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ABSTRACT

We present the calibration of the Dark Energy Survey Year 3 (DES Y3) weak lensing (WL) source galaxy redshift distributions
n(z) from clustering measurements. In particular, we cross-correlate the WL source galaxies sample with redMaGiC galaxies
(luminous red galaxies with secure photometric redshifts) and a spectroscopic sample from BOSS/eBOSS to estimate the redshift
distribution of the DES sources sample. Two distinct methods for using the clustering statistics are described. The first uses
the clustering information independently to estimate the mean redshift of the source galaxies within a redshift window, as done
in the DES Y1 analysis. The second method establishes a likelihood of the clustering data as a function of n(z), which can
be incorporated into schemes for generating samples of n(z) subject to combined clustering and photometric constraints. Both
methods incorporate marginalization over various astrophysical systematics, including magnification and redshift-dependent
galaxy-matter bias. We characterize the uncertainties of the methods in simulations; the first method recovers the mean z of
tomographic bins to RMS (precision) of ~0.014. Use of the second method is shown to vastly improve the accuracy of the shape
of n(z) derived from photometric data. The two methods are then applied to the DES Y3 data.

Key words: galaxies: distances and redshifts —cosmology: observations.

1 INTRODUCTION

The Dark Energy Survey (DES) is a photometric survey that has
imaged 5000 deg® of the sky. The DES Y3 ‘3x2’ analysis (DES
Collaboration 2021) using data taken during the first three seasons of
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observations constrains cosmological parameters by combining three
different measurements of two-point correlation functions: cosmic
shear (Amon et al. 2021; Secco et al. 2021), galaxy—galaxy lensing
(Prat et al. 2020), and galaxy clustering (Rodriguez-Monroy et al.
2020). The cosmic shear measurement probes the angular correlation
of more than 100 000 000 galaxy shapes from the weak lensing (WL)
sample (Gatti et al. 2021), divided into four tomographic bins. The
cross-correlation of galaxy shapes and the positions of red luminous
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galaxies identified by the redMaGiC algorithm (Rozo et al. 2016)
is measured by galaxy—galaxy lensing. Lastly, galaxy clustering
measures the autocorrelation of the positions of redMaGiC galaxies.
A magnitude-limited sample (Porredon et al. 2021) will be also
used as lens sample alternatively to redMaGiC in a second analysis
(Porredon et al. 2021), with the goal of improving the cosmological
constraints.

The correct cosmological interpretation of these measurements
relies on an accurate estimate of the redshift distributions of the
samples, which can otherwise lead to biases in the inferred cosmo-
logical parameters (e.g. Huterer et al. 2006; Hildebrandt et al. 2012;
Choi et al. 2016; Hoyle et al. 2018). Photometric surveys have been
relying on different methodologies to derive redshift distributions
(Hildebrandt et al. 2010; Sanchez et al. 2014), mostly based on
galaxies’ multiband photometry (photo-z methods, or PZ). However,
these methods are ultimately limited by the redshift ambiguities
in few-band colours, and the limited and incomplete spectroscopic
samples available to calibrate the colour—redshift relations.

Clustering-z methods (Newman 2008; Ménard et al. 2013; Choi
et al. 2016; Davis et al. 2017; Johnson et al. 2017; Morrison
et al. 2017; Gatti et al. 2018; van den Busch et al. 2020) offer an
alternative to standard photo-z methods to infer redshift distributions.
In short, clustering-z methods exploit the two-point correlation signal
between a photometric ‘unknown’ sample and a ‘reference’ sample
of high-fidelity redshift galaxies divided into thin bins, to infer the
redshift distributions of the photometric sample. One of the biggest
advantages of clustering-z methods is that the reference sample does
not have to be representative of the photometric sample. Clustering-z
methods (or WZ) have been in the past years successfully applied
to both data (Rahman et al. 2015, 2016a, b; Scottez et al. 2016;
Davis et al. 2017, 2018; Hildebrandt et al. 2017, 2021; Johnson
et al. 2017; Cawthon et al. 2018; Bates et al. 2019; van den Busch
et al. 2020) and simulations (McQuinn & White 2013; Schmidt et al.
2013; Scottez et al. 2017; Gatti et al. 2018), and they represent
one credible supplement to standard photo-z methods for the new,
upcoming generation of data sets (Scottez et al. 2017).

Clustering-z methods have been used both to provide an inde-
pendent redshift distribution estimate and to calibrate distributions
inferred from photo-z methods. In the DES Y1 cosmological anal-
ysis, we opted for the latter approach (Davis et al. 2017; Hoyle
etal. 2018). In particular, we used high-quality photometric redshifts
provided by redMaGiC galaxies (Rozo et al. 2016) to measure the
clustering-z signal with the WL source-galaxy sample. The use of
high-quality photometric redshifts rather than spectroscopic redshifts
was motivated by the higher statistical power of the redMaGiC
sample, owing to the large number of redMaGiC galaxies (650 000
for DES Y1) in the DES footprint. Due to the limited redshift range
of the redMaGiC sample, clustering-z estimates could not have been
used to determine n(z) in its entirety on their own, but they have been
used to calibrate the mean redshift of the distributions measured by
other DES photo-z methods (with the mean taken over the redMaGiC
z bounds). A similar approach has been implemented by the KiDS
team in their recent cosmological analysis (van den Busch et al.
2020; Hildebrandt et al. 2021), where they used cross-correlation
estimates to calibrate the mean redshifts inferred from other photo-z
methods. They used a number of different spectroscopic samples as
areference sample, which guaranteed a greater redshift coverage but
less statistical power compared to the use of redMaGiC galaxies.

The strategy for calibration of the WL redshift distributions for
DES Y3 improves in multiple respects on the Y1 strategy outlined in
Gatti et al. (2018). From the clustering-redshift side, we execute two
different methods to combine clustering information with redshift
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distributions from photometry. The first approach is to use clustering-
z to estimate the mean redshift (z),, and assign a clustering-z
likelihood to any candidate n(z) from photo-z techniques based on
the value of its mean (z)p, (similar to the DES Y1 analysis). We
will refer to this as the ‘mean-matching’ approach. The second, new
method is to pose both the clustering-z and the photo-z measurements
as probabilities p[D|n(z)] of the observational data D given redshift
distributions n(z); then to sample the full n(z) from the posterior
pln(z)] implied by multiplying these probabilities. We will refer to
this as the ‘full-shape’ method.

We furthermore improve over Y1 in the modelling of the clustering
signal, accounting for the redshift evolution of the galaxy-matter bias
and the clustering of the underlying dark matter density field, which
were neglected in the DES Y1 analysis. In the second method that
calibrates the shape of the redshift distributions, we also marginalize
over magnification effects. Finally, we use a combination of two
different reference samples: redMaGiC galaxies with high-quality
photometric redshifts; and a spectroscopic sample from the com-
bined BOSS (Baryonic Oscillation Spectroscopic Survey, Dawson
etal. 2013) and eBOSS (extended-Baryon Oscillation Spectroscopic
Survey, Dawson et al. 2016; Ahumada et al. 2020; Alam et al. 2021)
catalogues. Only redMaGiC galaxies were used in DES Y1. On one
hand, redMaGiC galaxies span the full DES Y3 footprint (Rodriguez-
Monroy et al. 2020) and are characterized by a higher number density
than BOSS/eBOSS galaxies, which cover only & 17 per cent of the
DES Y3 footprint. On the other hand, the latter sample spans a wider
redshift range and has better redshift estimates, which makes the
combination of the two samples desirable.

The fiducial photo-z estimates for the DES Y3 WL sample are
provided by a self-organizing map-based scheme (hereafter SOMPZ,
Buchs et al. 2019; Myles et al. 2021). The SOMPZ method provides
a means to generate samples of the n(z) for all tomographic bins
that encompass the uncertainties in the photometric inference of
the distributions. The mean-matching clustering-z method may be
used to confirm or adjust the n(z) samples generated by SOMPZ.
We use the full-shape method as the fiducial method for DES Y3,
generating samples of n(z) from the combined SOMPZ and clustering
likelihoods. In either route, the DES Y3 cosmological analysis is
done by sampling over the finite set of realizations generated by
SOMPZ+clustering-z.

We note that there exist other strategies to combine clustering-z
and photo-z estimates. For example, Sdnchez & Bernstein (2019) and
Alarcon et al. (2020) show how to combine photo-z and clustering-z
estimates using a hierarchical Bayesian model (Leistedt, Mortlock
& Peiris 2016). The application of these methods to DES data is left
for future work.

This paper is organized as follows. In Section 2, we describe the
two different methodologies used in DES Y3 to calibrate photo-z
posteriors using clustering-z estimation, and explain how to assign
a likelihood to the cross-correlation information. The simulations
and the data sets used in this paper are described and compared in
Section 3. In Section 4, we perform extended tests in simulations
assessing the systematic uncertainty of the methods. The calibration
on DES Y3 data is presented in Section 5, and in Section 6 we discuss
future prospects for this method and present our conclusions.

2 METHODOLOGY

We describe the clustering-z (WZ) methodology as generally as
possible in this section, deferring to Section 3 the description (and
the choice of the binning) of the particular samples adopted for DES
Y3.
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2.1 Modelling and measuring the correlation signal

Clustering-z methods rely on the assumption that the cross-
correlation between two samples of objects is non-zero only in the
case of overlap of the distribution of objects in physical space, due
their mutual gravitational influence. Let us consider two samples:

(1) An unknown sample, whose redshift distribution n,(z) has to
be measured, namely our WL source sample, and

(ii) A reference sample, whose redshift distribution n,(z) is known
(either from spectroscopic redshifts or from high-precision photo-
metric redshifts).

We compute the angular clustering signal w,, as a function of the
separation angle 6 between the unknown sample and the reference
population. Under the assumption of linear biasing and the Limber
approximation (Limber 1953), the clustering signal can be written as
(e.g. Krause et al. 2017):

wyr(0) = /dZ,nu(Z/)nr(Z,)bu(Z/)br(z/)wDM(e7Z/)+M(9)7 (1)

where n,(z) and n,(z) are the unknown- and reference-sample
redshift distributions (normalized to unity over the full redshift
interval), b,(z) and b,(z) are the linear galaxy-matter biases of the
two samples, and wpwm(6, 7)) is the dark-matter two-point angular
correlation function. The term M(0) refers to the contribution of
lensing magnification effects; description and full expressions for
the terms wpy(f, z') and M(6) are detailed below (equation 7 and
equation Al). Note that while we acknowledge that the assumption
of linear biasing is not expected to hold at small scales, we are
nevertheless confident to be able to estimate the systematic bias
introduced by this premise, as explained in Section 2.2. We also note
that the Limber approximation is a standard assumption in clustering-
z works, and it is expected to have a minimal impact on our results
(e.g. McQuinn & White 2013).

Following Ménard et al. (2013), the correlation function is mea-
sured as a function of angle, and averaged over angular scales to
produce a ‘scalar’ value via

Omax
Wyr = / do W(0)wu(0), 2
Omin
where W(0)x6~" is a weighting function. We adopt y = 1 to
yield optimal S/N on the scalar in the presence of shot noise. The
integration limits in the integral in equation (2) correspond to fixed
physical scales. In this work, we choose to span the physical interval
between 1.5 and 5.0 Mpc (Section 4). We use the Davis & Peebles
(1983) estimator for the cross-correlation signal,

NRr Du Dr(g)
NDr Du Rr(e)

where D,D,(0) and D,R.(0) are, respectively, data—data and data—
random pairs. The pairs are properly normalized through Np, and
Ng:, corresponding to the total number of galaxies in the reference
sample and in the reference random catalogue. If weights for the
reference catalogue of galaxies (or for the catalogue of randoms) are
provided, Np, (or Ng,) is the sum of the weights of the catalogue,
and D,D(0) (or DyR,(0)) is the weighted number of pairs. Note that
weights can also be assigned to the unknown sample; in that case,
the weighted number of pairs D,D,(0) (or D,R;(9)) also accounts
for the weights of the unknown sample. As in Gatti et al. (2018),
we use the Davis & Peebles estimator rather than the Landy &
Szalay (1993) estimator since the former involves using a catalogue
of random points for just one of the two samples. This allows us

wur(g) =

1, 3
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to avoid creating high-fidelity random catalogues for the DES Y3
source galaxy sample, whose selection function is very complex and
non-trivial to replicate, besides being computationally very costly.
For our analysis, we only rely on random points for the reference
sample, whose selection function and mask are well understood. We
note that in the rest of the paper we adopted the Davis & Peebles
estimator even when measuring the autocorrelation of the reference
samples, but we checked that using the Landy & Szalay estimator
lead to negligible variations.

Now we assume that the reference sample is divided into redshift
bins centred at z;, each narrow enough that we can approximate
n,, {(z) & ép(z — z;), with 8 p being Dirac’s delta distribution and the
integrands in equation (1) other than n, can be treated as constant.
Equations (1) and (2) become:

Wur(z:) & ny(2:)bu(z:)be(zi)Wpm(zi) + M (2:), 4)

where barred quantities indicate they have been averaged over
angular scales as per equation (2). In what follows we will, for
simplicity, drop the bar. The above quantity is always estimated at
the redshift z; of the i-th thin reference sample bin.

The goal is to use equation (4) to infer n,(z), the unknown redshift
distribution, from the multiple measures w,(z;). But it is important
to note that this equation follows from a simplifying assumption.
We assumed the galaxy-matter bias to be described by a single
number at all scales; this is true at large scales in the linear regime,
but we do not expect this to hold at the small scales used in this
work (1.5 to 5.0 Mpc). In the non-linear regime, even the fact
that the terms inside the integral factorizes into b.(z;)by(z;)wpm(z;)
is not guaranteed (Bernardeau et al. 2002; Desjacques, Jeong &
Schmidt 2018). The linear-bias assumption introduces a systematic
uncertainty that depends on the scales adopted and the samples under
study and that will be quantified in the following sections.

The evolution of the quantities b.(z;), by(z;), wpm(z;) and M(z;)
needs to be characterized to correctly recover the redshift distribution
of the unknown sample. We turn now to how to model or estimate
these terms.

(i) The galaxy-matter bias evolution of the reference sample
b, (z). As long as the redshifts of the reference sample are accurate
enough, and we assume linear biasing, we can estimate b.(z)
by measuring the angle-averaged estimate of the autocorrelation
function of the reference sample divided into thin redshift bins (6z
= 0.02) centred at z;:

we(zi) = /dz’ (b e i) wom(2). ®)

If the bins are sufficiently narrow so as to consider the biases and
wppm constant over the distributions, they can be pulled out of the
above integrals:

wi(zi) = bl (z)wpm(z:) / dz'n}(2). (6)

Knowledge of the redshift distributions of the narrow bins is then
required to use equation (6) to estimate b,(z;). Lastly, we need to
model wppm(z) to correctly recover by(z).

(ii) The galaxy-matter bias evolution of the unknown sample
by(z). In principle, the autocorrelation of the unknown sample
constrains this. However in our case, n,(z) is broad and unknown, and
b, likely varies substantially across the sample, so the information on
b, from the autocorrelation is weak and entangled with n, itself. The
degeneracy between b, and n, is the fundamental limiting factor
of clustering-z methods. Mitigation schemes exist, based on the
use of additional information to constrain the evolution of b,: e.g.

MNRAS 510, 1223-1247 (2022)
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Matthews & Newman (2010) use the additional constraints coming
from the autocorrelation function of the tomographic bins (without
dividing the samples into thin bins); or the method implemented
in van den Busch et al. (2020), who use the additional constraint
coming from the normalization of the redshift distribution of the
full unknown catalogue not divided into tomographic bins. However,
these methods are not free from shortcomings, so we decided not
to attempt correcting for b,. Since it is difficult to place a priori
constraints on b,, when forward modelling the clustering signal
we chose to parametrize it in a flexible way (see Section 2.2.2),
effectively treating it as a free function.

(iii) The dark matter two-point correlation function wpy(z).
This can be modelled assuming a given cosmology and a non-linear
power spectrum. At fixed z;, this can be written as:

20+ 1
won(z) = [ aowo) " = T Pueoss)

1 I+1/2
P .
X GPHG) NL( x(@) Z) @

where y is the comoving distance and H(z;) is the Hubble expansion
rate at redshift z;. Py(x) is the Legendre polynomial of order £. Py (,
x) is the 3D non-linear matter power spectrum at wavenumber k
(which, in the Limber approximation, is set equal to (I 4+ 1/2)/x(z;))
and at the cosmic time associated with redshift z;. We find that the
redshift evolution of wpwm(z;) depends little on the particular value
of cosmological parameters, whereas the dependence of the overall
amplitude of wpwm(z;) with respect to cosmology is absorbed by our
systematic functions. Based on this, we hold cosmology fixed when
computing wpp(z;), assuming the values in Planck Collaboration
VI (2020). We then verify a posteriori that this approximation is
valid by repeating our analysis using very different values for the
cosmological parameters (2, = 0.4, og = 0.7), finding that the
impact on our conclusions is negligible. Note that some of the
mitigation schemes adopted in literature to correct the galaxy-matter
bias evolution of the unknown sample also automatically estimate
wpm(z;) from the data (Matthews & Newman 2010; van den Busch
et al. 2020), but they are not adopted in this work.

(iv) Magnification signal M(z;). WL magnification (Narayan
1989; Villumsen, Freudling & da Costa 1997; Moessner & Jain 1998)
changes the observed spatial density of galaxies: the enhancement
in the flux of magnified galaxies can locally increase the number
density, as more galaxies pass the selection cuts/detection threshold
of the sample; at the same time, the same volume of space appears
to cover a different solid angle on the sky, generally causing the
observed number density to decrease. For a flux-limited sample, the
net effect is driven by the slope of the luminosity function of the
sample, here conveniently parametrized through the parameter o,
and it has an impact on the measured clustering signal. Formally, the
magnification term depends on the galaxy-matter bias and parameter
o of the two samples, as well as on the redshift distribution of
the unknown sample: M(z;; oy, oy, by, by, ny). More details about
our modelling of the magnification effects are given in Appendix A,
although we anticipate magnification effects have a negligible impact
on our analysis, due to our analysis choices. To keep our notation
light, when possible, we will simply indicate magnification effects
as M(z;), dropping the dependence on other factors.

Under the assumption of thin reference bins, linear galaxy-matter
bias, and using the linearized version of the equation describing
magnification effects (Appendix A), equation (4) becomes a linear
system of equations, and can be solved to obtain an estimate of 7,(z;).
This would be similar to standard clustering-z methods which use
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the cross-correlation signal as a starting point to infer the redshift
distributions of the unknown sample (Newman 2008; McQuinn &
White 2013; Ménard et al. 2013; Schmidt et al. 2013).

Alternatively, if an estimate of the n,(z;) is provided by e.g. a
photo-z method, equation (4) can be used to evaluate the expected
correlation signal wy(z;) and compare it to the one measured in data,
i.e. a forward modelling approach (see e.g. Choi et al. 2016).

This work represents a significant advancement over DES Y1,
because in the Y1 analysis none of the terms described above were
modelled. We assumed b,(z;), by(z;), and wpwm(z;) to be constant
within each photo-z bin, and used the simulations to estimate the
systematic error induced by this assumption. In DES Y1 we also did
not model M(z;), but we decided to exclude the redshift range (i.e.
the tails of the redshift distributions) where magnification effects
are expected to have a non-negligible impact. On the contrary, in this
work we model b,(z;), wpm(z;), and, depending on the method, M(z;).

2.2 Assigning likelihood to the cross-correlation information

We use the clustering data {w(z;), wi(z;)}, to place a likelihood
L [W Z|ny(z)] of obtaining the clustering-z data given some estimate
of the true n,(z). The clustering-z data will be used to evaluate the
likelihood of many candidate n,(z) functions, typically drawn from
some combination of PZ and spectroscopic data. In the DES Y1
analysis, such realizations were taken as n,(z) = np,(z + Az), where
np,(z) was a single ‘best” photo-z estimate and Az a free parameter.
The Y3 approach is more general, with many realizations of the
full function n,(z) being drawn. In any case we need only to define
L[WZ]|nu(z)]. To do so, we make use of two approaches, described
below.

2.2.1 Mean-matching method

This method works by compressing the n(z) functions to a single
statistic, their mean (z). In this ‘simpler’ method, we do not model
magnification effects, so the mean is taken over a restricted range of
z, where a reference sample is available and w(z) > M(z), such
that we can neglect magnification effects. For this method, cutting the
tails can be preferable even when estimates of magnification effects
in the tails are available. This is due to the fact that small errors in
the magnification estimates in the tails can have a large impact on
the mean of the redshift distribution, lowering the capability of the
method to constrain the mean redshift.

Following the DES Y1 analysis, we choose a fixed interval [z,
Zmax] = [<Z)pz - ZO‘pZ, <Z>pz + ZO’pZ], where <Z)pz and Op, are
the mean and root mean square of a canonical n,,(z). In case the
fixed interval includes a range where there is no reference sample
coverage, it is further reduced to ensure there are enough galaxies in
the reference sample to provide a meaningful clustering-z estimate
(see Section 4.1 for more details). We first create a nominal ‘naive’
estimator 7i,(z) using equation (4) which would be proportional to
an unbiased estimator if linear bias holds and b,(z) is constant:

wur(Z;)

, 8
bi(zi)wpm(z;) ®

ﬁu(zi) S8

Then we define mean redshifts for the clustering-z data and the

proposed n,,(z) as

S dz 2y (2)
fWZmax dZ ﬁu(z)

Zmin

©))

<Z)wz =
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S dzzmp2)
Lo dzng,(2)
The likelihood of the WZ data given a proposed n,(z) is then taken
to be a Gaussian distribution in the (z) values:

LIWZInu()] =N ((2)p — 2wz 012)) (11)

(2)pe = 10)

The uncertainty o (;y must incorporate the estimated measurement
noise and also systematic errors from shortcomings of the underlying
model. Section 4.1 gives the results of using simulations to set these
uncertainties. The assumption of Gaussianity is a reasonable choice
even in absence of systematics, as per the central limit theorem
(the mean redshift compresses the information from many different
redshifts). Moreover, we parametrize the impact of systematics
effects in such a way they can be described by a Gaussian likelihood,
and systematic effects dominate our total error budget.

2.2.2 Full-shape method

This method dispenses with the mean statistic and
simply compares the observed wy(z;) data to a model
Wyrlzi3n4(2), b(2), by(2), 2:(z), ay(2), s] that incorporates potential
systematic effects. The model is an alteration of equation (4):

Wur(z:) = nu(zi)be(zi))wom(zi) x Sys(zi, 8) + M(z;). (12)

The functions ny(z), b,(z), and M(z) are assumed to be given
beforehand, and wpy is calculated from theory as described in equa-
tion (7). The Sys function multiplies the clustering signal by some
redshift-dependent value that is parameterized by s = {sy, 52, ...}
that we will marginalize over. The role of the Sys function is to
absorb all uncertainties in b, and its redshift dependence, as well as
uncertainties due to failures in the linear bias model itself, and in the
determination of b,(z). The choice of Sys function and the priors on
its parameters are guided by simulations as described in Section 4.2.
As a rule of thumb, we expect the Sys function amplitude to slowly
vary across redshift, and to be of the same magnitude of a typical
galaxy-matter bias (i.e. around unity). We note that in principle we
could also have absorbed the redshift dependence of wpy, or the
magnification contribution M(z), into the Sys function. We did not
proceed this way since we know how to model these contributions,
although this comes at the expense of a more complex model. Lastly,
we note that formally the magnification contribution also depends
on the bias b,; this is marginalized separately, together with the
magnification parameter of the unknown sample «,, (more details are
given in Appendix A).

With a model for w, in hand, we assume that the measurement
errors in the data are Gaussian and define a likelihood

L[WZIny(z), bi(2), x(2), wpm(2)]

o8 /dS dp CXP [_%(wur - wur)T z:;l(wur - uA)ur) P(S)P(p),
(13)

where p = {b,. o, } enters in the modelling of the magnification term.
The data and model for w,, are taken here to be vectors over z;,
and X, is the covariance matrix of the data (from shot noise and
sample variance). The nuisance parameter sets s and p each have
their own priors. It is the extent of these priors that regulates the
level of systematic error allowed for in the inference of n,(z) from
the clustering-z data. The systematic function and these priors are
quantified in Section 4.2.

Clustering redshifts 1227

The covariance matrix X, is estimated from simulated data
through a jackknife (JK) approach, using the following expression
(Quenouille 1949; Norberg et al. 2009):

A Nk =D
z(xi,xj)_Tm;(xi —x,—) (xj—xj), (14)
where the sample is divided into Njg = 1000 subregions of roughly
equal area, x; is a measure of the statistic of interest (=w,,) in the
i-th bin of the k-th sample, and X; is the mean of the resamplings.
The jackknife regions are safely larger than the maximum scale
considered in our clustering analysis. The correction from Percival
etal. (2021) is implemented when computing the inverse covariance,
although it has a modest impact (~10 per cent on the amplitude of
the covariance) given the number of jackknife regions and the data
vector length.

Note that the clustering-z likelihood in equation (13) depends ex-
plicitly on the estimated bias and magnification coefficient b, and o,
of the reference sample, and depends implicitly on the cosmological
model through the dark-matter clustering wpy. Thus in principle, this
likelihood and the inferences on 7,(z) must be recalculated for each
change in cosmological model. We have, however, tested numerically
that the full expression for L[WZ|n(z)] has negligible dependence on
the cosmological parameters or the reference-sample properties once
the marginalization over systematic nuisances s and p are done. This
is because the systematic variables have enough freedom to absorb
the small changes in the model wrought by changes in cosmology.
It is therefore allowable for us to compute equation (13) using a
fiducial cosmology and fiducial values of b, and «;, and use the
inferred redshift distributions in a cosmological inference that might
vary these parameters.

3 DATA AND SIMULATED DATA

This section describes the various photometric and spectroscopic
catalogues that feed into the clustering-z measurements. The full
analysis is also conducted on simulated catalogues; for each element
of the real analysis, we also describe how its simulated counterpart
was generated.

3.1 DES Y3 data

The DES observed ~5000 square degrees of the Southern hemisphere
in five different broad photometric bands (grizY) over 6 yr using
the Dark Energy Camera (DECam, Flaugher et al. 2015), a 570-
megapixel camera built by the DES Collaboration and stationed at
the Cerro Tololo Inter-American Observatory (CTIO) 4-m Blanco
telescope. DES will measure the shapes of about 300 million galaxies
up to redshift z ~ 1.4. In this paper, we focus on the analysis of the
first 3 yr (Y3) of observations. DES Y3 data span the full area of
the survey, 4143 deg? after masking for foregrounds and problematic
regions, a major advance over the 1321 deg? of DES Y1 (Drlica-
Wagner et al. 2018; Troxel et al. 2018). The complete DES (Y6)
reaches greater depth than Y3 data; furthermore, the data are more
uniform in depth.. The total number of objects detected in DES Y3
is ~ 390 000 000. Object detection and measurements are described
in Sevilla-Noarbe et al. (2021).

3.2 Buzzard N-body simulation
We use one realization of the DES Y3 Buzzard catalogue v2.0

(DeRose et al. 2019). Initial conditions were generated using 2LPTIC
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Figure 1. Redshift distributions of the redMaGiC samples, binned using the
redMaGiC photo-z estimates, in data and in simulations.

(Crocce, Pueblas & Scoccimarro 2006) and the N-body run using
L-GADGET?2 (Springel 2005). Cosmological parameters have been
chosen to be 2, =0.286, 05 =0.82, 2, =0.047, n, =0.96, h =0.7.
Light-cones are generated on the fly starting from three boxes with
different resolutions and size (1050°, 26003, and 40003 Mpc3h~3
boxes and 14003, 20483, and 20483 particles), to accommodate the
need of a larger box at high redshift. Haloes are identified using the
public code ROCKSTAR (Behroozi, Wechsler & Wu 2013) and they
are populated with galaxies using ADDGALS (DeRose et al. 2019).
Galaxies are assigned magnitudes and positions based on the relation
between redshift, -band absolute magnitude, and large-scale density
found in a subhalo abundance matching model (Conroy, Wechsler &
Kravtsov 2006; Lehmann et al. 2017) in higher resolution N-body
simulations. SEDs are assigned to galaxies from the SDSS DR7
Value Added galaxy catalog (Blanton et al. 2005) by imposing the
matching with the SED-luminosity—density relationship measured
in the SDSS data. SEDs are K-corrected and integrated over the DES
filter bands to generate DES grizY magnitudes. Lensing effects are
calculated using the multiple plane ray-tracing algorithm CACLENS
(Becker 2013), which provides weak-lensing shear, magnification,
and lensed galaxy positions for the light-cone outputs.

3.3 Reference sample 1: redMaGiC galaxies

The first reference sample used in this clustering-z analysis consists
of DES redMaGiC galaxies. The redMaGiC algorithm selects red
luminous galaxies with high-quality photometric redshift estimates
(Rozo et al. 2016). This is achieved by fitting each galaxy to a
red sequence template; galaxies are then selected only if they pass a
goodness of fit and luminosity threshold. In DES, redMaGiC galaxies
are used as lens sample in the galaxy—galaxy lensing analysis and
in the clustering analysis (Prat et al. 2020; Rodriguez-Monroy et al.
2020). Two samples are selected with different number density by
means of two distinct luminosity thresholds: a first sample called
‘high density’ selected with a cut L/L* > 0.5 and a sample called
‘high luminosity’ selected with a cut L/L* > 1. A combined sample
is then obtained by joining these two samples, using the high-density
sample for redshifts z < 0.65, the high-luminosity sample for higher
redshifts.

In simulations, the redMaGiC sample is selected with the same
algorithm used in the data. A comparison between the redshift
distributions for the redMaGiC samples in data and in simulations
is shown in Fig. 1, illustrating the good agreement between the two.

MNRAS 510, 12231247 (2022)

Small differences are due to small discrepancies in the evolution
of the red-sequence between the simulation and the data. Both in
simulations and in data, the redMaGiC sample is divided into 40
bins of width Az = 0.02 spanning the 0.14 < z < 0.94 range
of the redMaGiC catalogue.! The particular choice of the bin
width is not expected to impact our conclusions, as long as bins
are small enough compared to the typical variation scales of the
WL n(z) and the galaxy-matter biases of the two samples. The
total number of redMaGiC galaxies is 3041935 in the data, and
2594 036 in the simulation. The difference in the number density
is due to the aforementioned discrepancy in the evolution of the
red-sequence between data and simulations. This implies that the
statistical uncertainties of the clustering-z estimates obtained using
the redMaGiC sample are larger in simulations compared to data. We
do not expect this to be important, as we show in Section 4.1 that the
clustering-z methodology is dominated by systematic uncertainties,
and the statistical uncertainties are negligible.

We compare the typical redMaGiC photo-z scatter and bias found
in data versus in simulations in Fig. 2. Since only a portion of the
data have spec-z information, we reweight the magnitude distribution
of the spectroscopic sample such that it matches the magnitude
distribution of the redMaGiC galaxies before computing the statistics
shown in Fig. 2. This reweighting is performed separately for each
redshift bin. Note that the typical scatter of redMaGiC photo-z is
similar to our bin width, which might call into question the choice of
bin width for redMaGiC galaxies. However, we verify in Section 4.1
that even with this set-up, redMaGiC photo-z uncertainties are not a
dominant source of systematic error for our methodology. Therefore,
we decided that using a larger bin width for redMaGiC galaxies was
not necessary.

Using cross-correlation techniques, Cawthon et al. (2020) noted
that photo-z uncertainties in redMaGiC galaxies at z > 0.8 might
be underestimated. We do not think this constitutes a problem
for the current analysis, as redMaGiC photo-z uncertainties are
a subdominant systematic in our methodology (Section 4.1), and
clustering-z constraints at z > 0.8 are driven by the BOSS/eBOSS
sample (Section 4.2.2).

A catalogue of random points for redMaGiC galaxies is generated
uniformly over the footprint. Both in data and in simulations, weights
are assigned to redMaGiC galaxies such that spurious correlations
with observational systematics are cancelled. Note that due to
low-statistics issues, the weights do not resolve fluctuations on
scales relevant for this work, but only capture large-scale spurious
correlations. The methodology used to assign weights is described
in Rodriguez-Monroy et al. (2020), and it is the same for data
and simulations. The main difference between data and Buzzard
simulations is that the latter only models depth variations across the
footprint, while data are subject to a larger number of systematics
which are not modelled in simulations. This should not affect any
conclusion drawn here: the weights remove the spurious dependence
of the number density with respect to any systematic, regardless of
their number, at least at the level needed for two-point correlation
functions to be unbiased (Rodriguez-Monroy et al. 2020). This of
course holds as long as all the systematics affecting the data are
taken into account when producing the weights.

'We note that the simulated redMaGiC sample spans a slightly wider range in
redshift; we none the less cut the redshift interval at z = 0.90 to be consistent
with the data.
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Figure 2. The bias (left) and scatter (right) of z,.qmacic for the simulated redMaGiC sample (solid lines) compared to the data (dashed lines).
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Figure 3. Spatial coverage of the two reference samples used in this work.
Purple indicates the coverage by redMaGiC galaxies, pink indicates the
coverage by BOSS and eBOSS galaxies.

3.4 Reference sample 2: spectroscopic galaxies

The second reference sample used in this work is a combination of
spectroscopic samples from the Sloan Digital Sky Survey (SDSS,
Gunn et al. 2006; Eisenstein et al. 2011; Blanton et al. 2017).
In particular, we combine SDSS galaxies from BOSS (Dawson
et al. 2013; Smee et al. 2013) and from eBOSS (Dawson et al.
2016; Ahumada et al. 2020; Alam et al. 2021). The BOSS sample
includes the LOWZ and CMASS catalogues from the SDSS DR 12,
fully described in Reid et al. (2016), while we included the large-
scale structure catalogues from emission-line galaxies (ELGs, see
Raichoor et al. 2017 for the target selection description), luminous
red galaxies (LRGs, target selection described in Prakash et al. 2016),
and quasi-stellar objects (QSOs) (Hou et al. 2021) from eBOSS,
which were provided to DES for clustering-zs usage by agreement
between DES and eBOSS. The different samples are stacked together,
and used as one single reference sample in this work. Each sample
comes with its own catalogue of random points, which account for
selection effects. Different catalogues of random points are stacked
together. We made sure the ratio of the number of randoms with
respect to the number of galaxies was the same for each random
catalogue before combining them. Both in simulations and in data,
the BOSS/eBOSS sample is divided into 50 bins spanning the 0.1 <
z < 1.1 range of the catalogue (width Az ~ 0.02). The area coverage
is smaller compared to redMaGiC galaxies, as shown in Fig. 3. The

Table 1. List of the spectroscopic samples from BOSS/eBOSS overlapping
with the DES Y3 footprint used as reference galaxies for clustering-zs in this
work.

Spectroscopic samples

Name Redshifts Ngal Area

LOWZ (BOSS) z~[0.0, 0.5] 45671 ~860 deg®
CMASS (BOSS) z ~[0.35,0.8] 74186 ~860 deg2
LRG (eBOSS) z € [0.6, 1.0] 24404 ~700 deg?
ELG (eBOSS) z €[0.6, 1.1] 89967 ~620 deg2
QSO (eBOSS) z€[0.8, 1.1] 7759 ~700 deg?

redshift distribution of the samples is shown in Fig. 4, and the area
coverage and number of objects of each sample are summarized in
Table 1 . Note that some of the galaxies in the BOSS/eBOSS sample
are also in the redMaGiC catalogue: ~1 per cent of the redMaGiC
galaxies are matched to ~10 per cent of the BOSS/eBOSS galaxies,
within 1 arcsec. We did not remove these galaxies from the redMaGiC
sample, as they have a negligible impact both on our constraints and
on the covariance between the two samples (as it will be clear in the
following sections, the constraints from both samples are systematic-
dominated).

To replicate the spectroscopic BOSS/eBOSS sample in simula-
tions, we selected bright galaxies with similar sky coverage and
redshift distribution as the ones in data. We did not try to further
match other properties of the sample, e.g. the galaxy-matter bias
likely differs from that of the real data. We note that the clustering-z
methodology corrects for the reference bias, so at no point in the
analysis of the real data are we assuming that the simulations have
the same bias.

3.5 WL sample

The WL sample in data is created using the METACALIBRATION
pipeline, which is fully described in Gatti et al. (2021). After creation
of the DES Y3 ‘Gold’ catalogue (Sevilla-Noarbe et al. 2021), the
METACALIBRATION pipeline measures the shapes of each detected
object. Selection cuts for the sample are described in Gatti et al.
(2021) and are chosen from results of tests on both sky data and image
simulations (MacCrann et al. 2022), and are designed to minimize
systematic biases in the shear measurement. Galaxies are weighted
by the inverse variance of shear measurement, which increases
the statistical power of the catalogue. The final sample comprises
100204 026 objects, for an effective number density of neg = 5.59
gal arcmin~2. Galaxies are further divided into four tomographic

MNRAS 510, 1223-1247 (2022)
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bins, and redshift distribution estimates for each of the tomographic
bins are provided by the SOMPZ method (Buchs et al. 2019; Myles
et al. 2021). The tomographic bins are selected such that they have
roughly equal raw number density.

The WL sample is reproduced with high fidelity in the Buzzard
simulation by applying flux and size cuts to the simulated galaxies
that mimic the DES Y3 source selection thresholds. The WL galaxy
sample in Buzzard is selected with the aim of reproducing the same
selection applied in DES Y3 data in terms of size, signal-to-noise
ratio, and colours. Shape noise has been added to the galaxies to
match the measured shape noise of the DES Y3 WL sample.

3.5.1 Photo-7 estimates: SOMPZ

The SOMPZ method uses spectroscopic and multiband photometric
information, and data from a number of deep fields (Hartley et al.
2022) where additional photometry in the infrared bands YJ/Ks and
u-band is available, besides the standard 5-band (grizY) photometry
available in the DES wide field. This additional information is used
to break the degeneracies in the photo-z estimates of the DES wide-
field galaxies (which have fewer bands available). This is achieved
by creating two Self-Organizing Maps (SOM, Kohonen 1982), one
mapping the deep/spectroscopic galaxies into a 2D grid of cells using
their 8-band fluxes, and another mapping the WL sample galaxies
into a 2D grid using the riz photometry. A probabilistic mapping
from the wide-field SOM to the deep-field SOM is generated using
the ‘Balrog’ source-injection simulations (Everett et al. 2020) and
a map from the deep-field SOM to redshift is estimated using the
spectroscopic data.

The tomographic bins are constructed as follows: a first set of edge
values are arbitrarily selected. Each galaxy of the redshift sample is
then assigned to the tomographic bin in which its redshift estimate
falls. A number of galaxies at this point share the same photometry
cell of the wide-field SOM and same tomographic bin, so the cell in
its entirety is assigned to the bin to which the majority of its galaxies
live. The initial bin edges are adjusted to yield approximately the
same number of galaxies, and finally the whole procedure is repeated
with the new bin edges. After completing this procedure, the final
bin edges are [0.0, 0.358, 0.631, 0.872, 2.0] for the Y3 WL source
catalogue.

The full Y3 SOMPZ procedure is described in Myles et al.
(2021). A number of factors contribute to the error budget of the
method: (1) shot noise (i.e. the limited number of galaxy redshifts
available); (2) sample variance (i.e. the fact that the spectroscopic and
deep fields span a limited area); (3) systematic uncertainties in the
spectroscopic/multiband photometry samples; (4) uncertainty in the
methodology in general; (5) photometric calibration uncertainties in
the Y3 deep fields, i.e. the uncertainty on the zero-point calibration
in each band.

The total error budget is dominated by the photometric calibration
uncertainty in the low-redshift bin, while it is dominated by sample
variance and biases in the spectroscopic/multiband photometric
samples in the high-redshift bins (Myles et al. 2021).

The SOMPZ method incorporates methods for assessing the like-
lihood L[PZ|n,(z)] of obtaining the various SOMPZ data elements
(SOM cell counts, etc.) given a candidate set of n,(z) redshift
distributions for the tomographic bins, which account for shot noise
and sample variance in the various catalogues used by SOMPZ.
The construction of this likelihood and the methods for sampling
candidate n(z) distributions from it are given by Sdnchez & Bern-
stein (2019). Potential selection biases in the spectroscopic redshift
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Figure 4. Redshift distribution of the BOSS/eBOSS sample in data.

assignments are estimated by compiling n(z) realizations obtained
by calibrating with three different sets of spectroscopic/multiband
photometric samples. Redshift uncertainties related to the zero-point
calibration are added after the SOMPZ realizations are informed by
the clustering measurements (Myles et al. 2021). This is done for
efficiency reasons and it does not affect the main results of this work.
The SOMPZ process is completely reproduced in simulations,
including the creation of spectroscopic catalogues from small-
area surveys, but these simulations do not take into account the
uncertainties related to unknown redshift selection biases in the
spectroscopic/multiband samples. As aresult of the slight differences
of the simulated Y3 source sample data equivalent, the bin edges in
the equivalent Buzzard catalogue are [0.0, 0.346, 0.628, 0.832, 2.0].
Estimates of the n(z) obtained in simulations are shown in Fig. 5.

4 RESULTS ON SIMULATIONS AND
SYSTEMATIC ERRORS

In this section, we present the results of our two calibration strategies
performed in simulations. In particular, we aim to evaluate the sys-
tematic uncertainties of each method, and verify that the calibration
procedure in simulations works as expected. Note that at no point
are the simulations used to make corrections to the data; rather the
simulations are used to (1) estimate the level of uncertainty to assign
to various systematic errors, and (2) validate that the method yields
results for n(z) consistent with truth.

Before focusing on the details of the two calibration procedures,
we show in Fig. 6 the redshift distributions estimates obtained
using the clustering-z n,(z) estimator (following equation 8) on
simulations, compared to the true distributions. The angular scales
considered in the clustering measurements have been chosen to span
the physical interval between 1.5 and 5.0 Mpc. These bounds (which
are applied to the data as well) are selected so that the upper bound
is below the range used for the w(0) statistics used in cosmological
analyses, thus allowing the clustering-z likelihoods to be essentially
statistically independent of cosmology, and permitting us to produce
n(z) samples in an MCMC chain that runs before, and independent
of, the cosmology. The values of b, in the clustering-z analysis are
not required to match those used in the cosmological analyses. The
lower bound is chosen to produce high signal-to-noise ratio S/N while
mitigating failures of the linear bias model.

We start with an idealized case: the distributions shown in Fig. 6 are
obtained using redMaGiC galaxies as a reference binned using true
redshift. In simulations we also have an accurate estimate of b,(z),
obtained from the autocorrelations of each of the tomographic bins of
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Figure 5. SOMPZ redshift distributions, as estimated in simulations (upper panels) and in data (lower panels), for the four tomographic bins considered in this
analysis. The bands represent the 68 per cent confidence interval spanned by the SOMPZ n(z) realizations.
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Figure 6. Sources redshift distributions estimated using clustering-z in simulations for an idealized set-up (see the text in Section 4), compared to the truth
(black lines). The top panels show the redshift distributions; the middle panels show the ratio between the true n(z) and the n(z) estimated using clustering-z;
and the bottom panels show the mean of the redshift distributions. The red lines represent the clustering-z estimates obtained using the estimator introduced
by equation (8). The blue lines represent the clustering-z estimated obtained further correcting for the term by, which is only possible in simulations. The
four different tomographic bins used in the DES Y3 cosmological analysis are shown. We used redMaGiC galaxies as the reference sample, binned using true
redshifts. For this plot, we also subtracted from the clustering-z n(z) estimates the expected magnification contribution in simulations (Appendix A); this has
only a mild effect at high redshift (z > 0.6) for the first two bins. The redshift distributions are normalized over the same interval. The grey shaded regions
indicate the interval considered for the mean matching method. The mean of the distributions shown in the bottom panels is computed only considering the grey

intervals. Error bars only include statistical uncertainties.

the unknown sample, divided into thin bins of width Az = 0.02.2 This
is not possible in data since the precision of the photometric redshift

2In order to measure the autocorrelations, we generated randoms properly
accounting for the WL mask. We also created systematic weights for the WL
sample using the same procedure used for redMaGiC galaxies (although we
found they have a negligible impact).

is not sufficient to divide the sample in bins of adequate width. Fig. 6
shows the impact on the estimated n(z)’s of assuming we know b,(z)
with good accuracy (in cyan), dividing equation (8) by b,(z). We
note that correcting for b, drives both the shape of the distributions
and the mean value closer to the truth, which are otherwise biased.
As we cannot estimate b, in data, this highlights that variation in b,
introduces a systematic uncertainty that has to be quantified. Note
that the errors bars in Fig. 6 only include statistical uncertainties.
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Table 2. Mean-matching method: We display the total systematic error budget on the mean redshift, for the two
reference samples used in this work. We also report the contribution due to each single source of systematic uncertainty,
as a function of tomographic bin. As for the redMaGiC systematic, we also report in parentheses the values of the
uncertainties we would have obtained if we had not included the correction factor in the bias estimation (see Section 4.1).

Systematic tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4
methodology: 0.002 £ 0.003 0.001 £ 0.002 0.000 =+ 0.001 0.001 £ 0.002
magnification: 0.004 0.005 0.003 0.004
WL galaxy bias unc: 0.013 0.013 0.013 0.013
redMaGiC syst: 0.000 (0.014) 0.001 (0.007) 0.002 (0.000) 0.005 (0.003)
total systematic redMaGiC: 0.014 0.014 0.014 0.015
statistical redMaGiC: 0.003 0.002 0.001 0.002
total systematic BOSS/eBOSS: 0.014 0.014 0.014 0.014
statistical BOSS/eBOSS: 0.007 0.006 0.004 0.006

In the following subsections, we tested the accuracy of our
calibration procedure using the two different approaches outlined
in Section 2, i.e. the mean-matching and the full-shape methods.

4.1 Method 1 (mean-matching): systematic uncertainties
estimation in simulations

We test in this section the mean-matching clustering-z photo-z
calibration method. The metric used here to assess the accuracy of
our methodology is the difference between the mean of the recovered
redshift distribution and the true mean, as follows:

Az) = (2 te — (Dhwzl- (15)

As described in Section 2.2, (z) is calculated over a restricted redshift
interval (z)sompz — 20sompz < 7 < (Z)sompz + 20 sompz to reduce
the impact of magnification®. The redshift intervals are of course
also truncated at the bounds of the reference sample. The same
redshift intervals are used for simulations as for data (see Fig. 6).
The intervals used are [0.14,0.62], [0.18,0.80], [0.46, 0.90], [0.48,
0.90] for redMaGiC and [0.10,0.62], [0.18,0.80], [0.46, 0.98], [0.48,
1.06] for BOSS/eBOSS.

4.1.1 Systematic uncertainties

We quantify here the systematic uncertainties of the mean matching
method. Since the mean-matching method reduces each n(z) to its
windowed mean (z), the systematic errors will be quantified by the
uncertainties that they imply should be added (in quadrature) to
the o, values of equation (11). We note that the absolute value of
the terms in equation (8) are irrelevant for this method, as we are
only interested in how they evolve with redshift. In principle, in
the absence of magnification, assuming perfect reference sample
redshift accuracy (e.g. redMaGiC redshifts to be exact), assuming
that we are able to successfully estimate all the terms in equation (8),
and assuming that we know the galaxy-matter bias evolution of
the unknown sample, we should correctly recover the mean of the
unknown redshift distributions. The above assumptions might not
hold when applying this methodology in data, causing a systematic

3In principle, performing a symmetric cut in comoving distance rather than
in redshift should reduce the impact of magnification effects more efficiently.
We followed the DES Y1 prescription, which implements a symmetric cut in
redshift. We note, however, that a symmetric cut in distance (rather than in
redshift) would have changed the location of the interval edges by at most Az
~ 0.03, hence it would have had a negligible impact on our methodology.
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bias in the calibration, In particular, A (z) can differ from zero because
of the following reasons:

(1) The approximations that allowed us to factorize the integral
in equation (1) into b.(z)b,(z)wpm(z) might not hold (e.g. linear
bias model, infinitesimally thin bins), leading to inaccuracies in the
modelling at small scales. We will quote these as methodology
systematics. This systematic does not depend on the reference
sample used.

(i1) Magnification contribution. In the mean matching approach,
we do not correct for magnification effects, as we cut the tails of
the redshift distributions. This systematic quantifies how effective
our cut is. We will refer to this as magnification systematic. This is
a subdominant effect in our total error budget. We defer a detailed
description of magnification effects and how they are evaluated to
Appendix A.

(iii) The clustering-z estimator ignores the redshift evolution of
the galaxy-matter bias of the unknown sample (WL galaxy bias
uncertainty). This systematic does not depend on the reference
sample used.

(iv) The reference sample is binned using photometric redshifts
and not spectroscopic redshifts. This only applies to the redMaGiC
case. We will refer to this as redMaGiC systematic.

We studied the performance of the estimator described in equation (8)
for four cases, starting from an ideal environment free from the effects
of systematics and introducing one uncertainty at the time, leading to
a more complex, realistic case. This allows us to estimate separately
the magnitude of each systematic independently. In the following
tests, we will only use the redMaGiC galaxies as a reference sample
to estimate the systematic uncertainties. Indeed, the BOSS/eBOSS
sample should be affected by the same systematic uncertainties as
the redMaGiC sample, except for the redMaGiC systematic.

We begin with the most ideal case possible, shown in Fig. 6, which
we already described at the beginning of this section. Recall that for
this case we used redMaGiC galaxies as a reference binned using
true redshifts, we corrected for the bias evolution of the unknown and
reference sample, and we corrected for the redshift evolution of the
clustering of dark matter. The A(z) mean for this case provides an
estimate of the methodology systematic, and it is reported in the first
line of Table 2. This value is compatible with zero within statistical
uncertainty (estimated through jackknife resampling), indicating
that for the scales considered in this work (1.5-5.0 Mpc), the
approximation of linear bias model, and infinitesimally thin redshift
bins are good enough for the purpose of calibrating the mean with
clustering information.
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We next quantify the impact of ignoring the redshift evolution of
the galaxy-matter bias of the unknown sample b,(z), as this cannot be
measured in data. We estimate the size of this effect in the simulation
by assuming a constant b, for each tomographic bin, and we obtain
the resultant shifts of A(z) of (0.010,0.013,0.006,0.001). The effects
of redshift-dependent b,(z) on the mean and on the shape of the
clustering-z n(z) are shown in Fig. 6: the red and blue values differ
only in the presence of the b,(z) term in the latter. Given that the WL
galaxy bias uncertainty is the dominant uncertainty of the clustering-
z method, we take the conservative approach of assigning an RMS
systematic value to every bin that is equal to largest A(z) found in
Buzzard, i.e. A(z) = 0.013 estimated for the second bin. This o,
contribution is listed in the third row of Table 2.

Finally, we estimate the systematic uncertainty in (z) due to
inaccuracies in the bin-shape integral in equation (6) for redMaGiC
galaxies when they are placed into thin bins using their photo-
z estimates. This is done in the simulation by comparing the (z)
estimates obtained when binning the redMaGiC galaxies using true
redshifts to estimates obtained when binning using redMaGiC photo-
z. The photo-z accuracies of redMaGiC galaxies are better than those
of the WL sample, but not as good as those of a spectroscopic sample.
This can introduce two kinds of errors in (z): first, if all redMaGiC
photo-z estimates were biased towards lower redshift, we would infer
a similarly biased n(z). Second, the change in shape or width of the
n.(z) because of photo-z errors can cause f dzn,(z)* to be wrong
which propagates to a shift in (z).

The shifts A(z) that result from binning the redMaGiC galaxies
using redMaGiC photo-z rather than true redshifts are given in the
fourth row of Table 2. We do not report statistical uncertainties, as
they are negligible, since the shifts are computed taking the difference
of two highly correlated measurements. The shifts are relatively
small and unimportant in comparison to the b, uncertainties. We
also report in parentheses the errors in (z) we would have obtained
had we not included the correction factor of equation (6) when
estimating the galaxy-matter bias of redMaGiC galaxies. Given the
difference between the two estimates, the correction due to the nf(z)
integral clearly cannot be neglected when applying the methodology
to data. Lastly, we also estimated the redMaGiC A(z) using theory
data vectors of the cross-correlation signal w,,, and modelling the
redMaGiC redshift distributions in each reference bin assuming the
redMaGiC photo-z uncertainties estimated from data (Fig. 2), rather
than the ones from the Buzzard simulation. This test delivered A(z)
of the same order of magnitude as the ones estimated directly in
Buzzard and reported in Table 2.

Before reporting the total error budget for the mean matching
method, we validate the assumption that we can assume a fixed
cosmology when calculating the clustering of dark matter, wpy(z).
Assuming different values for the cosmological parameters (2, =
0.4, o3 = 0.7) results in a negligible shift, A(z) < 1073,

The total error budget is reported at the end of Table 2, and is
obtained by adding in quadrature all the single sources of errors,
assuming they are independent. The dominant source of uncertainty
is the potential redshift evolution of the WL sample, which we do
not model in the mean-matching analysis of the real data or in the
validation analyses of the simulations, which are described next.

4.1.2 Application of the method in simulations

In order to apply the mean matching method in simulations, we
run our clustering measurements using a realistic set-up, for the
two reference samples considered in this work. Fig. 7 compares the
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n(z) distributions obtained from simulations with redMaGiC and
BOSS/eBOSS as reference samples. In particular, redMaGiC galax-
ies have been binned using the redMaGiC photo-z estimates rather
than the true redshifts and we did not correct for the bias evolution
of the unknown sample. This plot highlights the differences between
the two samples: redMaGiC has a smaller statistical uncertainty, but
the BOSS/eBOSS sample has a wider coverage in redshift, helping
especially at higher z. The distributions are compatible within errors.
We note that in order to correct for the bias evolution of the reference
sample when using redMaGiC galaxies as a reference, we have to ap-
ply a correction to the width of redMaGiC bins, as described in equa-
tion (6), to account for the broader distributions that redMaGiC bins
have compared to a top-hat bin. This correction is shown in Fig. 8.

Once we have n(z) clustering-z estimates, we first verify that
the clustering-z windowed mean redshift estimates obtained using
the two reference samples are both compatible within uncertainties
(including systematic and statistical) with the truth, and with
SOMPZ estimates. This is shown in the lower panel of Fig. 7.
Note that the clustering-z windowed means are compatible by
construction with the truth, given our modelling of the systematic
uncertainties of the method.

We can then proceed combining the clustering-z information
with the SOMPZ method. Recall that the SOMPZ method can
provide samples of the n,(z)’s from its posterior distribution. We
can importance-sample these SOMPZ samples by assigning each
a weight through the likelihood given by equation (11). As we
have two reference samples, we multiply the likelihoods obtained
using the redMaGiC and BOSS/eBOSS samples; we assume the two
likelihoods share the WL galaxy bias uncertainty but are otherwise
considered independent, which is a reasonable assumption given the
fact the total error budget of the methodology is systematic dominated
and the overlap between the two sample is minimal.

Fig. 9 shows, in red, the distributions of (z) over SOMPZ
realizations, one panel for each tomographic bin. Note that in this
case, (z) is taken over 0 < z < 4, not restricted to narrower
ranges where the clustering-z signal is measured and large. The
blue curves show the distributions of (z) after having being weighted
by the clustering-z likelihood. The means and standard deviations
of (z) of the SOMPZ realizations are also reported in Table 3,
with and without the importance weighting by mean-matching. The
importance-weighted (z) values are fully consistent with unweighted
SOMPZ realizations, and with the truth for the simulations.

The clustering-z information in fact offers little improvement in
the constraints from the SOMPZ realization. The systematic errors
we derive on (z) are larger than the statistical errors with DES
Y3 data (Table 2), and also larger than the total errors estimated
for the SOMPZ method (Fig. 7). This means that for the DES Y3
analysis, the mean-matching method can be useful as an independent
cross-check of the SOMPZ methodology, but it does not significantly
improve the constraints on the mean of the redshift distributions.

This is not entirely surprising, because we have seen that the
dominant systematic error in the mean-matching method (indeed for
clustering-z in general) is the uncertainty in the redshift evolution
of the bias of the unknown sample, b,(z). Even a simple linear
slope to b,(z) will be imprinted on the inferred n,(z) and shift (z),
meaning that the dominant systematic error has its largest effect on
this lowest order moment of n,(z). Thus in some sense, (z) is the
statistic for which we should expect clustering-z techniques to be
least informative. On the other hand, we expect b,(z), and other
sources of systematic error in the clustering-z method, to be smooth,
low-order functions of z. We will therefore look next into the ability
of clustering-z data to constrain the full shape of n,(z).

MNRAS 510, 1223-1247 (2022)
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Figure 7. Upper panels: the redshift distributions estimated per equation (8) for a realistic set-up (see the text in Section 4), compared to the truth (black lines).
‘We show both the redshift distributions obtained using redMaGiC galaxies as a reference sample, binned using their redMaGiC photo-z estimates, and the ones
obtained using BOSS/eBOSS galaxies as a reference sample. The grey bands show, as a comparison, the 1o region encompassed by the SOMPZ realizations.
The vertical dotted (dashed) lines indicate the intervals where the windowed means of the redMaGiC (BOSS/eBOSS) have been computed. Central and bottom
panels: windowed mean of the redshift distributions. The clustering-z estimates are represented by Gaussian histograms with mean equal to (z)wz and o equal
to the uncertainty of the method. The error budget of the clustering-z mean redshift estimates includes both statistical and systematic uncertainties (estimated in
Section 4.1 and reported in Table 2), contrary to what was shown in Fig. 6 that only reported statistical uncertainties.

4.2 Method 2 (full-shape): systematic uncertainty estimation in
simulations

In the full-shape likelihood of Section 2.2, we produce a model for
the w(z) signal across the full redshift range covered by the reference
samples (i.e. including the tails of the distributions) and produce a
likelihood for the observed w(z) data. In practice, this allows us to
constrain the full shape of the redshift distributions, not only the
mean. Here we use the Buzzard simulations to set the priors for the
systematic-error parameters within this model.

4.2.1 Systematic uncertainty determination

Recall that in Section 2, specifically equation (12), the cross-
correlation signal is modelled starting from a proposed value
for ny(z) (e.g. provided by SOMPZ), the (measurable) reference-
population properties b.(z) and «.(z), and nuisance parameters
for the (poorly known) bias and magnification properties of the
source population b,(z) and «,(z). We will set these last two
as constant over redshift and marginalize over broad priors on

MNRAS 510, 12231247 (2022)

these constants, to flexibly model the magnification signal. The
underlying function wpp(z) is estimated assuming a cosmological
model.

The final component of the ,, model is a function Sys(z, s) that
multiplies the true clustering signal and will absorb the systematic
errors described for the mean-matching method: failures of the
linear-bias model itself; the unknown and redshift-dependent b,(z);
and possible errors in the n.(z) functions for redMaGiC bins. The
parameters s of this systematic function will be marginalized as well,
as per equation (13).

Our strategy will be to determine what the Sys(z) function is in
the Buzzard simulation, and then produce a prior on the s parameters
which allows marginalization over a broad family of functions with
similar form of deviation from unity. The Sys(z) function is given
substantial freedom for low-order, smooth variation with z, as we
expect from all of the systematic errors, leaving the finer-scale
information in wy(z) to constrain fine-scale behaviour in ny(z), i.e.
the shape of n,(z).

The blue data points in Fig. 10 plot the Sys(z) functions observed
in the Buzzard simulations, for both reference samples. Namely they
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Figure 8. Redshift evolution of the galaxy-matter bias b, of simulated
redMaGiC galaxies, estimated with different binning. In particular, the black
line has been obtained binning redMaGiC galaxies using the true redshift,
and the solid light blue line has been obtained binning redMaGiC galaxies
using redMaGiC photo-z. The lower amplitude is due to the larger effective
bin width due to the photometric uncertainties. The light blue dashed lines is
computed from the light blue solid line after correcting for the larger width
of the bins, following equation (6).
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where the model uses the true n,(z), b.(z), and n,(z) values. We
evaluate and plot this ratio only in the z interval where the w,, signal
is large enough to have good signal-to-noise ratio and subdominant
magnification contribution. The redMaGiC w(z) uses redMaGiC
photo-z’s for binning, just as the real data do.

The Sysg,, ratio deviates from unity due to systematic effects, as
expected. We quantify this by the RMS of log [Syssim(zﬂ , which
are measured to be (0.11, 0.07, 0.07, 0.11) for the redMaGiC
tomographic bins and (0.18, 0.15, 0.10, 0.15) for BOSS/eBOSS.
From this we conservatively decide that the Sys function needs to
have the freedom to have RMS (log) fluctuations of ~0.15 as lo
deviations under its p(s) function.

We seek a parametric function Sys(z;s) and a prior p(s) which
have these desired properties:

Syssim(zi) = (16)

(i) The function and prior yield a good fit to the Sys,,, measured
in Buzzard.

(ii) The prior can be tuned to yield typical RMS variations in
log [Sys(z)] at similar level to that seen in Buzzard.

(iii) The parametric form allows a similar smoothness of variation
as seen in Buzzard, i.e. similar number of ‘wiggles’ across the 0 < z
< 1.2 range where the WL source galaxies lie.

(iv) The RMS of log [Sys(z; s)} as we vary s under the prior p(s)
is a flat function of z.

(v) The prior on s is simple to construct and to use in a Hamiltonian
Monte Carlo chain.

sim

We chose the Sys (z, s) function to be given by:
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AN |
toglSys (2.9 = 3 o T pw), (17)
k=0 :
U= OSSZ - O-S(Zmax + Zmin). (18)

Zmax — Zmin)/2

with Pi(z;) being the k-th Legendre polynomial, M is the maximum
order, and the second line linearly remaps the z interval [Zmin, Zmax]
to [—0.85, 0.85]. The fraction under the summation makes the basis
functions close to orthonormal so that the RMS of log(Sys) is |s|>. The
prior p(s) is chosen to be a simple diagonal normal distribution with
standard deviations {o 0, . . . , 0 5 } and means of zero. Mathematical
details of this choice for the systematic function and its prior are given
in Appendix B.

A distinct set of nuisance parameters q = {p,s} (with p =
{b’u, Ot;}) are assigned to each combination of tomographic bin and
reference sample, and each of these eight sets of w,, measurements
are fit independently. We set [Zmin, Zmax] to span the full range of
the reference catalogue, [0.14,0.90] for redMaGiC and [0.10,1.06]
for BOSS/eBOSS. We set M = 5 and we set the oy, to yield an
expectation value of 0.15 for the RMS of log [Sys(z)] . The order
M was chosen by finding the value beyond which the RMS residual
stopped decreasing for a fit of equation (17) to the Sys(z) function
found in the simulated redMaGiC w,(z) data. The oy, prior is set
to make the simulated Sys(z) functions be ~1¢ fluctuations from a
constant. Since % is approximately the mean bias of the unknown
sample, and we expect the mean bias b, to be more uncertain than the
variation with redshift, we treat the prior on sy somewhat differently,
giving it a wide prior o = 0.6. The RMS of 0.15 is then allocated
among the remaining elements k > 1 of s which model redshift-
dependent systematic errors.

The nuisance parameter b; used in magnification estimation is
given a Gaussian prior with (u, o) = (1., 1.5) (which encompasses
the bias of the WL sample as measured in simulation). The other
magnification nuisance oz; is given a mean estimated from image-
injection simulations (Appendix A) and a conservatively large
uncertainty of o = 1.

The dashed curves in Fig. 10 plot the Sys functions obtained
from the maximum-posterior fits to the simulations’ w,(z) data,
combining the priors on the nuisance parameters with the likelihood
of equation (13). In all cases, the best fit models succeed in capturing
the slowly varying component of the systematic. In some bins, some
of the rapid variations in redshift are not well captured — this is
expected, as we truncate the polynomial of the Sys function to order
M = 5. While this could be improved by increasing the maximum
order M, we find in practice that these small discrepancies cause
no significant bias in the recovered redshift distributions when the
method is applied in simulations (see below). The fitted functions
remain well behaved over the full w,, redshift range even though
the fit is done only for redshifts with strong signals. We conclude
that this formulation of the systematic errors is sufficient to model
the systematic errors in our clustering-z measurement in the Buzzard
simulation, and we assume that marginalization over q will allow us
to capture the uncertainties present in the real data as well.

The grey curves in Fig. 10 show a few examples of Sys(z;s)
functions obtained by random sampling of the prior p(s). This
illustrates the flexibility of our model for the systematic uncertainty,
which is able to model a large variety of curves.

It is useful to ask whether this implementation of systematic
errors in the full-shape method is consistent with the systematic
uncertainties derived for the mean-matching method. This can be
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Figure 9. Mean redshift posteriors for the four tomographic bins obtained using the mean matching method in simulations. The red histograms represent the
distribution of the mean redshift of the SOMPZ realizations, whereas the light-blue histograms show the mean redshift posteriors of the SOMPZ realizations
using the clustering-z likelihood. The mean redshift of the SOMPZ realizations has been computed over a wide redshift interval (0 < z < 4), also including the

redshift range where there is no clustering-z information.

Table 3. Simulations. The mean redshift estimates of the SOMPZ distributions with and without clustering-z

information, in simulations.

Case tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4
True (z): 0.315 0.513 0.743 0.910
SOMPZ (z): 0.312 £ 0.008 0.505 £ 0.005 0.746 £ 0.003 0.907 £ 0.005
SOMPZ + WZ (mean-matching) : 0.314 £ 0.008 0.505 £ 0.004 0.745 £ 0.003 0.906 =+ 0.005
SOMPZ + WZ (full-shape) : 0.312 £+ 0.009 0.507 £ 0.005 0.747 £ 0.004 0.907 £ 0.005

done by drawing many realizations of s from its prior, constructing
a model W,, data vector using each realization of Sys(z, s), and then
treating this model as data input to the mean-matching method. Each
realization of s then yields an estimate of A(z) with respect to the
true distribution. We obtained a typical |A(z)| in the range 0.010-
0.015 depending on the tomographic bin, in very good agreement
with the total systematic uncertainties estimated in Table 2 for the
mean-matching method.

4.2.2 Application of the method in simulations

Once our family of systematic functions is determined for the full-
shape method, we may proceed to validating the performance of the
combination of SOMPZ and the full-shape clustering-z method on
the Buzzard simulations. This combination is implemented (both in
simulations and in data) by sampling the n,(z) functions for all four
tomographic bins from a posterior defined by the product of:

(1) the SOMPZ probability defined by Myles et al. (2021);

(ii) the clustering-z probability defined by equation (13) for the
wy(z;) measured against the redMaGiC sample, marginalized over
q as described in Appendix B;

(iii) and likewise, the marginalized clustering-z probability de-
rived for the BOSS/eBOSS sample, marginalized over q as described
in Appendix B;

The clustering-z probabilities use wy,(z) over the full redshift range of
their respective reference samples. The reference-sample magnifica-
tion coefficients o, and the cosmology used to derive wpy(z) are held
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fixed to nominal values. We verify below that the choices of o, and
cosmology have insignificant impact on the outcome of the full-shape
method. In this case, contrary to the mean-matching method, we
consider the redMaGiC and BOSS/eBOSS likelihoods independent,
i.e. they do not share the WL galaxy bias uncertainty. We did this
because in the full-shape case we did not split our systematic function
into different source of errors, owing to an increasing complexity in
the modelling. Given the flexibility of Sys (z, s) and the conservative
choice on the RMS of log [Sys(z; s)] , considering the redMaGiC and
BOSS/eBOSS likelihoods independent should not be an issue for
the methodology. The sampling of the joint SOMPZ+WZ posterior
is done using a Hamiltonian Monte Carlo method described in
Bernstein (in preparation).

Fig. 11 compares the Buzzard true redshift distribution to the
distributions drawn from only the SOMPZ likelihood and the
distributions drawn from the joint SOMPZ+WZ posterior. The
distributions of the mean redshifts per bin in the lower panels are
not shown, but it is reported in Table 3. It shows that the full-shape
clustering-z likelihood adds little information on these mean z’s.
This is as we expect from the results and discussion of the mean-
matching method in Section 4.1.2. The plots in Fig. 11, however,
show that the addition of full-shape clustering-z likelihood produces
a remarkable improvement in the fidelity of the shape of n,(z) to
the truth. To better quantify the improvement, we also show the
signal-to-noise ratio (S/N) of the n,(z) estimates, defined as the ratio
between the SOMPZ n,(z) and the 68 per cent confidence interval
of the SOMPZ realizations. The S/N is generally increased by the
inclusion of the clustering-z information; in particular, the S/N is
increased up to a factor of 3 in the relevant redshift range where n(z)
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Figure 10. Systematic uncertainties of the full-shape method as measured in simulations following equation (16), for the four tomographic bins and for the two
reference samples considered (redMaGiC upper panels, BOSS/eBOSS, lower panels). The measured systematic uncertainties are represented by the light blue
lines; the purple dashed lines represent the best fitting model. The grey lines represent 10 random realizations of the systematic uncertainty model assumed for
the full-shape method and described by equation (17). Note that the rapid upturn of the systematic function in bin 2 in the case of the redMaGiC sample is due
to a rapid evolution of the galaxy-matter bias of the unknown sample, related to a strong evolution of the properties of the galaxy population. Such an evolution
is also present in other bins, but it is milder. When the BOSS/eBOSS sample is used, the lower sensitivity does not allow to appreciate this rapid change in the

slope of the systematic function.

is substantially different from 0. In the same S/N panels of Fig. 11,
we also show the contribution to the S/N increment due to redMaGiC
galaxies or BOSS/eBOSS galaxies alone. The latter sample mostly
contributes in the redshift range 0.8 < z < 1.0, whereas most of the
clustering-z information at lower redshift comes from redMaGiC
galaxies.

The SOMPZ method has strong fine-scale fluctuations in n,(z)
due to sample variance on the small regions of sky used for its deep
imaging and spectroscopy. The clustering-z correlation functions, on
the other hand, are measured over the full DES Y3 footprint and have
high S/N level. Although the clustering signal has a strong systematic
uncertainty from the unknown WL bias, this systematic is slowly
varying as a function of redshift and has less fine-scale fluctuations.
The clustering-z likelihood is thus able to drive the n,(z) outputs
to a smooth distribution, at least over redshifts where clustering-z
reference samples are available.

We remind the reader that the clustering information alone cannot
be used to infer the n,(z), as the reference samples used in this
work do not span the whole redshift range relevant for the DES Y3
ny(z). None the less, we can try to understand in simulations if the
full-shape method would be unbiased independently of the SOMPZ
information. We did this by importance-sampling realizations of the
true ny(z)s shifted around their mean redshift, and by assigning to
each sample a weight through the likelihood given by equation (13).
This test allowed us to recover the true n,(z) within uncertainties,
hence proving the method to be unbiased; for more details, see
Appendix B.

Finally, we verify that the choices of the parameters o, or the
cosmology assumed to compute wpy do not impact the methodol-
ogy. We find that assuming different values for the cosmological
parameters (2, = 0.4, og = 0.7) results in a shift in A(z) <
1073 on the calibrated SOMPZ redshift distributions. Concerning
magnification, in order to roughly asses the impact of the exact
values of the magnification coefficients «,, we verified that assuming
values for «, that are —1 x the fiducial ones resulted in shifts A(z)
< 1073 (see Appendix A for more details). We conclude that the
full-shape likelihoods, like the mean-matching, can be calculated in
advance of and independent from the cosmology chains.

5 APPLICATION TO DATA

We apply the clustering-z methods to DES Y3 data by first measuring
the angle-averaged w,(z;) (equation 2) of each WL source tomo-
graphic bin sample against the redMaGiC and BOSS/eBOSS samples
described in Section 3. These cross-correlation data are plotted in
Fig. 12. Note the exceptionally high S/N level of the redMaGiC
data in particular, even at the rather fine binning of Az = 0.02
that we use throughout. Bin-by-bin estimates of the reference bias
b.(z;) are obtained using equation (6), with a dark-matter wpp(z;)
predicted from theory for nominal cosmological parameters (Planck
Collaboration VI 2020).

Note that for the redMaGiC galaxies we calculated b.(z;) applying
the correction to the galaxy-matter bias of the reference sample de-
scribed by equation (5), using the fraction of the redMaGiC galaxies
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Shape matching, SOMPZ + WZ [redMaGiC + BOSS/eBOSS] (sims)
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Figure 11. For each tomographic bin, three panels are shown. Upper panels: SOMPZ redshift distributions, as estimated in simulations, with and without
clustering information (full-shape method). The bands encompass 68 per cent confidence interval of the SOMPZ n(z) realizations. Central panels: difference
between the recovered n(z) and the true n(z) in simulations. Lower panels: S/N, defined as the ratio between the SOMPZ n,(z) and its 68 per cent confidence
interval of the SOMPZ realizations, with and without clustering information. The dashed (dotted) line has been obtained only using clustering-z constraints

from redMaGiC (BOSS/eBOSS) galaxies.

which have a spectroscopic redshift. As redMaGiC galaxies with
spec-z counterparts tend to have brighter magnitudes compared to
the full redMaGiC sample, we have applied a magnitude reweighting
to those galaxies before computing the correction, so as to up-
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weigh (down-weigh) redMaGiC galaxies under (over) represented
in the spec-z subsample. After the reweighting, the spec-z sample
had the same magnitude distribution of the full redMaGiC sample.
Imperfections in this process should be small based on the tests in
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Figure 12. The measured wy,(z) for the DES Y3 data are plotted for each of the four tomographic bins, using reference samples from BOSS/eBOSS (blue) and

redMaGiC (red).

previous sections and are included in the systematic uncertainties of
the two methods.

Lastly, we note that the redMaGiC estimates show a small, negative
tail at high redshift, for the first WL tomographic bin. We believe
this is due to a systematic effect not corrected by our lens weights,
rather than magnification, which should be positive at those redshifts,
according to our estimates. The Balrog estimates of the magnification
coefficients should also include realistic systematic and observational
biases, which might lead to negative magnification; the fact that our
estimates are none the less positive indicates that this effect is due to
some systematic that affects the redMaGiC number density and that
anticorrelates with the WL density distribution. We know, indeed,
that the redMaGiC sample is affected by some residual systematics,
which does not affect cosmology (DES Collaboration 2021; Pandey
et al. 2021), but manifests as a scale-, redshift-, and sky-area-
independent phenomenological decorrelation parameter. Given the
small amplitude of this effect, the fact that we also have constraints
from another independent sample (BOSS/eBOSS), and that our
clustering-z constraints are compatible with SOMPZ and shear-ratio
(Sanchez et al. 2021) prior to combination, we believe this should
have a negligible impact on our results.

5.1 Mean-matching results

We use the mean-matching method as an independent check on the
SOMPZ estimates of n,(z) in each tomographic bins. This begins
by calculating the naive (linear-theory, no-magnification, constant-
b,) redshift distribution 71,(z;) from equation (8), plotted in Fig. 13.
We show the distributions obtained with the two reference samples,
and, for comparison, the lo region encompassed by the SOMPZ
realizations.

Following the prescription for mean-matching in equation (9),
we first compute the mean of the redMaGiC and BOSS/eBOSS
clustering-z distributions in the redshift interval where they overlap,
also excluding the tails (as detailed at the beginning of Section 4.1).
We measure differences in (z) of (—0.009 40.010, 0.006 +
0.009, 0.005 £ 0.006, 0.022 £ 0.014), for the four tomographic
bins. The quoted uncertainties take into account the statistical and
systematic uncertainties as reported in Table 2, except for the WL
galaxy bias uncertainty that is assumed to be shared by the two
samples. The statistical uncertainties are estimated through jackknife

resampling. Statistical and systematic uncertainties are added in
quadrature. We then compare the (z) values derived for the clustering-
z with two reference samples and the SOMPZ estimates of n,(z):
this is shown in the lower panels of Fig. 13. In this case the
full systematic mean-matching uncertainty from Table 2 has been
included in the clustering-z values. The clustering-z values are fully
consistent with the SOMPZ values in the mean-matching statistic,
although they are weaker. The behaviour is very similar to what was
seen in simulations.

5.2 Full-shape results

Following the procedure used on the simulations, we define a full-
shape clustering-z likelihood using equations (12) and (13). We
assume fiducial values for the magnification parameters for the
redMaGiC sample, as estimated using Balrog (Suchyta et al. 2016;
Everett et al. 2020). We do not have an estimate of the magnification
parameters for BOSS/eBOSS galaxies available, so we assumed the
same values used for redMaGiC galaxies. We confirm, however,
that assuming values for the magnification parameters that are —1
x the fiducial ones resulted in no relevant effect on the mean of
the resultant redshift distributions. The nuisance-parameter priors
derived from simulations in Section 4.2 are used, including those
specifying the allowed variation with z in b,(z) and other elements
of the Sys(z) function.

Before applying the full-shape method, we checked that the
fiducial ,; model on data (obtained using SOMPZ n,(z) as baseline)
was compatible with the measured w,, marginalized over the sys-
tematic function Sys(z). This check has been performed separately
for redMaGiC and BOSS/eBOSS. We then use the Hamiltonian
Monte Carlo method to draw samples from the joint posterior
distribution of the SOMPZ likelihood and the clustering-z likelihoods
for both redMaGiC and BOSS/eBOSS data. Fig. 14 shows the
68 per cent confidence interval of the n,(z) samples from the
SOMPZ+WZ posterior, as well as those from the pure SOMPZ
posterior. At redshifts where clustering-z information is available,
it greatly reduces the point-by-point uncertainties in n,(z), just
as in the simulations. The clustering-z full-shape method is thus
very successful at reducing the impact sample variance on SOMPZ
estimators. This combined estimator also shows no sign of negative
tail at high redshift in the first tomographic bin (as seen, instead, in
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Figure 13. Illustration of the agreement among the SOMPZ n(z) and the clustering-z n(z) obtained using the naive redshift estimator and redMaGiC and
BOSS/eBOSS galaxies as a reference sample. Upper panels: the naive redshift distributions estimated per equation (8) using clustering-z in data (i.e. no
corrections for systematic errors or magnification). That is, these are the distributions employed in the mean-matching method. The redshift distributions
obtained using redMaGiC galaxies as a reference sample, binned using their redMaGiC photo-z estimates, are in red. Those using BOSS/eBOSS galaxies
as a reference sample are in blue. The grey bands show the 1o region encompassed by the SOMPZ realizations. The vertical dotted (dashed) lines indicate
the intervals where the windowed means of the redMaGiC (BOSS/eBOSS) have been computed. The lower panels plot the windowed mean redshifts (z) for
each bin, as per equation (9), for the two clustering-z reference samples and for the SOMPZ samples. The clustering-z estimates are represented by Gaussian
histograms with mean equal to (z)wz and o equal to the uncertainty of the method. The SOMPZ histograms are obtained from the mean redshift of the SOMPZ

n(z) realizations. Good agreement is seen among all three estimators.

the clustering measurement, Fig. 12). This stresses the importance
of a combined analysis, which is more robust and is able to remove
some of the potential problems or systematics affecting each of the
two estimators when used individually.

The averages and standard deviations of the mean-z distributions of
the SOMPZ and SOMPZ+WZ posteriors are listed in Table 4, along
with the results of importance-weighting the SOMPZ samples with
the mean-matching likelihood in equation (11). As expected from
the simulations, the clustering-z information does not substantially
alter the bin means derived from photo-z methods, in both the mean-
matching and full-shape methods. The significant improvement in
shape accuracy, as seen in Fig. 14, is the principal product of the
clustering-z method for DES Y3 analyses.

6 CONCLUSIONS

This work describes the use of clustering measurements to constrain
the WL source galaxy redshift distributions for the Dark Energy

MNRAS 510, 12231247 (2022)

Survey Year 3 (DES Y3) cosmological analyses. We cross-correlate
the WL source galaxies (the ‘unknown’ sample u) with ‘reference’
samples (r) from both the DES Y3 redMaGiC catalogue (LRGs with
secure photometric redshifts) and BOSS/eBOSS galaxies (with spec-
z estimates). The reference samples are divided into thin redshift bins
centred at {z;} to yield two-point angular cross-correlation measure-
ments wy(z;), for each combination of reference sample and WL
tomographic bin, following now-standard practices for clustering-z
(WZ) methods. The w,(z;) measurements are weighted over angular
separation to maximize the overall S/N ratio while avoiding the
large angular scales used for cosmological measurements, in order
to keep the clustering-z inferences statistically independent of the
cosmological data vectors.

We describe two distinct methods to constrain the redshift distri-
butions n,(z) of the unknown samples using the w,(z;) data. The
‘mean-matching’ method focuses on the mean (z) of the redshift
distribution over a redshift window bounded by the redshift range
of the reference sample and the 20 extent of n,(z). This method,
similar to what was used in DES Y1 analyses (Davis et al. 2018;
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Figure 14. SOMPZ redshift distributions, as estimated in data, with and without clustering information (full-shape method). The bands encompass the statistical

and systematic uncertainties of the distributions.

Table 4. Data. The mean redshift estimates of the SOMPZ distributions with and without clustering-z information.

Case tomo bin 1 tomo bin 2 tomo bin 3 tomo bin 4

SOMPZ (z): 0.318 £ 0.009 0.513 £ 0.006 0.750 £ 0.005 0.942 +£0.011
SOMPZ + WZ (mean-matching) : 0.317 £ 0.008 0.514 £+ 0.006 0.750 £+ 0.005 0.941 £0.011
SOMPZ + WZ (full-shape) : 0.321 £ 0.008 0.517 £ 0.006 0.749 £ 0.005 0.940 £ 0.010

Gatti et al. 2018), starts by computing the (z) of a naive clustering-
z estimate 71,(z;) (per equation 8) that assumes linear biasing with
constant b, and no magnification. From simulations, we estimate the
additional uncertainty on (z) that arises from systematic errors in
the naive estimator, which we conservatively take as 0.014 and are
dominated by the unknown redshift dependence of b,(z). Finally,
we can compare this clustering-z estimate of (z) to that of the n,(z)
inferred from photo-z or some other independent method. For the
DES Y3 data, we find the mean-matching method indicates full
consistency between the SOMPZ photometric estimator and the
clustering-z estimators, for all combinations of tomographic bin and
reference sample.

The systematic errors we derive on (z) are larger than the statistical
errors (estimated through jackknife) with DES Y3 data (Table 2), and
also larger than the total errors estimated for the SOMPZ method
(Fig. 13). Thus, this mean-matching approach has reached the limits

of its usefulness, unless future experiments obtain narrower WL
tomographic bins, and/or obtain external information on the relative
bias of the unknown sample against the reference samples. Indeed the
degeneracy between n,(z) and by(z) in the observable w(z) is the
fundamental limitation of the clustering-z approach. This does not,
however, mean that we have exhausted the information available from
the clustering-z data in general. As discussed at the end of Section 4.1,
the mean z is probably the summary statistic of n,(z) that is most
degraded by the dominant systematic error, redshift-dependent bias
by(z), because this unmodelled multiplicative contribution to w(z)
is a smooth function of redshift. Higher order moments, or more gen-
erally the detailed shape of n,(z), are less susceptible to clustering-z
systematic errors, which are all expected to be smooth functions of z.

To extract this information, we apply the ‘full-shape’ method,
developed in Section 4.2, using w,,(z) data to inform n,(z). We allow
our model W,(z) to incorporate an arbitrary multiplicative function
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Sys(z, s) of redshift and nuisance parameters s that will mimic the
effects of smooth systematic errors, such as b,(z) and failure of
the linear-bias model at small scales. Using simulations to choose
this function and an appropriately flexible prior on s, we can now
define a clustering-z likelihood for an arbitrary choice of n,(z) that
marginalizes over these nuisance parameters, as well as nuisances
associated with lensing magnification signals that contaminate w(z)
(equation 13).

We note that this method improves on previous applications of
clustering-z methods to WL cosmology (e.g. Choi et al. 2016; Davis
et al. 2017; van den Busch et al. 2020), which mostly have used
the former to constrain simple shifts of photo-z-derived redshift
distributions, i.e. n,(z) = npz(z + Az). These approaches can lead
to biased results if the shape of the photo-z posterior differs from
the truth, or if clustering systematics are not taken into account by
a sufficiently flexible model, as noted by Gatti et al. (2018) and van
den Busch et al. (2020). We improve on these approaches for DES
Y3 by defining likelihoods for n,(z) arising from both SOMPZ and
clustering-z methods, and using Hamiltonian Monte Carlo (HMC)
to sample n,(z) realizations from the product of these independent
likelihoods. This also allows us to combine the information of the
redMaGiC and BOSS/eBOSS references into a single inference.
Note that each sample of the chain specifies redshift distributions
for all four tomographic bins, capturing any inter-bin correlations
that arise from the SOMPZ inference. This SOMPZ+WZ technique
is extremely successful at reducing the point-by-point uncertainty in
npz(z) that arises from sample variance in the small surveys typically
used to calibrate photo-z methods. The results for DES Y3 data
can be seen in Fig. 14. The addition of the full-shape clustering-z
information to SOMPZ yields n,(z) samples that are much smoother
and more realistic, taking advantage of the very high S/N that we have
in wy(z) from the full footprint of DES Y3. This benefit is present
despite the fact that the full-shape method does little to improve the
SOMPZ’s estimate of the mean redshift of each bin.

The final DES Y3 redshift calibration strategy includes a few
additional minor tweaks to the SOMPZ+WZ samples, not addressed
here. The n(z) realizations are modified to account for uncertainties
in the photometric calibration of the SOMPZ inputs, and the z < 0.1
behaviour (which is not constrained by clustering-z data) is smoothed
to a physically reasonable form. These steps mostly affect the first
tomographic bin (Myles et al. 2021). An additional correction to
all the n(z) realizations is performed to account for the effects
of blending, based on the work on image simulations described
in MacCrann et al. (2022). Then, ideally, the realizations are
sampled over during the cosmological analysis, using the hyperrank
technique (Cordero et al. 2021). In practice, however, in our fiducial
cosmological run, we decided to parametrize the n(z) uncertainties
by shifts around their mean with a shift parameter Az. This choice
was dictated by efficiency reasons, and by the fact that we verified in
Cordero et al. (2021) that marginalizing over the mean of the redshift
distributions rather than sampling over the multiple n(z) realizations
was sufficient for the DES Y3 analysis. The prior on Az is naturally
provided by the scatter on the mean of the n(z) realizations. Finally,
when sampling the cosmological parameters, further constraints
on the n(z) are provided by the ‘shear-ratio’ test (Sdnchez et al.
2021). The shear-ratio test uses small-scale galaxy—galaxy lensing
measurements to further inform the shifts Az. In practice, when
running the cosmological analysis, the shear-ratio likelihood is
simply multiplied by the cosmological likelihood, since the two
are independent. Having combined these sources of information
on n(z), we find in DES Collaboration (2021) that its uncertainties
are insignificant contributors to the Y3 cosmological uncertainty,
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despite these data having the smallest statistical uncertainties of any
photometric cosmology survey to date.

The techniques used in this paper are applicable to other large
imaging surveys. Further improvements in accuracy could be possi-
ble from having a reference sample that has spectroscopic redshifts
like BOSS/eBOSS (eliminating one systematic error source) but
large area and very high S/N like the DES Y3 redMaGiC sample.
Improved prior knowledge of the magnification coefficients «y, o,
would also be of use. Mitigation schemes to reduce the impact of
the bias evolution of the target sample could also be implemented
(Matthews & Newman 2010; van den Busch et al. 2020). Importantly,
the impact of bias evolution on clustering-z measures scales as (Az),
where Az is the rough width of each tomographic source bin, so
improved binning accuracy from photo-z’s will increase the value of
clustering-zs. Ultimately the scheme of Sanchez & Bernstein (2019)
and Alarcon et al. (2020), where one samples the posterior of the
actual mass density field, individual source z's, and bias functions
as constrained by the full catalogues, may offer stronger information
than clustering-z methods that reduce the catalogues to the summary
two-point statistics w,(z). But the methods applied to DES Y3 do
make more complete use of the clustering-z data at summary-statistic
level than has been done in the past.
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APPENDIX A: MAGNIFICATION EFFECTS

We provide in this Appendix more details about the modelling of
magnification effects M(z;) in the cross-correlation signal between
the unknown and reference samples. Considering only the dominant
terms (which account for the magnification of the unknown sample by
the reference sample and the magnification of the reference sample by
the unknown sample) and assuming linear bias, this can be written as:

M(z;) = /dQW(Q)/?Jo(ZG)/d%
m X

, I+1/2
x [breugial + by ] P (T/ z(x)) . (@AD

where the terms ¢s and ¢, read:

ny 42
qs(x) = nlz(x )]d -, (A2)
X
3H{Qumx [ ,odz x' =
g () = ot dx'n(z( N~ L= (A3)
cta(x) Jy dx" x

In the above equations, n[z(x)] is either n,(z) or n, i(z). Under the
approximation of thin redshift bins, we can write equation (A1) as
a discrete summation over redshift bins of width Ay:

M(zi) = bi(z)e(z) Y [Dijnu(z))] + by(zia(z:)

Jj>i
X Z [Dijnu(zi)] . (A4)
J>i
with
3H{Q2m x(z) x(zj) — x(zi)
D = —2™ ; 2T 2 Ay A5
J Cz wDM(Z )G(Z[) X(Zj) Xj ( )
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The magnification coefficient «, for an ideal flux-limited sample,
can be related to the slope s of the cumulative number counts
evaluated at flux limit: « = 2.5s — 1, with the slope formally defined
as

s = % log,, n(< m), (A6)
where n(< m) is the cumulative number count as a function of
magnitude m, and s is to be evaluated at the flux limit of the sample.
For a sample which is not flux limited, evaluating the coefficient
s is more complicated, and equation (A6) cannot be used. We use
two different methods to estimate such coefficients for our samples,
depending on whether we estimate them on data or on simulations
(see below for further details). Estimates of « for both the reference
and unknown samples are needed to properly model magnification
effects.

‘When adopting the mean-matching method, magnifications effects
are not modelled, but the tails of the distributions where magnification
effects should be relevant are removed. We verify below that this
method is efficient. On the other hand, in the full-shape method
we do model magnification effects, according to equation (A4). In
this latter case, while we absorb the contribution due to b, to the
clustering signal into the Sys function, we leave b; as a free parameter
in the magnification term. We also leave «, as a free parameter,
and marginalize over both parameters analytically when computing
the likelihood. By doing so, we absorb uncertainties not only in
these values but also in b;, «;, and in the linear-bias model adopted
for magnification. Hence, formally, the b; value appearing in the
magnification is not assumed to equal the b, that might multiply wpy.
We do not implement redshift dependence of p = {b,, «,} (although
the formalism would allow it) because magnification signals are
important only over limited ranges of z (i.e. in the tails, see e.g. Gatti
et al. 2018) for a given tomographic bin of the WL sources.

A1 Magnification coefficients estimates

In order to estimate the magnification coefficients of our samples,
we adopt two different strategies. For the coefficients in data we use
Balrog image simulations (Suchyta et al. 2016; Everett et al. 2020)
in a process briefly described here. Galaxy profiles are drawn from
the DES deep fields (Hartley et al. 2022) and injected into real DES
images. The full photometry pipeline (Sevilla-Noarbe et al. 2021),
the redMaGiC, and WL sample selection are applied to the new
images to produce simulated redMaGiC and WL samples with the
same selection effects as the real data. To compute the impact of
magnification, the process is repeated, this time applying a constant
magnification to each injected galaxy. The magnification coefficients
are then derived from the fractional increase in number density
when magnification is applied. This method captures the impact of
magnification on both the galaxy magnitudes and the galaxy sizes,
including all sample selection effects and potential observational
and systematic effects. See Everett et al. (2020) and Elvin-Poole
et al. (2021) for further details. The coefficients have been estimated
for redMaGiC in five wide redshift bins, centred at z = (0.25,
0.425, 0.575, 0.75, 0.9), yielding the magnification coefficients o,
= (0.3 £ 0.7, -1.5 £ 0.5, —0.7 + 04, 1.2 + 0.5, 1.0 = 0.5).
The accuracy of these estimates is limited by the number of Balrog
injections, which are scarce for a sample as bright as redMaGiC.
Since the full-shape matching method formally requires values of the
magnification coefficients for each of the 40 bins of the redMaGiC
sample, we interpolate these values in z using the scipy routine
interpld. Although this procedure might not be too accurate
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given the large uncertainties of the values of «,, magnification effects
are largely negligible, such that the interpolation details should
not impact our main results. For the WL sample, using the same
methodology, we infer o, = (— 0.4 0.2, —0.21 £ 0.10,0.00 £ 0.10,
0.31 & 0.07), for the four tomographic bins, respectively. Note that
these values do not have to be interpolated.

For the values estimated for the samples in simulations we adopt
a different strategy. In particular, we use the estimated convergence,
k, computed at the location of each galaxy, to apply a small
magnification to the galaxy magnitudes (Am), and then select our
samples with and without this Am applied and compute the fractional
change of objects passing the selection AN/N in 10 equally spaced k
bins. The gradient of this relation is then related to the magnification
coefficient (Elvin-Poole et al. 2021). This method only captures the
effect of magnification on the galaxy fluxes, as it is the only effect
expected in simulations. We estimate «; = (0.2 £ 0.4, 0.05 £ 0.15,
0.00 = 0.08, 1.11 £ 0.12, 1.18 % 0.06) for the redMaGiC sample,
and o, = (— 0.365 £ 0.002, —0.655 £ 0.002, —0.447 £ 0.002,
0.836 4 0.002) for the WL sample.

Lastly, we note that estimates of the magnification coefficients
are not available for BOSS/eBOSS galaxies, as we did not try
to reproduce the complex BOSS/eBOSS selection function within
Balrog image simulations. We also did not estimate these coefficients
for the simulated BOSS/eBOSS sample. This is not a problem, as
we verify below that BOSS/eBOSS does not have the sensitivity
to measure magnification effects. When formally needed (for the
full-shape method), though, we adopted the same coefficients as the
redMaGiC sample.

A2 Magnification impact on the clustering measurements

We show the impact of magnification effects on the clustering signal
in Fig. Al. The figure has been produced assuming the expected
clustering signal for the redshift distributions adopted in the Buzzard
simulations, and for the magnification coefficients as computed in
simulations.The magnification contributions are barely detectable:
only for the first two tomographic bins, at high redshift, the deviations
from the ‘clustering only’ signal due to magnification are slightly
larger than the 68 per cent confidence interval of the redMaGiC
measurement.

Concerning the mean-matching method, it can be noted how the
contribution is always smaller than the 68 per cent confidence interval
of the measurement when confined within the 2¢ interval of the
mean matching method. The impact of magnification effects on
the windowed mean when using the coefficients estimated for the
simulations is at most A(z) =~ 0.002. Thus, it is of the same order
of magnitude of the statistical uncertainty of the measurement. To
be more conservative, for the mean matching approach we estimated
the impact on A(z) if the data had different (and potentially larger)
values of «, and «, than the ones estimated in simulations. We
computed the magnification term M(6) assuming Gaussian priors
a; ~ N(0, 2)and o, ~ N0, 2), and measured the resultant scatter in
A(z). These priors are rather wide, but even with these broad priors,
magnification is a negligible component of our final error model.
Indeed, we obtained an RMS scatter on this metric of A(z)rms =
(0.004, 0.005, 0.003, 0.004) for the four tomographic bins. We note
that these values are up to a factor 10 smaller than what we would
have obtained by including the tails of the redshift distributions,
justifying the 2o cut. These values, in the second row of Table 2, are
taken as the magnification contribution to o ..

As for the full-shape method, magnification effects are modelled
over the full range of redshift, using as input the estimated magnifi-
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Figure Al. Simulated clustering amplitude for the four tomographic bins.
The blue and red coloured bands encompass the 68 confidence interval of
the clustering measurement, obtained using BOSS/eBOSS and redMaGiC
galaxies as a reference, respectively. The dashed, dotted, and solid lines
represent the simulated clustering only signal, magnification only signal,
and clustering with magnification signal, respectively. The vertical dashed
lines indicate the 20 interval used in the mean matching approach. The four
small panels show the deviations Awy, from the clustering only signal when
magnification effects are included. Magnification effects are estimated using
the values for the magnification coefficients as estimated in simulation.

cation coefficients. Nevertheless, their impact is strongly reduced by
the combination with the SOMPZ likelihood, which enforces the tails
of the redshift distributions to have a small amplitude. To roughly
asses the impact of the exact values of the magnification coefficients
o, and oy, we performed the following test, both in simulations and
on data: we verified that assuming values for «, or «, that are —1
x the fiducial ones resulted in shifts A(z) < 1073. This highlights
the importance of combining SOMPZ and clustering information to
achieve a more robust estimator of the redshift distributions.

APPENDIX B: FULL @, MODEL AND
ANALYTICAL MARGINALIZATION

We provide here more details about the implementation of the full-
shape method. The method assigns a likelihood (equation 13) of
the observed wy(z;) given a proposal for the redshift distributions
{nu(z;)} along with a set of other relevant parameters. The likelihood
uses the model in equation (12). We will assume that the values of
the dark-matter correlation wpm(z;), the reference-sample properties

MNRAS 510, 1223-1247 (2022)
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full-shape method, n(z+ Az)
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Figure B1. Likelihood of the shift of the mean of the redshift distributions
obtained using the full shape method in simulations, and using true redshift
distributions (but shifted around their mean) as proposals distributions.

bi(z) and o(z), and the magnification coefficients D;; are provided
along with ny(z;). We will consider as nuisance parameters the
properties of the unknown population, namely the «,(z) and b,(z)
used in magnification terms; plus any parameters s of the Sys(z)
function that allows for systematic errors.

We will assume here that «, and b, are independent of redshift,
though in principle a more general function, linear in some parame-
ters, can be used without altering any of the methods herein. We note
that we did not multiply the magnification terms by the systematic
function: despite the fact that the magnification terms are not immune
to systematic errors, we assumed that it was not necessary to further
modelling those, as the «;, a,, and b, parameters provide enough
flexibility to the model and the magnification signal is much smaller
than clustering to start with. We also note that the b, parameter is
used only in the magnification term, and hence can be independent
of the bias for clustering that is absorbed into the Sys(z) function.
This allows for the systematic errors in the magnification term to
differ from those in the clustering term.

The systematic-error function for clustering is given in the ex-
ponentiated polynomial form in equations (17) and (18). Tuning
the order M allows us to adjust the smoothness of the function, and
exponentiation allows us to draw the coefficients s from 1D Gaussian
priors while maintaining positive Sys(z). Adjusting the o, values of
these priors tunes the RMS of the systematic variations, in a way
made predictable by the orthogonality of the Legendre polynomials.
We wish for independent, uniform Gaussian priors on the s; to
propagate into RMS variation of log Sys(z) that is approximately
independent of z over [Zmin, Zmax]- The Legendre polynomials have
this property over most of their nominal domain u € [ — 1, 1], but
not near the edges of this range. For this reason we map [Zmin, ZmaxJ
— [ — 0.85, 0.85], as indicated by equation (18).

Equation (13) requires us to marginalize over the nuisance-
parameter vector q = {ps} (with p = by, ). Doing so as part of
a Markov chain would be unwieldy, as we would have to introduce
eight free parameters for each of the four tomographic bins times 2
reference samples. It is far better to execute the marginalization on
the fly during sampling if possible. The log-likelihood is not quite
quadratic in q — the exponentiation of the polynomial in Sys(z;s)
makes the model W, non-linear in s. We opt to linearize the model

MNRAS 510, 12231247 (2022)

about its maximum sy = {8y}

Sys (zi,8) = Sys(z;, So)

M
2k +1
AT Pt

ka(u)sk,o (sc —sk0) |- (BD

k=0
The deviation of the data from the model can then be rewritten in
linear form, with wy, being a vector over redshifts, as

Wy — W = €(qo) — Aq, (B2)

where ¢ is a vector independent of q and A is a matrix composed of
the linear terms in equation (B1) and elements of the magnification
terms.

If we assume the nuisance parameters we want to marginalize
over to have a Gaussian prior q ~ N (1,4, Z,), we can write the full
likelihood as follows:

Lywz & 21 Dy, |~ P20 2,712
1 ~
X /dq exp |:—§(C — Aq)T E\;Z'(c — Aq)}

1 ~
X exp {‘5(‘1 —ng)' 2, (- uq)} : (B3)

This is a Gaussian integral that can be reduced to linear algebra.
In summary, the algorithm for the marginalization in equation (13)
is as follows:

(1) Find the values qo which maximize the integrand. This is done
using Newton iterations.

(ii) Evaluate the vector ¢ and matrix A at this value of qo.

(iii) Substitute these and the known X, u,, and X, into the
analytic result for the Gaussian integral above.

Although this marginalization is approximate, it does not actually
need to be exact, because the chosen functional form for Sys(z, s) is
somewhat arbitrary. All that is necessary is that the algorithm yields
a likelihood £ of the clustering-z data given a proposed n,(z) that
decreases in a meaningful and robust way as the data move away
from the naive linear model. We prove that the full-shape method
recovers the true n(z) within uncertainties in Section 4.2.2, assuming
the SOMPZ realizations as n,(z) proposals. Here, we also show the
result of a simpler test, performed in simulations, where the n,(z)
proposals are simply taken to be true redshift distributions shifted
around their mean. This is a useful test because it is shows that the
methodology is unbiased independently of the SOMPZ information.
We use equation (B3) to assign each true n,(z)s (shifted around
their mean) a weight, using the clustering measurement and the
magnification coefficients from the simulations. The key result is
then the likelihood of the shifts Az, which has to be statistically
compatible with 0. This is shown in Fig. B1; in particular, we
obtain Az = 0.002 £ 0.008, —0.013 £+ 0.011, —0.016 £ 0.008,
0.002 £ 0.008 for the four tomographic bins, which indicates
statistical compatibility with the truth. The models are a good fit
to the data, with x2 = 1.29, 0.67, 0.72, 0.63 for the redMaGiC
sample, and x> = 1.19, 1.20, 0.58, 0.88 for the BOSS/eBOSS
sample.
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