm
≥0)n. Then we define the initial of P

(with respect to S ) as
inS (P) =

∑
M∈Λ

trop(aM EM )(S )∩p(S ),∅

aMEM . (5)

In other words, the initial of a differential polynomial P at S is a simpler differential poly-
nomial, formed with the restricted monomials aMEM which contribute, after tropicalization and
evaluation at S , to the vertex set p(S ).

Remark 34. We remark that if m = 1, then p(S ) consists of at most one point, and inS (P)
coincides with the definition presented in (Hu and Gao, 2020).

Note that inS (P) = 0 if and only if p(S ) = ∅. Moreover, it is immediate that if inS (P) is a
single monomial, then P has no solution with support S . The converse is in general not true as
the following example shows.

Example 35. Let P = x(1,0) + x(0,1) ∈ R2,1 and ϕ = α t2
1 + β t2

2. Then ϕ is not a solution of P = 0
for any α, β , 0, but we obtain inS (P) = P for S = Supp(ϕ) = {(2, 0), (0, 2)}. For J = (1, 0) and
Θ(J)P ∈ [P], however, we obtain the single monomial inS (Θ(J)P) = x(2,0).
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In the following we will need some basic properties of the initial of a differential polynomial,
which we record in the remaining part of this section.

Lemma 36. Let aE ∈ Rm,n be a differential monomial, and ϕ ∈ Rn
m with S = Supp(ϕ). Then

trop(aE(ϕ)) = trop(aE)(S ) = trop(aE)(S ) = trop(a) � trop(E(S ))

Proof. This follows from Lemma 16 plus the multiplicativity of trop.

In particular, the vertex set trop(aE(ϕ)) does not depend on the choice of ϕ ∈ Supp−1(S ). We
deduce that inS (aE) = 0 if and only if E(S ) = ∅ (or a = 0).

Lemma 37. Let P ∈ Rm,n and ϕ ∈ Rn
m with S = Supp(ϕ) . Then

1. N(Supp(P(ϕ))) ⊂ N(p(S )).
2. P(ϕ)|p(S ) = inS (P)(ϕ)|p(S ).
3. p(S ) = trop(inS (P))(S ).

Proof. We write P =
∑

M aMEM .

1. We have
Supp(P(ϕ)) ⊂

⋃
M

Supp(aMEM(ϕ)) ⊂
⋃
M

(Supp(aM) + EM(S ))

and hence,

N(Supp(P(ϕ)) ⊂ N

⋃
M

(Supp(aM) + EM(S ))

 = N(p(S )).

2. We express P(ϕ) = inS (P)(ϕ) + R(ϕ), and if J ∈ trop(P)(S ) then J < Supp(R(ϕ)), since
inS (P) contains all the terms of P that contribute to the coefficient of tJ .

3. We write Λ′ = {M ∈ Λ | trop(aMEM)(S ) ∩ p(S ) , ∅}, so inS (P) =
∑

M∈Λ′ aMEM . Let
Y =

⋃
M∈Λ(Supp(aM) + EM(S )) and X =

⋃
M∈Λ′ (Supp(aM) + EM(S )), so it is clear that

X ⊂ Y . We want to show that Vert(Y) ⊂ X: if J ∈ Vert(Y), then J ∈ trop(aMEM)(S ) for
some M ∈ Λ. Thus, by definition there exists M ∈ Λ′ such that J ∈ trop(aMEM)(S ) =

trop(aMEM)(S ), so J ∈ X. The chain Vert(Y) ⊂ X ⊂ Y yields N(X) = N(Y), so p(S ) =

Vert(Y) = Vert(X) = trop(inS (P))(S ).

Definition 38. Let G ⊂ Rm,n be a differential ideal and S ∈ P(Zm
≥0)n. Then we define the initial

ideal inS (G) of G (with respect to S ) as the algebraic ideal generated by {inS (P) : P ∈ G} in
Rm,n.

Note that for P ∈ G ⊂ Rm,n it holds that inS (P) ∈ inS (G). However, not every element
belonging to inS (G) arises as inS (P) for some P ∈ G, as it can be seen in (Hu and Gao, 2020,
Example 2.11).

Remark 39. One could consider defining the initial ideal of G as the differential ideal generated
by {inS (P) : P ∈ G}, rather than the algebraic ideal. For our purposes, however, this would not be
an appropriate choice. For example, consider the differential ideal G generated by P = x(0) − 1 ∈
R1,1. The initial of P with respect to S = {(0)} is P itself. All the initials of derivatives of P
are zero, and so inS (G) is the (monomial-free) algebraic ideal defined by P. But Θ(1)P = x(1)
is a monomial, so the differential ideal generated by inS (G) contains a monomial. Since G has
solutions with support S , we expect that inS (G) is monomial-free. The algebraic ideal has this
property, while the differential ideal does not.

19



9. Extended Fundamental Theorem

In this section we extend the Fundamental Theorem 25 from Section 6 to Theorem 45 and
show that the initial ideal inS (G) with respect to S of a differential ideal G is monomial-free if
and only if G admits a solution with support S . This generalizes Theorem 1 in (Hu and Gao,
2020) from the ordinary to the partial case. A related construction can also be found in (Fink
and Toghani, 2020, Theorem 3.9).

First, we note that one direction is already implicitly proved in Section 6.

Proposition 40. Let K be an uncountable, algebraically closed field of characteristic zero. Let
G ⊂ Rm,n be a differential ideal. Let S ∈ P(Zm

≥0)n be such that G has no solution with support S .
Then inS (G) contains a monomial.

Proof. Near the end of the proof of Theorem 25, under the assumption that S < Supp(Sol(G)),
a differential polynomial P ∈ G is constructed with trop(P)(S ) = {(0, . . . , 0)} where the origin
corresponds to a single monomial E. For this P, we have inS (P) = E ∈ inS (G) and the statement
follows.

It remains to prove the converse: if G admits a solution with support S , then inS (G) is dif-
ferential monomial-free. We start by showing that if P(ϕ) = 0, then cancellation occurs in the
evaluation inS (P)(ϕ).

Lemma 41. Let P ∈ Rm,n and ϕ ∈ Rn
m with S = Supp(ϕ). If P(ϕ) = 0 then p(S )∩N(Supp(inS (P)(ϕ))) =

∅. In particular, if p(S ) , ∅ then

trop(inS (P)(ϕ)) , trop(inS (P))(S ).

Proof. By Lemma 37.2 we have inS (P)(ϕ)|p(S ) = P(ϕ)|p(S ) = 0, so p(S ) ∩ Supp(inS (P)(ϕ)) = ∅.
On the other hand, from Lemma 37.1 we have the chain of subsets

N(Supp(inS (P)(ϕ))) ⊂ N(trop(inS (P))(S )) = N(p(S )),

and so Lemma 2 gives p(S ) ∩ N(Supp(inS (P)(ϕ))) ⊂ trop(inS (P)(ϕ)) ⊂ Supp(inS (P)(ϕ)). Com-
bined, this give p(S ) ∩ N(Supp(inS (P)(ϕ))) = ∅ as we wanted.

The following proposition generalizes Lemma 41: if ϕ is a solution of G, then for any R ∈
inS (G) there is cancellation in R(ϕ). Since such cancellation is usually impossible for monomials,
this almost implies the result that we are looking for. However, one has to be careful to account
for monomials aE for which trop(E)(S ) = ∅, and doing this leads to Corollary 43.

Proposition 42. Let G ⊂ Rm,n be a differential ideal and S ∈ P(Zm
≥0)n. Let R ∈ inS (G) and

ϕ ∈ Sol(G) with Supp(ϕ) = S . Then r(S ) ∩ Supp(R(ϕ)) = ∅. In particular, if r(S ) , ∅ then

trop(R(ϕ)) , r(S ).

Proof. We will proceed by contradiction, so suppose that J ∈ r(S ) ∩ Supp(R(ϕ)). If R =∑
k Qk inS (Pk), then at least one of the terms, say Q1(ϕ) inS (P1)(ϕ), has tJ in its support. Hence,

there exist U and W with J = U + W such that

U ∈ Supp(Q1(ϕ)), W ∈ Supp(inS (P1)(ϕ)).
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Since we have the inclusions

N(Supp(Q1(ϕ)) + Supp(inS (P1)(ϕ))) ⊂ N(trop(Q1)(S ) � trop(inS (P1))(S ))
⊂ N(r(S )) ,

by Lemma 2, we deduce that

r(S ) ∩ N(trop(Q1)(S ) � trop(inS (P1))(S )) ⊂ trop(Q1)(S ) � trop(inS (P1))(S ).

In particular, since J ∈ r(S ) and J ∈ Supp(Q1(ϕ)) + Supp(inS (P1)(ϕ)), we have that J ∈
trop(Q1)(S ) � trop(inS (P1))(S ) = trop(Q1)(S ) � trop(P1)(S ). Hence, by Lemma 6,

U ∈ trop(Q1)(S ), W ∈ trop(P1)(S ).

However, since ϕ is a solution of G, also P1(ϕ) = 0 and we deduce by Lemma 41 that W <
N(Supp(inS (P1)(ϕ))), a contradiction.

Corollary 43. Let G ⊂ Rm,n be a differential ideal and S ∈ P(Zm
≥0)n. If inS (G) contains a

monomial aE , 0 such that trop(E)(S ) , ∅, then G has no solution with support S .

Proof. Let us assume that ϕ ∈ Sol(G) with Supp(ϕ) = S . We have

trop(aE)(S ) = trop(a) � trop(E)(S ) , ∅,

because both factors are non-empty. By applying Proposition 42 to R = aE, we obtain

trop(aE(ϕ)) , trop(aE)(S ),

in contradiction to Lemma 36 which implies the opposite.

It remains to check that if inS (G) contains a monomial, then it contains a monomial which
tropicalization is not vanishing on S in order to apply Lemma 36.

Proposition 44. Let G ⊂ Rm,n be a differential ideal and S ∈ P(Zm
≥0)n. Suppose inS (G) contains

a monomial aE , 0. Then it contains a monomial bF such that trop(bF)(S ) , ∅.

Proof. If trop(E)(S ) , ∅ there is nothing to prove. So we assume that trop(E)(S ) = ∅ and write

E =
∏

1≤i≤n,J∈Nm

xMi,J

i,J .

Since trop(E)(S ) = ∅, there are indexes i0, J0 with Mi0,J0 > 0 and Θtrop(J0)S i0 = ∅ and conse-
quently, trop(xi0,J0 )(S ) = ∅. On the other hand, aE can be written as

aE =

r∑
k=1

Qk inS (Pk)

for some non-zero Pk ∈ G and Qk ∈ Rm,n. By definition of the initial, for every 1 ≤ k ≤ r, no
monomial of inS (Pk) contains xi0,J0 as factor.
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We now consider the factors Qk =
∑

M∈Ωk
bMVM (with 0 , bM ∈ Rm and VM a differential

monomial) modulo the algebraic ideal (xi0,J0 ) :

Q̃k :=
∑

M∈Ωk
VM,0 mod (xi0 ,J0 )

bMVM .

By the choice of Q̃k, it follows that Qk − Q̃k = 0 mod (xi0,J0 ) and therefore,
∑r

k=1(Qk −

Q̃k) inS (Pk) = 0 mod (xi0,J0 ). Since

aE =

r∑
k=1

Q̃k inS (Pk) +

r∑
k=1

(Qk − Q̃k) inS (Pk) = 0 mod (xi0,J0 ),

also
∑r

k=1 Q̃k inS (Pk) = 0 mod (xi0,J0 ). Because xi0,J0 is neither a factor of any monomial in Q̃k

nor in inS (Pk), it follows that
∑r

k=1 Q̃k inS (Pk) = 0 and

aE =

r∑
k=1

(Qk − Q̃k) inS (Pk).

The monomial xi0,J0 divides all Qk − Q̃k and we can set E1 = E/xi0,J0 ∈ Rm,n such that

aE1 =

r∑
k=1

Qk − Q̃k

xi0,J0

inS (Pk) ∈ inS (G).

If trop(aE1)(S ) , ∅, we are done. Otherwise, by considering a monomial factor of E1 whose
tropicalization vanishes at S , we can iterate the previous reduction, and since the degree strictly
decreases in this process, we construct in this way a finite sequence of monomials (aE j)1≤ j≤s ∈

inS (G)s until trop(Es)(S ) , ∅.

Theorem 45 (Extended Fundamental Theorem). Let K be an uncountable, algebraically closed
field of characteristic zero. Let G ⊂ Rm,n be a differential ideal. Then the following three subsets
of

(
P(Zm

≥0)
)n

coincide:

1. Supp(Sol(G)),
2. Sol(trop(G)),
3. {S ∈ P(Zm

≥0)n : inS (G) contains no monomial}.

Proof. The equivalence of 1 and 2 is Theorem 25. If S ∈ Supp(Sol(G)), then Corollary 43
implies that inS (G) contains no monomial aE with trop(E)(S ) , ∅, and by Proposition 44 this
implies that inS (G) contains no monomial at all. The other direction is Proposition 40.
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