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ct

he time of defining the science objectives of the INTernational Gamma-Ray Astrophysics Laboratory (I
), such a rapid and spectacular development of multi-messenger astronomy could not have been pred
ew impulsive phenomena becoming accessible through different channels. Neutrino telescopes have rou
d energetic neutrino events coming from unknown cosmic sources since 2013. Gravitational wave det
a novel window on the sky in 2015 with the detection of the merging of two black holes and in 2017 w

g of two neutron stars, followed by signals in the full electromagnetic range. Finally, since 2007, radio
detected extremely intense and short burst of radio waves, known as Fast Radio Bursts (FRBs) whose
ost cases extragalactic, but enigmatic. The exceptionally robust and versatile design of the INTEGRAL

s allowed researchers to exploit data collected not only with the pointed instruments, but also with the
-ray shields of the main instruments to detect impulses of gamma-rays in coincidence with unpredictabl
a. The full-sky coverage, mostly unocculted by the Earth, the large effective area, the stable backgroun
h duty cycle (85%) put INTEGRAL in a privileged position to give a major contribution to multi-mess
my. In this review, we describe how INTEGRAL has provided upper limits on the gamma-ray emission
ole binary mergers, detected a short gamma-ray burst in coincidence with a binary neutron star merger

d to define the spectral energy distribution of a blazar associated with a neutrino event, set upper lim
ive and steady gamma-ray emission from cosmological FRBs, and detected a magnetar flare associated
io bursting emission.

rds:
io bursts, gravitational waves, neutrinos, stars: neutron

ts

roduction 2

2 Binary mergers and observable counterpar

2.1 Binary black hole mergers . . . . . .

2.2 Binary neutron star mergers . . . . . .
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oduction

ti-messenger astronomy was a niche concept at
e of conception and launch of the INTernational
a-Ray Astrophysics Laboratory (INTEGRAL).
onsequence, this review is based on relatively
developments. The first reports of high-energy
os date back to 2013 (IceCube Collaboration,

Aartsen et al., 2014) and the living alerts started
6 (Aartsen et al., 2017b) allowing rapid follow-
search of serendipitous signals in gamma-rays.
st detection of gravitational waves was achieved
tember 2015 (Abbott et al., 2016b) and opened
window on the energetic universe. Fast radio
are other impulsive events first reported in 2007
er et al., 2007), proposed to be associated with

magnetar flares some years later (e.g., Popov and
nov, 2013), and with a confirmed association foun
in 2020 (Mereghetti et al., 2020).

INTEGRAL has an 85% duty cycle, linked
2.7 d elliptical orbit, during which the satellite
through the Earth’s radiation belts and instrumen
switched off for safety.INTEGRAL is well equip
search for serendipitous events in gamma-rays tha
the all-sky coverage of some of its instruments and
signed to follow up unknown events with its larg
of view and good sensitivity in hard X-rays and ga
rays (see Sect. 5 for further details). As part of th
science for INTEGRAL, the INTEGRAL Science
Centre (ISDC) routinely performs a search for tra
phenomena in the X- and gamma-ray bands. In pa
lar, the IBAS system detects a gamma-ray burst (
in the IBIS field of view every second month on
age1 (Mereghetti et al., 2003, 2004), and once per
in the anti-coincidence shield of the spectrometer
ACS)2. When in the field of view, GRBs can be
ized with a precision of a few arcminutes, where
localization is provided for SPI-ACS bursts. How
by combining the information from the different I
GRAL detectors, it is possible to have a rough
straint on the sky region from which a signal is e
(Savchenko et al., 2017a). The SPI-ACS signal i
tinely used in combination with other detectors f
angulation measurements to localize GRBs throu
Interplanetary Network (e.g Hurley et al., 2013
is particularly relevant for events not detected by
BAT or INTEGRAL-IBIS, or for which Fermi-GB
calization is not possible.

Besides this routine search for GRBs, INTEG
can be exploited for targeted investigations of i
sive events to find a time-coincident signal in ga
rays. There are currently three types of events for
such a targeted search is performed: gravitational
(GW), high-energy neutrinos, and Fast Radio
(FRBs). Target of Opportunity Observations (T
can be performed to follow-up a region of the
which an event is localized in a quest for a dec
gamma-ray source. The relatively large field of
of the imager permits regions of several hundred s
degrees to be covered, reaching a depth of a few
crab within one satellite revolution (lasting 2.7 da

Gamma-ray bursts are routinely used for a trig
search of gravitational wave signals, so far unsu

1This rate is variable throughout the mission lifetime, as
seen from the IBAS online catalog.

2A full catalog of SPI-ACS bursts is available at the SPI-A
line catalog.
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: INTEGRAL’s unique payload is comprised of a set of large and heavy detectors with sensitivity optimized in the field of view
BIS/ISGRI (red) and IBIS/PicSIT (violet), but extended marginally to the whole sky. Particle and radiation shields of the spect
S in green) and of the imager (IBIS-Veto in yellow) are truly sensitive to the full sky at a level competitive with currently flying gam
nitors. Coupled with an exceptionally stable background owing to the elongated orbit mostly far from the Earth’s violent magneto
es it an ideal instrument to search for electromagnetic counterparts to sources of various impulsive transients. The localization re
12, shown in the bottom sky map, was very elongated and with a large fraction in the Field of View of the most sensitive INTE
nts at the time of occurrence of the LIGO/Virgo event. This permitted JEM-X, IBIS, and SPI measurements to be joined toge
derive a high sensitivity over more than 3 decades in photon energy: from 3 keV to 10 MeV. Observation of the complete, ex
ion region could only be achieved by combining the complementary contributions of both the INTEGRAL high-energy detectors a
ields. This allowed the INTEGRAL team to derive the most stringent upper limit in a truly all-sky observation, constraining the
eleased in gamma-rays to the gravitational wave energy to less than 4.4 × 10−5 (Adapted from Savchenko et al. 2017a).
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Abbott et al., 2019b), with the exception of the
gnal on GW180817/GRB170817A (Abbott et al.,
and Sect. 7.2). Core-collapse supernovae are

ndidates for GW signals, but the GW detector
ity would be currently enough only for a Galac-

nt (Abbott et al., 2016a). For instance, INTE-
was used to tentatively localize GRB051103 in

nd the absence of a GW signal was exploited to
t a giant magnetar flare as the cause of this GRB
e et al., 2012).
LIGO and Virgo collaboration launched a call
tners to search for electromagnetic counterparts
itational wave events in early 2014 and the IN-

AL team responded swiftly. A memorandum of
tanding was signed to be informed in real time of
ssued by the interferometers, with the constraint
ing this information confidential. Any possible

magnetic counterpart was to be shared with the
Virgo team and the other partners. This agree-
ecame effective on September 12, 2015, with the
the first observing run (O1) of advanced LIGO

t al., 2015), which lasted until January 16, 2016,
r the second observing run (O2) from November
6 until August 25, 2017 (Abbott et al., 2019a).

ting from the third run (O3) on April 1, 2019,
erts became public and more frequent, owing to
reased sensitivity (Abbott et al., 2018), requir-
expansion and reorganization of the INTEGRAL

essenger team, besides an automation of anal-
ocedures. Members of the team have submitted
als to reserve data rights and/or perform gamma-
low-up observations of GW event regions in the
RAL announcements of opportunity since cycle
015. Our team provided measurements of the
-ray flux for each event for which data are avail-

ee Sect. 7.3). INTEGRAL’s high duty cycle and
detectors led to the seminal detection of a short
ue to the binary neutron star merger GW 170817
ct. 7.2 Savchenko et al., 2017c).
ts from neutrino events are also public for Ice-
3 (Aartsen et al., 2017b), while an agreement
en put in place with the ANTARES experiment
n et al., 2011) to react to possible events and
esults. Dedicated INTEGRAL time for follow-
reserved through accepted proposals. INTE-
took part to the multi-wavelength campaign on

zar TXS 0506+056 (3FGL J0509.4+0541) posi-
consistent with the neutrino IC170922A (Ice-

ollaboration et al., 2018) (see Sect. 3).

the Icecube alet system.

Fast radio bursts (FRB) are currently one o
most mysterious phenomena in astronomy. Th
sources emitting short (∼ 1 − 10 ms) pulses of
emission with peak fluxes of ∼ 0.1 − 100 Jy
GHz, and dispersion measures (DM) in excess
Milky Way values along their lines of sight. To
with their association with galaxies at cosmologic
tances, this points towards an extragalactic origi
Cordes and Chatterjee 2019; Petroff et al. 2019 f
views), but their origin remains elusive. Althoug
necting to multi-wavelength astrophysics, rathe
multi-messenger, the search for hard-X-ray counte
of these sources belongs naturally to this review
the methodological point of view (see Sect. 4).

In the following, we review the INTEGRAL c
bution in these fields, which gave a renewed s
case for the mission in its late phase.

2. Binary mergers and observable counterpar

Compact binary coalescences (CBCs) of black
and neutron stars are among the loudest sources of
itational waves in the current frequency window
15 Hz to a few kHz) of ground based interferom
which are sensitive to the final part of their in
merger and ringdown (Abbott et al., 2019a).

Three observing runs have been carried out
pletely by LIGO and Virgo: O1 from Septemb
2015 until January 19, 2016; O2, which start
November 30, 2016 and ended on August 25, 201
O3, which started on April, 1 2019 and ended on M
27 2020 with a one-month commissioning break d
October 2019. During the first two runs, the h
for binary neutron star (BNS) mergers was limi
100 Mpc for LIGO Livingstone; 70–80 Mpc for
Hanford, and 30 Mpc for Virgo. Thanks mainly
creased laser power, a squeezed vacuum source
interferometer output, and mitigating noise arising
scattered light, the Livingston instrument began t
run with an average BNS range of 130 Mpc an
Hanford instrument typically operated with an av
range of 110 Mpc. Advanced Virgo reached a
range of 50 Mpc at the beginning of O3 (Abbott
2018).

2.1. Binary black hole mergers

Binary black-hole mergers involve only gravita
fields, as mass is all contained within the event h
and cannot transmit any information outside. The
ing event emits in the form of gravitational waves
can release a few solar masses of equivalent e
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0.5 M�c2 in GW 150914 Abbott et al., 2016a).
rly report by the Fermi-GBM team of a gamma-
nal possibly associated with GW150914 (Con-
on et al., 2016, 2018) triggered physicists to ex-
eculiar scenarios in which gamma-rays can be
ed. These include those BH-BH systems merg-
very dense environments (as for example in an
disk Bartos, 2016), or with dormant accretion
Perna et al., 2016), or even residing within an
ing star (Loeb, 2016). Since then, these sce-
have been challenged by the non-detection of

mma-ray signal associated with BH-BH mergers.
ensive study with Fermi-GBM of the first LIGO
catalog is reported by Burns et al. (2019), this
s sub-significant triggers in LIGO-Virgo. INTE-
observations were available for 20 out of the 25
detected in O1 and O2 (Abbott et al., 2019a).
consistent with the INTEGRAL duty cycle of
5%. In particular, observations are available for
f 11 of the high-confidence gravitational wave
and 13 out of 14 of the marginal ones. For each
observed events, INTEGRAL was sensitive to
ire LIGO/Virgo localization region. A prelimi-
arch reported in Savchenko et al. (2018) did not
any new significant impulsive gamma-ray coun-
s, setting typical upper limits on the 1-s peak
nging from 10−7 to 10−6erg cm−2 s−1 in the 75–
eV energy range. An investigation of the LIGO-

3 events reported in circulars is detailed in Ta-
and gives upper limits of similar values. It is

noting that an electromagnetic counterpart to a
erger with asymmetric masses was reported as

cal luminosity variation in the accretion disk of
ve galactic nucleus 50 days after the gravitational
vent S190521g by the Zwicky Transient Factory
m et al., 2020). This is argued to be due to a
accretion tail caused by the kick velocity induced
merger.

inary neutron star mergers

t binaries of neutron stars (NS) undergoing an in-
rocess and final merger, have long been of great

t in astrophysics as they represent a unique lab-
to investigate several long-standing questions.

ong time, such systems have been predicted to
progenitors of short gamma-ray bursts (sGRB,
2007) and the most promising sites for the pro-
of heavy elements through the rapid neutron-
process (r-process, Freiburghaus et al., 1999).

ver, they can be a useful tool to derive cosmo-
parameters, to investigate fundamental physics

and to constrain the NS equation of state (Abbott
2017b,c,a; Bauswein et al., 2017; Coughlin et al., 2

Binary neutron-star mergers are the most prom
sources from ground-based gravitational wave
detectors to be detected in the electromagnatic (EM
main (Nissanke et al., 2013). A bright flare of ga
rays was predicted to be followed not only by the t
afterglow, but also by ultraviolet, optical, and in
radiation coming from the reprocessing of nucle
cay products in the ejecta, the so-called kilonova (
et al., 2013; Metzger and Fernández, 2014). Thes
dictions were mostly confirmed in the case of the
observed on 17 August 2017, that we describe in
in Sect 7.2.

If the product of the merger were a stable NS, s
models would predict bright isotropic X-ray emiss
different times. Potentially powerful, nearly-isot
emission is expected if a NS-NS merger produ
long-lived millisecond magnetar. In this case,
to optical transients can be powered by the ma
spin-down emission reprocessed by the baryon-po
environment surrounding the merger site (mostl
to isotropic matter ejection in the early post-m
phase), with time scales of minutes to days and lum
ity in the range 1043 − 1048 erg s−1 (e.g. Yu et al.,
Metzger and Piro, 2014; Siegel and Ciolfi, 201
However, in the most optimistic models, these
sients can be detectable from minutes to hours af
event. According to alternative models, X-ray em
may also be generated via direct dissipation of
netar winds (e.g. Zhang, 2013; Rezzolla and K
2015). Furthermore, the high pressure of the m
tar wind can in some cases accelerate the expans
previously ejected matter into the interstellar m
up to relativistic velocities, causing a forward s
which in turn produces synchrotron radiation in t
ray band(with a high beaming factor of ∼0.8; se
Gao et al., 2013).

Sun et al. (2017) developed a detailed model f
X-ray post-merger emission from BNS mergers
case where a long lived NS is created. Of cours
outcome of a BNS merger depends on the Equat
State. Although in most scenarios, NS with m
larger than 2.5M� will not survive as a stable bod
merical simulations have shown that a newly bor
lisecond magnetar may be created (e.g. Giacomazz
Perna, 2013; Gao et al., 2016). This magnetar sc
is supported by the existence of X-ray plateaus
afterglows of some short GRBs.

Merger ejecta can represent 10−1−10−3 M� (e.g
zolla et al., 2010; Rosswog et al., 2013), and these
cover a significant part of the solid angle. In this
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rays produced by internal dissipation within the
tar wind cannot escape freely, and this is called
apped zone”. However they can heat and accel-
he ejecta and eventually escape when the ejecta
e optically thin at later times. INTEGRAL has
ential to detect such radiation in rapid follow-up
ations of these events, as discussed in Sect.6.

h-energy neutrinos

uced in inelastic photo-hadronic (pγ) or
uclear (pp) processes, high-energy neutrinos in
V–PeV range are the smoking-gun of hadronic
tions and cosmic-ray acceleration. Contrary to
d cosmic rays, they are not deflected by magnetic
and they do not suffer from absorption by pair
tion as do high-energy photons.
iffuse flux of high-energy neutrinos was discov-
om 2013 by the IceCube experiment at the level
ν(Eν) ∼ 10−8 GeV cm−2 s−1 sr−1 per neutrino

in the energy range between a few tens of TeV
few PeV (see e.g. Aartsen et al. 2013) but the
s are still unknown. While the angular distri-
of the astrophysical events is compatible with
ropic distribution, which favors an extragalac-
in, a sub-dominant contribution from Galactic

s is not excluded. Multi-messenger astronomy,
use of neutrino, electromagnetic and/or gravita-
ave signals provides an increased discovery po-

and good background reduction by looking for
ent detections both in space and time. The good
g accuracy of neutrino telescopes (. 1 degree
muon-track channel) allows for fast electromag-
llow-ups which are of primary importance to lo-

e high-energy neutrino sources, in particular in
e of transient or variable ones.
ANTARES (Ageron et al., 2011) and IceCube
i et al., 2009) detectors are currently the largest
o telescopes in operation respectively in the
rn and Southern hemispheres. By constantly
ring at least one complete hemisphere of the sky,
low for complementary coverage with an almost
duty cycle, and thus are well designed to detect
nt neutrino sources. Both telescopes operate ex-
programs of nearly real-time multi-wavelength

radio to gamma-rays) follow-up (Ageron et al.,
Aartsen et al., 2017b) as soon as a high-signal
o event is detected.
le such programs have not yet provided signif-
vidence for cosmic sources associated with HE
os, a few possible associations with active galac-
lei (AGN) have already been claimed (Kadler

et al., 2016; Gao et al., 2017; Lucarelli et al., 2
In particular, a compelling case occurred in Se
ber 2017 when the LAT instrument on board
and the MAGIC Cherenkov telescopes observe
hanced gamma-ray emission from the BL Lac
0506+056 (3FGL J0509.4+0541) positionally c
tent with the neutrino IC170922A (IceCube Coll
tion et al., 2018). The significance of this coinci
between the blazar flare and the neutrino was
ated to 3σ. Following this discovery, an analysis
archival neutrino data was performed by the Ic
collaboration which found a significant excess o
trino emission during 2014/2015 at the 3.5σ leve
Cube Collaboration et al., 2018). While intriguin
detection of a single neutrino does not allow unam
ous confirmation of the link between high-energy
trinos and blazars and more correlations will be n
to further assess the emission and particle accele
mechanisms. Likewise, previous cross-correlation
ies using IceCube data showed that the populat
blazars observed by Fermi-LAT can only explai
than 20% of the diffuse flux of astrophysical n
nos (Aartsen et al., 2017a). While gamma-ray
(GRBs) are also disfavoured as a main contributor
diffuse flux, the question of the origin of high-e
neutrinos is a burning issue. Next-generation ne
telescopes such as KM3NeT (currently under d
ment in the Mediterranean), IceCube-Gen2, forese
the end of the decade at the South Pole and an up
of the Baikal neutrino telescope being built in R
have a bright future ahead of them.

Regardless of the nature of the electromagnetic
terpart, multi-wavelength data are crucial to firmly
tify the sources of high-energy neutrinos. In thi
text, INTEGRAL systematically follows ANT
alerts, under an MoU agreement signed wit
ANTARES collaboration and the IceCube trigger
publicly through GCN notices (Aartsen et al., 20
The INTEGRAL circulars are reported in Table A

4. Fast radio bursts

Fast Radio Bursts (FRBs) consist of a single b
band pulse, with a duration of a few millisecond
a flux density ranging typically from 0.1 to 30 J
with the highest flux recorded so far of 120 Jy
et al., 2016). They were discovered in wide-fiel
sar surveys with the 1.4 GHz receiver at the Park
dio telescope (Lorimer et al., 2007; Keane et al.,
Thornton et al., 2013). The vast majority of FRB
initially found by Parkes and ASKAP, but also Ar
Green Bank Telescope, and Molonglo have dete
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of them (Spitler et al., 2016; Masui et al., 2015;
et al., 2017). At the time of writing, the CHIME

ent gives a major contribution (CHIME/FRB
oration et al., 2019) with an online catalog of re-

FRB. An earlier online FRB catalog frbcat.org/

ed events at least until late 2019 (Petroff et al.,

s have signals which are dispersed as in pul-
ut with much higher Dispersion Measures (DM,
ing the line-of-sight column density of free elec-
Both a Galactic and an extragalactic origin have

nitially proposed. However, the large DM and
t that they are preferentially found far from the
ic plane have favored an extragalactic origin. Fi-
heir extragalactic nature has been firmly demon-
by the association of a few FRBs with host

s in the redshift range 0.0337–0.4755 (Marcote
020; Prochaska and Zheng, 2019), and possibly
=0.66 (Ravi et al., 2019). Two well character-
peating FRBs (FRB121102, Spitler et al. 2016;
et al. 2016 and FRB 180814, CHIME/FRB Col-
ion et al. 2019) made clear that at least some of
riginate from non-destructive events, then eight
bjects were reported by CHIME/FRB Collabora-
al. (2019) substantiating an early hypothesis that
re two different populations of FRB, repeating
n-repeating (Caleb et al., 2018). For FRB121102,
ons allowed an association of the burst with a low
alaxy at z = 0.19 (Chatterjee et al., 2017; Mar-
al., 2017; Tendulkar et al., 2017). No X-ray and
-ray detection was found for this FRB (Scholz
2017). In some of the repeated bursts, sub-

requency structure, drifting and spectral variation
miniscent of that seen in FRB 121102, suggest-
ilar emission mechanisms or propagation effects.

creasing observational effort brought the identifi-
of FRB180916.J0158+65 (in short FRB180916)
repeating source with a characteristic periodicity
t 16 days (Chime/Frb Collaboration et al., 2020),
in a star-forming region (Marcote et al., 2020).
progenitors and the emission mechanisms re-
le for the production of FRB are still unknown.
ess temperatures in FRBs are well in excess of

l emission, requiring a coherent emission pro-
or the case of repeating, extragalactic FRBs, gi-

lses from pulsars have been proposed (Pen and
r, 2015; Cordes and Wasserman, 2016) as well
t flares from magnetars (Popov and Postnov,
Explanations for extragalactic sources of non-

ng FRB (in the hypothesis that they are genuinely
ot events and represent a different subclass of
with respect to FRB121102) include evaporat-

ing primordial black holes (Rees, 1977), merging
white dwarf systems (Kashiyama et al., 2013), m
neutron stars and white dwarfs (Zhong and Dai, 2
merging neutron stars (Hansen and Lyutikov, 2
collapsing supramassive neutron stars (Falcke and
zolla, 2014), and superconducting cosmic string
et al., 2012). Totani (2013) has predicted that
short GRBs must be associated with FRBs in th
NS merging scenario and that a longer time de
lower frequencies may allow FRBs to be detect
follow-up searches after short GRBs. For the inte
reader, Platts et al. (2019) has compiled an ext
list of FRB models, which witnesses an extreme
tense debate. The localization of FRBs and char
ization of their multi-wavelength counterparts is
tial to discriminate between the proposed models.
will also provide a new and powerful tool to pro
“missing baryons” component in the Universe.

The detection of hard X-ray flares and/or after
associated with an FRB would provide a unique o
tunity to study their progenitors and the associat
diative mechanisms. INTEGRAL has already obs
several among the phenomena proposed as arising
possible progenitors of FRBs. For instance, giant
netic flares have been observed (Mereghetti et al.,
2009; Savchenko et al., 2010). When the satel
promptly pointed to the region of interest, the p
pal instruments of INTEGRAL have also detected
long-lasting emission of GRBs (Martin-Carrillo
2014). In principle, follow-up observations of the
error regions with INTEGRAL could provide u
imaging capabilities with high sensitivity to lines
and accurate localization (IBIS).

5. Methods for serendipitous search of imp
events with INTEGRAL

As extensively described elsewhere in this ser
reviews, INTEGRAL is equipped with the ‘Spect
ter on INTEGRAL’ (SPI Vedrenne et al., 2003; R
et al., 2003), the ‘Imager on Board the INTEG
Satellite’ (IBIS Ubertini et al., 2003), the ‘Joint
pean X-ray Monitors’ (Lund et al., 2003, JEM-X
2), and the ‘Optical Monitoring Camera’ (OMC
Hesse et al., 2003a). Here, we describe only t
pects of instruments and tools relevant for the det
and follow-up of serendipitous events together w
methods to efficiently combine the signals from
ent instruments.
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I

INTEGRAL SPI detector plane, made of 19 crys-
High Purity Germanium (GeD), has been de-
to detect photons between 20 keV and 8 MeV
asure their energy with a precision ranging from
5 keV over the whole energy domain. Whether
prompt emission detection occurring by chance
the FoV or during a follow-up strategy, SPI gives
to fine spectroscopic information of the high en-
roperties for any potential GW counterpart. In
lar, it will be able to measure or put upper lim-
narrow emission lines, related to different phys-
chanisms. For instance, r-process elements are

ed to be released during BNS mergers. The
onding radioactive decays will produce nuclear
-ray lines in the SPI energy domain. Similarly,

oduction and annihilation physics will be investi-
n the 511 keV region. Typically, a 260 ks obser-
(2 INTEGRAL revolutions) provides a 3 σ upper
f 2.8×10−4 ph cm−2 s−1 for a narrow annihilation
tween 505 and 515 keV.

I-ACS

SPI is surrounded by an active anti-coincidence
(SPI-ACS, von Kienlin et al., 2003), consisting of
currently functional) BGO (Bismuth Germanate,
3O12) scintillator crystals. The SPI-ACS is en-
with a large effective area (up to ∼1 m2) γ-ray
r with a quasi-omnidirectional field of view. The
ata are downlinked as event rates integrated over

scintillator crystals with a time resolution of
The typical number of counts per 50 ms time

from about 3000 to 6000 (or even more during
olar activity). A crucial property of the SPI-ACS
that, contrary to many other existing GRB detec-
e readout does not rely on any trigger, so that a
te history of the detector count rate over the mis-
etime is recorded. This opens the possibility of
ne search of GRBs or targeted searches. The de-
the ACS readout is such that it provides almost

sitivity to the direction of detected signals. The
S effective area and its dependency on the direc-

d the energy is somewhat uncertain and it can be
gated through detailed simulations of the photon
ation in the detector, as was done, for example
reghetti et al. (2009). However, this requires a
odel of the entire INTEGRAL satellite. An al-
e method involves making use of the events de-

simultaneously by SPI-ACS and other detectors.
proach was exploited by Viganò and Mereghetti

(2009). A further development that combines bo
proaches has been pursued by Savchenko et al. (
2017a).

The SPI-ACS light curves are affected by the
ence of short spikes (∼50–150 ms) that were ide
early on as cosmic-ray interactions by Rau et al. (
and confirmed as such by Savchenko et al. (201
this work, it is also shown that the decay of co
ray induced radioactivity in BGO crystals, pro
an “afterglow” discussed by Minaev et al. (2010
mis-interpreted as a sign of a GRB nature. Th
tailed knowledge of properties of the spikes al
Savchenko et al. (2012) to fully characterize the
and to separate them from the real GRBs using
icated test statistic that is implemented in the ta
search of multi-messenger counterparts as well
post-processing of the events identified online b
IBAS system and published online.

5.3. IBIS/ISGRI

ISGRI is the upper detector plane of IBIS (L
et al., 2003) and, despite being optimized for im
it has some sensitivity also out of the field of
Indeed, the coded mask through which ISGRI u
observes the high-energy sky cannot be fully exp
when searching for impulsive events within the
coded FoV when their location is not known.
the sensitivity for a source in a fixed location can b
proved by using the coded mask pattern to reject
50% of the background, this advantage is lost in a
for a new source, when there are additional tria
tors. The conditions are different in the partially
FoV, as a progressively smaller fraction of the de
is exposed through the coded mask holes and se
for short transients could be optimized by conside
smaller portion of the detector relevant for speci
rections. This reduces the background, which i
portional to the total effective area used for the s
However, the instrument sensitivity is also reduc
exploring lower effective areas, rapidly approachin
of the SPI-ACS (see Figs. 1).

We generally prefer to rely on the light curve
from the entire detector to search for impulsive
in the ISGRI data. As the IBIS collimator tube be
increasingly transparent at energies above ∼20
photons from directions that are up to 80 deg o
with respect to the satellite pointing can reach the I
detectors, allowing this instrument to detect even
curring outside its FoV. Even soft events, with th
of photons released below ∼200 keV, can be de
in ISGRI despite the absorption by the IBIS shie
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atellite structures. For the very same reason, pho-
om soft events produce a highly contrasted pat-

the ISGRI detector plane that can be used to
y constrain the source location (as is done with a
precision when the event is recorded through the
mask within the instrument FoV).
RI is particularly well suited to searching for long
nts i.e., those associated with GRB afterglows,
e the coded mask imaging allows us to better
terize the instrument background, as well as ac-
y subtract the contribution of persistent sources
e data to probe the presence of faint transients.

IS/PICsIT

/PICsIT (Labanti et al., 2003) is the bottom de-
ayer of the IBIS telescope, located 90 mm below
. It is composed of 4096 30 mm-thick CsI pixels
m × 8.2 mm), featuring a total collecting area of
800 cm2 and is sensitive to photons between 175
d 10 MeV. In this energy range, the IBIS colli-
tube is largely transparent and thus PICsIT can
e sources for all directions that are not occulted
SPI instrument. Some bright GRBs have been
d at angles of ∼ 180◦ from the satellite pointing
n. The effective area of the instrument slowly

ses as a function of off-axis angle, mainly due to
ct of the PICsIT planar geometry combined with
nge in opacity of the shielding and ISGRI detec-

ne.
instrument coded mask opacity to hard X-ray
s is larger than that of the passive shield thus
in principle collects more signal from sources
the FoV than those closer to the satellite point-

ection (in sharp contrast with ISGRI). This leads
creased sensitivity for isolated, bright, impulsive
(i.e. GRBs). In these cases, the long-term back-
variability can often be neglected and its average

an be well-constrained before and after the event
t relying on the coded mask.
valuate the response of PICsIT to high-energy
from any sky direction it is important to take into
t the partial absorption of the corresponding ra-
by the satellite structures. We thus performed
Carlo simulations using the INTEGRAL mass
previously described by (Ferguson et al., 2003)
proving it through the inclusion of a more de-
BIS mass model (Laurent et al., 2003). We vali-
ur approach by comparing the results for the de-
of sources within the FoV with the predictions

PICsIT responses based on the most recent in-
nt calibrations provided by the instrument team.

5.5. IBIS-VETO
The bottom and lateral sides of the IBIS det

are surrounded by an active coincidence shiel
IBIS/Veto, which is made of 2-cm thick BGO cr
(Quadrini et al., 2003). The count rate of the IBIS
is integrated continuously every 8 s and transmit
ground. This makes the subsystem an efficient de
of GRBs (and other gamma-ray transient pheno
albeit with a reduced sensitivity for events shorte
the integration time.

We used Monte Carlo simulations exploiting th
TEGRAL mass model (Ferguson et al., 2003) to
pute the IBIS/Veto response. We checked o
sults by using observations of bright GRBs detec
Fermi/GBM. For a good match, we had to accou
the low-energy threshold of the IBIS/Veto syste
which we have a limited description. The esti
discrepancy between the observed number of c
compared to those expected based on GBM resul
found to be less than ∼ 20%.

IBIS/Veto is a particularly useful instrument to
sources at off-axis angles larger than about 120◦

the sensitivity of ISGRI, PICsIT, and the IBIS Co
mode are low. At these angles, the coverage pro
by SPI-ACS is also limited. We also note that the
relatively small fraction of the sky (about 15%, de
ing on the source spectrum) for which the effectiv
of the IBIS/Veto is larger than the one of SPI-AC
impulsive events longer than 8 s and near the oppo
the satellite pointing direction, the IBIS/Veto has
tor of 4 better sensitivity relative to the SPI-ACS
its similar effective area (∼ 3000 cm2), but lower
ground (by a factor of 2) and lower energy thresh

The INTEGRAL/IBIS telescope is routinely u
a Compton Coded Mask telescope. True Compton
terings are two events detected in the two IBIS ind
dent detectors, ISGRI and PiCsIT. These IBIS/Co
data may be used to make Compton images out
coded mask field of view. This is possible only a
energies, above 300 keV, when the IBIS shieldin
gins to become transparent. This Compton im
process, which will be implemented in the INTEG
near real time transient follow-up system, will e
the IBIS FOV.

5.6. JEM-X
The Joint European Monitor for X-rays (JEM-

strument (Lund et al., 2003) consists of a pair of c
mask cameras providing a zero-response field of v
13 degrees in diameter and an angular resolution
With a position accuracy ' 1′, JEM-X is especiall
ful to locate, and possibly identify, an X-ray count
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of the localization region falls by chance in the
view, or for pointed observations during follow-

ource detection can be achieved with a nominal
um sensitivity of about 10−4 ph cm−2 s−1 keV−1

to 20 keV for a 3σ detection in 105 s, estimated
eginning of the mission.

MC

Optical Monitoring Camera (OMC) was de-
to observe the optical emission from the prime
of the gamma-ray instruments on-board INTE-
(Mas-Hesse et al., 2003b). It has a field of view
5 degrees, but due to telemetry constraints only a
reselected sources is transmitted to ground. This
OMC unsuitable for a serendipitous search of im-
events but it is a useful tool for pointed observa-
follow-up campaigns, with a limiting V-Johnson

ude in the range 16–17 depending on the sky di-
. In case IBAS (see Sect. 5.8) localizes a GRB
the OMC FoV, a telecommand is automatically
the satellite to set an appropriate CCD window
r to acquire OMC data at the GRB position. This
ed just once on June 26, 2005, but the GRB hap-
so close to a bright star that the detector was sat-

e IBAS software suite

INTEGRAL Burst Alert System (IBAS) is the
tic software devoted to the rapid detection and

ation of GRBs (Mereghetti et al., 2003). Contrary
y other γ-ray astronomy satellites, no on-board
iggering system is present on INTEGRAL. Since
a are continuously transmitted and reach the IN-
AL Science Data Centre (ISDC Courvoisier et al.,
within a few seconds, the search for GRB is done
C. This has some advantages: besides the avail-
of larger computing power, there is greater flexi-
with respect to systems operating on board satel-
or software and hardware upgrades. To take full
age of this flexibility, the IBAS software architec-
atures different algorithms that are easily tunable
arameters.
S localizations are based on two different pro-
using the data from the IBIS lower energy detec-
RI. The first program performs a simple moni-

of the overall ISGRI counting rate. This is done
ing for significant excesses with respect to a run-

verage simultaneously on different time scales.
es trigger an imaging analysis in which images
umulated for different time intervals and com-

to the pre-burst reference in order to detect the

appearance of the GRB as a new source. This s
essential to eliminate many triggers due to instr
tal effects and background variations which do no
duce a point source excess in the reconstructed sk
ages. The second Detector Program is entirely
on image comparison. Images of the sky are co
ously produced and compared with the previous o
search for new sources. This one has the advant
being less affected by variability of the background
other sources in the field of view. Finally, a third k
Detector Program is used to search for GRBs de
by SPI-ACS.

Significant alerts are distributed using direc
nections with partners who have subscribed and
mitted by the GCN notice system4. The poten
IBIS/ISGRI for the search of serendipitous eve
the field of view is optimally exploited by IBAS
only a handful of GRBs not detected in the online
ysis, where they were identified as weak excesses
lovekov et al., 2019).

5.9. An automatic system to react to transient eve

The results are the outcome of a well-defined
cess that assures a standard search is performed,
scribed below. In searching for impulsive events
limit of instrumental sensitivity, it is essential that
hoc searches undermine the statistical robustness
method. Otherwise, the estimate of association s
cance can be fooled and background events can a
as real. The human veto is introduced only to avo
vious errors, due to unexpected technical issues,
propagated. Given the crucial role of the pipelin
describe it in some detail below.

As soon as a transient event, such as a neutr
gravitational wave detection, is broadcast through
chine readable system, as a GCN notice, it is po
to automatically trigger and run a pipeline. This I
GRAL transient analysis pipeline features

• an initial assessment of the instrument statu
the possibility to perform follow-up observa

• a three part pipeline which starts with a re
analysis of SPI-ACS data on a timescale of
utes, complements it with data from other
tors on a time scale of one hour for a classifi
pipeline, and an extended untargeted search i
ACS;

4See https://gcn.gsfc.nasa.gov/gcn/integral

html
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mplementary analysis of IBIS-Veto and PICsIT
ectral timing data.

steps will be described in detail in a forthcoming

rder to express the upper limits and measure-
in physical units, it is necessary to make assump-
bout the source spectra. For the results of all
es, we use two spectral shapes characteristic of
The “short-hard” spectrum is close to an aver-

ort GRB spectrum detected by Fermi/GBM, and
ribed by so-called “Compton” model with α=0.5,
600 keV (Gruber et al., 2014), used in conjunc-
ith 1 s timescale. The “long-soft” spectrum is
e for long bursts (typically thought to be asso-
to collapsar events), is a Band GRB model, with
Epeak=300 keV, β=–2.5.
only using these spectral templates, that we can
re the observations in different INTEGRAL all-
truments with the predictions of the relative re-
model. Only with such a combination, is it pos-
find the small real variations in the stable INTE-
background to constrain long-lasting emission of
and also to derive a crude localization. In Fig. 1,
w the range of detection significance for short (1
long (8 s) GRB-like events as colored shaded re-
Out of the field of view, SPI-ACS is the most sen-
nstrument, but in the rear direction of the satellite,
g events, it is overcome by the IBIS/Veto sys-
he different sensitivity of the instruments allows

r a very coarse localization of events: for instance
vent is strong in the IBIS-VETO, but weaker in
S, it is likely to come from the rear of the field
. Whereas an event which is seen in SPI-ACS but
the bare rates of ISGRI or PICsIT and not in the

f view is likely to come from around 45 degrees
e pointing direction. This coarse localization can
rom 1% to 75% of the full sky, depending on the
raft orientation with respect to the signal and on
tral characteristics. They are not usually suitable
rglow follow-up, but they can be combined with
onstraints (e.g. from LIGO-Virgo, or from other
ents).
though no public products are automatically

ted from the full pipeline, example results may
d in (Siegert et al., 2018; Margutti et al., 2019),

he realtime products described in (ii) and (iii) are
used in all GCN reports (see Table A.1).

8-s integration time of the IBIS-VETO signal prevents good
ty for short events

6. Follow up observations

INTEGRAL is ideally suited to search for ser
itous gamma-ray signals, however, once a gravita
wave trigger is received, the large field of view
pointed instruments can be exploited to search fo
nals from the object formed during the merger.

In some cases, bright X- and gamma-ray em
is expected from BNS mergers. A detection of s
bright X-ray counterpart would definitely point to
the presence of a stable neutron star as the end-p
of the merger (e,g, Metzger and Piro, 2014; M
and Metzger, 2017). This is currently the most pr
ing way to determine whether the BNS merger p
is a black hole or a neutron star and INTEGRAL h
potential to do so with its ability to cover severa
dreds of square degrees in a single dithering patte
addition, radioactive decay is expected to produce
acteristic gamma-rays, which will leak out, and p
the most direct diagnostic of the kilonova energy s
INTEGRAL limits for nearby events will be imp
(see Savchenko et al., 2017c, for realistic limits).
versus later time observations can constrain the
ing angle and the geometry of the system, as well
strength of the magnetic field and the rotation
of the newborn neutron star. On the other hand,
models for the EM emission from BBH merger a
developed, INTEGRAL upper limits can be very
able to constrain current and future theoretical eff

7. Some selected results

7.1. GW150914
The first detection of a gravitational wave sig

2015 from the merger of two black holes with m
of about 30 solar masses each (Abbott et al., 2
was followed up by the first massive campaign o
tromagnetic follow-up (Abbott et al., 2016c,d)
counterpart was detected, although a lively disc
was raised by the tentative association with an e
in the Fermi-GBM detector count rates (Connau
et al., 2016). The significance of the event, bas
the occurrence of similar excesses in the time
is about 10−4, therefore, the probability that su
event happens by chance at 0.4 s from the GW t
is about 3 × 10−3, which implies an association s
icance of 2.9σ (Connaughton et al., 2018). The
physical origin of such an excess has been debate
from the perspective of the Fermi-GBM data an
(Greiner et al., 2016) and owing to the non-det
of any excess in the SPI-ACS light curve, as re
by Savchenko et al. (2016), who set an upper lim

11

Jo
ur

na
l P

re
-p

ro
of



the 75–
lent to
As SPI
tion reg
allowe
tially r
spectru
nifican
for a p
been m
edged
cess w
tainty
cross-c
determ
for wh
the fac
tively
binary
itor Te
this ex
the onl
was du
Sect. 7

7.2. G
The

produc
galaxy
gamma
GBM
ported
0.4)× 1
(Savch
gravita
chance
the tim
was 1.
delay 1
light an

2) pla
Lorent
various
lence p
gravita
marked
(Abbot
multi-m

Furt
burst d

hus, it
evolu-
spec-
com-

ission
enve-
dstein
coun-

ith the
erger.

17 bi-
gener-
d lead
ted by
before
lit and
; Rez-

GRB,
n for

orm a
days.

n any
range,
e soft
−2 s−1

rained
active
e en-
S co-
limit

rom a
pt de-
ons at
nts on
a and
a new

ys af-
seven
ected
GRB,
after-

ion; if
before

inos-
t seen
uced.
th the
er the
speed
) and

Journal Pre-proof
2000 keV fluence of 2 × 10−8 erg cm−2, equiva-
about 10−6 the gravitational wave energy release.
-ACS was sensitive to the entire LIGO localiza-
ion, this upper limit put severe constraints on the

d spectrum of the Fermi-GBM excess: for an ini-
eported best-fit FERMI-GBN cutoff-power-law
m, SPI-ACS would have detected a highly sig-
t signal from 5 to 15σ (Savchenko et al., 2016);
ower law without break, the signal would have
uch larger. Connaughton et al. (2018) acknowl-

that measuring the spectrum of such a weak ex-
ith Fermi-GBM alone has a high level of uncer-
and that a deeper knowledge of the instrument
alibration with SPI-ACS would be beneficial to
ine the allowed corners of the parameter space
ich the two signals are compatible. In our view,
t that no other excess was observed in the rela-
large sample of gravitational wave signals from
black holes (The Fermi Gamma-ray Burst Mon-
am et al., 2020) reinforces the conjecture that
cess was not of astrophysical origin. Moreover,
y clear signal in both SPI-ACS and Fermi-GBM
e to a binary neutron star merger, as described in
.2.

W170817
loudest signal in gravitational waves so far was
ed by the merging of two neutron stars in the
NGC 4993 at 40 Mpc (Abbott et al., 2017b). A
-ray burst was autonomously detected by Fermi-
(Goldstein et al., 2017) and independently re-
by INTEGRAL SPI-ACS with a fluence of (1.4±
0−7 erg cm−2 in the 75− 2000 keV energy range

enko et al., 2017c). In Fig. 7.2, we show the
tional wave strain and the gamma-ray burst. The
coincidence of these events is 5 × 10−8, while
e difference with the gravitational wave signal

74 ± 0.04 s (Abbott et al., 2017a). Such a short
) constrains the difference between the speed of
d gravity to

−3 × 10−15 < ∆v/v < 7 × 10−16

ces new bounds on the possible violation of
z invariance with a significant improvement on
parameters, 3) presents a new test of the equiva-
rinciple constraining the Shapiro delay between
tional and electromagnetic radiation. This event

the birth of the multi-messenger astronomy
t et al., 2017c) and enlightened the power of the
essenger approach.

hermore, GRB170817A is the closest gamma-ray
etected so far and is 100–1 million times weaker

than any other events with a known distance. T
is consistent with being an off-axis GRB. The
tion of the gamma-ray emission towards a thermal
trum and the timescale of such an evolution are
patible with the scenario in which the GRB em
originated from the interaction of the jet with an
lope of matter produced during the merger (Gol
et al., 2017). The absence of a bright hard X-ray
terpart (Savchenko et al., 2017c) is compatible w
creation of a black hole as a product of the m
Considering that the total mass of the GW1708
nary system is relatively large (2.74 M� ), it is
ally proposed that the merger of GW170817 woul
to a temporal hyper-massive neutron star (suppor
differential rotation) which survived 10–100 ms
collapsing into a BH or even directly a BH (Marga
Metzger, 2017; Bauswein and Stergioulas, 2017
zolla et al., 2018; Metzger et al., 2018).

After the serendipitous detection of the prompt
INTEGRAL continued the planned observatio
about 20 h. Then, it was re-pointed, to perf
targeted TOO follow-up observation for several
This provided the most stringent upper limits o
electromagnetic signal in a very broad energy
from 3 keV to 8 MeV. These data constrained th
gamma-ray afterglow flux to < 7.1× 10−11 erg cm
in the range 80 − 300 keV. In addition, it const
the gamma-ray line emission intensity from radio
decays, expected to be the principal source of th
ergy behind a kilonova event following a NS-N
alescence. Finally, it provided a stringent upper
on any delayed bursting activity, for example, f
newly formed magnetar. The gamma-ray prom
tection, and the subsequent continuous observati
all wavelengths, have provided important constrai
the high energy emission of the resulting kilonov
the nature of the post-inspiral object: NS, BH, or
exotic object, still under debate.

An X-ray afterglow was detected only nine da
ter the merger, while the radio afterglow other
days later (Abbott et al., 2017c); this is the exp
behavior of an “orphan afterglow”. In a standard
the jetted emission is pointed towards us and the
glow is seen immediately after the prompt emiss
there is misalignment, the jet needs to open up
becoming visible. The very low gamma-ray lum
ity of GRB170817A implies that the jet was no
on-axis or, in principle, that it was not even prod
However, observations of the radio afterglow wi
Very Long Baseline Inteferometer 160 days aft
merger provided an estimation of the expansion
(Mooley et al., 2018b,c,a; Ghirlanda et al., 2019
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the existence of a standard jet as the origin also
-ray emission (Troja et al., 2018; Margutti et al.,

D’Avanzo et al., 2018). X-ray emission is still
d almost three years after the event (Troja et al.,
The off-axis angle inferred from gravitational

is better constrained if the distance is fixed to
wn distance of the host galaxy, by reducing pa-

r degeneracy and is less than 28 degrees (Abbott
017c). Finally, the very low gamma-ray emission
lso be produced by a structured cocoon around
a phenomenon seen for the first time in this ob-
ing to its relative proximity (Abbott et al., 2017a;

y et al., 2018b).
170817 was observed in gravitational waves by
etectors, this yielded a relatively small sky po-

area (∼30 sq-deg), a good signal-to-noise and a
on of ∼25% in the estimation of the distance of
rce. This allowed optical astronomers to restrict
l of possible target galaxies for their search (Ab-
al., 2017c). Indeed, after 10 h from the GW sig-
ection, an optical counterpart was associated to
0817 and localized in the galaxy NGC 4993 at
pc by multiple and independent observers. The
n was followed-up with multi-wavelengths ob-

ons (from UV to IR) for several weeks. The time-
nd the color evolution of the light curve (from
red in few days) were compatible with a kilo-

KN) scenario, in which the decay of heavy ele-
synthesized through r-process radioactively pow-
ch emission (Kasen et al., 2013; Metzger and
dez, 2014; Pian et al., 2017; Smartt et al., 2017).
icular, it has been explained as originating from
fferent ejecta components. A fast (v ∼0.3c) dy-
l ejecta, emitted from the polar regions is respon-
f the early-time blue emission. This component
acterised by a relatively high electron fraction,
is a signature of the occurrence of weak inter-
, triggered by the presence of a strong neutrino
, such as a hyper massive neutron star (HMNS
et al., 2017). Instead, the late-time red emission
inated by lathanide-rich ejecta, likely originating
n accretion disk wind in addition to an equatorial
ecta (Metzger, 2017).

ther GW events

response of all instruments can be combined to
for a signal and, in the majority of cases, obtain
st stringent upper limit on the electromagnetic
in the INTEGRAL band. This was shown for
EGRAL observation of GW151012 (Savchenko

2017a), which was not announced as an online

Figure 2: The joint, multi-messenger detection of GW1708
GRB170817A. Top: The summed Fermi/GBM lightcurve for
iodide (NaI) detectors 1, 2, and 5 for GRB170817A between
300 keV, matching the 100 ms time bins of SPI-ACS data sh
the bottom. Middle: The time-frequency map of GW170817
tained by coherently combining LIGO-Hanford and LIGO-Liv
data. Bottom: The SPI-ACS lightcurve with the energy range
approximately at 100 keV and with a high energy limit of
MeV. All times here are referred to the GW170817 trigger tim

alert, but after several months in their catalog pape
bott et al., 2019a) in which it interpreted as a mer
two black holes of 23+18

−6 M� and 13+4
−5 M� at a di

of 1000 ± 500 Mpc. In that case, the large locali
region intersected also the field of view of the I
GRAL instruments, which could exploited in the
dynamical range of sensitivity to derive upper lim
emission from 3 keV to 2 MeV.

Having multiple facilities able to detect gamm
impulsive events at the same time, albeit with
ent sensitivities and sky covering fractions, prov
be a fundamental asset also in the case of GW1
for which INTEGRAL provided a stringent uppe
on the whole localization region (Savchenko
2017b). The upper limit was incompatible in most
sky with a marginal detection by the mini-Calor
(MCAL) onboard the AstroRivelatore Gamma
magini Leggero (AGILE). In the only limited port
the sky where the sensitivity of the INTEGRAL i
ments was not optimal and the lowest-allowed fl
estimated by the AGILE team would still be comp
with the INTEGRAL results, simultaneous observ
by Fermi/Gamma-ray Burst Monitor and AstroSA
cluded an astrophysical origin of the AGILE exce

During the third observing run of LIGO and
the INTEGRAL multi-messenger team and other g
have constantly monitored the instruments to lo
serendipitous signals. We report in Table A.1 a
circulars on this topic. In this sample, there wa
one other very probable binary neutron star merge
190425; Abbott et al. 2020), which gave origin to
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ersy over a possible marginal detection with IN-
AL between (Pozanenko et al., 2020) and the

essenger team (Savchenko et al., 2019). The
report a weak gamma-ray burst in SPI-ACS con-
of two pulses ∼0.5 and ∼5.9 s after the NS
with an a priori significance of 3.5 and 4.4σ.

is of the SPI-ACS count rate history recorded for
of ∼125 ks of observations around the event has
that the rate of random occurrence of two close
with similar characteristics is such that a similar
ccurs by chance, on average, every ∼4.3 hours.

tter state that for the excess at 6 s after the GW
, they estimate a possible 75–2000 keV fluence
ue to uncertainty of the location from 2×10−10

10−9 erg cm−2 (in addition to systematic uncer-
of response of 20% and statistical uncertainty of
assuming the duration of 1s and a characteristic
RB spectrum with an exponentially cut off power
th α = −0.5 and Ep = 600 keV. They stress that
P of association of this excess is below 3σ. How-
o other counterpart was found at any wavelength,
due to the relatively large distance of this object
0 Mpc), but also from the possibility that at least
the components was a black hole.

eCube-170922A
September 22nd, 2017, at 20:54:30.43 (UTC),
Cube neutrino telescope detected a high-energy
track event (IC170922A) induced by a neutrino
n energy of ∼290 TeV with a 90% confidence
ower limit of 183 TeV (IceCube Collaboration
018). An automated alert notified the community
nds later, providing preliminary position and en-

stimates. Subsequent offline analyses led to a
ting right ascension of 77.43+0.95

−0.65 and declination
72+0.50
−0.30 (degrees, J2000 equinox, 90% contain-

egion). Soon after this release, the neutrino was
d to be spatially correlated with the gamma-ray
TXS 0506+056, whose flaring episode was ob-
by Fermi-LAT (Atwood et al., 2009) and by the

C Cherenkov telescopes (Aleksić et al., 2016),
bout 400 GeV, within the following days (Ice-
ollaboration et al., 2018). Based on this corre-
a strong multi-wavelength follow-up campaign

d the full electromagnetic spectrum and allowed
analysis of the broadband spectral energy distri-
(SED) of TXS 0506+056. Assuming a redshift
34 (Paiano et al., 2018), it was shown that the
magnetic radiation of the blazar can be well ex-

by leptonic processes, with a radiatively sub-
nt hadronic component compatible with the de-
of IC170922A (see e.g. Keivani et al. 2018 ).

The INTEGRAL observatory took part of the
tromagnetic follow-up of this source at energies
20 keV. Combining data from SPI-ACS and th
of the IBIS imager, an upper limit on the 8-s
peak flux at any time within ±30 minutes from th
time was estimated at the level of 10−7 erg cm−

From September 30th to October 24th, the lo
of TXS 0506+056 was serendipitously in the fi
view of INTEGRAL resulting to an effective exp
of 32 ks. The blazar was not detected in the I
data and thus an upper limit on the average fl
7.1 × 10−11 erg cm−2 s−1 and 9.8 × 10−11 erg cm
respectively in the energy range 20 keV – 80 ke
80 keV – 250 keV was set (3σ confidence level).

Even though those limits did not constrain the
of TXS 0506+056, INTEGRAL was the only i
ment able to cover the high-energy sky above ∼8
up to the MeV range. The energy range from t
keV to tens of MeV is particularly interesting to
strain hadronic processes on the SED of blazars
relativistic protons interacting with synchrotron
tons will produce secondaries whose synchrotron
sion leaves an imprint in the energy range 40 keV
MeV (Petropoulou and Mastichiadis, 2015). In s
ios where the hard gamma-ray emission of blaz
produced by photohadronic interactions, the featu
this process, also known as the Bethe-Heitler pai
duction process, may be comparable to the hard ga
ray flux produced by photo-pion processes and th
be an efficient way of constraining hadronic acc
tion in blazar relativistic outflows. In this contex
TEGRAL and next-generation hard X-ray/soft ga
ray instruments can play a crucial role in confirmi
association between high-energy neutrinos and bl

7.5. FRB counterparts
In March 2018, three new FRBs were detect

the Parkes telescope (FRB180301 see ATel #1
FRB180309 see ATeL #11385 and FRB18031
ATeL #11396). For each event, the rates of the I
GRAL “all-sky detectors” were searched for any i
sive transients at the time of the FRB (as in Savc
et al., 2017a). For the given FRB source loc
the best sensitivity was achieved with IBIS/ISG
SPI ACS, depending on the source spectrum.
TEGRAL did not detect any significant count
for these bursts, but set 3σ upper limits for th
2000 keV fluences of 4.0, 5.7 and 2.6e-7 erg
for FRB180301 (ATeL #11386), FRB180309
#11387) and FRB180311 (ATeL #11431), respect

The periodic nature of FRB 180916 allowe
servers to carry on targeted multi-wavelength
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: in one of them, INTEGRAL provided a 3σ up-
it on a 75–2000 keV fluence of any burst shorter
s (50 ms) of 1.8 × 10−7 (4 × 10−8) erg cm−2 (Pilia
020). Unfortunately, all three radio bursts found
lowest radio frequency of the Sardinia Radio
pe (∼350 MHz) occurred slightly more than one

efore the start of the INTEGRAL pointing ob-
on. Only the soft X-ray upper limit by XMM-
n were available in correspondence of the burst
y correspond to a limit in the 0.3 − 10 keV burst
sity of ∼ 1045 erg s−1. Similar results with radio
not associated with X-ray flares were reported

olz et al. (2020).
ndamental discovery has been made during an

period of the galactic magnetar SGR 1935+2154
0 (Hurley et al., 2020; Veres et al., 2020). This
ated with the emission of a “burst forest”, i.e.
bursts in a short time interval on April 27–28

r, 2020; Younes et al., 2020; Fletcher and Fermi
Team, 2020). INTEGRAL was observing the
c black-hole binary GRS 1915+105, when IBAS
d two very intense bursts from the direction of
gnetar. The brightest of the two was temporally
ent with FRB 200428 discovered by the CHIME
ARE2 radio telescopes (The CHIME/FRB Col-
ion et al., 2020; Bochenek et al., 2020). Its
emission was detected also by instruments on
ight-HXMT, Konus-WIND and AGILE satellites
al., 2020; Ridnaia et al., 2020; Tavani et al.,
The background-subtracted and dead-time cor-

light curve of the brightest burst, as measured
IS/ISGRI in the 20-200 keV energy range is
in Fig. 7.5, together with the IBAS localization

e times of radio flares. Spectral and temporal
s revealed that this burst was not brighter than
but it was harder than the others detected by IS-
d other satellites. It has substructures superim-

to a general Gaussian-like profile. Two of these
ks occurred just 6.5 ms after the radio pulses and
arated by 30 ms, exactly as the radio pulses. The
ime coincidence of the radio and X-ray emis-
uld be due to common origin of both compo-

n a relatively small region of the pulsar magne-
re (e.g., Lyutikov (2002); Wadiasingh and Timo-
019); Lyubarsky (2020)). However, models in-
emission at distances much larger than the light

r radius (Pc/2π = 1.5 × 1010 cm ) can produce
) simultaneous pulses due to relativistic Doppler
(e.g., Margalit et al., 2020a,b). The observation
-like radio emission and gamma-ray flares from
n galactic magnetar opens the possibility that a
of the currently known population of FRBs con-

Figure 3: The localization of the source by the IBAS softwa
in the inset, the background subtracted and deadtime correct
curve derived from IBIS/ISGRI data in the 20–200 keV ran
used an adaptive binning to ensure at least 40 counts per ti
All the times are in the geocentric frame and referred to to=1
UTC of April 28, 2020. The red line (adapted from Fig. 1
CHIME/FRB Collaboration et al. 2020) marks the position of
dio pulses, represented with two Gaussian curves centered at 0
s and 0.45545 s (adapted from Mereghetti et al. 2020).

sists of galactic magnetars so far unidentified at
wavelengths, while also providing strong suppor
magnetar origin of extragalactic FRBs.

7.6. Optical transient follow-up

High-cadence optical surveys opened the poss
to follow-up, in X-rays, sources first detected at
wavelengths. New transients can span large ran
luminosity. They can be associated to H-strippe
collapse supernovae or be extremes in supernova
ulations. There is a class of bright events outs
also supernovae with blue colors the so called Fas
Optical Transients (FBOT Drout et al., 2014). M
that explain these phenomena span from the inter
of explosion shock waves with circumstellar or
spheric material to prolonged energy injection f
central compact object.

AT 2018cow was discovered on 2018 June 16
ATLAS survey, as a rapidly evolving transient lo
within a spiral arm of the dwarf star-forming g
CGCG 137-068 at 60 Mpc. Margutti et al. (201
port on the first ∼100 days multi-wavelength foll
which uncovered, among others, a peculiar hard
component above ∼15 keV, which outshone the un
ing absorbed power-law components, detected at s
rays 7.7 days after the discovery and rapidly disa
ing after another 3 days. The soft components c
ued to evolve as t−1 for more than a month. This
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larger than that seen in supernovae and resem-
RBs in the local Universe. The hard X-ray emis-
hose cutoff at ∼50 keV is uniquely constrained
EGRAL, is interpreted as Compton reprocessing
ick equatorial disk that either shields the internal
or a central engine (like a magnetar). At later
the rapid ejecta expansion causes clearance of

ing material and the disappearance of the Comp-
p.
massive multi-wavelength follow-up campaign

BOT uncovered a new class of astronomical tran-
owered by a central engine and characterized by
us and long-lived radio plus X-ray emission. The
-ray component played a central role in the un-
ding of a Compton shield and motivates contin-
of this follow-up activity with INTEGRAL.

clusions and future perspectives

rly fifteen years after the INTEGRAL scientific
on started, the space observatory entered a new
g phase of its scientific life, playing a major role
ra of “Multimessenger astrophysics”. In fact, the
eccentric orbit coupled with a set of complemen-
tector features, providing continuous coverage of
ole sky, gives INTEGRAL unprecedented capa-
or the identification and study of the electromag-
diation associated with multi-messenger signals.

EGRAL provided, in most of the cases, the best
imits available to binary black hole mergers with
of emitted electromagnetic to gravitational en-
γ/EGW ∼< 10−7 − 10−5, clearly demonstrat-
absence of impulsive gamma-ray burst emission
poraneous with GW.
independent detection by INTEGRAL of the
amma-ray burst GRB170817A 1.7s after the
the GW signal, has shown a completely dif-

scenario in the case of NS-NS mergers, prov-
association with the binary neutron star merg-
nt GW170817 detected by the LVC. In fact, the
tion was immediately evident, due to the time
the two signals and the positional coincidence,
e overlapped error box, derived from gravita-

waves, INTEGRAL/SPI-ACS and Fermi/GBM,
d almost in real time. The GW170817 de-
from LVC and the corresponding detection of
0817A have been a fundamental step in multi-
ger astrophysics with a total combined statistical
ance of 5.3 σ for the joint GW-GRB detection.

firmly demonstrated the correlation between GW
n and the kilonova as a product of the NS-NS

l.

The 1.74s delay between the GW arrival time a
detection of gamma-rays, after a travel time of ∼
million years also places strict limits between the
of light and gravitational waves in the (not fully
uum) universe with an unprecedented accuracy.
thermore, the time delay of (+1.74 ± 0.05) s be
GRB170817A and GW170817 implies new boun
Lorentz Invariance Violation and revises the test
equivalence principle by constraining the Shapi
lay between gravitational and electromagnetic rad
Finally, we have used the time delay to constrain th
and bulk Lorentz factor of the region emitting ga
rays (Abbott et al., 2017a).

The low luminosity and flux of GRB 170817
suggested the possible existence of a population o
GRBs that are below instrument thresholds an
missed due to the lack of on-board trigger. Initial
results report detecting ∼ 80 SGRBs per year, com
to ∼ 40 triggered events per year. One of the on
and future activities will be to search for sub-thre
short GRBs in PICsIT and SPI-ACS data for u
gered events reported by GBM. This common
for past sub-threshold events can be used by the L
Virgo collaboration to search for low-significanc
signals. During the next LIGO-Virgo observing
near real-time sub-threshold detections for the co
search can be used to look for faint GW counte
and lead to follow-up observations across the EM
trum. Finally, the production of quasi real-time P
spectra, with a time resolution of 7.5 ms over 8 e
channels from 0.25 to 2.6 MeV is ongoing. Th
jor difficulty is the production of a reliable deco
tion matrix taking into account the different azimu
elevation angles of the detected burst. This will
plete the existing real-time processing, already sh
at the same time from each triggered or alerted
the count rates measured by SPI-ACS, IBIS/PICS
IBIS/VETO.

Fast radio bursts were thought to be linked to
netar giant flares, but the association of a a G
tic FRB with a gamma-ray flare of the ma
SGR 1935+2154 constituted a game changer with
tio of radio to X-ray luminosity of 2 × 10−5. No
has this association confirmed such a long-sought
ciation, but also opened the interesting possibilit
a fraction of FRBs could be of Galactic origin. O
other hand, tight X-ray upper limits on periodic
showed that often the X-ray luminosity must be a
three orders of magnitude less than in the observed
Radio upper limits on the Galactic magnetar flar
even tighter arriving to a range of radio to X-ray fl
values ∼ 10−11 (see Fig. 4). Despite this huge
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: Radio versus X-ray (starting from 0.5 keV) fluences for
d magnetar bursts. The range of FRB fluences corresponds to
of detections reported in the past years (Hurley et al., 2005;

ar et al., 2016; Kozlova et al., 2016; Scholz et al., 2017; Lin
20; The CHIME/FRB Collaboration et al., 2020; Bochenek
20; Scholz et al., 2020; Pilia et al., 2020; Karuppusamy et al.,
he purple region indicates a robust upper limit on the hard X-
ce of FRBs as derived with a high-duty-cycle detector, such
TEGRAL SPI-ACS (from Mereghetti et al., 2020).

iability, there is a huge discovery space open to
ipitous discoveries or to targeted observations of
ng FRBs or magnetar flaring periods. Indeed, not

emit X-rays and not all magnetar flares emit ra-
ves, but we need to investigate the proposal by
hetti et al. (2020) that spectral and timing char-
tics of gamma-ray flares may be linked to radio
n.
unique INTEGRAL performance discussed

are relevant also in the search for counterparts
ophysical neutrinos, as demonstrated in several
cases for which constraining upper limits were
ed.
lesson that can be learned from the INTEGRAL
described above, is that unanticipated uses of a

d can give important scientific contributions and
g results. By definition, it is difficult to optimize
ssion for an unforeseen science exploitation, but
eneral guidelines can be followed, as including

ssibility of reconfiguration of the on-board soft-
with the associated problem of maintaining the
d expertise for an extended time period). Also
ant are an accurate calibration of all the active
ts (including unconventional directions and en-
, as well as a complete characterization of both
d and spacecraft with an accurate mass model.
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er, M., Sauvageon, A., Tourrette, T., 2003. ISGRI: The INTE-
L Soft Gamma-Ray Imager. A&A 411, L141–L148. doi:10.
/0004-6361:20031367, arXiv:astro-ph/0310362.
, Lin, L., Xiong, S.L., Ge, M.Y., Li, X.B., Li, T.P., Lu, F.J.,
g, S.N., Tuo, Y.L., Nang, Y., Zhang, B., Xiao, S., Chen, Y.,
, L.M., Xu, Y.P., Liu, C.Z., Jia, S.M., Cao, X.L., Zhang, S.,
.L., Liao, J.Y., Zhao, X.F., Tan, Y., Nie, J.Y., Zhao, H.S.,
g, S.J., Zheng, Y.G., Luo, Q., Cai, C., Li, B., Xue, W.C.,
.C., Chang, Z., Chen, G., Chen, L., Chen, T.X., Chen, Y.B.,

, Y.P., Cui, W., Cui, W.W., Deng, J.K., Dong, Y.W., Du, Y.Y.,
.X., Gao, G.H., Gao, H., Gao, M., Gu, Y.D., Guan, J., Guo,
Han, D.W., Huang, Y., Huo, J., Jiang, L.H., Jiang, W.C., Jin,
, Y.J., Kong, L.D., Li, G., Li, M.S., Li, W., Li, X., Li, X.F.,

.G., Li, Z.W., Liang, X.H., Liu, B.S., Liu, G.Q., Liu, H.W.,
X.J., Liu, Y.N., Lu, B., Lu, X.F., Luo, T., Ma, X., Meng,
u, G., Sai, N., Shang, R.C., Song, X.Y., Sun, L., Tao, L.,
, C., Wang, G.F., Wang, J., Wang, W.S., Wang, Y.S., Wen,
Wu, B.B., Wu, B.Y., Wu, M., Xiao, G.C., Yang, J.W., Yang,

ang, Y.J., Yang, Y.J., Yi, Q.B., Yin, Q.Q., You, Y., Zhang,
, Zhang, C.M., Zhang, F., Zhang, H.M., Zhang, J., Zhang,
hang, W., Zhang, W.C., Zhang, W.Z., Zhang, Y., Zhang, Y.,
g, Y.F., Zhang, Y.J., Zhang, Z., Zhang, Z., Zhang, Z.L., Zhou,
Zhou, J.F., Zhu, Y., Zhu, Y.X., Zhuang, R.L., 2020. Iden-

tion of a non-thermal X-ray burst with the Galactic magnetar
1935+2154 and a fast radio burst with Insight-HXMT. arXiv
ts , arXiv:2005.11071arXiv:2005.11071.
Zhang, C.F., Wang, P., Gao, H., Guan, X., Han, J.L.,

, J.C., Jiang, P., Lee, K.J., Li, D., Men, Y.P., Miao, C.C.,
C.H., Niu, J.R., Sun, C., Wang, B.J., Wang, Z.L., Xu,
u, J.L., Xu, J.W., Yang, Y.H., Yang, Y.P., Yu, W., Zhang,
hang, B.B., Zhou, D.J., Zhu, W.W., Castro-Tirado, A.J.,
Z.G., Ge, M.Y., Hu, Y.D., Li, C.K., Li, Y., Li, Z., Liang,
, Jia, S.M., Querel, R., Shao, L., Wang, F.Y., Wang, X.G.,
X.F., Xiong, S.L., Xu, R.X., Yang, Y.S., Zhang, G.Q.,
g, S.N., Zheng, T.C., Zou, J.H., 2020. Stringent upper

on pulsed radio emission during an active bursting phase
e Galactic magnetar SGRJ1935+2154. arXiv e-prints ,
:2005.11479arXiv:2005.11479.
., 2016. Electromagnetic Counterparts to Black Hole Mergers
ted by LIGO. ApJ 819, L21. doi:10.3847/2041-8205/
2/L21, arXiv:1602.04735.
, D.R., Bailes, M., McLaughlin, M.A., Narkevic, D.J., Craw-
F., 2007. A Bright Millisecond Radio Burst of Extragalac-
rigin. Science 318, 777. doi:10.1126/science.1147532,
v:0709.4301.
i, F., Pittori, C., Verrecchia, F., Donnarumma, I., Tavani, M.,
relli, A., Giuliani, A., Antonelli, L.A., Caraveo, P., Cattaneo,
2017. AGILE Detection of a Candidate Gamma-Ray Pre-

r to the ICECUBE-160731 Neutrino Event. ApJ 846, 121.
0.3847/1538-4357/aa81c8, arXiv:1707.08599.
., Budtz-Jørgensen, C., Westergaard, N.J., Brand t, S., Ras-
en, I.L., Hornstrup, A., Oxborrow, C.A., Chenevez, J., Jensen,
Laursen, S., Andersen, K.H., Mogensen, P.B., Rasmussen, I.,
, K., Pedersen, S.M., Polny, J., Andersson, H., Andersson, T.,
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