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ABSTRACT

Aims. We use stellar line-of-sight velocities to constrain the dark-matter density profile of Eridanus 2, an ultra-faint dwarf galaxy with
an absolute V-band magnitude MV = −7.1 that corresponds to a stellar mass M∗ ≈ 9 × 104 M�. We furthermore derive constraints on
fundamental properties of self-interacting and fuzzy dark matter scenarios.
Methods. We present new observations of Eridanus 2 from MUSE-Faint, a survey of ultra-faint dwarf galaxies with the Multi Unit
Spectroscopic Explorer on the Very Large Telescope, and determine line-of-sight velocities for stars inside the half-light radius.
Combined with literature data, we have 92 stellar tracers out to twice the half-light radius. With these tracers we constrain models
of cold dark matter, self-interacting dark matter, and fuzzy dark matter, using CJAM and pyGravSphere for the dynamical analysis.
The models of self-interacting and fuzzy dark matter relate the density profile to the self-interaction coefficient and the dark-matter
particle mass, respectively.
Results. We find substantial evidence (Bayes factor ∼10−0.6) for cold dark matter (a cuspy halo) over self-interacting dark matter (a
cored halo) and weak evidence (Bayes factor ∼10−0.4) for fuzzy dark matter over cold dark matter. We find a virial mass M200 ∼ 108 M�
and astrophysical factors J(αJ

c ) ∼ 1011 M2
� kpc−5 and D(αD

c ) ∼ 102−102.5 M� kpc−2 (proportional to dark-matter annihilation and decay
signals, respectively), the exact values of which depend on the density profile model. The mass-to-light ratio within the half-light
radius is consistent with the literature. We do not resolve a core (rc < 47 pc, 68% confidence level) or a soliton (rsol < 7.2 pc, 68%
confidence level). These limits are equivalent to an effective self-interaction coefficient f Γ < 2.2 × 10−29 cm3 s−1 eV−1 c2 and a fuzzy-
dark-matter particle mass ma > 4.0 × 10−20 eV c−2. The constraint on self-interaction is complementary to those from gamma-ray
searches. The constraint on fuzzy-dark-matter particle mass is inconsistent with those obtained for larger dwarf galaxies, suggesting
that the flattened density profiles of those galaxies are not caused by fuzzy dark matter.
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1. Introduction

Over time, the astrophysical community has come to realize
that baryonic matter and the established laws of physics are
unable to explain our observations of the Universe. The dis-
crepancy between baryonic and measured mass is almost uni-
versally interpreted as evidence for dark matter. The current
paradigm, cold dark matter (CDM), has so far been able to
explain our observations, albeit with a few open questions
remaining. Various departures from the paradigm have been pro-
posed with varying success, with the goal of addressing a per-
ceived shortcoming of CDM or explaining the properties of dark
matter as a consequence of a more physically motivated the-
ory. The proposed alternatives to CDM span a wide range of
masses and interactions, including weakly interacting massive
particles (WIMPs; Steigman & Turner 1985), massive astro-
physical compact halo objects (MACHOs; Griest 1991), axions

? Based on observations made with ESO telescopes at the La Silla
Paranal Observatory under programme IDs 0100.D-0807, 0102.D-
0372, 0103.D-0705, and 0104.D-0199.

(Weinberg 1978; Wilczek 1978; Preskill et al. 1983), warm dark
matter (WDM) such as sterile neutrinos (Dodelson & Widrow
1994), and self-interacting dark matter (SIDM; Carlson et al.
1992; Spergel & Steinhardt 2000). Another option to solve the
problem of ‘missing mass’, which has enjoyed less support, is to
modify the laws of gravity instead of adding extra mass to the
Universe. Examples of these modifications are modified Newto-
nian dynamics (Milgrom 1983) and emergent gravity (Verlinde
2017). In this paper we limit ourselves to a few different forms
of dark matter.

The alternatives to CDM have different microphysical prop-
erties that lead to changes on astrophysical scales, making
it possible in principle to distinguish between the individual
alternatives and CDM through astronomical observations. One
way of doing this is by investigating the gravitational interac-
tion between the invisible dark matter and luminous objects.
Different dark-matter theories often predict different spatial dis-
tributions of dark matter, which can be inferred from the kine-
matics of baryonic tracers. This kinematic approach is indirect
but is complementary to the direct and indirect approaches that
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search for signatures such as annihilation and decay products.
A complicating factor for astronomical observations is the com-
plexity of astrophysical processes taking place in astronomical
structures at the same time or in the past, which might also affect
the measured spatial distribution of dark matter or the kinematics
of the tracers.

Ultra-faint dwarf galaxies (UFDs) are perhaps the most
promising class of objects for constraining dark matter on the
basis of the density profile because these galaxies contain very
little baryonic matter that could otherwise interfere with the
interpretation of the results, both in a relative and an absolute
sense: These galaxies are the most dark matter–dominated galax-
ies known (see e.g., McConnachie 2012) and contain very little
luminous matter (MV > −7.7; Simon 2019). Baryonic effects
are expected to be able to create significant cores in larger dwarf
galaxies (Brooks & Zolotov 2014; Di Cintio et al. 2014a). Sim-
ulations of isolated galaxies show that the baryonic effects at
play include bursty star formation, supernova feedback, and gas
in- and outflows, or gravitational potential fluctuations in gen-
eral (e.g., Read et al. 2016; El-Zant et al. 2016; Freundlich et al.
2020). Observational evidence that this process takes place in
classical dwarf galaxies has been found by Read et al. (2019),
who measure an anti-correlation between the dark-matter den-
sity at a radius of 150 pc and the stellar-mass/halo-mass ratio.
In the case of UFDs, the baryonic content is so low that it is
not expected to significantly alter the density profile from cuspy
to cored (Peñarrubia et al. 2012; Oñorbe et al. 2015; Wheeler
et al. 2019). However, other effects such as tides (Genina et al.
2020a) can also create cores in a CDM universe, and non-circular
motions can bias kinematic analyses to make cusps appear as
cores (Oman et al. 2019).

This paper is the second part in a series on MUSE-
Faint, a survey of UFDs with the Multi Unit Spectroscopic
Explorer (MUSE; Bacon et al. 2010) at the Very Large Tele-
scope (VLT). In Zoutendijk et al. (2020, hereafter Paper I), we
presented 4.5 h of observations on the central square arcminute
of Eridanus 2 (Eri 2), a relatively bright UFD with absolute V-
band magnitude MV = −7.1 (Crnojević et al. 2016). We found
an intrinsic velocity dispersion of 10.3+3.9

−3.2 km s−1 for the bulk
of the stars in the centre of Eri 2, whereas the central stellar
over-density was found to have an intrinsic velocity dispersion of
<7.6 km s−1 (68% confidence level), supporting its earlier photo-
metric classification as a star cluster (Crnojević et al. 2016).

The kinematics of larger dwarf galaxies are well studied.
Fornax, Sculptor, and Draco, for example, have large sets of stel-
lar line-of-sight velocities (Walker et al. 2009, 2015), and the lat-
ter two even have internal proper motion measurements (Massari
et al. 2018, 2020). The profile of Fornax has been established
as cored (e.g., Goerdt et al. 2006; Walker & Peñarrubia 2011;
Amorisco et al. 2013), whereas Draco is generally regarded as
having a cuspy density profile (e.g., Jardel et al. 2013; Read
et al. 2018; Massari et al. 2020). There is no consensus on the
density profile of Sculptor, with some authors preferring cores
(e.g., Battaglia et al. 2008; Walker & Peñarrubia 2011), some
preferring cusps (Richardson & Fairbairn 2014; Massari et al.
2018), and others claiming either profile fits the data (e.g., Bred-
dels et al. 2013; Strigari et al. 2018). However, Read et al. (2019)
note that the enclosed mass estimates for Sculptor are in agree-
ment, the largest tension being ∼2σ.

Far less kinematic data is available for UFDs. The first UFD
for which a velocity dispersion was determined was Ursa Major I
(Kleyna et al. 2005). Currently, velocity dispersions are known
for over half of the confirmed and candidate UFDs (Simon
2019). These measurements can be converted to mass estimates,

for example by using the estimators from Wolf et al. (2010).
Constraining a density profile for a UFD has so far not been
possible due to the small sizes of the kinematic datasets and the
limited radial ranges covered. However, the presence of the star
cluster in Eri 2 has been used to argue for its hosting a cored
profile (Amorisco 2017; Contenta et al. 2018).

Even without knowing the full density profile, classical and
ultra-faint dwarf galaxies can be used to constrain dark-matter
properties. If dark matter annihilates or decays, dark-matter
haloes will emit radiation. Dwarf galaxies are promising targets
because of their high dark-matter density and low radiation of
baryonic origin. The annihilation and decay signals are propor-
tional to the astrophysical J and D factors, which are integrated
measures of the density profile. These factors are necessary to
convert observed fluxes or flux limits to dark-matter properties.
A number of studies have determined one or both of the astro-
physical factors for dwarf galaxies (e.g., Bonnivard et al. 2015a;
Fermi-LAT Collaboration 2014; Alvarez et al. 2020).

Here we present additional observations from MUSE-Faint
on four new pointings surrounding the centre, roughly cover-
ing the half-light radius of Eri 2, R1/2/D = 2.31 ± 0.12 arcmin,
at distance D = 366 ± 17 kpc, or R1/2 = 277 ± 14 pc
(Crnojević et al. 2016). With these new fields, in combination
with our central field and results at larger distances from the
centre from another study (Li et al. 2017), we can study the
kinematics of stars in Eri 2 over a wide range of radii. Using
different kinematical analysis techniques, we put constraints on
the dark-matter density profile of Eri 2, specifically whether the
profile is cuspy or cored and to what degree, and translate these
to constraints on the properties of dark-matter candidates: the
self-interaction coefficient of SIDM and the dark-matter parti-
cle mass of fuzzy dark matter (FDM). Furthermore, we compare
different models to one another using Bayesian evidence in an
attempt to constrain which kinds of dark matter fit the data better.
In the figures in this paper, each density profile model is consis-
tently shown with the same colour to facilitate recognition and
association.

In Sect. 2 we describe our data and its reduction (Sect. 2.1),
the dark-matter density profile models (Sect. 2.2), and the analy-
sis methods (Sects. 2.3 and 2.4). We continue in Sect. 3 with our
results on dark-matter parameter constraints (Sect. 3.1), density-
profile recovery and derived halo properties (Sect. 3.2), and a
comparison of the evidence for the different dark-matter models
(Sect. 3.3). We end with a discussion in Sect. 4 and our conclu-
sions in Sect. 5.

2. Methods

We begin by describing our observations of Eri 2 from the
MUSE-Faint survey, the data reduction, and the extraction of
kinematics in Sect. 2.1. This is followed in Sect. 2.2 by the pre-
sentation of the three main dark-matter models tested in this
paper. The parameters of the density profiles associated with
these models are linked to the microphysical properties of dark
matter. To constrain the profiles and thereby these properties, we
used two analysis tools, CJAM and pyGravSphere, which are
introduced in Sects. 2.3 and 2.4.

2.1. Observations and data reduction

The data were taken with VLT/MUSE during five guaranteed-
time observing runs between October 2017 and December 2019.
The estimated natural seeing varied between 0.6 and 1.0 arcsec,
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Fig. 1. Composite-colour image mosaic of Eridanus 2 as observed with
MUSE-Faint. Sloan Digital Sky Survey filters g, r, and i were used for
the colours blue, green, and red, respectively. Images of the five sep-
arately reduced fields were combined with Montage, and the colours
were composited using the algorithm from Lupton et al. (2004). The
72 member stars with MUSE-Faint measurements are circled in green.
Celestial north is up. The angular and physical scales at the distance of
Eridanus 2 are indicated in the bottom left corner.

with adaptive optics reducing the seeing by 0.1–0.2 arcsec under
good conditions. In Paper I we described the data reduction and
source selection for Field 1, our central pointing on Eri 2. We
used the same procedure independently on Fields 2 through 5,
presented here for the first time (see Fig. 1).

In brief, we mostly followed the standard procedure of
reducing MUSE data with the MUSE Data Reduction Soft-
ware (DRS; version 2.4 for Field 1 and version 2.6 for Fields 2
through 5; Weilbacher et al. 2020), the exceptions being the
use of the bad-pixel table from Bacon et al. (2017) and an
auto-calibration step on a source-masked version of the cube.
The DRS-produced data cubes were post-processed with Zurich
Atmosphere Purge (ZAP; version 2.0; Soto et al. 2016) to
remove residual sky signatures. We extracted spectra from these
data cubes using PampelMuse (Kamann et al. 2013) and mea-
sured seeing full widths at half-maximum between 0.53 and
0.66 arcsec at 7000 Å for the five data cubes, using public Hubble
Space Telescope data1 to construct a source catalogue. We used
spexxy (version 2.5; Husser 2012) with the PHOENIX library of
synthetic stellar spectra to determine line-of-sight velocities and
made a catalogue of the results for each field. To ensure reliable
velocity measurements and to limit contamination from back-
ground galaxies and Milky Way stars, we imposed a set of selec-
tion criteria: We removed catalogue entries that had a clearly
extra-galactic spatial or spectral appearance, a spectral signal-to-
noise ratio below 5, an unsuccessful velocity fit, a parallax mea-
surement from Gaia Data Release 2 (Gaia Collaboration 2016,
2018; Lindegren et al. 2018) inconsistent with zero, or photome-
try inconsistent with a broadened MIST isochrone (Dotter 2016;

1 Hubble Space Telescope proposal GO-14234, principal investigator
J. D. Simon, presented by Simon et al. (2021).

Choi et al. 2016; Paxton et al. 2011, 2013, 2015). We had 95
entries that passed these criteria in the five catalogues. To this
we added another catalogue with 47 observations of 28 member
stars identified by Li et al. (2017), bringing the total number of
entries to 142.

Since the six catalogues have some overlap on the sky, some
sources occur in multiple catalogues. While merging the six
source catalogues, we took into account the presence of these
duplicate entries, which share an identifier, by replacing them
with a single entry in the final catalogue. In this final catalogue
we took the mean values of the right ascensions and declina-
tions, the uncertainty-weighted mean values of the line-of-sight
velocities, the sum in quadrature of the inverse uncertainties
on the line-of-sight velocities, and the sum in quadrature of
the signal-to-noise ratios. After this removal of duplicates, we
were left with 109 unique stars. As in Paper I, we checked for
possible remaining contamination of our sample by Milky Way
stars by computing the membership probabilities of the selected
sources. This we did by calculating the likelihood of observing
the measured stellar velocities given two distribution functions
– a Gaussian representing Eri 2 and a contaminating distribution
based on the Besançon model of the Milky Way – and a mem-
bership probability for each star that weights the contributions of
both distribution functions. The membership probabilities were
determined by optimizing the likelihood while marginalizing
over the mean velocity and dispersion of Eri 2. We found that
ten of our sources had significantly lower membership probabil-
ities than the others, leading to their exclusion from our sample
and thus leaving us with 99 stars.

In Paper I we found that the Eri 2 cluster seen at the centre
of this galaxy has a different kinematic distribution than the bulk
of Eri 2. Moreover, it is still not completely clear how far this
cluster is located from the centre of Eri 2 as we can only see
the projected location. This leads to the question of whether the
kinematics of the stars that make up the cluster are good tracers
of the potential of Eri 2 or whether they mainly trace the prop-
erties of the star cluster itself. To avoid a possible bias in our
results, we excluded the seven cluster member stars identified in
Paper I from our sample, bringing our final selection to 92 stars.
We present the positions and kinematics of the final selection in
Table A.1. Of the final selection, 64 stars have only MUSE-Faint
measurements, 20 stars have only measurements from Li et al.
(2017), and eight stars have measurements from both sources.

2.2. Models of dark-matter density profiles

With the goal of placing constraints on the nature of dark mat-
ter, we compared our kinematic data to several models of dark-
matter density profiles, each based on a different type of dark
matter. As a null hypothesis, we used a Navarro–Frenk–White
(NFW; Navarro et al. 1996) profile to represent CDM:

ρCDM(r; ρ0, rs) =
ρ0

(r/rs)(1 + r/rs)2 , (1)

where ρ0 is known as the characteristic density and rs is the
scale radius. We compared this with two other models: SIDM
and FDM. The latter two models behave like an NFW profile
on large scales but deviate on smaller scales. The extent of the
deviation depends on the effective self-interaction coefficient in
the case of SIDM and on the mass of the dark-matter particle in
the case of FDM. Therefore, for both the SIDM and FDM mod-
els, not only can we compare one dark-matter theory to the other,
but we can also place constraints on the properties of dark-matter
particles under the assumption of the particular theory.
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Self-interacting dark matter describes a form of dark matter
that interacts with itself more strongly than with other parti-
cles (Spergel & Steinhardt 2000). Interactions that remove dark-
matter particles from the halo according to the relation

ρ̇(x, t) = −Γρ2(x, t), (2)

where Γ is the self-interaction coefficient, produce a density
profile

ρSIDM(r; ρc, rc, rs) =
ρc

(r/rc)(1 + r/rs)2 + 1
, (3)

where ρc is the core density and rc is the core radius (Lin & Loeb
2016). We discuss how Γ and our constraints thereon relate to the
cross-section σ in Sect. 4. The self-interaction described covers
scattering and annihilation but has been designed with mainly
the latter in mind. The profile can also be written as

ρSIDM(r; ρ0, rc, rs) =
ρ0

rc/rs + (r/rs)(1 + r/rs)2 (4)

with characteristic density ρ0 = ρc(rc/rs). The SIDM profile is
equal to the CDM (NFW) profile for rc = 0, but for rc > 0
it exhibits a core instead of a cusp. Evidence in favour of the
SIDM profile over the CDM profile would indicate that the den-
sity profile of Eri 2 is cored. If the density profile of Eri 2
is cuspy, both the CDM and SIDM models should be able to
describe it, but we should in this case find evidence in favour
of the CDM profile as it is the simpler of the two. At large
radii the SIDM profile always asymptotes to the NFW profile.
There is a relation tying the self-interaction coefficient (Γ) of
the dark matter to the observational properties of the profile
(Lin & Loeb 2016):

f Γ =
rc/rs

tρ0
, (5)

where t is the time elapsed since the start of the self-interaction
at the virialization of the dark-matter halo. However, this rela-
tion is degenerate with the fudge factor ( f ) that compensates for
the unknown gravitational back-reaction. As dark-matter parti-
cles interact according to Eq. (2), the dark-matter halo moves
out of dynamical equilibrium. The gravitational back-reaction
is the process of the halo re-adjusting to the new dynamical
equilibrium, thereby altering the profile to a larger extent than
described by Γ alone. The value of f is estimated to be ∼10
for dwarf galaxies (Kaplinghat et al. 2000) but is not precisely
known. We therefore tried to constrain the product f Γ, which we
will call the effective self-interaction coefficient. Time t is not
known, so we assumed it to be equal to the age of the stellar
population. This was estimated to be 8 Gyr in Paper I; however,
in a more rigorous analysis Simon et al. (2021) find the oldest
stars to be ∼13.5 Gyr old. We therefore adopted the latter value.
Should a better estimate of the time since virialization become
available in the future, our constraints of f Γ can simply be
rescaled.

Fuzzy dark matter consists of ultra-light spin-less bosons
that form a Bose–Einstein condensate, exhibiting quantum-
mechanical behaviour at astronomical scales (Hu et al. 2000).
Axions are a possible and well-motivated class of particles that
can form FDM, but they are not the only possibility, nor does
FDM require an electromagnetic interaction, which axions have
(see e.g., Ferreira 2020). The wave-like properties of FDM result
in a density profile (Schive et al. 2014a,b; Marsh & Pop 2015)

ρFDM(r; ρsol,0, rsol, ρCDM,0, rs) =

ρsol(r; ρsol,0, rsol), (r < rt),
ρCDM(r; ρCDM,0, rs), (r ≥ rt),

(6)

where

ρsol(r; ρsol,0, rsol) =
ρsol,0

(1 + (r/rsol)2)8 · (7)

At large radii, FDM follows the NFW profile; however, with
decreasing radius the density first rises steeply and then flattens
to a constant value. This inner part of the profile deviating from
the NFW is known as the soliton solution to the wave equations
governing the ultra-light dark-matter particles, with central den-
sity ρsol,0 and soliton radius rsol. We note that this soliton radius
(rsol), defined by Marsh & Pop (2015), differs from the soliton
radius rc as defined by Schive et al. (2014a). The central soliton
density and soliton radius are related to the mass of the dark-
matter particle through

ma =

√
2~M2

Pl

α4cr4
solρsol,0

, (8)

where MPl is the reduced Planck mass, α ≈ 0.230, and c is the
speed of light (Marsh & Pop 2015). There is a sharp transition,
at the transition radius (rt), to an NFW profile. The profile has to
be continuous (i.e. the two parts need to be equal at the transition
radius), but the transition is so sharp that it is usually modelled
with a sudden transition, leading to a discontinuous first deriva-
tive. Our method, however, necessitates a smooth modelling of
the transition, which is introduced in Sect. 2.3 and detailed in
Appendix B. The transition radius can be expressed in terms of
the fraction ε of the density at the transition relative to the central
soliton density (ρsol,0):

rt = (ε−1/8 − 1)1/2rsol. (9)

Simulations show that ε does not exceed 1/2 (Schive et al.
2014a; Marsh & Pop 2015).

To be able to test the different dark-matter density pro-
files against our data, we need to make predictions for mea-
surements given a set of parameters. This is not an easy task,
considering that we only measured the projected positions of
stars and their line-of-sight velocities. Converting between the
three-dimensional models and the two-dimensional measure-
ments leads to a dependence on the velocity anisotropy. This has
long been a source of uncertainty for density profile determina-
tion because it leads to a mass–anisotropy degeneracy when the
enclosed mass is determined from the three-dimensional veloc-
ity dispersion through Jeans analysis. Fortunately, there are sev-
eral available methods that attempt to break this degeneracy by
exploiting additional information available in the data. We use
two different codes in this paper, which take different approaches
to the problem, each with its own merits and shortcomings.

2.3. CJAM

The light and dark matter distributions can be approximated with
a multi-Gaussian expansion (MGE; Emsellem et al. 1994). This
approximation makes it possible to calculate integrals over the
profiles analytically instead of numerically and leads to faster per-
formance. The first method, CJAM (Watkins et al. 2013), is an
implementation of the Jeans Anisotropic MGE (JAM) method
(Cappellari 2008). CJAM calculates the first and second moments
of the velocities for every tracer, allowing for non-spherical light
and matter distributions as well as a non-zero, constant velocity
anisotropy. In general, the first moments form a three-dimensional
expectation value of the velocity of a tracer given a model, and the
nine second moments make up the covariance. As we only have
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line-of-sight information, we are limited to the first and second
moments along the line of sight, though CJAM can also calcu-
late moments in the plane of the sky, which could be compared to
proper-motion data. Because of the limited number of available
tracers, we also assumed the dark-matter component of Eri 2 to
be spherically symmetric. The use of MGEs in CJAM allows us
to implement our own density profiles. We describe the expansion
of our profiles into MGEs in Appendix B.

There are several parametrizations in which we can express
the different dark-matter profiles. We define the astrophys-
ical parametrizations as those using astrophysical measure-
ments, such as characteristic densities and scale radii. These
are the same as the canonical forms of the profiles as given
in Eqs. (1)–(7). For SIDM and FDM we can transform the
astrophysical parametrization into a microphysical parametriza-
tion. These parametrizations contain parameters that character-
ize dark-matter physics: the effective self-interaction coefficient
and the dark-matter particle mass. However, we find that we
get the best constraints by parameterizing the profiles using
quantities that are as close as possible to our measurements.
We will refer to these last parametrizations as computational.
We constrain the computational parametrizations directly and
compute the constraints on the astrophysical and microphysical
parametrizations from them.

For the SIDM profile, we found a computational
parametrization in terms of the base-ten logarithm of dark-
matter density at three fixed radii: log10 ρ1 at r1 = 50 pc, log10 ρ2
at r2 = 100 pc, and log10 ρ3 at r3 = 150 pc. These radii were
chosen to be near the peak in observed line-of-sight velocities.
The astrophysical parameters can be recovered through

rs = r1 ·
(ρ1 − ρ2)(9ρ3 − ρ1) − (ρ1 − ρ3)(4ρ2 − ρ1)
(ρ1 − ρ2)(ρ1 − 3ρ3) − (ρ1 − ρ3)(ρ1 − 2ρ2)

, (10)

rc = r1 ·
(4ρ2 − ρ1)(r1/rs) − (ρ1 − 2ρ2)

ρ1 − ρ2
· (11)

As a special case with rc = 0, the CDM profile needs only two
parameters, which simplifies the system of equations, yielding
the solution

rs = r1 ·
9ρ3 − 4ρ2

2ρ2 − 3ρ3
· (12)

The consequence of this choice of parametrization is that it is
harder to set a prior that will limit the astrophysical parame-
ters to reasonable values. One could try to find a prior volume
on the computational parameters that translates to the desired
prior volume on the astrophysical parameters, but given the com-
plexity of Eqs. (10)–(12), this is difficult and would introduce a
non-trivial prior distribution. Instead, we chose to simply reject
the points that translate to values outside the desired astrophys-
ical priors by assigning them a probability of zero. We accepted
combinations of parameters that led to values of rs and rc such
that 10−2 rs ≤ rc ≤ rs and 10−3 rs ≤ Ri ≤ 103 rs for all trac-
ers, where Ri is the projected radius of a tracer. These ranges are
those over which the MGEs were fitted and should be sufficiently
large to encompass all reasonable models for Eri 2. These cuts
of unphysical and unreasonable parameter combinations were
performed after sampling from the prior distribution, during the
evaluation of the likelihood function.

For the FDM profile, which is more complex due to the vari-
able transition radius between the two different regimes, we were
not able to find a similar parametrization in densities only. We
therefore used a computational parametrization in the following
parameters: the logarithm log10 ρCDM,100 B log10 ρCDM(100 pc)

Table 1. Limits of the uniform CJAM-MultiNest priors and to which
profiles they apply.

Prior Min. Max. Profiles

log10(ρ1/M� kpc−3) (a) 6 12 SI
log10(ρ2/M� kpc−3) (a) 6 12 C, SI
log10(ρ3/M� kpc−3) (a) 6 12 C, SI
log10(ρCDM,100/M� kpc−3) 6 10 F
αCDM,100 −3 −1 F
log10(rsol/rs) −3 0 F
log10 ε −5 log10 1/2 F
v0/km s−1 65 85 C, SI, F

Notes. The letters C, SI, and F indicate CDM, SIDM, and FDM, respec-
tively. The parameters are: the densities ρ1, ρ2, and ρ3 at 50, 100,
and 150 pc, respectively; the density ρCDM,100 of the outer FDM pro-
file at 100 pc; the logarithmic slope αCDM,100 of the outer FDM profile at
100 pc; the ratio rsol/rs of the soliton radius to the scale radius; the rela-
tive density (ε) with respect to the central density at the transition radius
between the inner and outer FDM profiles; and the systemic velocity
(v0). The parameter spaces of the CDM and SIDM models contain com-
binations of parameters that translate to unreasonable values for rc and
rs. This is handled by setting the likelihood in these regions to zero,
but it can also be thought of as being excluded from the prior space
indicated. (a)Within the indicated priors, ρi ≥ ρi+1.

of the outer density profile at 100 pc, the logarithmic slope
αCDM,100 B (d ln ρCDM/d ln r)(100 pc) of the outer density pro-
file at 100 pc, the logarithm log10(rsol/rs) of the ratio between
the soliton radius and scale radius, and the logarithm log10 ε =
log10 ρFDM(rt) − log10 ρsol,0 of the density at the transition radius
relative to the soliton density.

We used MultiNest (Feroz & Hobson 2008; Feroz et al. 2009,
2019) through the PyMultiNest interface (Buchner et al. 2014)
to find the posterior likelihood distribution for the parameters of
each model – which consist of the aforementioned profile param-
eters and the systemic velocity (v0) against which the kinemat-
ics are offset – using uniform priors over large ranges of values,
which are listed in Table 1.

MultiNest also calculates the Bayesian evidence for each
model, allowing us to compare the models with one another. The
wide priors do not significantly impact the Bayesian evidence cal-
culation because they extend to regions of parameter space with
very low likelihoods. Since we excluded some models from con-
sideration, one might be concerned that this compromises the
Bayesian evidence calculation of MultiNest. We performed a few
mock runs of MultiNest with a simple likelihood function to test
whether our forcing of likelihoods to zero would affect the evi-
dence calculation, as opposed to limiting the prior volume. We
found that some of the evidence estimators are indeed biased, but
not the nested sampling global log-evidence. We therefore used
this estimator to evaluate the Bayesian evidence of the models.

2.4. pyGravSphere

The second method we used to determine density profiles is
GravSphere (Read & Steger 2017). Similar to the classical Jeans
analysis, the GravSphere method directly calculates the disper-
sion of the measured line-of-sight velocities in bins at differ-
ent radii, as opposed to the non-binned treatment of velocity
expectation values done in JAM. What GravSphere adds is it can
work with non-constant velocity anisotropies and it calculates
two higher-order moments in the radial bins, the virial shape
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Table 2. Kinematic data of Eridanus 2 after binning, as used by
pyGravSphere.

Radius (kpc) Velocity dispersion (km s−1)

0.035 13.87 ± 3.64
0.056 6.18 ± 4.86
0.090 7.57 ± 4.21
0.109 11.28 ± 3.18
0.176 4.54 ± 9.37
0.273 7.64 ± 1.27

Notes. The radii of the bins correspond to the average projected radius
of the stars in each bin.

parameters (VSPs; Merrifield & Kent 1990). These should par-
tially break the degeneracy between mass and anisotropy that
is present when only using the dispersion. A drawback is that
GravSphere only allows for spherical symmetry, whereas JAM
can handle axisymmetric distributions.

We used the pyGravSphere implementation (Genina et al.
2020b) of the GravSphere method. We provided it with the same
kinematic information as CJAM. To determine the tracer profile,
we made a mock photometric catalogue, drawing stars from the
same exponential distribution as assumed for CJAM. We mod-
ified pyGravSphere to make the bin size configurable and to
add remaining sources to the last (outer) bin. We divided the
92 sources with line-of-sight velocities into bins of 11, making
eight bins, with four extra stars in the last bin. We also imple-
mented new estimators of the velocity moments and their uncer-
tainties, which were designed to minimize the biases present
in cases with large measurement uncertainties and little data.
These unbiased estimators and their derivation are introduced
in Appendix C. The estimators return a negative result for the
velocity dispersion in bins 3 and 6. These bins were therefore
discarded by pyGravSphere, leaving six bins in the analysis.
We did not use the VSPs because there are too few stars per
bin to accurately estimate their uncertainties. We explain this in
more detail in Appendix C. Lastly, we modified pyGravSphere to
place the estimators at the average projected radius of the stars in
the corresponding bins, instead of at the maximum radius. The
modified pyGravSphere binning code has been made publicly
available2 as a stand-alone program called hkbin. We show the
binned data that pyGravSphere uses in Table 2.

It is these binned dispersion measurements to which pyGrav-
Sphere fits, while CJAM fits directly to the unbinned velocity
data in Table A.1.

There are a number of models built into pyGravSphere to
represent the density profiles of dark matter and stellar tracers
as well as the velocity anisotropy profile. We chose to model the
velocity anisotropy with the model of Baes & Van Hese (2007),

βaniso(r) = β0 + (β∞ − β0)
1

1 + (r0/r)η
, (13)

which features a transition with rapidity η at radius r0 between
an inner anisotropy (β0) and an outer anisotropy (β∞). The
anisotropy parameter is defined as

βaniso(r) := 1 −
σ2

t (r)
σ2

r (r)
, (14)

where σt(r) and σr(r) are the tangential and radial compo-
nents of the velocity dispersion, respectively. Here we use the

2 https://github.com/slzoutendijk/hkbin

symmetrized anisotropy parameter (Read et al. 2006),

β̃aniso(r) :=
σr(r) − σt(r)
σr(r) + σt(r)

=
βaniso(r)

2 − βaniso(r)
, (15)

which has the advantage of being bounded between −1 (fully
tangential) and +1 (fully radial). Consequently, we define

β̃0 B
β0

2 − β0
, (16)

β̃∞ B
β∞

2 − β∞
· (17)

We modelled the tracer profile with three Plummer (1911) pro-
files,

ν(r) =

3∑
j=1

3M j

4πa3
j

(
1 +

r2

a2
j

)5/2

, (18)

with masses M j and radii a j. As pyGravSphere assumes spher-
ical symmetry, a circular distribution is fitted to the ellipti-
cal distribution on the sky. The dark-matter component can
be modelled with a five-segment broken power-law profile
(Read & Steger 2017),

ρpl(r) =

{
ρ0(r/r0)−γ0 , r < r0,

ρ0(r/r j+1)−γ j+1
∏n< j+1

n=0 (rn+1/rn)−γn+1 , r j < r < r j+1,

(19)

or a Hernquist–Zhao (Hernquist 1990; Zhao 1996) profile,

ρHZ(r) =
ρ0

(r/rs)γ(1 + (r/rs)α)(β−γ)/α , (20)

also known as the (α, β, γ) profile. As a special case of the
Hernquist–Zhao profile, we also looked at the NFW profile with
(α, β, γ) = (1, 3, 1), which is the same profile as for the CJAM
CDM model. The broken power-law profile and Hernquist–Zhao
profile allow for steeper slopes at large radii than the CDM
(NFW), SIDM, and FDM models. Steep outer slopes can be a
sign of stripping or truncation of the halo, for example due to
tidal interactions with the Milky Way. The broken power-law
profile should be especially suited for modelling truncated pro-
files because of its segmented nature.

The pyGravSphere code uses emcee (Foreman-Mackey et al.
2013) to constrain the parameter space. The use of this package,
as well as the efficient implementations of the profile func-
tions, makes pyGravSphere a fast code despite the high num-
ber of parameters it tries to constrain. Unfortunately, the use of
a Markov chain Monte Carlo (MCMC) method makes a com-
parison between models harder as it does not readily provide
Bayesian evidence. We remedied this by computing an approx-
imation of the Bayesian evidence on the Markov chains with
MCEvidence (Heavens et al. 2017), using the estimator based
on the nearest neighbours.

Due to the limited quantity of data and the degeneracies
between some of the parameters, we extended some of the default
pyGravSphere priors on the dark-matter parameters. We set the
minimum value of rs to the projected radius of the innermost data
point, rounded to the nearest decade, because we are not able to
probe any scales smaller than the minimum radius. The maximum
characteristic density was adjusted accordingly to not be a limit-
ing bound. Conversely, we increased the maximum scale radius
and decreased the minimum characteristic density. We increased
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Table 3. Limits of the uniform pyGravSphere-emcee priors on the dark-
matter parameters.

Prior Minimum Maximum

log10(ρ0/M� kpc−3) 3 15
log10(rs/kpc) −2.5 2.5
α (a) 0.5 3
β (a) 3 9
γ (a) 0 1.5
γi

(b) 0 9
β̃0 −1 1
β̃∞ −1 1
log10(r0/kpc) log10(0.5R1/2/kpc) log10(2R1/2/kpc)
η 1 3

Notes. Listed are the characteristic density (ρ0), the NFW scale radius
(rs) (Eq. (1)), the Hernquist–Zhao α, β, and γ parameters (Eq. (20)),
the broken power-law slopes (γi) (Eq. (19)), the symmetrized inner
and outer velocity anisotropies (β̃0 and β̃∞) (Eqs. (16) and (17)), the
anisotropy transition radius (r0), and the sharpness of the anisotropy
transition (η) (Eq. (13)). (a)In the case of the NFW model, α, β, and
γ are fixed to 1, 3, and 1, respectively. (b)Within the indicated priors,
γi+1 ≥ γi.

the maximum allowed values of the Hernquist–Zhao β param-
eter and power-law γi to allow for steeper declines in density.
For the same reason, we effectively removed the restriction on
the difference between consecutive power-law slopes by setting
the maximum difference between consecutive slopes equal to
the difference between the prior minimum and maximum. Thus
we effectively only required that the steepness of the broken
power-law segments increase with the distance to the centre. An
overview of the priors on the dark-matter parameters is given in
Table 3.

We used the same settings for the MCMC walkers as
Genina et al. (2020b): 103 walkers, making 2 × 104 steps, of
which the first half are discarded as burn-in, and using 100 inte-
gration points. Similarly, we analysed the resulting chains by
first discarding samples with a χ2 of more than ten times the
minimum χ2 and then drawing 105 samples from the remaining
samples. The best-fitting combination of parameters has a min-
imum χ2 of less than two for all three models, or a minimum
reduced χ2 of less than 1/3, which indicates that all models are
good fits to the data.

3. Results

Using the two analysis methods presented above, we sampled
the parameter spaces of our dark-matter density profiles given
the kinematical measurements of Eri 2. Here we break down the
presentation of the results into several parts. In Sect. 3.1 we show
the constraints on the density profiles and dark-matter models.
This is followed by the presentation of the recovered density
profiles in Sect. 3.2, together with derived halo masses, concen-
trations, mass-to-light ratios, and astrophysical J and D factors.
We then compare different dark-matter models using Bayesian
evidence (Sect. 3.3). We remind the reader that each model is
represented by the same colour in every figure.

3.1. Parameter estimation

We show the constraints in the astrophysical parametrization
of the CJAM CDM model in Fig. 2 and the constraints in the
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Fig. 2. Constraints on the dark-matter density profile of Eridanus 2 in
the astrophysical parametrization, assuming CDM, found using CJAM
and MultiNest. Units are omitted for clarity. The parameters are the
characteristic dark-matter density (ρ0) in M� kpc−3, the scale radius (rs)
in kpc, and the systemic velocity (v0) in km s−1. The contours corre-
spond to 0.5σ, 1.0σ, 1.5σ, and 2.0σ confidence levels, where σ is the
standard deviation of a two-dimensional normal distribution. The verti-
cal dashed lines in the one-dimensional histograms indicate the median
and the 68% confidence interval.

microphysical parametrization of the SIDM and FDM models
in Figs. 3 and 4, respectively. The constraints in the computa-
tional parametrizations for all three models and the astrophysical
parametrizations for the SIDM and FDM models are displayed in
Appendix D. Below we present and compare the constraints on
the most important profile parameters. Quantities derived from
the profiles, such as virial mass and concentration, will be pre-
sented in Sect. 3.2 together with the recovered profiles.

CJAM ρ0 and rs. For the CDM profile we find a character-
istic density of ρ0/(M� kpc−3) = 109.22+1.14

−1.05 = 1.7+21.2
−1.5 × 109 and

a scale radius of rs/pc = 102.01+0.58
−0.55 = 102+287

−73 . The SIDM profile
has consistent values for the same parameters: ρ0/(M� kpc−3) =

108.96+0.69
−0.81 = 9.1+35.5

−7.7 × 108 and rs/pc = 102.17+0.49
−0.36 = 148+309

−83 .
This indicates that at large radii the density profiles of CDM and
SIDM are in agreement.

CJAM SIDM rc and fΓ. Considering that the SIDM core
radius is consistent with a scale radius smaller than our small-
est projected radius (1.96 pc), we lack constraining power at the
lower end of the range of this parameter. It is therefore appropri-
ate to present the constraint as an upper limit: rc/pc < 101.67 =
47 at the 68% confidence level and rc/pc < 102.07 = 117 at the
95% confidence level. For the related effective self-interaction
coefficient, we find that f Γ/(cm3 s−1 eV−1 c2) < 10−28.65 = 2.2 ×
10−29 at the 68% confidence level and f Γ/(cm3 s−1 eV−1 c2) <
10−28.09 = 8.1 × 10−29 at the 95% confidence level.

CJAM FDM rsol and ma. In the case of the FDM model,
it is also appropriate to present the soliton radius as an upper
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Fig. 3. Constraints on the dark-matter density profile of Eridanus 2 in
the microphysical parametrization, assuming SIDM, found using CJAM
and MultiNest. Units are omitted for clarity. The parameters are the
characteristic dark-matter density (ρ0) in M� kpc−3, the scale radius (rs)
in kpc, the effective self-interaction coefficient ( f Γ) in cm3 s−1 eV−1 c2,
and the systemic velocity (v0) in km s−1. The contours correspond to
0.5σ, 1.0σ, 1.5σ, and 2.0σ confidence levels, where σ is the standard
deviation of a two-dimensional normal distribution. The vertical dashed
lines in the one-dimensional histograms indicate the median and the
68% confidence interval (without arrows) or the 68% and 95% confi-
dence limits (upper and lower arrows, respectively).

limit: rsol/pc < 100.86 = 7.2 at the 68% confidence level and
rsol/pc < 102.01 = 102 at the 95% confidence level. Because
of the degeneracy between the soliton radius and central soli-
ton density, the central soliton density should be understood as a
lower limit: ρsol,0/(M� kpc−3) > 1011.89 = 7.8 × 1011 at the 68%
confidence level and ρsol,0/(M� kpc−3) > 1010.13 = 1.3 × 1010

at the 95% confidence level. The equivalent dark-matter particle
mass is given as ma/(eV c−2) > 10−19.23 = 5.9×10−20 at the 68%
confidence level and ma/(eV c−2) > 10−20.40 = 4.0 × 10−21 at the
95% confidence level.

pyGravSphere. Figures 5–7 show the parameter constraints
for the pyGravSphere NFW, Hernquist–Zhao, and broken power-
law models, respectively. The characteristic density of the NFW
model is ρ0/(M� kpc−3) = 108.39+3.04

−2.57 = 0.25+268.91
−0.24 × 109 and its

scale radius is rs/pc = 102.45+2.02
−1.38 = 282+29230

−270 , which is consis-
tent with the CJAM CDM results but is also strongly degenerate.
For the Hernquist–Zhao model, we find that ρ0/(M� kpc−3) =

108.32+3.45
−2.21 = 0.21+588.63

−0.21 × 109 and rs/pc = 102.66+1.86
−1.38 = 457+32656

−438 ,
which is again consistent but degenerate. The characteristic
density of the broken power-law model, ρ0/(M� kpc−3) =

109.22+0.25
−0.28 = 1.66+1.29

−0.79, is not directly comparable to the other
characteristic densities due to the difference in the definitions,
but it is notable that this parameter is much better constrained.
The Hernquist–Zhao model prefers inner slopes γ > 0.57 at
the 68% confidence level and γ > 0.10 at the 95% confidence
level that are consistent with a cusp, while the broken power-
law model has a weak preference for a core with γ0 < 1.47
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Fig. 4. Constraints on the dark-matter density profile of Eridanus 2
in the microphysical parametrization, assuming FDM, found using
CJAM and MultiNest. Units are omitted for clarity. The parameters
are the characteristic dark-matter density of the CDM-like outer pro-
file (ρCDM,0) in M� kpc−3, the scale radius (rs) of the CDM-like outer
profile in kpc, the dark-matter particle mass (ma) in eV c−2, the tran-
sition radius (rt) between the inner soliton and outer CDM-like profile
in kpc, and the systemic velocity (v0) in km s−1. The contours corre-
spond to 0.5σ, 1.0σ, 1.5σ, and 2.0σ confidence levels, where σ is the
standard deviation of a two-dimensional normal distribution. The verti-
cal dashed lines in the one-dimensional histograms indicate the median
and the 68% confidence interval (without arrows) or the 68% and 95%
confidence limits (upper and lower arrows, respectively).

at the 68% confidence level and γ0 < 2.51 at the 95% con-
fidence level, but also still consistent with a cusp. Conversely,
the Hernquist–Zhao model weakly prefers outer slopes consis-
tent with CDM, with β < 6.99 at the 68% confidence level and
β < 8.68 at the 95% confidence level, while the broken power-
law model prefers steeper slopes with γ4 > 7.00 at the 68% con-
fidence level and γ4 > 4.74 at the 95% confidence level. The
shape of the Hernquist–Zhao profile is thus consistent with the
NFW profile, albeit with large uncertainty, while the shape of
the broken power-law profile deviates at large radii by over 2σ.
The constraints on the velocity anisotropies are in general very
weak, with an apparent trend for positive (radial) anisotropy in
the case of the Hernquist–Zhao profile and for the centre in the
case of the NFW profile. At large radii the NFW profile seems
to prefer isotropy. The broken power-law model profile, on the
other hand, prefers isotropy for the centre and negative (tangen-
tial) anisotropy for the outer radii. The transition between these
possibly different regimes of inner and outer velocity anisotropy
is essentially unconstrained.

3.2. Profile recovery

The two methods that we use to constrain the density profile of
Eri 2, CJAM and pyGravSphere, have one profile model in com-
mon: the CDM (NFW) profile. By comparing the constraints on
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Fig. 5. Constraints on the dark-matter density profile of Eridanus 2, assuming an NFW profile, found using pyGravSphere. Units are omitted
for clarity. The parameters are the characteristic dark-matter density (ρ0) in M� kpc−3, the scale radius (rs) in kpc, the symmetrized inner and
outer velocity anisotropy (β̃0 and β̃∞), the transition radius (r0) between inner and outer velocity anisotropy in kpc, and the sharpness (η) of the
velocity-anisotropy transition. The contours correspond to 0.5σ, 1.0σ, 1.5σ, and 2.0σ confidence levels, where σ is the standard deviation of a
two-dimensional normal distribution. The vertical dashed lines in the one-dimensional histograms indicate the median and the 68% confidence
interval (without arrows) or the 68% and 95% confidence limits (upper and lower arrows, respectively).

this profile model obtained with the two methods, we can gauge
the influence of the different assumptions that go into the meth-
ods. In Fig. 8 we show the recovered CDM (NFW) density pro-
files as a function of radius in the form of the median density
and the 68% confidence interval at every radius. Although there
are differences, most noticeably that pyGravSphere prefers lower
central densities and higher outer densities than CJAM, the over-
all agreement is good. The two recovered profiles agree within
the uncertainties at every radius, and there is no systematic pref-

erence for higher or lower densities. This indicates that the dif-
ferent assumptions have no significant effect on the recovered
constraints and lends support to the results of both methods.

The recovered profiles using all models are displayed in
Fig. 9. Around the radius where we have the largest number of
tracers, the agreement between the profiles is the best and the
uncertainties are the smallest. At larger radii, five of the mod-
els agree very well, but the broken power-law model prefers
lower densities in its last bin. This lower density could be an
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Fig. 6. Constraints on the dark-matter density profile of Eridanus 2, assuming a Hernquist–Zhao profile, found using pyGravSphere. Units are
omitted for clarity. The parameters are the characteristic dark-matter density (ρ0) in M� kpc−3, the scale radius (rs) in kpc, the inner and outer
negative logarithmic slopes (γ and β) and the sharpness (α) of their transition, the symmetrized inner and outer velocity anisotropy (β̃0 and β̃∞), the
transition radius (r0) between inner and outer velocity anisotropy in kpc, and the sharpness (η) of the velocity-anisotropy transition. The contours
correspond to 0.5σ, 1.0σ, 1.5σ, and 2.0σ confidence levels, where σ is the standard deviation of a two-dimensional normal distribution. The
vertical dashed lines in the one-dimensional histograms indicate the median and the 68% confidence interval (without arrows) or the 68% and 95%
confidence limits (upper and lower arrows, respectively).

indication of the effect of tidal truncation, but the data are insuffi-
cient to conclude this, as we will show below. The disagreement
is the largest at small radii, where the density at the projected
position of the innermost tracer varies from ∼109.5 M� kpc−3 to
∼1011.5 M� kpc−3. This is not surprising considering the lack
of tracers at these radii and that by design some models have
more freedom at small radii. All profiles are in agreement at

the smaller radii, considering their uncertainties. In Appendix E
we show the recovered intrinsic velocity dispersion profiles and
compare them to estimates directly derived from the measured
line-of-sight velocities.

We display the local mass-to-light ratio as a function
of radius in Fig. 10. The density profile is divided by the
V-band luminosity density profile, computed by de-projecting
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Fig. 7. Constraints on the dark-matter density profile of Eridanus 2, assuming a broken power-law profile, found using pyGravSphere. Units are
omitted for clarity. The parameters are the characteristic dark-matter density (ρ0) in M� kpc−3, the negative power-law slopes (γ0, . . . , γ4), the
symmetrized inner and outer velocity anisotropy (β̃0 and β̃∞), the transition radius (r0) between inner and outer velocity anisotropy in kpc, and
the sharpness (η) of the velocity-anisotropy transition. The contours correspond to 0.5σ, 1.0σ, 1.5σ, and 2.0σ confidence levels, where σ is the
standard deviation of a two-dimensional normal distribution. The vertical dashed lines in the one-dimensional histograms indicate the median and
the 68% confidence interval (without arrows) or the 68% and 95% confidence limits (upper and lower arrows, respectively).

the exponential surface brightness profile from Crnojević et al.
(2016) using the equation derived by Baes & Gentile (2011).
This is a local, three-dimensional mass-to-light ratio at the indi-
cated radius, not a cumulative mass-to-light ratio within that
radius. Since the luminosity density profile is the same for every
dark-matter model, the same differences are visible between the
models. For most models the local mass-to-light radius has a
minimum of ∼103 M� L−1

� around the half-light radius.

We computed virial and half-light quantities as well as the
maximum circular velocity from the density profiles and list
them in Tables 4 and 5 for CJAM and pyGravSphere profiles,
respectively. There is good agreement between the different pro-
files and between CJAM and pyGravSphere for the maximum
circular velocity (Vmax) and for the mass within the projected
half-light radius (M1/2), and as a consequence also for the inte-
grated mass-to-light ratio, Υ1/2 = M1/2/(LV/2), within the same
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Fig. 8. Recovered dark-matter density profile of Eridanus 2, comparing
the CJAM model for CDM with the pyGravSphere NFW profile. These
models have the same functional form for the density profile but use
different assumptions and methods of calculation. The hatched bands
represent the 68% confidence interval on the density at each radius. The
half-light radius is indicated with the vertical dashed line. The black
markers at the bottom of the figure show the projected radii of the kine-
matic tracers. Tracers in bins rejected by pyGravSphere are marked in
grey.

radius. The virial mass (M200) and the virial mass-to-light ratio
(Υ200 = M200/LV ) are more divergent from model to model. This
is a consequence of the virial radius (r200) being an order of mag-
nitude larger than the projected radius of the outermost tracer.
For the calculation of the virial quantities, the density profiles
were extrapolated to an extent that a small change in the pro-
file slope around the outermost tracer leads to a large differ-
ence in the virial radius and virial mass. From the virial mass,
the V-band luminosity, and the stellar mass-to-light ratio of 1.56
derived in Paper I, we can estimate a stellar-mass/halo-mass ratio
of ∼10−3. For this value a galaxy is expected to reside in a halo
that is intermediate between cuspy and cored (Di Cintio et al.
2014b).

We also list in Tables 4 and 5 the astrophysical factors J
and D, which are used to calculate the (gamma-ray) flux from
annihilation and decay, respectively, of dark-matter particles
(Bergström et al. 1998). They are integrals of the density pro-
file or its square, over the line-of-sight (l) and a solid angle in
the plane of the sky (∆Ω):

J(α) =

∫
∆Ω(<α)

∫ +∞

−∞

ρ2 dl dΩ, (21)

D(α) =

∫
∆Ω(<α)

∫ +∞

−∞

ρ dl dΩ. (22)

We calculated these integrals up to the critical integration angle,
which is the planar angle corresponding to the circular solid
angle for which these factors are found to be most constrained
for dwarf spheroidal galaxies. The critical integration angle is
the angle subtended by the half-light radius for the D factor
(αD

c = R1/2/D) (Bonnivard et al. 2015b) and twice the half-light
radius for the J factor (αJ

c = 2R1/2/D) (Walker et al. 2011). The
J and D factors are generally consistent within their uncertain-
ties, though there is some tension for the D factor between the
SIDM and broken power-law models.

3.3. Model comparison

We have so far placed constraints on astrophysical and micro-
physical parameters assuming different models and informally
compared the different models based on the recovered profiles.
The next question to ask is which model provides the best fit to
the data, the answer to which may indicate a preference for one
form of dark matter over another. In Tables 6 and 7 we present
the Bayesian evidence (Z) for the CJAM and pyGravSphere
models, respectively. The use of Bayesian evidence ensures that
the different models employed with the same method can be
fairly compared, taking into account that these models have dif-
ferent degrees of freedom. We assumed the prior probabilities
of the models to be equal. Models were compared by taking
the ratio of their Bayesian evidence (Z) or, equivalently, the dif-
ference between their log10(Z) values, with the model with the
largest Z being favoured. The ratios or differences were inter-
preted using a scale; we used the scale from Jeffreys (1961,
their Appendix B). According to this scale, a ratio of 100 or
∆ log10(Z) = 2 is required for a decisive result. It is not possi-
ble to compare a model from one table to one from the other
table because of the differences in the CJAM and pyGravSphere
methods.

In all cases, the differences between the models are small.
Among the CJAM models, the FDM profile has the largest
Bayesian evidence. The Bayes factors indicate that the prefer-
ence for FDM over SIDM is strong, but by no means significant,
while FDM is only barely preferred over CDM. The preference
for CDM over SIDM is substantial. It is therefore not possible
to rule out any of the three dark-matter theories with the cur-
rent data. For the pyGravSphere models, the broken power-law
model is substantially preferred over the NFW model and the
Hernquist–Zhao model. The modest strength of the evidence for
the broken power-law model indicates that moving away from
an NFW-like profile with a logarithmic slope of −3 at large radii
is not required at present. Thus we find no conclusive evidence
for tidal stripping or truncation at the probed radii. Further data
at larger radii will help constrain the effect of tidal stripping.

4. Discussion

The mass–concentration relation between the virial mass (M200)
and the concentration parameter c200 B r200/rs from Dutton &
Macciò (2014) predicts log10 c200 ≈ 1.3 for an NFW halo with a
virial mass equal to that of Eri 2 at redshift zero, with a scatter of
0.11 dex, but it was calibrated on a simulation with significantly
higher virial masses (M200 & 1012 h−1 M�). Using the semi-
analytical relation of COMMAH (Correa et al. 2015a,b,c), we
calculated a predicted concentration log10 c200 ≈ 1.2. Our deter-
minations of log10 c200 for the CJAM models are more than one
standard deviation higher. As M200 and c200 are among our less
well-constrained parameters, we also performed a comparison
in the space of two better constrained parameters for the CDM
(NFW) profile of CJAM. Given the recovered rs, we predicted
the density at 100 pc assuming the Dutton & Macciò (2014)
mass–concentration relation, ρ(100 pc) = 107.95+0.34

−0.59 M� kpc−3.
Compared to the recovered ρ2 = 108.92+0.29

−0.26 M� kpc−3, this predic-
tion is over two combined standard deviations lower, indicating
that the tension between M200 and c200 is even larger than sug-
gested at face value. Satellite dwarf galaxies are biased towards
larger concentrations because higher-concentration dwarf galax-
ies are more likely to survive accretion by a Milky Way–mass
galaxy (Nadler et al. 2018). This bias might explain (part of) the
tension we see.
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Fig. 9. Recovered dark-matter density profile of Eridanus 2. Left: CJAM models for CDM, SIDM, and FDM. Right: pyGravSphere models with
NFW, Hernquist–Zhao, and broken power-law profiles. The hatched bands represent the 68% confidence interval on the density at each radius. The
half-light radius is indicated with the vertical dashed line. The black markers at the bottom of the figure show the projected radii of the kinematic
tracers. Tracers in bins rejected by pyGravSphere are marked in grey.
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Fig. 10. Recovered de-projected mass-to-light profiles of Eridanus 2. These profiles show the local ratio of dark-matter density over luminosity
density as a function of radius. The light profile is the exponential profile determined by Crnojević et al. (2016). Left: CJAM models for CDM,
SIDM, and FDM. Right: pyGravSphere models with NFW, Hernquist–Zhao, and broken power-law dark-matter profiles. The hatched bands
represent the 68% confidence interval on the mass-to-light ratio at each radius. The half-light radius is indicated with the vertical dashed line. The
black markers at the bottom of the figure show the projected radii of the kinematic tracers. Tracers in bins rejected by pyGravSphere are marked
in grey.

Using the stellar mass-to-halo mass relation of Behroozi
et al. (2013) with the stellar mass-to-light ratio of 1.56 derived
in Paper I, we expected a virial mass-to-light ratio Υ200 ≈

102.9 M� L−1
� for Eri 2. Most of our models agree with this value,

but there is a substantial tension for the SIDM and broken power-
law models. Our half-light mass-to-light ratios (Υ1/2) are all con-
sistent with the value 420+210

−140 M� L−1
� found by Li et al. (2017).

The values that we find for the astrophysical factors are typ-
ical for dwarf spheroidal galaxies and UFDs (Bonnivard et al.
2015a; Alvarez et al. 2020). Eri 2 is therefore not the most
interesting single target for observations concerning annihila-
tion and decay signals, but it may be useful in a joint anal-
ysis of dwarf galaxies. Bonnivard et al. (2015b) have shown
that the astrophysical factors can be biased by a factor of a
few when an incorrect light profile model or halo triaxiality is
assumed. We have assumed the light profile is exponential and

the dark-matter halo is spherical, and therefore this bias may be
present.

The self-interaction coefficient (Γ) can be described in terms
of more conventional parameters by examining Eq. (2) and con-
sidering that the mass change is −2m per annihilation event, with
m being the mass of the dark-matter particle. Assuming a cross-
section σ and a typical velocity v, we derive

Γ =
2σv
m
· (23)

Our constraints on the effective self-interaction coefficients there-
fore translate to σ/m < 1.1 ×10−36 ( f /10)−1(v/10 km s−1)−1

cm2 eV−1 c2 at the 68% confidence level and σ/m < 4.1 ×10−36

( f /10)−1(v/10 km s−1)−1 cm2 eV−1 c2 at the 95% confidence level,
where f = 10 and v= 10 km s−1 are of the right order of magni-
tude for UFDs. Much stronger constraints exist from combined
observations of dwarf galaxies with the Fermi/LAT and MAGIC
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Table 4. Quantities derived from the CJAM-MultiNest density or mass
profiles of Eridanus 2 under the assumptions of different profile models.

Quantity CDM SIDM FDM

log10(r200/kpc) 0.96+0.20
−0.12 1.02+0.22

−0.11 0.88+0.17
−0.12

log10(c200) 1.95+0.40
−0.39 1.84+0.29

−0.29 –
log10(M200/M�) 7.89+0.60

−0.36 8.07+0.64
−0.33 7.67+0.50

−0.36
log10(Υ200/(M� L−1

� )) 3.12+0.60
−0.36 3.31+0.64

−0.33 2.90+0.50
−0.36

log10(Vmax/(km s−1)) 1.19+0.09
−0.06 1.19+0.10

−0.07 1.20+0.13
0.07

log10(M1/2/M�) 7.05+0.10
−0.11 7.07+0.10

−0.10 6.99+0.50
0.36

log10(Υ1/2/(M� L−1
� )) 2.59+0.10

−0.11 2.61+0.10
−0.10 2.53+0.12

−0.17

log10(J(αJ
c )/(M2

� kpc−5)) 10.94+0.57
−0.38 10.66+0.31

−0.22 11.20+0.69
−0.51

log10(D(αD
c )/(M� kpc−2)) 2.31+0.34

−0.22 2.42+0.35
−0.20 2.17+0.28

−0.25

Notes. The models are the CDM, SIDM, and FDM profiles. Listed are
the virial radius (r200), the concentration parameter (c200; not defined for
the FDM profile), the virial mass (M200), the virial mass-to-light ratio
(Υ200), the maximum circular velocity (Vmax), the half-light mass (M1/2),
the half-light mass-to-light ratio (Υ1/2), and the astrophysical J and D
factors that use the critical integration angles.

Table 5. Quantities derived from the pyGravSphere-emcee density or
mass profiles of Eridanus 2 under the assumptions of different profile
models.

Quantity NFW HZ BPL

log10(r200/kpc) 1.13+0.97
−0.30 0.89+1.13

−0.22 0.72+0.07
−0.05

log10(c200) 1.85+1.19
−1.00 1.51+1.27

−0.95 –
log10(M200/M�) 8.41+2.90

−0.91 7.69+3.41
−0.66 7.17+0.19

−0.15
log10(Υ200/(M� L−1

� )) 3.65+2.90
−0.91 2.93+3.41

−0.66 2.41+0.19
−0.15

log10(Vmax/(km s−1)) 1.34+0.61
−0.16 1.47+0.53

−0.26 1.26+0.11
−0.12

log10(M1/2/M�) 7.01+0.14
−0.16 6.99+0.14

−0.20 7.10+0.11
−0.12

log10(Υ1/2/(M� L−1
� )) 2.55+0.14

−0.16 2.53+0.14
−0.20 2.64+0.11

−0.12

log10(J(αJ
c )/(M2

� kpc−5)) 10.91+1.31
−0.44 11.24+2.02

−0.71 11.25+1.20
−0.59

log10(D(αD
c )/(M� kpc−2)) 2.57+1.56

−0.46 2.34+1.74
−0.50 2.03+0.16

−0.17

Notes. The models are the NFW, Hernquist–Zhao (HZ), and broken
power-law (BPL) profiles. Listed are the virial radius (r200), the con-
centration parameter (c200; not defined for the BPL profile), the virial
mass (M200), the virial mass-to-light ratio (Υ200), the maximum circular
velocity (Vmax), the half-light mass (M1/2), the half-light mass-to-light
ratio (Υ1/2), and the astrophysical J and D factors that use the critical
integration angles.

gamma-ray telescopes (MAGIC collaboration 2016), equivalent
to upper limits as low as∼10−43 (v/10 km s−1) cm2 eV−1 c2. These
constraints, however, are only valid for 101 GeV c−2 ≤ m ≤

105 GeV c−2 and depend on the annihilation products, while our
constraint is valid for all masses and annihilation products. The
results from density profiles and gamma-ray searches are there-
fore complementary.

Lin & Loeb (2016) remarked that Γ can also represent self-
interaction through scattering. Dark-matter particles can be scat-
tered from the dense inner regions, where interactions are most
likely, to the outer regions, where their contribution to the local
density is negligible due to the much larger area. This is effec-
tively equivalent to an annihilation of dark-matter particles, but
the strength of the effect depends on how frequent a scattering

Table 6. Bayesian evidence comparison for CJAM-MultiNest models.

Model ln(Z) ∆ log10(Z)

CDM −360.9 −0.4
SIDM −362.3 −1.0
FDM −360.0 0

Notes. The models are CDM, SIDM, and FDM. For each model the
natural logarithm of the Bayesian evidence and the decimal logarithm
of the Bayes factor are shown.

Table 7. Bayesian evidence comparison for pyGravSphere-emcee mod-
els using MCEvidence.

Model ln(Z) ∆ log10(Z)

NFW −101.2 −0.7
HZ −101.2 −0.7
BPL −99.6 0

Notes. The models are the NFW, Hernquist–Zhao (HZ), and broken
power-law (BPL) profiles. For each model the natural logarithm of the
Bayesian evidence and the decimal logarithm of the Bayes factor are
shown.

event leads to particles leaving the centre of the dark-matter
halo. This frequency is currently unknown; therefore, it is not
possible to convert Γ to a scattering cross-section. Other pro-
files for SIDM that are designed specifically for a scattering self-
interaction exist, such as the profiles of Kaplinghat et al. (2014,
2016), but these are outside the scope of this paper. Hayashi et al.
(2021) used the latter profile on 23 UFDs using literature kine-
matics and found no evidence for a non-zero self-interaction in
these galaxies.

Our lower limit on the FDM-particle mass of ma > 4.0 ×
10−21 eV c−2 at the 95% confidence level is incompatible with
some results for other dwarf galaxies. Chen et al. (2017)
find ma = 1.18+0.28

−0.24 × 10−22 eV c−2 or ma = 1.79+0.35
−0.33 ×

10−22 eV c−2, depending on the dataset used, for the eight clas-
sical dwarf spheroidal galaxies. For the ultra-diffuse galaxy
Dragonfly 44, Wasserman et al. (2019) find ma = 3.3+10.3

−2.1 ×

10−22 eV c2 . Broadhurst et al. (2020) find ma = 0.81+0.41
−0.21 ×

10−22 eV c−2 for the ultra-diffuse galaxy Antlia II and ma =
1.07 ± 0.08 × 10−22 eV c−2 when combined with four classical
dwarf spheroidal galaxies. This discrepancy might indicate that
the cores in the literature galaxies, which have higher masses
than Eri 2, are formed by baryonic processes (Brooks & Zolotov
2014; Di Cintio et al. 2014a) and not (entirely) by FDM. Other
constraints on FDM from Eri 2 have been derived from the sur-
vival of its star cluster (Marsh & Niemeyer 2019; El-Zant et al.
2020). These constraints rule out at least the mass range between
∼10−20 eV c−2 and ∼10−19 eV c−2 and can likely be extended fur-
ther, with some caveats.

In simulations of spherically symmetric and relaxed FDM
haloes, a scaling relation between the size of the soliton, the mass
of the FDM particle, and the virial mass of the halo is found at
redshift zero (Schive et al. 2014b; Nori & Baldi 2021):

rc = 1.6m−1
22

(
M200

109 M�

)1/3

kpc, (24)

where rc = (9.1 × 10−2)1/2rsol and m22 = ma/(10−22 eV c−2).
From the perspective of a single halo, m22rc is a constant. We find
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m22rc = 0.18+0.58
−0.30 kpc directly from ma and rsol, which is consis-

tent with the expected 0.65+0.12
−0.17 kpc based on the virial mass of

Eri 2.
Amorisco (2017) and Contenta et al. (2018) argue that the

survival and projected location of the star cluster in Eri 2 imply
that Eri 2 has a cored density profile. If the inner slope of the
density profile is larger than ∼0.2–0.25, a cluster in a tight orbit
would be tidally destroyed, while it would be unlikely to observe
a cluster in a wide orbit so close in projection to the centre of
Eri 2. The cluster could survive if it is stationary at the cen-
tre of the dark-matter halo of Eri 2, but that would mean that
the photometric and gravitational centres of Eri 2 do not coin-
cide. Our estimates of the inner slope are inconclusive in this
respect: On the one hand, the broken power-law profile prefers a
core, while on the other, the Hernquist–Zhao profile disagrees by
nearly 2σ.

We performed our pyGravSphere analysis with different
numbers of stars per kinematic bin: 9 (the default of pyGrav-
Sphere for 92 stars in total), 11 (our fiducial analysis presented in
this paper), 15, and 23. The recovered profiles for 11 and 15 stars
per bin were consistent; we chose to use 11 stars per bin as this
results in more bins and could therefore potentially better cap-
ture the behaviour at small radii. The pyGravSphere profiles for
9 stars per bin had a much larger scale radius and lower charac-
teristic density, inconsistent with both the 11 and 15 bin profiles
and the CJAM profiles. Binning the stars by 23 yielded only two
bins with a positive intrinsic velocity dispersion, which is too
few for pyGravSphere to run. Therefore, as far as we can test,
the profiles recovered by pyGravSphere seem stable with respect
to the number of stars per bin, as long as a minimum number of
stars per bin is met. We meet this requirement for our fiducial
analysis with 11 stars per bin.

Dynamical mass estimates are only correct if the system is
in dynamical equilibrium. As we argued in Paper I, given that
Eri 2 is currently close to its pericentre (Fritz et al. 2018), yet
still 366 kpc removed from us (Crnojević et al. 2016), it has not
closely approached the Milky Way. Nor have any tidal features
been detected in deep imaging (Crnojević et al. 2016). Further-
more, the stars in Eri 2 are dominated by an old population
(Simon et al. 2021). Therefore, we do not expect a significant
departure from dynamical equilibrium due to either tidal inter-
actions with the Milky Way or stellar feedback.

Another issue that can affect dynamical mass estimates is
the presence of binary stars. Due to its orbital motion, the line-
of-sight velocity of a binary star can change over time. Instead
of the systemic velocity of the binary system, one sees another
contribution on top of that, which may inflate measurements
of velocity dispersion. We have observed our fields at multiple
epochs for over a year. By combining the exposures before the
data reduction, the velocity variation of short-period binary stars
is blended into broadened spectral features. These should have
the same centroid as the binary-systemic line-of-sight velocities
and should therefore not impact our measurements. Longer-
period binary systems typically have lower line-of-sight velocity
deviations, so they are not expected to be a significant problem.
Nevertheless, there remains much to be studied regarding the
binary-star populations of UFDs.

We have assumed that the dark-matter halo of Eri 2 is spher-
ical even though the stellar distribution is not. This could poten-
tially bias the dark-matter density profiles. Read & Steger (2017)
have shown that GravSphere can become slightly biased for tri-
axial haloes, but the bias on the density profile is within the
95% confidence interval in most cases, as is the mass within
the half-light radius. This test was done with mock data resem-

bling classical dwarf galaxies; as we have less data and larger
measurement uncertainties, we expected any bias on the pyGrav-
Sphere density profiles due to triaxiality to be even smaller rel-
ative to the confidence intervals than for the mock classical
dwarfs. As we obtained similar results with CJAM and pyGrav-
Sphere, the CJAM density profiles should also not be signifi-
cantly biased.

There is some uncertainty regarding the position of the cen-
tre of Eri 2. Mis-centring the spatial coordinates can affect the
derived density profile because the density measured at the cen-
tre of the coordinate system will be lower than the density at the
true centre of the galaxy. This effect can lead to cored density
profiles being measured for cuspy dark-matter haloes, or to core
radii being biased to larger values for cored haloes. We do not
detect a core or soliton for Eri 2 and provide upper limits for the
core and soliton radii. Our upper limits on core and soliton radii
could therefore be biased high, but this would strengthen rather
than weaken the confidence level of these limits.

5. Conclusions

We have presented new data from the MUSE-Faint survey of
the UFD Eridanus 2 (MV = −7.1, M∗ ≈ 9 × 104 M�). Ultra-
faint dwarf galaxies have the lowest baryonic fractions of all
known galaxies, and the baryonic contents are not believed to
have altered the dark-matter density profiles. We have modelled
the dark-matter density profile of Eridanus 2 using stellar kine-
matics from MUSE-Faint and from the literature (92 stars in
total) to constrain the properties of SIDM and FDM and to com-
pare these dark-matter models against one another and against
CDM. For modelling the density profiles we have used both
CJAM and pyGravSphere, two codes that use different methods
and assumptions, to test whether the recovery of the density pro-
file is sensitive to the approach that is used.

We constrained the core radius of the SIDM profile to
rc < 47 pc (68% confidence level) or rc < 117 pc (95% confi-
dence level). This translates into a constraint on the effective
self-interaction coefficient of f Γ < 2.2 ×10−29cm3s−1eV−1c2

(68% confidence level) or f Γ < 8.1 × 10−29cm3s−1eV−1c2 (95%
confidence level). These effective self-interaction coefficients are
equivalent to the specific annihilation cross-sections σ/m < 1.1
×10−36( f /10)−1(v/10 km s−1)−1 cm2 eV−1 c2 (68% confidence
level) or σ/m < 4.1×10−36( f /10)−1(v/10 km s−1)−1 cm2 eV−1 c2

(95% confidence level). These constraints apply for all dark-
matter particle masses and are therefore complementary to the
results from gamma-ray searches for annihilation signatures,
which provide stronger constraints in a limited mass range.

We constrained the soliton radius of the FDM profile to rsol <
7.2 pc (68% confidence level) or rsol < 102 pc (95% confidence
level). The equivalent constraint on the mass of the ultra-light
dark-matter particle is ma > 5.9 ×−20 eV c−2 (68% confidence
level) or ma > 4.0 × 10−21 eV c−2 (95% confidence level). These
constraints are inconsistent with particle masses for larger dwarf
galaxies, which may indicate that the cores in these larger dwarf
galaxies are not caused by FDM.

We could not consistently constrain the velocity anisotropy
of Eridanus 2. CJAM and pyGravSphere prefer different values
for the inner and outer slope of the density profile when these are
free parameters of the profile; therefore, we cannot draw conclu-
sions about the survival or location of the star cluster.

We found that CJAM and pyGravSphere recover similar
dark-matter density profiles for Eridanus 2 when a CDM-NFW
profile is assumed in both cases. All CJAM and pyGravSphere
profiles are consistent within their uncertainties. The uncertainty
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on the profile and the difference between the profiles become
larger near the centre of Eridanus 2, where the kinematic data
are sparse.

From the dark-matter density profiles we determined virial
masses M200 ∼ 108 M�, maximum circular velocities Vmax ∼

101.2–101.4 km s−1, half-light mass-to-light ratios Υ1/2 ∼

102.5 M�L−1
� and astrophysical factors J(αJ

c )∼ 1011M2
� kpc−5 and

D(αD
c )∼ 102–102.5M� kpc−2. The half-light mass-to-light ratio

is consistent with the literature, and the astrophysical factors are
typical for dwarf galaxies. For CJAM with the CDM model, the
values are M200 = 107.89+0.60

−0.36 M�, Vmax = 101.19+0.09
−0.06 km s−1, Υ1/2 =

102.59+0.10
−0.11 M� L−1

� , J(αJ
c ) = 1010.94+0.57

−0.38 M2
� kpc−5, and D(αD

c ) =

102.31+0.34
−0.22 M� kpc−2. The concentration c∼ 101.5–102 (c = 101.95+0.40

−0.39

for CJAM with CDM) is for several profiles higher than the
expected value for a galaxy of this virial mass, but this may be
because Eridanus 2 is a satellite of the Milky Way.

We found a weak preference for FDM over CDM and sub-
stantial evidence for CDM over SIDM. The evidence to prefer
FDM over SIDM is strong. This indicates a preference for a cusp
over a core, but also for a soliton over a cusp. None of the mod-
els are preferred decisively over any other, and therefore it is not
possible to rule out CDM, SIDM, or FDM.

With MUSE-Faint we have been able to significantly
increase the number of stars with spectroscopy inside the half-
light radius of Eridanus 2 and have extended the available data
to smaller radii. Nevertheless, it remains challenging to obtain
a large sample of stellar line-of-sight velocities in such a faint
and distant system. Improvements of the constraints on the
inner dark-matter density profile of Eridanus 2 and its impli-
cations for the nature and properties of dark matter would
require deeper observations or observations at a higher spec-
tral resolution. Deeper observations could improve the line-of-
sight velocity measurements and could provide access to fainter
stars but would be a costly undertaking. A higher spectral res-
olution could significantly decrease the velocity uncertainties,
but current high-resolution spectrographs are not able to reach
the spatial resolution required for these crowded systems. It
would also be valuable to extend the current study to multi-
ple UFDs and test whether our conclusions also hold for other
systems.
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Appendix A: Table of kinematics

In Table A.1 we list the positions and line-of-sight velocities of
the stars used for the kinematic analysis in this paper.

Table A.1. Final selection of stars in Eridanus 2 for the kinematic
analysis.

ID RA (deg) Dec (deg) LOS velocity (km s−1)

1058 56.06437 −43.53266 72.3 ± 20.3
2348 56.06852 −43.52907 64.1 ± 14.7
3932 56.08301 −43.54452 67.5 ± 21.0
4448 56.07485 −43.52340 61.1 ± 21.9
4630 56.08690 −43.54593 53.9 ± 16.4
4866 56.08551 −43.54109 100.3 ± 12.3
5256 56.08346 −43.53403 73.2 ± 9.4
6227 56.08961 −43.53808 54.0 ± 22.4
6664 56.08621 −43.52849 45.1 ± 13.2
9242 56.09260 −43.52854 79.2 ± 23.8
9304 56.09734 −43.53763 47.9 ± 14.2
9653 56.09155 −43.52363 61.1 ± 25.8
11171 56.09772 −43.52349 65.7 ± 20.5
11935 56.10766 −43.53628 96.0 ± 18.2
12933 56.11073 −43.53324 59.2 ± 27.9
13257 56.11460 −43.53779 75.8 ± 25.2
13549 56.11108 −43.52766 85.4 ± 12.7
14541 56.11801 −43.53130 83.9 ± 24.0
14551 56.12156 −43.53821 47.0 ± 13.2
14927 56.12031 −43.53184 73.3 ± 18.3
1002926 56.06117 −43.52640 73.5 ± 1.2
1003016 56.06721 −43.53447 68.5 ± 8.2
1003965 56.07701 −43.55105 83.1 ± 3.0
1004032 56.07494 −43.54397 78.3 ± 7.8
1004756 56.07025 −43.53160 88.6 ± 8.8
1005369 56.06965 −43.52886 79.2 ± 5.1
1005680 56.07367 −43.53681 85.7 ± 6.8
1006056 56.08153 −43.55039 59.3 ± 3.5
1006522 56.07226 −43.52913 90.9 ± 12.5
1007072 56.07965 −43.54091 86.1 ± 9.3
1007081 56.08013 −43.54021 98.2 ± 13.3
1007232 56.08398 −43.54946 75.7 ± 4.7
1007817 56.08566 −43.54801 91.5 ± 7.7
1007943 56.08618 −43.55232 84.5 ± 1.5
1008083 56.07548 −43.52653 78.3 ± 5.6
1008946 56.07992 −43.53195 94.8 ± 5.1
1009001 56.07691 −43.52592 76.3 ± 4.3
1009750 56.07605 −43.51971 63.6 ± 11.6
1010022 56.07599 −43.52005 79.2 ± 1.4
1010255 56.07916 −43.52591 86.0 ± 3.7
1010560 56.08680 −43.54108 86.2 ± 1.0
1010966 56.08882 −43.54120 62.3 ± 9.5
1010988 56.08438 −43.53642 79.9 ± 0.9
1011039 56.08312 −43.52889 69.4 ± 4.9
1012006 56.09504 −43.54725 56.9 ± 6.4
1012321 56.09129 −43.53950 100.8 ± 8.0
1013259 56.08689 −43.52648 74.7 ± 14.9

Table A.1. continued.

ID RA (deg) Dec (deg) LOS velocity (km s−1)

1013271 56.09513 −43.54466 95.8 ± 3.5
1013803 56.08677 −43.52694 88.6 ± 7.1
1014555 56.09416 −43.53802 77.8 ± 9.7
1017156 56.09828 −43.53589 74.1 ± 10.2
1017445 56.09230 −43.52332 81.1 ± 6.2
1018571 56.09774 −43.52937 75.8 ± 3.8
1018845 56.09547 −43.52370 71.9 ± 7.9
1019322 56.09626 −43.52348 74.5 ± 1.2
1019765 56.10630 −43.53993 76.0 ± 5.6
1019801 56.10251 −43.53367 97.3 ± 6.4
1021252 56.10830 −43.53636 82.9 ± 4.0
1021910 56.10425 −43.52568 100.7 ± 8.9
1022334 56.10586 −43.52943 71.4 ± 3.6
1022351 56.11369 −43.54099 57.1 ± 10.1
1022417 56.10670 −43.52748 80.2 ± 9.2
1023228 56.11503 −43.53988 82.3 ± 5.2
1024420 56.11196 −43.52721 73.3 ± 4.3
1025752 56.11125 −43.52308 78.1 ± 0.9
1026606 56.11505 −43.52693 79.6 ± 1.2
1026881 56.12141 −43.53211 63.1 ± 8.1
1027080 56.12490 −43.54157 84.7 ± 1.9
1027101 56.12301 −43.53626 80.0 ± 6.3
1027929 56.11814 −43.52022 83.9 ± 5.0
1027958 56.11869 −43.52139 68.0 ± 5.6
1030234 56.12404 −43.53005 71.9 ± 0.9
2000001 56.00955 −43.53305 69.8 ± 1.6
2000002 56.02915 −43.52877 77.9 ± 1.0
2000003 56.04649 −43.51453 65.4 ± 2.3
2000004 56.05139 −43.51837 75.1 ± 2.6
2000005 56.05287 −43.50876 91.2 ± 1.5
2000007 56.06543 −43.50896 65.8 ± 1.6
2000008 56.06747 −43.54544 74.0 ± 0.8
2000010 56.08023 −43.50531 81.7 ± 3.0
2000014 56.08915 −43.50587 77.3 ± 1.1
2000016 56.10013 −43.54549 67.7 ± 0.9
2000017 56.11077 −43.54558 69.5 ± 1.1
2000019 56.11480 −43.54807 75.1 ± 2.4
2000020 56.11801 −43.54748 71.8 ± 0.8
2000021 56.12240 −43.52515 74.7 ± 1.2
2000023 56.12624 −43.51339 79.3 ± 2.4
2000024 56.12985 −43.55450 89.6 ± 1.3
2000025 56.13921 −43.55537 66.7 ± 2.0
2000026 56.16179 −43.50427 74.2 ± 1.8
2000027 56.16557 −43.51079 68.4 ± 2.2
2000028 56.19012 −43.49878 80.5 ± 1.0

Notes. The columns are the source ID, the right ascension and decli-
nation in degrees, and the line-of-sight velocity and its measurement
uncertainty in km s−1. The source IDs below 2 000 000 are consistent
with those in Paper I. Source IDs starting with 2 000 000 are sources
from Li et al. (2017) that have no counterpart in the source extrac-
tion catalogue of Paper I. The right ascension and declination have
been calibrated to Gaia Data Release 2 (Gaia Collaboration 2016, 2018;
Lindegren et al. 2018).
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Appendix B: Multi-Gaussian expansions of the
density profiles

The JAM method uses MGEs of the density profiles to speed
up its calculations. The MGE itself is expensive, but for simple
profiles it has to be computed only once. Some of our profiles,
however, have parameters that modify their shape, which neces-
sitates a different MGE for each combination of these parame-
ter values. Because fitting the MGE separately for every Monte
Carlo sample would be prohibitively expensive, we instead inter-
polated between MGEs fitted at a limited number of points in
the parameter space. In this appendix we describe the fitting and
interpolation procedures used to obtain the MGEs of our profiles.

For a scale-invariant profile such as the NFW profile, the
MGE only needs to be done once, and the amplitude and stan-
dard deviations of the Gaussians can be rescaled to fit the NFW
profile for any combination of characteristic density and scale
radius. We performed the MGE on the NFW profile with 16
Gaussians by least-squares fitting at 64 logarithmically spaced
points from 10−3 rs to 102 rs, weighting the residuals with the
value of the NFW profile. The range of points chosen for fitting
was deliberately broad in order to be sure that the observations
were contained within the limits of this range for any reason-
able choice of rs. In addition, the projection of the profile on the
sky results in any radius larger than the projected radius being
observed along the line of sight, and therefore the MGE needs to
also reproduce the profile at radii larger than the largest projected
radius. The resulting MGE is an accurate reproduction over the
fitting range, with deviations in both the density and cumulative
mass of the order of, at most, 1%.

The distribution of tracers was fitted with the same number
of Gaussians to the exponential profile found by Crnojević et al.
(2016), which has an effective radius of 2.31 arcmin and a central
surface brightness of 27.2 mag. We also adopted their position
angle of 72.6 deg and used their ellipticity ε = 0.48 to calculate
a flattening of q = 1 − ε = 0.52. To reduce the computational
complexity, we fixed the inclination to the default value of 90◦,
which corresponds to an edge-on system. The exponential drop-
off is hard to reproduce over large orders of magnitude in radius,
so we limited the fit to the range of 10−3 Re to 10 Re. A smaller
range suffices here as we know the value of Re from photometry.
The accuracy of the MGE is sub-percent over the fitting range for
the density and for at least an extra magnitude of larger radii for
the cumulative mass. The resulting fit is valid for all dark-matter
models and does not need to be rescaled for different dark-matter
parameters.

Unfortunately, a single MGE is not possible for the SIDM
and FDM profiles. The computational expense of redoing the
MGE for each combination of profile parameters is prohibitively
large, and therefore we need to approximate the MGE with a
faster method. For the SIDM profile, we performed the same
procedure as for the NFW profile for 101 logarithmically spaced
values of the core radius, from 10−2 rs to rs. We excluded mod-
els with a core radius larger than the NFW scale radius because
such large cores are not expected given the existing work on
dark-matter density profiles in dwarf galaxies (see e.g., the high-
resolution simulations analysed by Lazar et al. 2020). The ampli-
tudes and standard deviations of the 16 Gaussians vary smoothly
with the core size, so we interpolated over these 101 results, sup-
plemented with the NFW profile corresponding to a core size of
zero, with quadratic splines. The 16 Gaussians returned by sup-
plying the interpolator with a core radius can be rescaled with
the characteristic density and scale radius, as for the NFW pro-
file. We find that the resulting interpolated MGE is sufficiently

close to a real MGE: The deviation from the original profile is
still less than one percent. The interpolated MGE is also suffi-
ciently fast for our purposes.

The FDM profile has the largest number of parameters of all
our models and is therefore the most complex to expand into
Gaussians. In addition to this, the profile proposed by Marsh
& Pop (2015) has a sharp transition from the soliton part to
the NFW part, which is very hard to approximate with a sum
of Gaussians. Since this sharp transition was assumed for the
sake of simplicity and the lack of detailed knowledge about the
true transition, we find it justified to make a different simplify-
ing assumption that suits our needs better. We approximated the
FDM profile with the sum of a soliton and a cored NFW profile,
the latter being the same profile that we used to model SIDM:
ρ̃FDM(r; ρ̃sol,0, rsol, ρ0, rc, rs) = ρsol(r; ρ̃sol,0, rsol) + ρSIDM(r; ρ0, rc, rs),

(B.1)

with ρ̃sol,0 = ρsol,0 − ρSIDM(0; ρ0, rc, rs) to ensure the character-
istic density is correct. We find this to be a good approxima-
tion of ρFDM for a certain value of rc, depending on the values
of the other parameters. Minimizing the difference between the
two profiles at 64 logarithmically spaced points from 10−3 rsol to
102 rsol while varying rsol/rs over 101 logarithmically spaced val-
ues between 10−2 and 1, and ε over 101 logarithmically spaced
values between 10−5 and 1/2, yields values of rc that roughly
follow the relation

rc = C0rsolε
C1 , (B.2)

where C0 and C1 are constants. Enforcing this relation and
repeating the minimization gives C0 ≈ 0.281 and C1 ≈ −0.0923.
By construction, the profiles are identical at the centre and
towards infinity. The largest deviation is at the transition radius;
however, this is not a problem because it is very localized and
because the original profile is only an approximation at this
point. We then approximated the soliton profile with 16 Gaus-
sians by fitting to 64 logarithmically spaced points from 10−3 rsol
to 2rsol, at which point the soliton density has declined so far that
it is negligible compared to the NFW part of the FDM profile.
The soliton and SIDM fits were rescaled individually in accor-
dance with the parameters of the profile, and they were then
appended to form a MGE for the FDM profile. With this result
we were able to approximate the original ρFDM with the MGE of
ρ̃FDM. At the transition radius the deviation can be very large, but
elsewhere the accuracy is on the level of a few percent deviation
from the original density profile.

Appendix C: Unbiased estimators of intrinsic
velocity moments

With a small number of stars and relatively high uncertainties
on their velocities, a careful estimation of the observed veloc-
ity moments and the correction term for measurement uncertain-
ties is needed for a reliable dynamical analysis of UFDs. In this
appendix we derive unbiased estimators of the second and fourth
intrinsic velocity moments as well as an estimator of the uncer-
tainty on the second intrinsic velocity moment. The estimators
are exact when each velocity measurement has the same mea-
surement uncertainty and are approximations when the measure-
ment uncertainties are different.

Supposing we have N velocity measurements v1, v2, . . . , vN
with measurement uncertainties ε1, ε2, . . . , εN , the velocities can
be divided into bins with n measurements: v j+1, v j+2, . . . , v j+n.
We assumed that the intrinsic – as opposed to observed – veloc-
ities in each bin are drawn from the same distribution and that

A80, page 19 of 23



A&A 651, A80 (2021)

the distributions of each bin have the same mean: the systemic
velocity. Furthermore, we also assumed that the measurement
errors are normally distributed around zero with a standard devi-
ation equal to the measurement uncertainty. We were prevented
from straightforwardly calculating the moments of the observed
velocities by two effects: The measurement errors inflate the
observed velocity moments, leading to a difference between the
intrinsic and observed distributions, and the sample moments
are biased estimators of the true moments of the observed
distributions.

In the case of equal uncertainties on all measured velocities,
the unbiased estimators of the intrinsic velocity moments can
be determined exactly. For this we further assumed all measure-
ment uncertainties to be equal to ε. We began by calculating the
sample mean,

m =
1
N

N∑
i=1

vi, (C.1)

of all measurements as well as the rth sample central moments,

mr =
1
n

j+n∑
i= j+1

(vi − m)r, (C.2)

in each bin. The correction for the inflation of the moments by
the measurement errors can be done using the cumulants because
cumulants have the property

κr(X + Y) = κr(X) + κr(Y) (C.3)

for random variables X and Y , in this case the intrinsic veloc-
ities and the measurement errors. The symmetrically unbiased
estimators of the cumulants of a distribution are the k statistics
(Fisher 1930), which for the second and fourth cumulants are

k2 =
n

n − 1
m2, (C.4)

k4 =
n2

[
(n + 1)m4 − 3(n − 1)m2

2

]
(n − 1)(n − 2)(n − 3)

· (C.5)

The second and fourth cumulants of a normal distribution
N(µ, σ2) are κ2 = σ2 and κ4 = 0. The distribution N(0, ε2)
of measurement errors therefore has cumulants κ2,err = ε2 and
κ4,err = 0. Correcting for the measurement uncertainty and using
the properties of cumulants, the estimators of the intrinsic second
and fourth cumulants are

k2,int = k2 − κ2,err, (C.6)
k4,int = k4 − κ4,err· (C.7)

Using Eqs. (C.4) and (C.5), this can be converted to the second
and fourth intrinsic sample central moments:

m2,int =
n − 1

n
k2,int, (C.8)

m4,int =

(n−1)(n−2)(n−3)
n2 k4,int + 3(n − 1)m2

2,int

n + 1
· (C.9)

The symmetrically unbiased estimators of the central moments
of a distribution are given by the h statistics (Dwyer 1937). We
can therefore estimate the intrinsic central moments in each bin
with

h2,int =
n

n − 1
m2,int = k2,int, (C.10)

h4,int =
n
[
(n2 − 2n + 3)m4,int − 3(2n − 3)m2

2,int

]
(n − 1)(n − 2)(n − 3)

. (C.11)

In our case, where each velocity vi has its own uncertainty εi,
there is no exact solution. Similar to van de Ven et al. (2006),
we can try to approximate the correction of the cumulants with
a single value. If the individual errors are interpreted as being
drawn from a single distribution, the expected values of the sec-
ond and fourth moments of this distribution are the averages of
the same moments of the individual distributions: We supposed
that the measurement errors are drawn from a single distribution
and wanted to find the cumulants of this distribution. For an infi-
nite number of draws, the sample raw moments converge to the
true raw moments of a distribution:

µ
′
r(X) = lim

N→∞

1
N

N∑
i=1

xr
i . (C.12)

If the draws from this supposed single distribution are equivalent
to draws from n separate distributions of measurement errors, we
can group draws from the same distribution together and write
the above summation as

µ
′
r(X) =

1
n

n−1∑
i=0

lim
N/n→∞

1
N/n

N/n∑
j=1

xr
ni+ j. (C.13)

Comparing Eqs. (C.12) and (C.13), we can see that the latter
equation is the average of the moments of the individual dis-
tributions. The central moments of the single distribution must
therefore be

µ̃2,err = µ̃′2,err =
1
n

j+n∑
i= j+1

ε2
i , (C.14)

µ̃4,err = µ̃′4,err =
1
n

j+n∑
i= j+1

3ε4
i , (C.15)

where we have used the assumption that the individual error dis-
tributions are normal distributions centred around zero,N(0, ε2

i ),
making the raw moments equal to the central moments. The
cumulants to use as approximate correction terms in Eqs. (C.6)
and (C.7) are therefore by definition

κ̃2,err = µ̃2,err, (C.16)

κ̃4,err = µ̃4,err − 3µ̃2
2,err. (C.17)

The correction for the second cumulant is the same as used by
van de Ven et al. (2006).

There are two sources of uncertainty on the intrinsic moment
estimators: measurement uncertainties and finite sampling. Both
are reflected in the variance of the moments of the measured
distribution. Remembering that the variance is the second raw
moment of an estimator fr, we can write

µ2( fr) = E
[
( fr−E[ fr])2

]
= E

[
( fr)2

]
− (E[ fr])2 = µ′2( fr)−µ′1

2( fr),

(C.18)

where E denotes the expectation value. From the equations and
tables of Dwyer (1937), it follows that the variance of the second
sample central moment is

µ2(m2) =
(n − 1)

(
(n − 1)µ4 − (n − 3)µ2

2

)
n3 · (C.19)

Propagation of errors then gives us

µ2(h2,int) =
(n − 1)µ4 − (n − 3)µ2

2

n(n − 1)
· (C.20)
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In the right-hand side of this equation, µ2 and µ4 are the second
and fourth true central moments of the observed velocity distri-
bution. They are unknown, but we can approximate them with
the h statistics:

µ2(h2,int) ≈
(n − 1)h4 − (n − 3)h2

2

n(n − 1)
· (C.21)

Even though the h statistics are symmetrically unbiased estima-
tors of the true central moments, the above approximation will
have a bias because it is not a linear transformation. A further
bias will be introduced by taking the square root to arrive at an
estimate for the uncertainty:

ε(h2,int) ≈
√
µ2(h2,int). (C.22)

In a similar way, we can estimate the uncertainty on the fourth
intrinsic moment. This calculation depends, however, on even
higher moments, up to the eighth. With the small number of stars
per bin in this paper, it is not feasible to calculate this uncertainty
to a good accuracy. As the VSPs depend on the fourth velocity
moments, the uncertainty on the VSPs will also be challenging to
constrain. We therefore opted not to use the VSPs in this paper.

Calculating the above estimators and uncertainty on mock
data drawn from (i) known generalized normal distributions rep-
resenting the intrinsic velocity distributions and (ii) normal dis-
tributions representing the measurement uncertainties (both of
which are similar to the properties of the observed data) shows
that the intrinsic moments and the uncertainty on the second
moment can on average be recovered with at most a few per-
cent bias, which is much smaller than the statistical uncertainties.
However, the estimated moments can become negative follow-
ing the subtraction of the cumulant correction, though it is clear
from Eq. (C.12) that even moments of real-valued distributions
must be non-negative. This is unavoidable when the statistical
uncertainty of a moment is similar to or larger than the moment
itself.

Appendix D: Supplementary figures of CJAM
parameter constraints

In this appendix we show the CJAM constraints on the dark-
matter density profile of Eri 2 in additional parametrizations.
Figure D.1 shows constraints for the CDM model in the compu-
tational parametrization. Figures D.2 and D.3 show constraints
for SIDM and FDM, respectively, in the computational and
astrophysical parametrizations.
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Fig. D.1. Constraints on the dark-matter density profile of Eridanus 2 in
the computational parametrization, assuming CDM, found using CJAM
and MultiNest. Units are omitted for clarity. The parameters are the
dark-matter densities ρ2 and ρ3 at 100 pc and 150 pc, respectively, in
M� kpc−3 and the systemic velocity (v0) in km s−1. The contours corre-
spond to 0.5σ, 1.0σ, 1.5σ, and 2.0σ confidence levels, where σ is the
standard deviation of a two-dimensional normal distribution. The verti-
cal dashed lines in the one-dimensional histograms indicate the median
and the 68% confidence interval.
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Fig. D.2. Constraints on the dark-matter density profile of Eridanus 2 in the computational (left) and astrophysical (right) parametrizations,
assuming SIDM, found using CJAM and MultiNest. Units are omitted for clarity. The parameters are the dark-matter densities ρ1, ρ2, and ρ3
at 50 pc, 100 pc, and 150 pc, respectively, in M� kpc−3, the characteristic dark-matter density (ρ0) in M� kpc−3, the scale radius (rs) and core radius
(rc) in kpc, and the systemic velocity (v0) in km s−1. The contours correspond to 0.5σ, 1.0σ, 1.5σ, and 2.0σ confidence levels, where σ is the
standard deviation of a two-dimensional normal distribution. The vertical dashed lines in the one-dimensional histograms indicate the median and
the 68% confidence interval (without arrows) or the 68% and 95% confidence limits (upper and lower arrows, respectively).
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Fig. D.3. Constraints on the dark-matter density profile of Eridanus 2 in the computational (left) and astrophysical (right) parametrizations,
assuming FDM, found using CJAM and MultiNest. Units are omitted for clarity. The parameters are the dark-matter density of the CDM-like
outer profile at 100 pc (ρCDM,100), the logarithmic slope of the CDM-like outer profile at 100 pc (αCDM,100), the soliton radius (rsol) in kpc, the scale
radius (rs) of the CDM-like outer profile in kpc, the ratio of the dark-matter density at the transition between inner and outer profiles over the central
soliton density (ε), the characteristic dark-matter density of the CDM-like outer profile (ρCDM,0) in M�, kpc−3, the central dark-matter density of
the soliton (ρsol,0) in M� kpc−3, and the systemic velocity (v0) in km s−1. The contours correspond to 0.5σ, 1.0σ, 1.5σ, and 2.0σ confidence levels,
where σ is the standard deviation of a two-dimensional normal distribution. The vertical dashed lines in the one-dimensional histograms indicate
the median and the 68% confidence interval (without arrows) or the 68% and 95% confidence limits (upper and lower arrows, respectively).
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Appendix E: Recovery of intrinsic velocity
dispersion profiles

Profiles of the intrinsic velocity dispersion allow a direct com-
parison between models and data-derived estimates. In Fig. E.1
we display this comparison.

In addition to the CJAM models with isotropic velocities and
the pyGravSphere models with anisotropic velocities used in the
main body of this paper, we also display pyGravSphere mod-
els with isotropic velocities for comparison. The assumption on
the velocity distribution has a large effect on the uncertainty in
the intrinsic velocity dispersion at small radii, but in all cases the
profiles are consistent with one another within their uncertain-
ties. To compare the recovered profiles to the measured data, we
show the estimated intrinsic velocity dispersion and its uncer-
tainty in each pyGravSphere bin. For pyGravSphere we do not
display bins with negative estimates (which are unphysical). We
remind the reader that CJAM does not bin the velocity data;
CJAM does not directly fit to the estimates displayed here. For
CJAM we indicate the negative estimates as well.

The intrinsic velocity dispersion profiles clarify the origin
of some of the differences in the density profiles. The differ-
ence in the scale radius, with CJAM preferring smaller values
than pyGravSphere, seems to be driven by the outer bins. The
unbinned analysis of CJAM recovers an intrinsic dispersion pro-
file that is lower at large radii, while pyGravSphere prefers mod-
els that are flatter. The higher density of the broken power-law
profile around 100 pc is also visible in the dispersion profile and
seems to be the result of overfitting to the estimators.
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Fig. E.1. Recovered intrinsic velocity dispersion profiles of Eridanus
2. Top: CJAM models for CDM, SIDM, and FDM. Centre: pyGrav-
Sphere models assuming an isotropic velocity distribution, with NFW,
Hernquist–Zhao, and broken power-law profiles. Bottom: as above,
without assuming isotropy. Binned intrinsic velocity dispersion esti-
mates are indicated with black circles and error bars, or with downward
triangles where negative. The hatched bands represent the 68% con-
fidence interval on the density at each radius. The half-light radius is
indicated with the vertical dashed line. The black markers at the bottom
of the figure show the projected radii of the kinematic tracers. Tracers
in bins rejected by pyGravSphere are marked in grey.
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