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ABSTRACT
The anisotropy or triaxiality of massive dark matter haloes largely defines the structure of the cosmic web, in particular the
filaments that join the haloes together. Here, we investigate such oriented correlations in mass-Peak Patch halo catalogues
by using the initial strain tensor of spherical proto-halo regions to orient the haloes. To go beyond the spherically averaged
two-point correlation function of haloes, we use oriented stacks to compute oriented two-point correlations: we explicitly
break isotropy by imposing a local frame set by the strain tensor of the reference halo before stacking neighbouring haloes.
Beyond the exclusion zone of the reference halo, clustering is found to be strongly enhanced along the major direction of
the strain tensor as expected. This anisotropic clustering of haloes along filaments is further quantified by using a spherical
harmonics decomposition. Furthermore, we compute the evolution of cluster-scale halo principal directions relative to those of
their neighbours and show that there are strong correlations extending up to very large scales. In order to provide calculations
more suitable to observational confrontations, we also utilize 2D projected versions of some equivalent correlation functions.
Finally, we show that the multipole structure of the mass-peak patch halo’s anisotropic clustering can be qualitatively captured
in an analytic treatment based on peak theory. Though highly informative, giving the same qualitative features as the oriented
correlations found from the simulation catalogue, analytic evaluation involves extensive use of Monte Carlo methods, which is
also what the simulated catalogue uses, taking into account as they do the adaptive nature of the mass-peak patch mass hierarchy
and all non-local complexities associated with the exclusion of smaller haloes overlapping with larger ones: there is no substitute
for the mass-Peak Patch simulation-based determination of oriented and anisotropic correlations.

Key words: gravitational lensing: weak – cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

Investigating the distribution of matter at scales ranging from a few
megaparsecs to hundreds of megaparsecs has been a very prolific
field of Cosmology for the last 50 yr. From the first theoretical works
on superclustering and observations in the seventies through current
large galaxy surveys, our knowledge of large-scale structures has
grown enormously, with much more to come with the upcoming
massive galaxy surveys. The interconnectivity in the distribution
of matter on the largest scales is referred to as the Cosmic Web
(Klypin & Shandarin 1983; Bond, Kofman & Pogosyan 1996;
Pogosyan, Bond & Kofman 1998; van de Weygaert & Bond 2008),
the natural nonlinear evolution of primordial density fluctuations
through gravitational instability in an expanding universe, giving
rise to the galaxy clusters, filaments, sheets, and bubble-like cosmic
voids that we see today. The present day large-scale structure of
the Universe was already imprinted in the anisotropies of the initial
conditions: initial peaks (hereafter BBKS Bardeen et al. 1986) later
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form massive clusters at the nodes of the cosmic web, correlation
bridges in between collapse to form filaments (Bond et al. 1996)
surrounded by walls and voids in this fully connected cosmic
network.

Observations and numerical simulations complement one another
to get a deeper understanding of our Universe. But still technical
issues coming from their manipulation are rather different. Informa-
tion from observational data is subject to experimental measurement
error and is restricted to the past light-cone constraint. Simulations,
though limited by the theoretical approximations used and computer
performance, can be used to derive mock catalogues of all aspects of
the matter distribution, including precise positions and velocities
and field configuration properties for identified objects, over all
space and time, not just on the past light cone. The mass-Peak
Patch computational halo-finding methodology described in Bond &
Myers (1996; hereafter BM1) and other works of that era are
accurate on the past light cone as well as over all space and time,
and allow rapid calculations of ensembles of such realizations, as
parameters defining the cosmology vary. Though traditional N-body
simulations are more accurate, to this day N-body ensembles suitable
for mocking all manner of massive observational campaigns remain
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limited. The mass-Peak Patch algorithm was further improved in
Stein, Alvarez & Bond (2019) for massively parallel computation.
It allows identification from an initial (linear) state distribution of
matter of regions (contiguous mass-patches) that will collapse to form
virialized objects in the final state space, haloes. Other approximate
methods of varying speeds have been put forward over the past
decades. e.g. Pinocchio (Monaco, Theuns & Taffoni 2002) is one
such example. The attention to fast simulation techniques has been
driven by a dire need to address very costly statistical problems such
as likelihood surface construction for large galaxy surveys, for which
covariance matrices encode the simplest characterization, e.g. (see
e.g. Monaco 2016; Lippich et al. 2019, and references therein).

Here, we do not focus on these observationally related problems
but rather undertake a theoretical exploration, using such approxi-
mate methods to determine the clustering of haloes in the web, in
particular focusing on the question of halo alignments. Peak patch
simulations can address this since they use coarse-grained ellipsoidal
dynamics of the halo patches, following the nonlinear development
of initial anisotropic tidal forces which correlate from halo to halo.
Triaxial collapse along the last axis to equilibrate is slower than in
isotropic spherical collapse for highly initially sheared patches.

These tidal forces, which dictate the formation sites of the
filamentary cosmic web (van Haarlem & van de Weygaert 1993;
Bond et al. 1996; van de Weygaert & Bertschinger 1996), also
shape the morphology of haloes notably through tidal stretching
(Catelan, Kamionkowski & Blandford 2001) and spin them up
through tidal torques (see e.g. Lee & Pen 2000; Crittenden et al.
2001; Schaefer 2009, for a review). Because tides are set on large
scales by the cosmic web, a large-scale coherence of the shapes
and spins of galaxies and haloes is naturally expected (see for
instance Codis, Pichon & Pogosyan 2015b, for a modelling of the
spin alignments of galaxies induced by the cosmic web). Various
numerical works 1 have indeed demonstrated that the shape of haloes
tend to align with filaments and walls in dark matter simulations
(Patiri et al. 2006; Aragón-Calvo et al. 2007; Brunino et al. 2007;
Hahn et al. 2007), a result also found more recently for galaxies in
cosmological hydrodynamical simulations (Codis et al. 2018b). This
is in agreement with observations which have evidenced a clear radial
alignment of massive clusters (Smargon et al. 2012; van Uitert &
Joachimi 2017), observations that go way back to the eighties.

These halo and galaxy alignments are key to understand galaxy
formation and evolution notably through the role of the environment
versus internal processes. They also represent a worrisome contam-
ination for current and, even more so, for future large photometric
surveys which are designed to map the distribution of matter through
measurement of cosmic shear, e.g. KiDS, DES, HSC, CFIS, Euclid,
LSST (see e.g. Joachimi et al. 2015; Kirk et al. 2015; Kiessling et al.
2015; Troxel & Ishak 2015, for recent reviews). Indeed, intrinsic
alignments of galaxies induce a spurious signal in the lensing-
induced shear–shear correlation function which biases significantly
the cosmological analysis if not accounted for properly (Kirk,
Bridle & Schneider 2010; Krause, Eifler & Blazek 2016). Different
strategies have been developed over the course of the last few years,
from perturbative approaches (Blazek et al. 2019; Vlah, Chisari &
Schmidt 2020) to semi-analytical models (Schneider & Bridle 2010;
Joachimi et al. 2013a,b; Fortuna et al. 2021), and now state-of-the-art
hydrodynamical computations can address this, by simulating large
cosmological volumes while keeping enough resolution for galaxies

1We refer to Libeskind et al. (2018) for a review of algorithms designed to
extract the cosmic web from simulations.

(Codis et al. 2015a; Tenneti et al. 2015; Velliscig et al. 2015; Chisari
et al. 2016; Hilbert et al. 2017). One of the major difficulties in
modelling such an effect is the high sensitivity to detailed aspects
of the nonlinear gastrophysics of galaxies, including feedback from
short scales to large. It is therefore of interest to try to separate
the large-scale coarse-grained patterns that can be predicted from
first principle dark matter dynamical methods such as peak patches
from the complex response functions (susceptibilities) describing the
interior characterizations of haloes, and their embedded galaxies.

In this paper, we focus on the theoretical modelling of the large-
scale alignments of haloes. Rather than using general perturbative
treatments, we rely on the nonlinear physical model for halo forma-
tion exemplified in the peak patch picture, encoding coarse-grained
shapes and orientation information in the derived halo catalogues.
The detailed cosmic web structure of clusters, filaments, membranes,
and voids on large scales has been shown to follow by gravitational
collapse from the linear fields constrained by the anisotropic linear
tides of the most prominent haloes (Bond et al. 1996). First, Section 2
gives a general overview of haloes, the peak patch theory of them, and
the simulation that yields the halo catalogue used here. In Section 3,
we present calculations of correlations oriented by the shape of haloes
using the 3D peak patch simulation and then using 2D projections of
this simulation. Finally, Section 4 wraps up. To show how the main
features of our orientation-induced findings are quite understandable
from an analytic viewpoint, we develop in Appendix A an attempt
to compute the same correlations from a theoretical point of view
using the theory of peaks for Gaussian random fields (BBKS), cast
in the peak-patch semi-analytic framework in BM1 which gives a
simple but reasonably accurate accounting of the low order statistics
derived from the full numerical catalogue.

2 A STATI STI CAL DESCRI PTI ON FOR HALO ES

We first discuss the general issue of cosmological-object catalogues,
the difference between halo-finding in final-state space, as done in
N-body simulations, and initial-state space, as done in peak-patch
simulations. The catalogue statistics are encoded in number density
distribution function operators that give masses, initial and final
positions, velocities, and of great importance here, the linear tides
and their associated strain tensors. Of most interest here are two-
point halo-density halo-density averages constrained by strain/tide
information, which reveal the alignment characteristics of the halo-
medium. We then briefly describe the numerical methods we have
applied to this study.

2.1 Reduced phase space

A halo catalogue Ctot = ∪cCc is a collection of the information on
the properties Cc of individual cosmic objects c.

Let us consider the flow of a bundle of dark matter trajectories
from the ‘initial’ linear regime (Lagrangian space) into the ‘final’
nonlinear regime (Eulerian space). If the dark matter starts cold,
the 6D phase space is a 3D one, with zero peculiar velocities and it
remains restricted to a 3D hypersurface, but trajectories in collapsing
regions intertwine, phase wrapping in the 6D phase space. This is
seen from the vantage point of a particular Eulerian 3D position
in the halo as multiple streams passing through, with a dispersion
in velocity as well as a bulk average velocity (see e.g. Shandarin
2011; Abel, Hahn & Kaehler 2012; Falck, Neyrinck & Szalay 2012).
From the 3D perspective, the dispersion is seen as heat and haloes
are regions of such hot dynamics. Even with the most sophisticated
N-body computations, it is difficult to simulate the orbits with full
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accuracy (see Hahn & Angulo 2016; Sousbie & Colombi 2016, for
recent attempts at solving the Vlasov–Poisson system).

In halo-finding, whether in initial or final space, the idea is
to identify such regions of hot dynamics, compress the complex
information into a few global parameters, such as overall mass, mass-
concentration, angular momentum, interior heat and binding energy,
and, of special interest to us for anisotropy exploration, tidal tensors,
strain tensors, and mass inertia tensors.

The positions xc, masses Mc, and velocities vc of the haloes c
are of course critical to their identification, but there are many
other halo-internal measures Qα

int,c and halo-external measures

E
β
ext,c that are useful to characterize in a reduced phase space

Cc = {Mc, xc, vc, Q
α
int,c, E

β
ext,c}. For any single realization, a halo

catalogue stores these quantities. The entries can all correspond
to one redshift, multiple redshifts (e.g. initial linear state and final
nonlinearly evolved state), or can label the times by the comoving
radial distances of the haloes along the past light cone, related to their
redshifts. Though the sky we observe is one specific past light-cone
realization, it is statistically modelled as a member of an ensemble
of realizations characterized by a density matrix functional ρ[u]Du

for all of the degrees of freedom of the system of fields in the cosmic
medium uA(x), including the fine grained orbit details. The halo
catalogue for each specific realization is a set of delta functions
of the coarse-grained variables, with the (localized) halo number
density operator defined as

nh,op(C) = dNh,op(C)

d ln Md3xd3vdQintdEext

=
∑

c

δ(x − xc)δ(v − vc)δ(ln M − ln Mc)

×δ(Qint − Qint,c)δ(Eext − Eext,c). (1)

Typically, we have to turn the x and M terms into operators acting on
the fields, as described below following earlier works such as BBKS
for peak positions and BM1 for peak masses.

Measurements on the data we observe now are at the final times at
the collapse redshift of the halo. In the mass-Peak Patch formulation,
the measurements are naturally given in terms of initial times in the
linear regime. Both the forward mapping from initial to final state and
the backward flow from final to initial state can, of course, be done
precisely in N-body dark matter simulations since all information
is carried along with the particle labels. There is much interest in
flowing backward from current data to recover the initial linear state
from the final state information, but the orbit entanglements inherent
in nonlinear objects limit what is likely to be do-able with just final
halo information. Using triaxial ellipsoid collapse in peak patches,
the forward flow is approximated, though not with enough accuracy
to compute, e.g. final state mass-inertia tensors, at least in the current
version of the peak patch codes.

Though one can define haloes in many ways, the most popular
in Eulerian space is finding the patches at xc that have their average
interior overdensity M(xc, VE)/VE first upcrossing through a threshold
Mc/VE,c = ρ̄m�M , as the smoothing volume VE shrinks from large
volume to small. Typically, one takes �M = 200. This then defines
the halo mass M200, c, its volume VE, 200, c, and hence its radius
RE, 200, c. Some people use the total cosmological mean density
ρ̄tot, including vacuum energy density (cosmological constant), to
define the threshold, with the same 200 value: that mode of halo
identification finds smaller volume and larger mass ones than the
ones based on overdensity of the clustering matter relative to the
mean density of clustering matter ρ̄m.

Though this is not true for all halo-finding methods, for the
standard spherical overdensity method (Bond & Myers 1996b;
Behroozi, Wechsler & Wu 2012), whether determined in final state
space or initial state space, as for hierarchical mass-peak patches, the
halo positions will be associated with peaks in the mass ∇M = 0, and
the position operator transforms to δ(x − xc) = |det(∇∇M)|δ(∇M),
viewing M(x) as a continuous field.

Other reasonable criteria for defining haloes exist, e.g. using
binding energy, εBE, in which case the operator would become
|det(∇∇εBE)|δ(∇εBE). This is tightly correlated with mass (BM1),
so the haloes found are quite similar.

For Gaussian filtering, the ∇M = 0 criterion is the same as
requiring that xc is exactly at the centre of mass, but for the top-hat
filters that are usually used to measure mass there can be differences.

The haloes are non-Gaussian, so all higher point connected
components exist, 〈∏N

j=1 nh,op(Ccj
)〉cc, where, as above, Ccj

denotes
the collection of reduced phase space variables associated with each
halo. Since this paper is focusing on halo anisotropic correlations
and alignments, our main targets are constrained one-point functions
of haloes, which are related to the two-point halo–halo correlation
function

〈nh,op(Cc2 )|nh,op(Cc1 )〉 = 〈nh,op(Cc2 )nh,op(Cc1 )

〈nh,op(Cc1 )〉 , (2)

1 + ξc2,c1 (xc2 − xc1 ) = 〈nh,op(Cc2 )|nh,op(Cc1 )〉
〈nh,op(Cc2 )〉 , (3)

relating haloes at position xc2 to those at xc1 . The list of variables may
be truncated, e.g. with orientation information used in the c1 haloes
but marginalized over in the c2 haloes. As well the internal variables
may be in selected parameter-bands rather than being precisely
defined as in the various delta functions.

The one-point averages 〈nh,op(C1)〉 can also be used to deal with
far field external effects. For example, one of the external variables
Eext could be the mass-density field at position xE distant from the
halo position xc1

〈Eext(xE)|Cc1 = {Mc1 , xc1 , vc1 , Qint,c1 }〉
= 〈Eext(xE)nh,op({Cc1 , Eext(xE)})〉

〈nh,op(Cc1 )〉 . (4)

This is the mean field of Eext(xE) subject to the constraint of there be-
ing a halo with the specified properties Cc1 = {Mc1 , xc1 , vc1 ,Qint,c1 }
at xc1 . It is related to the usual way of doing correlations,
〈Eext(xE)nh,op(Cc1 )〉, with the averaging involving the joint proba-
bilities at xE and xc1 .

2.2 Halo tides, strain, and shear

If our cluster-object Cc includes anisotropic tensor information, then
the surroundings will have an anisotropic mean field constrained by
the cluster’s oriented structure, and fluctuations about the mean. We
now define the initial linear strains and tides of peak patch haloes
which we use to characterize the anisotropy.

Let r be the initial comoving position of particles,2 X(r, t) the
physical Eulerian position, and x(r, t) = X(r, t)/ā(t) the comoving
Eulerian position. The displacement field s(r, t) at time t is the
difference between final and initial positions

x(r, t) = r + s(r, t). (5)

2Note that the Lagrangian position of particles r is also often denoted q in
the literature.
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The associated differential relation giving the response of the
infinitesimal Eulerian geodesic deviation δx to the stimulus of an
initial Lagrangian deviation δr is δx(r, t) = eδr, where e = I + E
defines the deformation tensor. It could also be called a response
function.

These relations hold if we smooth the displacement over a coarse-
grained initial comoving radius Rc about each point r: 〈x|r, Rc, t〉 =
r + 〈s|r, Rc, t〉 and

δ〈x|rc, Rc, t〉 = 〈e|rc, Rc, t〉δr, (6)

〈E i
j |rc, Rc, t〉 = 〈(ei

j − δi
j )|rc, Rc, t〉 = ∂〈si |r, Rc, t〉/∂rj . (7)

This differential relation of smoothed quantities is also of the
stimulus–response form with the response function δi

j + 〈E i
j 〉c. The

homogeneous approximation for the finite difference in a sphere uses
the local Taylor expansion:

�X/ā = 〈x|r, Rc〉 − 〈xc|rc, Rc〉 ≈ 〈e|rc, Rc, t〉(r − rc) . (8)

Thus the (Eulerian) physical deformation of the original La-
grangian sphere coarse-grained over comoving radius RL, c is �Xi =
ā〈ei

j 〉cRL,cR̂
j

L,c, where R̂
j

L,c is a unit vector. This is to be contrasted

with the unperturbed Hubble expansion, �Xi = āδi
jRL,cR̂

j

L,c. Gen-
erally Ai

j = āei
j , the local tensorial expansion factor, has a symmetric

and antisymmetric tensor decomposition, with the antisymmetric part
related to a rotational component. In this paper, we are interested in
only the symmetric part. It is useful to define the nonlinear strain
via a logarithm: εi

NL,c,j = [ln〈e〉c]ij = αi
NL,j − ᾱδi

j , where ᾱ = ln a,
encoding the state of strain from an unperturbed expansion reference
state, even in the highly nonlinear regime.

The linear strain [εL,c]ij is just the linear version of this deviation.
Within the 1LPT (first order Lagrangian perturbation theory) aka
the Zel’dovich approximation, for initially cold matter the time and
spatial components in the displacement field s(r, t) are separable:

s(r, t) = D(t)s(r),

where D(t) describes the linear growing mode of fluctuations and
is normalized to unity at the present time. At the fully linear level
in D E i

L,j = εi
L,j , but they deviate at 2LPT and higher order. Once

nonlinearity becomes strong, εNL is a more controlled measure of
strain than ENL. For example, the ‘shell crossing’ associated with
complete collapse along each of the coarse-grained axes is sent off
to −∞, where 1 + ENL is zero, and beyond that 1 + ENL can go
negative.

The physical velocity �V is related to the physical separation �Xj

by a bulk nonlinear Hubble flow and a fluctuation V i
fluc about it:

�V i = Hi
c,j�Xj + V i

fluc, through the full nonlinear Hubble tensor
of the coarse-grained patch c,

Hc,ij = ∂�Ẋc,i/∂�Xc,j = α̇NL,ij = H̄ δij + ε̇ij .

The Hubble tensor evolves according to

Ḣij + (H 2)ij = −�N,ij − τm,ij ,

where (H2) is a matrix product, �N, ij ≡ ∂2�N/∂Xi∂Xj is the gravita-
tional tide, and τm, ij is a tide from matter forces, in particular from
the pressure tensor. The trace of the gravitational part of the total
tide is 4πG(ρ tot + 3ptot), where ptot is the pressure, not important for
cold dark matter and baryons, but the dominant term for dark energy,
and of importance for relativistic and semirelativistic components.
In the linear perturbation regime, the gravitational tide and strain are
proportional to each other, �N,L,ij = −4πGρ̄mεL,ij . In the nonlinear
regime, �N, ij has to be self consistently calculated as a function of

the instantaneous nonlinear strains, but these are expressible in terms
of easily evaluated elliptic integrals. If dark energy is dynamical but
not coupled to other matter, it is uniform on subhorizon scales and
is otherwise unperturbed, though that unperturbed part does play an
important role in how the linear and nonlinear strains evolve, by
virtue of its negative pressure slowing the collapse-deformation.

During cold matter collapse τm, ij is zero, but in an equilibrium
final collapsed state with Hc, ij = 0, the two tides balance. After
shell crossing, multiple streams at each Eulerian point x lead to
the ‘heat’ component of the pressure tensor, P ij /ρ = 〈V i

flucV
j

fluc〉
becoming nonzero; τm,ij = ∂iρ

−1∂kP
k
j (symmetrized in (ij)). The

variance of the velocity fluctuations about the bulk flow is related to
the sound speed c2

s . To show this evolution equation is really a familiar
one, consider the linear regime with a uniform isotropic sound
speed cs ∝ [〈V 2

fluc〉/3]1/2. In that case, τm,L,ij = c2
s ∇2εL,ij , and with

δL = −εL, ii ∝ D(t), δ̈L + 2H̄ δ̇L = 4πGρ̄mδL + c2
s ∇2δL. Hubble drag

arises from the linear H2 tensor term, and below the Jeans wavenum-
ber defined by c2

s k
2
J = 4πGρ̄ there is unstable growth, slowed by the

Hubble drag, and above there is Hubble-damped oscillation.
The complexity of shell crossing ‘heat’ generation implies τm, L, ij

would need its own equation to develop it, so a drastic model that
abruptly turns the gravitational collapse into an equilibrium balance
along each principle axis is used in the BM1 homogeneous ellipsoid
approximation for triaxially collapsing peak patch haloes. Instead of
the matter tide being explicitly included, stopping criteria abruptly
forcing H to zero with αNL, ij thereafter frozen are applied to the
three axes to arrest the cold flow before āeNL passes through zero.
The strain tensor is symmetric, so can be diagonalized. We denote
the eigenvalues of −εL, ij by {λi}, with the principle-axis ordering

λ1 = −εL,11 ≤ λ2 = −εL,22 ≤ λ3 = −εL,33 . (9)

The linear overdensity δL(r, R) is therefore δL(r, R) = − Tr(εL) =
λ1 + λ2 + λ3. The anisotropic part ε′

L,ij of the tensor and its associ-
ated eigenvalues {λ′

i} are defined through εL,ij = ε′
L,ij + δij Tr(εL)/3.

There are also eigenvalues for −εNL, ij = λNL, iδij, which are used for
the peak patch stopping criteria of BM1 and Stein et al. (2019):
we stop the final 1-axis collapse at a radial freeze-out factor of
fcoll = 200−1/3 ≈ 0.17. Once that axis compression is reached, it is
αNL, 11 which remains fixed, so the instantaneous nonlinear strain
gets progressively more negative since it is relative to the mean
cosmological density, which is dropping. Similar stopping criterion
for the earlier full collapse of the 3-axis then the 2-axis are used to
arrest singularities and shell crossing. The results of 1-axis collapse
are encapsulated in a table Tr(εL)(ε′

L). If we normalize εL by σ 0(Rc),
and define anisotropic eigenvalue combinations by νev = (λ3 −
λ1)/2σ 0 and and νpv = (λ3 − 2λ2 + λ1)/2σ 0, with ν = δL/σ 0, the
1-axis collapse criterion translated to initial condition (linear) space
takes the form δL = δL, crit(ev , pv).

2.3 Multi-point correlation functions and the cosmic web
structure

Bond et al. (1996) described how the main features of the large-scale
cosmic web could be understood in terms of mean fields subject to
the constraint of the most prominent large-mass haloes oriented by
their linear strain tensor (or equivalently their linear tidal tensor).
Multi-point halo constraints (and void constraints) were used,

〈Eext(xE)|Cc1 , Cc2 , ..., Ccn
) . (10)

A molecular picture was suggested, by building from 1-halo to
2-halo, showing filamentariness, to 3-halo, showing membranes
as well, and to large n-halo constraints, all oriented. As more

MNRAS 504, 1694–1713 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/2/1694/6247618 by C
N

R
S user on 05 M

ay 2023



1698 B. Regaldo-Saint Blancard et al.

constraints are added, especially including the oriented information,
the more structured 〈Eext(xE)〉 becomes, and the smaller the allowed
but omnipresent fluctuations δEext(xE) about the mean field are. In
the fully nonlinear Eulerian picture, dealing with multi-point halo
constraints is more difficult than for Gaussian random fields. The
mean field plus allowed fluctuations subject to multiple prominent
mass-peak constraints has been useful in setting up N-body and gas-
dynamical simulations, e.g. Wadsley & Bond (1997).

In the linear regime of small Eext(xE), the mean can be written in
terms of linear response functions βE,cj ,α

〈Eext(xE)| ∪ Ccj
)〉 →

∑
j

∫
d3xcj

dQα
cj

Psel(Q
α
cj

)

×βE,cj ,α(xE − xcj
)Qα

cj
ncj

(xcj
, Qα

cj
) , (11)

where Psel(cj |Qα
cj

) is a selection function acting on the internal
parameters. The response functions

βE,cj ,α = δEext(xE)

δQα
cj

ncj
(xcj

)
,

are defined in terms of functional derivatives. Their inverses are often
referred to as bias functions, and the expansion in terms of responses
acting on halo number densities is a generalized form of the halo-
model. Added to this mean field is a fluctuating residual, which exists
both outside and inside of the haloes.

This extended use of the regular halo one-point function describes
how continuous fields Eext(xc2 ) at xc2 are influenced by a halo at xc1 .
Of course we do not have to carry the Eext(xE) variable information
in the distribution function to get this result, just cross-correlate Eext

with the cluster-density operator, nh, op. Once we go to halo–halo
correlations, the non-local complexity of exclusion means we would
not want to carry nh,op(xc2 ) information in an extended one-point
halo distribution function centered at xc1 . Instead, to treat halo auto-
clustering, we do direct halo-halo two-point functions, and, if needed,
higher connected N-point functions.

2.4 The mass-peak patch method

N-body simulations often require demanding computational time to
get a series of light-cone snapshots of the formation of large-scale
structures across cosmic time in a large cosmological volume with
enough mass and/or spatial resolution. In a series of papers in the
late 80s and early 90s, Bond and Myers synthesized the random field
theory of peaks (BBKS) and excursion sets (Bond et al. 1991) into the
hierarchical mass-peak picture, with algorithms and computational
methods given in Bond & Myers (1996; BM1), validation in Bond &
Myers (1996b) and applications to the thermal Sunyaev–Zeldovich
effect and X-ray emission in Bond & Myers (1996a), and to the
cosmic infrared background in (Bond & Myers 1993). The method
has continued to be used ever since, for hydrodynamical and N-body
simulations of fields constrained by the mass-peak information, map-
making for all sorts of applications. In particular, the rise of huge data
sets from large-scale structure and cosmic background experiments
has stimulated simulations of light cones on massive scales, and
the associated construction of webskys, fully correlated maps in 2D
and 3D (redshift) space for a large variety of signals. The further
developments of the algorithm and its validation in this new era are
described in Stein et al. (2019) and the websky applications in Stein
et al. (2020).

The conceptual picture is one of haloes as regions of hot dy-
namics that are bundled. Each light cone constructed using the
hierarchical mass-Peak Patch method contains the large-scale

superclustering. Our target here is to extract from the initial dis-
tribution of matter (Lagrangian space) the regions that are likely to
collapse and form a halo in the final state (Eulerian space). Here, one
can decouple the very nonlinear gravitational collapse of matter from
the large-scale flows. Hence, starting from a linear density field, the
mass-Peak Patch algorithm can be split into three stages:

(i) Peak patches: from the initial distribution of matter, we look for
non-nested regions3 that are likely to collapse and form a virialized
object according to an ellipsoidal collapse dynamics, i.e. the peak
patches. In practice, this calculation is only performed at peaks of
the density field on a hierarchy of scales to reduce computational
demands, as this has been found to be sufficient to find the complete
list of non-nested regions for most use-cases.

(ii) Exclusion: from the list of tentative peak patches, binary
exclusion is then implemented to ensure non-overlapping patches
to avoid double counting mass.

(iii) Displacements: finally, displacements of these peak patches
averaged over the Lagrangian volume of the halo are computed using
the Zel’dovich approximation or higher orders (2LPT) when needed.

We refer to the header of section 2 of Stein et al. (2019) for a short
summary of the key aspects of the peak patch formalism. The reader
will also find in the rest of the same article a detailed presentation of
the algorithm as well as an extensive statistical validation of the halo
catalogues compared to full N-body results.

2.5 Characteristics of the simulation

In the peak patch simulation of dark matter used here, haloes
are identified within a large comoving periodic box at a specified
redshift. For this paper, we ran a (3000 Mpc)3 simulation using
40963 initial particles and output halo catalogues at z = 0. The final
catalogue contains more than 32 million haloes above a minimum
halo mass of 100 simulation cells, or 1.5 × 1012 M�. This run was
not optimized for performance or memory requirements, but had a
run time of 1.0 h on 770 Intel ‘Skylak’ 2.4 GHz cores of SciNet’s
Niagara cluster (Ponce et al. 2019), for a total runtime of 700 h
and a peak memory footprint of 3.5 TB. This is over a 1000-fold
speedup relative to N-body simulations of the same size. Our �CDM
cosmological parameters are compatible with Planck 2018 results
(Planck Collaboration I 2020): �m = 0.31; �b = 0.049; σ 8 = 0.81;
ns = 0.965; h = 0.68.

For the purposes of this work, a peak patch simulation gives,
for each halo, a Lagrangian position and an Eulerian position
(determined by its 2LPT displacement), a Lagrangian radius RL,
and a strain tensor E computed in Lagrangian space. The mass of
a halo is determined from its Lagrangian radius through the mean
density of the Universe,

Mh = 4

3
πR3

L�mρc,0 with ρc,0 = 3H 2
0

8πG
. (12)

Throughout this work, we consider three subsets of the halo catalogue
which simply correspond to three different mass selections:

(i) Low masses haloes with mass M ∈ [1.5 × 1012 M�, 1013 M�);
(ii) Intermediate masses haloes corresponding to

M ∈ [1013 M�, 1014 M�);
(iii) High masses haloes with M ≥ 1014 M�.

3Here, non-nested collapsing regions refer to the largest scale which can
collapse according to the ellipsoidal model therefore rejecting cloud-in-cloud
effects (substructures).
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Clustering and alignments of peak patch haloes 1699

Figure 1. Visualization of haloes from the peak patch catalogue as projected ellipsoids based on the anisotropic strain tensor in the corresponding Lagrangian
patches. Left-hand panel: haloes from a 512 × 512 × 25 Mpc3 slice in Lagrangian space. Right-hand panel: same haloes moved to Eulerian space. Colours
encode the mass as labelled, even though the volume of the ellipsoids is also proportional to the mass.

3 O R I E N TAT I O N O F H A L O E S IN TH E P E A K
PAT C H PI C T U R E

Since the cosmic web develops from linear tidal anisotropies in the
initial Gaussian random field which are correlated across scales,
initial strains at halo positions are very likely to be strongly aligned
with the large-scale cosmic web. This is what we investigate in detail
in this paper.

Even though the initial strain tensor is not equivalent to the actual
shape of the dark matter haloes at the present day, a number of theo-
retical models are based on this quantity (e.g. linear tidal alignment
model, tidal torquing, or any generalization of these two based on
perturbation theory). Because the strain and tide are proportional,
and strain is what defines coarse-grained collapse on halo-scales, we
think it is the most important indicator for collapse. By contrast, the
initial moment of inertia tensor, while highly correlated with the tide
in linear theory, is generally mismatched because of the r2 weighting
of the strain compared to the unweighted strain average that we
want to concentrate on. This mismatch is important since it is acted
upon by the tides in the perturbative treatment of angular momentum
generation by tidal torques, which is quadratic in linear amplitudes.
Given this picture spatial correlations among the initial strain tensors
should therefore induce correlations between the (observable) late-
time halo or host galaxy shapes. Modelling this initial large-scale
tidal coherence is the first building block in any model of intrinsic
alignments and is the purpose of this article , notably motivated
by the fact that initial conditions have been shown to determine very
accurately the late-time shape and spin of dark matter haloes (see e.g.
Cadiou, Pontzen & Peiris 2021, for a recent study). From there, one
can then try to model the relationship between the initial strain and the
late-time morphology and orientation of galaxies. This is however a
complex and very challenging issue as it involves nonlinear physics,
including for instance highly anisotropic accretion together with a
precise understanding of the baryonic physics engaged in the patch
evolution, and, alas, is not within reach of first-principle calculations.
Cosmological hydrodynamical simulations that resolve the details
of galaxy physics together with their connection to the large-scale

environment may be needed and is at the core of many developments
in the recent years. This part of the modelling is thus for the future.

In this section, we first visualize the shape of peak patch haloes as
given by their initial linear strain tensor – denoted in this work by E
or the related ε = ln(I + E), ≈ E to linear order – before moving to
more quantitative measurements.

3.1 Visualization of haloes intrinsic alignment

Fig. 1 shows haloes in a 25 Mpc thick slice of the simulation, both in
Lagrangian space (left-hand panel) that is to say in initial condition
space, and in final state (Eulerian) space (right-hand panel) once
an adaptive (cluster-specific) 2LPT displacement of the haloes is
performed.4

For visualization, we represent a halo by an ellipsoid whose
principal axes follow the ones of the initial anisotropic strain tensor
E (or, equivalently tidal tensor). Their lengths are given by

Ci = 1

2
exp

(−λ′
i

)
RL, (13)

so as to keep the volume proportional to the mass and to capture
the deforming effects of Zeldovich dynamics (Zel’Dovich 1970) at
first order while avoiding singularities. In what follows, we will call
the major direction of the halo the one with the longest semi-axis
Ci and the minor direction one with the smallest semi-axis. As we
have ordered the eigenvalues of the strain tensor (see equation (9)),
the major direction is then referring to the direction of the smallest
eigenvalue of the strain tensor λ1 such that

C3 ≤ C2 ≤ C1. (14)

This choice is not ad hoc since indeed haloes and galaxies are
believed to undergo tidal stretching by the cosmic web such that
their late-time shape is indeed tightly connected to the shear they

4This visualization made use of the Mayavi 3D Python visualization li-
brary (Ramachandran & Varoquaux 2011).
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1700 B. Regaldo-Saint Blancard et al.

Figure 2. Top panel: Zoom over the same slice of as Fig. 1 in Lagrangian
space. Bottom panel: Same as top panel but in Eulerian space. Red squares
mark regions from which videos that are introduced in the main text, show
3D visualizations.

experienced early on. The colour coding used in this figure is an
indicator of the mass of the haloes, from blue (low mass) to red
(high mass) as labelled, which is directly related to the radius (see
equation 12). Note that the volume enclosed in the ellipsoid is
proportional to R3

L and therefore to the mass. Hence, bigger haloes
are the red ones (the more massive objects) and smaller haloes are
the blue ones.

The emergence of the cosmic web is clearly seen on this figure,
with large voids almost empty of haloes surrounded by walls and
filaments which connect on to the nodes of the cosmic web. As
expected, the most massive objects lie in the dense nodes of the
web while smaller structures tend to reside mostly within filaments
(e.g. Oemler 1974; Kaiser 1984; Cole & Kaiser 1989; Codis et al.
2015b, among many others). The representation of halo shapes
shows remarkably well-aligned haloes with their surrounding denser
filaments and walls. This alignment is subsequently enhanced by the
collapse of structures (right-hand panel) but is already in place in
the initial conditions. Even in less dense regions, the major direction
of haloes seems to be strongly correlated amongst neighbouring
haloes.

Fig. 2 displays a zoom on to a filament, again in Lagrangian
(top panel) and Eulerian space (bottom panel). In addition to the
2D projections shown in the paper, we provide 3D visualizations
online so as to rotate the scene and get a more accurate view of
the alignments of structures. In particular, movies rotating around a
halo in Lagrangian space and Eulerian space together with a filament
in Eulerian space – as delineated with the red squares in Fig. 2
– can be respectively accessed at https://youtu.be/1UOH8jaaQYU,
https://youtu.be/dD4 vXHIk6o and https://youtu.be/NodNFozaig8.
The filaments of the cosmic web seem again to be well-aligned with
the directions of the initial anisotropic strain tensor and therefore
potentially with halo and galaxy shapes at low redshift.

In the remainder of this article, we will quantify these intrinsic
alignments as predicted by the peak patch model. We will first focus
on the standard isotropic halo clustering before introducing halo
anisotropic clustering in the frame of the cosmic web by means of
the frame of the initial strain and eventually investigate initial shape
alignments.

3.2 Isotropic clustering of haloes

Before studying the orientation of haloes, let us first quantify the
isotropic clustering of peak patch haloes by means of the two-point
density–density isotropic correlation function defined as

ξhh(r) = 〈δh(r′)δh(r′ + r)〉 = 〈nh(r′)nh(r′ + r)〉
〈nh〉2

− 1, (15)

where δh is the number density contrast of haloes, i.e. δh(r) =
nh(r)/〈nh〉 − 1, and nh is the number density of haloes. Note that
the halo correlation function ξ hh only depends on the modulus of the
pair separation r if we assume statistical homogeneity and isotropy
of the random fields. By definition, this function can range from −1
(anticorrelation/exclusion) to +∞ (high correlation).

For our catalogue, we stack halo pairs depending on their pair
separation using regular bins in r (we call �r the corresponding
radial step size). We then estimate ξ hh by comparing this stacking to
the total number of halo pairs if the haloes were uniformly distributed
in the simulation box, weighted by the volume fraction of the bins. To
estimate measurement uncertainty, we divide the simulation volume
in eight and compute separate estimations of ξ hh for each of these sub-
volumes. The final estimation of ξ hh is the mean of the eight separate
estimations, and the corresponding uncertainties are computed as the
standard error on the mean.

The resulting halo correlation function is shown in Fig. 3 for
different halo masses, namely i) low masses with M ∈ [3.5 ×
1013 M�, 1014 M�] (orange), ii) intermediate masses with M ∈
[1014 M�, 1015 M�] (green), and iii) high masses with M > 1015 M�
(red). The left-hand panel shows the measurements in Lagrangian
space (with �r = 1.5 Mpc) while the right-hand panel displays the
counterpart in Eulerian space (with �r = 0.5 Mpc). The vertical
dashed lines show the minimal RL values for each bin of mass.
Note that the radial step size of these measurements is higher for
Lagrangian measurements to prevent pixelization effects due to the
limited resolution of the simulation.

In Lagrangian space, we see a clear exclusion zone – when the
correlation function goes to −1 – that is larger for massive haloes,
depending upon a combination of the cluster’s Lagrangian radius
RL, c, large for larger masses, and an average of the radii RL,c′ < RL,c

of all other lower-mass haloes. Peak patches explore three types of
exclusion, half-exclusion allowing for clusters anywhere outside of
RL, c, full exclusion enforcing a larger disallowed zone, of radius
RL,c′ + RL,c, and binary exclusion that is a compromise between
the two: clusters in the in-between region have a mass-conserving
apportionment of space to the two clusters in question, but this is
done pairwise, whereas simultaneous apportioning of space of all
clusters in the in-between region would be better, albeit statistically
complex. It is difficult to do the binary exclusion adopted for our halo
catalogue results, and, indeed, for full exclusion, in any semi-analytic
framework, so there is little recourse but to do numerical estimates
of the clustering such as those reported here to be quantitative about
exclusion. As we vary the target masses of the haloes, RL, c ranges
from a few megaparsecs at the lowest masses we consider to about
10 Mpc for the most massive clusters. Exclusion is a very nonlinear
effect, involving in general full clustering information locally of the
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Clustering and alignments of peak patch haloes 1701

Figure 3. Two-point density–density isotropic correlations in Lagrangian space (left-hand panel) and Eulerian space (right-hand panel) for different bins of
mass as labelled. Vertical dashed lines show minimal RL values for each bin of mass. The Eulerian analogue involves compression to an overdensity of 200, so
these lines would be multiplied by ∼(200)−1/3 ≈ 0.17, significant in this plot only for the largest mass bin where exclusion effects are still evident even after the
dynamics draws the haloes together.

clusters, to ensure haloes are non-overlapping in Lagrangian space,
a hard sphere exclusion. On top of that, the statistics of the initial
field typically prevent the formation of deep enough potential wells
too close to each other, simply because of topological arguments
(Baldauf et al. 2016; Codis, Pogosyan & Pichon 2018a). Beyond
the exclusion zone, the correlation function displays a positive
enhancement, a biasing bump, before it converges towards zero
on tens of megaparsecs scales, following a perturbative bias model
(Matsubara & Codis 2020). As is evident, the linear bias, which
measures the linear response of the halo density field to a mass
density perturbation, is larger for larger mass haloes (Kaiser 1984;
Desjacques, Jeong & Schmidt 2018).

Once haloes are displaced according to second order Lagrangian
perturbation theory, the exclusion zone is progressively filled as
haloes move and large structures collapse. Only the most massive
haloes still display an exclusion zone larger than the resolution of
our simulation at redshift zero. On large scales, gravitational collapse
enhances halo clustering as expected, with more massive objects
having a larger bias.

3.3 Halo clustering in the strain eigenframe

One of the obvious drawbacks of a standard isotropic halo correlation
function is that it mixes all the directions of the cosmic web so that
the quite anisotropic clustering, e.g. along filaments, is averaged
out. To highlight the clustering anisotropy, one can mark the two-
point halo–halo correlation function by adding constraints on the pair
members. In this section, we use knowledge of the target cluster’s
strain tensor to compute the mean number density profile of haloes
around it, for now not taking into account orientation aspects of
the non-target clusters that we stack on, although we do that later.
In this work, the shapes of haloes are modelled as ellipsoids, with
axes deformed from spherical by the time-dependent nonlinear strain
tensor, but the late-time deformations are determined completely by
the pre-collapse linear initial strain. That is, we use the target’s strain
frame to define directions in the local cosmic web and compute the
strain-tensor-oriented correlation function within this frame. Hence,
we can investigate alignment of cluster-scale tides with the cosmic

web, expecting to see differential clustering along filaments of the
haloes rather than perpendicular to them.

3.3.1 Strain-tensor-oriented correlation functions via oriented
stacking

To compute the two-point strain-tensor-oriented halo–halo corre-
lation function ξE

hh, we use the natural basis for each selected halo
defined by the principal directions of the strain tensor E , as explained
in Section 3.1, and we stack its neighbouring haloes in this frame in
a procedure we call oriented stacking, the goal being to quantify
anisotropic behaviour following the eigendirections of the target
haloes. The correlation between two haloes at rh1 and rh2 only
depends upon r = rh2 − rh1:

ξ
E,h1
h1,h2(r) = 〈δh (rh1) δh

(
rh1 + RE,h1r)

)〉, (16)

where RE,h1 is the orthogonal matrix that diagonalizes Eh1, the strain
tensor of a halo at position rh1, and therefore represents the change
of basis from the frame of the simulation to the eigenframe of the
strain tensor, such that

− E = RE

⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠RT

E with λ1 ≤ λ2 ≤ λ3. (17)

For the sake of simplicity, we will use the shorter notation
ξE
hh(r) ≡ ξ

E,h1
h1,h2(r) in the remainder of this paper. The difference with

the previous isotropic correlation is that we are now deliberately
breaking the isotropy by enforcing the halo eigenframe information
upon the correlation statistics. Hence, we now do the stacking in 3D
instead of in 1D as was done with the isotropic case before when the
correlation only depended upon the modulus of the pair separation.
For the Lagrangian space results, we adopt a regular grid with voxel
size �x = 1.5 Mpc to get smoother results. For Eulerian space �x
can be smaller.

3.3.2 3D oriented clustering

Fig. 4 shows a 3D visualisation of the oriented halo correlation
function for two bins of mass. The X, Y, and Z axes, respectively,
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1702 B. Regaldo-Saint Blancard et al.

Figure 4. Stacking of haloes on strain-oriented haloes yields the ξEhh(r) correlation function, shown here with a voxel size �x = 1.5 Mpc. The top panel shows
the measurements in Lagrangian space while the bottom shows Eulerian space measurements. Two mass bins are displayed: 1.5 × 1012–1013 M�(left-hand
panels) and 1013–1014 M� (right-hand panels). Here, the X, Y, and Z axes, respectively, refer to the major, intermediate, and minor directions of the selected
haloes. We show only a few isocontours for the sake of clarity. In Lagrangian (respectively Eulerian) space, we show contours for ξEhh = −0.5, 0.4, 0.8, 1.2
(respectively ξEhh = −0.1, 0, 2, 4, 6, 8).

refer to the major, intermediate, and minor principal directions of
the strain tensor. Because of the arbitrary choice of orientation
of the eigenvectors, the 3D oriented correlation function must be
invariant under any rotation of π around these principal directions.
The top panels of Fig. 4 show the 3D oriented correlation function in
Lagrangian space. The contours in blue show the exclusion zone
near the central halo. This exclusion is very anisotropic and is
stretched along the minor axis of the halo. The clustering that is
maximum in the red region is also very anisotropic and occurs along
the major direction. This is a clear signature of the cosmic web-
like environment with typically a filament along the major direction
where most neighbouring haloes reside, a wall that encompasses
the filament and tend to lie in the plane formed by the major and
intermediate direction while two voids tend to be located in the minor
eigendirection on both sides of the wall. The bottom panels show the
oriented correlation functions in Eulerian space. The exclusion zone
has been filled by the displacement of haloes and the anisotropy of
the clustering is enhanced with large voids growing on both sides
of the wall and the filament along the major axis being even more
pronounced and sharper as a result of the gravitational collapse of
structures.

This corroborates what we were expecting from the halo shape
visualizations of Fig. 1. The major direction of haloes more likely
points towards other haloes while their minor direction points towards
neighbouring voids. Let us also note that the bump in density is
approximately at the same distance, around 5–10 Mpc, found for the
isotropic correlation (Fig. 3), quantifying the typical extent of inter-
cluster filaments (which is an increasing function of halo mass).
Note that this anisotropic clustering of haloes was also investigated
recently in the context of galaxy–galaxy lensing (Osato et al. 2018)
where similar results were found.

3.3.3 Harmonic analysis of the oriented clustering

Since 3D correlation functions have obvious difficulties for visual-
ization, we will now project the 3D correlation maps via a harmonic
decomposition: for each successive spherical cut at fixed radius of
ξE

hh field we expand ξE
hh in the spherical harmonics basis {Ym

l }:

ξE
hh(r, θ, ϕ) =

∞∑
l=0

l∑
m=−l

al,m(r)Ym
l (θ, ϕ) , (18)
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Figure 5. Ym
l decomposition of the strain-tensor-oriented halo correlation function ξEhh(r) in shells of various radii. Results in Lagrangian space (top panels)

and Eulerian space (bottom panels) are displayed for different mass bins from left to right as labelled. The legend gives the corresponding (l, m) values.

with radially dependent amplitudes

al,m(r) =
∫ 2π

ϕ=0

∫ π

θ=0
ξE

hh(r, θ, ϕ)Ym
l (θ, ϕ) sin(θ ) dθ dϕ, (19)

The {Ym
l } convention we adopt, in terms of associated Legendre

polynomials P m
l , is

Ym
l (θ, ϕ) =

√
(2l + 1)

4π

(l − m)!

(l + m)!
eimϕP m

l (cos(θ )). (20)

Some visualizations on the sphere are given in Appendix B. The
angular variables relative to the cluster position M are defined so
that θ is the angle that (OM) makes with the major axis, and ϕ is
the angle that (OM

′
) makes with the intermediate axis, with M

′
the

projection of M in the plane perpendicular to the major axis. Note
that since ξE

hh(r) is a real function, m < 0 coefficients can be identified
with m > 0 ones using the relation: al,m = (−1)mal,−m. Also, ξE

hh(r)
is invariant under π -rotations around any of the three axes, leading
to al, m = 0 when l or m is odd, and al,m ∈ R. Accordingly, in the
following, we choose to restrain our harmonic description to al, m

functions for (l, m) ∈ {(0, 0), (2, 0), (2, 2), (4, 0), (4, 2), (4, 4),
(6, 0)}. Higher harmonics quickly become negligible, hence the
previous harmonics correspond to a reasonable compromise between
restraining the number of coefficients and keeping the most relevant
ones to describe ξE

hh.
Fig. 5 shows the results up to 30 Mpc in Lagrangian space (top

panels, with �r = 1.5 Mpc) and Eulerian space (bottom panels, with
�r = 0.5 Mpc) for three mass bins from left to right. For a given
radius, surface integrals on the sphere are computed using a trilinear
interpolation of the regular grid of values corresponding to the ξE

hh

function. Note that we make the radial step size of al, m functions

higher for Lagrangian measurements to prevent pixelization effects
due to the limited resolution of the simulation. The monopole a00

is directly proportional to the isotropic correlation calculated in
Fig. 3 with, in particular, an exclusion and a bump centred at
increasing distances for increasing masses. The chosen normalization
for Y 0

0 leads to a factor of proportionality equal to
√

4π ∼ 3.5. In
Lagrangian space, the monopole is clearly dominant in the exclusion
zone. For larger radii, it is exceeded by the quadrupolar component
which is a direct evidence for the importance of filamentary clustering
(equivalently the lack of clustering in the neighbouring void regions).
Higher order contributions also appear with lower amplitude when
l grows. This is a signature of the connectivity of the cosmic web
with filaments typically bifurcating even more so that the haloes
under consideration are massive. This was modelled from first
principles and thoroughly investigated in Codis et al. (2018a) where
more massive haloes/nodes where shown to be more connected to
their environment (as was also tentatively measured in numerical
simulations – although with large uncertainties – in Aragón-Calvo,
van de Weygaert & Jones 2010). Typically the low-mass haloes
are connected to ∼4 filaments on average while larger mass haloes
can reach typically 8–10 connections. This is one reason why more
massive haloes excite harmonics of higher orders. At low mass,
haloes are embedded in one big filament so that two branches emanate
on each side and a quadrupole in the correlation function appears.
Possibly two more branches are also there but on average they will
be less pronounced hence the lower amplitude of the corresponding
harmonics. There is no significant contribution beyond. On the
other hand, massive haloes are connected to about 8–10 branches
of filaments which is why harmonics up to higher order (8 or so) can
be excited. Obviously, the low orders dominate (corresponding to the
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1704 B. Regaldo-Saint Blancard et al.

Figure 6. Same as Fig. 4 after symmetry breaking in Eulerian space for two mass bins: 1.5 × 1012–1013 M� (left) and 1013–1014 M�(right).

dominant filaments) and higher orders are progressively suppressed
as they correspond to fainter ones.

In Eulerian space, gravitational collapse sharpens the filamentary
cosmic web. The clustering of haloes is enhanced as they moved
along the cosmic web. As can be seen on the bottom panel of Fig. 5,
the monopole dominates now over the entire range of separations.
This is especially true for the smaller mass haloes, maybe because
those in clusters have erased memory of their large-scale environment
and therefore tend to reduce the relative impact of higher order
harmonics. However, for the more massive bin, the quadrupole is
large and reaches more or less the same amplitude as the monopole for
all separations. This is probably because larger masses have evolved
much less and have kept their initial main connections (although
some small filaments may have merged).

3.4 Oriented stacks with symmetry-breaking

Previously, we have assumed no preferential orientation (i.e. global
sign) of the eigenvectors. Those were headless arrows. Hence, one
could only consider one eighth of the space to represent the 3D
oriented correlation function. This has two advantages: eight times
more data per pixel which is useful to reduce numerical noise, and a
memory usage divided by 8. However, there might be some physical
reasons to impose an orientation for the basis. For example if one
wants to take into account the displacement of haloes between the
initial and final positions to compute the correlations, one could
impose the eigenvectors of our haloes to be oriented approximately
in the direction of the displacement vector which more or less
boils down to orientating filaments in the direction of the force (i.e.
the attractive node). Consider a halo with a displacement vector s,
which in linear theory is proportional to its gravitational acceleration
vector. We can add information to the stacking without losing any
information by orienting the positive directions of the frame axes to
be preferentially pointing towards the gravitational acceleration, in
particular by imposing that the three eigenvectors {êi} of the strain
tensor E are now directed and not headless:

∀i ∈ {1, 2, 3}, s · êi > 0. (21)

This representation allows us to get some information about how
the flow of haloes influences the distribution of haloes around the
principal axis of the strain tensors. We refer to this approach as
dipolar symmetry breaking in the following.

Fig. 6 shows the impact of the flow symmetry breaking on
the oriented density–density correlation function ξE

hh(r). The 3D
correlation has been visually blown in the direction of the flow.
This asymmetry means that haloes are more likely to cluster in the
direction of the flow. On the al, m coefficients, as seen on Figs 7 and
8, this therefore excites odd modes that were null before, mainly
the ones corresponding to l = 1 (the real part of even modes are
left unchanged and therefore not displayed again here). These l =
1 modes correspond to the flow being from the voids to the walls,
from the walls to the filaments and finally from the filaments to the
nodes and simultaneously the clustering being more pronounced in
walls, filaments and even more nodes. Hence, the main mode excited
is along the filaments therefore it corresponds to the harmonics (1,0),
followed by the walls and voids. The amplitude of all modes is larger
for larger masses as expected. Interestingly, the relative importance
of higher order harmonics, notably (3,0), increases for larger
masses.

3.5 Alignment of the strain tensors

Previously we have studied in detail the anisotropic halo clustering
by constraining the strain of the target halo, but not using the second
halo’s strain tensor. We use this information to explore the intrinsic
alignment of haloes by describing how the two principal eigenvector
bases are correlated as their separation changes. For this, we compute
the (isotropic) two-point correlation function defined by

ξêi êj (r) = 〈(êi(rh2 ).êj(rh1 ))2〉 − 1

3
, (22)

where êi(rh2 ) refers to the normalized eigenvector of the strain tensor
of a halo at given position rh2 associated with the eigenvalue λi(rh2 ).

Fig. 9 shows the resulting halo alignments in Lagrangian and
Eulerian space for various mass bins. If no alignments were detected,
one would get ξêi êj (r) = 0. As expected, halo eigendirections do
tend to align, with a stronger alignment for the minor and major
axes compared to the intermediate eigendirections. The coherence
of these alignments extends to quite large scales, from about 15–
50 Mpc as halo mass grows, in agreement with the expected
coherence of the tidal tensor from linear theory (Lee, Hahn &
Porciani 2009) and recent measurements in N-body simulations
(Kurita et al. 2020). Interestingly, going from Lagrangian to Eulerian
space does not erase these alignments although they are slightly
suppressed at small scales as anticipated due to nonlinear effects. As
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Figure 8. Same as Fig. 7 for the imaginary part of the al, m coefficients. m = 0 coefficients have a null imaginary part and are therefore not displayed.

detailed further in Appendix A, linear theory predict qualitatively
the same signal although the difference seen between minor and
major axis, especially at large mass, is a clear signature of the
nonlinearities at play, in particular due to the ellipsoidal collapse
dynamics.

This result strongly suggests that halo intrinsic alignment may
pervade on very large scales and resist the nonlinear evolution.

3.6 Orientated stacks in projection

Visualizations of 3D correlations in the static format of the 2D page
do not convey as much information as one would like, making a
case for 2D projections. This is also relevant for observations, which
can deliver 2D maps, possibly with redshift foliation of the maps
(photometric clustering, cosmic shear, intensity mapping, CMB,
etc). Hence, we now show projections of 3D results into 2D. For
that purpose, we choose an arbitrary axis of the simulation, let us
call it (Oz), and define some z-slices of the simulation that are
then projected on to the same plane. With two-point correlation
functions, for a given z-slice, the projection of halo positions is
simply achieved by ignoring the z-coordinates and using directly
the (x, y) coordinates as the projected coordinates of the objects.
To calculate a strain-tensor-oriented correlation, we also need to
compute the 2D projections of the strain tensors on the (xOy) plane,

which is simply

E2D =
(

εxx εxy

εyx εyy

)
. (23)

Using these projections within 5 Mpc slices, we then compute the
oriented density–density correlation function in 2D ξ

E/2D
hh (r) using

the same techniques as for the 3D function. Hence, we estimate the
distribution of neighbouring haloes in the vicinity of a central halo
with fixed orientation. In addition, we also measure in the same
frame the average major eigendirection of the neighbours (set by
their strain tensor) in order to get a clear visualisation of the shape
alignments in the surroundings of a central halo. Fig. 10 shows the
results of these calculations for several mass bins. The background
coloured density map represents ξ

E/2D
hh , while headless arrows show

the average direction of the major axis of surrounding haloes, and
their length is proportional to the difference between the eigenvalues.
Here, everything is computed within the frame of the central halo, the
X-axis being its major direction, and the Y-axis its minor direction.
There is no symmetry breaking which is why the plots are reflection
symmetric with respect to the two axes.

These projections show clearly the exclusion zone in dark blue
growing from small to larger masses with a clear anisotropy as it is
squashed along the minor axis of the central halo. The clustering of
neighbours peaks again (in yellow/red) at an increasing separation
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1706 B. Regaldo-Saint Blancard et al.

Figure 9. ξêi êj (r) correlation functions quantifying halo intrinsic alignments, as measured in Lagrangian (top panels) and Eulerian (bottom panels) spaces for
different mass bins as labelled.

for larger masses. It does not happen in all directions but specifically
along the major axis of the central halo. This anisotropy is even more
pronounced in Eulerian space (bottom panels). All those results are
nothing but a 2D visualization of the same phenomenon already ob-
served for 3D correlations (see Fig. 3) with a clear filament appearing
along the major direction and two voids along the minor axis.

Looking at the black bars which represent the stacked orientation
of neighbouring haloes, a clear alignment of their shape is detected,
in particular close to the X-axis. This shows an average alignment of
haloes along the major direction (halo shapes tend to point towards
each other) and for greater scales (≥30 Mpc, beyond the boundary
of the plot) than what we already observed in isotropic settings like
the one shown in Fig. 9. Tidal alignments seem therefore to occur on
very large scales, even larger than the mean correlation length of the
tidal field. This is a consequence of the so-called biased clustering
effect (Cole & Kaiser 1989): haloes do not form anywhere in the
Universe but along filaments which are very special places where
the field is coherent. This induces very strong and long-range halo
correlations along the cosmic web.

Finally, we also compute the same projected correlations after
symmetry breaking (taking into account the orientation of the flow).
The result is displayed in Fig. 11. As expected, the clustering becomes
dissymetric with many more neighbours in the direction of the flow.
The orientation of the neighbours is however relatively unaffected
by the symmetry breaking procedure.

4 D ISCUSSION AND CONCLUSION

In this work, the peak patch picture was used as a model for halo
formation and evolution. Based on this model, the anisotropic halo

clustering was first investigated. The anisotropy could be revealed
thanks to an oriented stack in the frame of the halo’s strain tensor
whose orientation is very correlated with the surrounding cosmic
web. Haloes were shown to cluster mostly in the direction of
the filaments as expected. This effect was further quantified using
an harmonic decomposition of the 3D correlation function, which
allowed us to make the connection with the so-called cosmic web
connectivity modelled in Codis et al. (2018a). In addition, we also
implemented a symmetry breaking procedure where the direction of
the local flow is accounted for. As expected haloes cluster more in
the direction of the flow.

Furthermore, the correlations between halo shapes as traced by
their initial strain were quantified both in 3D and in projection. It
was shown that those correlations exist on very large scales and are
highly anisotropic. Along filaments, they extend to scales as large as
50 Mpc and more.

In order to provide theoretical insight on to those results, first
principle calculations based on the hierarchical peak theory of
Gaussian random fields can be performed. Such predictions for the
oriented clustering of peaks in Gaussian random fields are provided
in Appendix A and are shown to lead to the same qualitative picture
as for the peak patch picture described in this paper. However, one
should bear in mind that the peak theory description, although elegant
since it can be fully written and derived from first principles, cannot
model accurately the details of halo formation and alignments which
require a more complex modelling of their collapse, displacements,
and nonlinear exclusion effects which are provided by the mass-peak
patch model used here.

Of course, it is quite likely that other elements of nonlinear
gravitational evolution and the complex baryonic processes (such
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Clustering and alignments of peak patch haloes 1707

Figure 10. Oriented correlations from 5 Mpc thick projections of the peak patch simulation: the colour map represents the oriented halo density correlation
function ξ

E/2D
hh (r) while the bars show the average major eigendirection of surrounding haloes. The X-axis is the direction of the major axis of the central halo,

and the Y-axis follows its minor axis. Top panels are in Lagrangian space while bottom panels are in Eulerian space. Three mass bins are considered from left to
right: M ∈ [1.5 × 1012 M�, 1013 M�]; M ∈ [1013 M�, 1014 M�]; M ∈ [1014 M�, +∞[.

Figure 11. Same as the bottom panels of Fig. 10 with symmetry breaking in Eulerian space.

as feedback from active galactic nuclei, galactic winds, supernovae
explosion, turbulence, etc) associated with structure formation may
decrease the initial alignments modelled in this article. However the
work presented here allows us to understand more clearly one of
the building blocks of halo intrinsic alignments: the large-scale tidal
coherence. On smaller scale, this ingredient should be convolved with
the complex response function of galaxies to this underlying tidal
correlations. Hence, it would be of great interest to develop a hybrid
framework combining the large-scale tidal alignments modelled in
this paper with galaxy response functions that could be measured in

hydrodynamical simulations. This is, however, beyond the scope of
this paper and will be studied elsewhere.

Let us also note that in this study we have not considered the
build up of halo spin which also tends to align with the cosmic
web (Codis et al. 2012; Trowland, Lewis & Bland-Hawthorn 2013;
Wang & Kang 2017, 2018; Ganeshaiah Veena et al. 2018). This
would require a better understanding of the shape of protohaloes,
although a simple proxy based on initial peak shape following Codis
et al. (2015b) could easily be used. This will be the subject of future
works.
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APPEN D IX A : O RIENTED STAC KS OF PEAKS
I N G AU S S I A N R A N D O M FI E L D S

Let us consider a statistically homogeneous and isotropic Gaussian
random field δL(r) (the linear density contrast) with zero mean and
power spectrum Pk, where k is the magnitude of the comoving
wavenumber. In this section, we will investigate how peaks of this
matter density field cluster in the frame of the strain tensor. This
is meant to be a toy model to explain the oriented stacks of haloes
measured in peak patch simulations and described in the main text.

A1 From mass-peak patches to overdensity peaks

As discussed and shown in BM1, in spite of the complexity of
exclusion, a surprisingly simple semi-analytic approximation for
the number density of hierarchical mass-peaks works reasonably
well compared with the full hierarchically merged numerical results,
and we will use that for the illustration of how the main effects
of exclusion and large-scale anisotropic clustering emerge. The
homogeneous ellipsoid dynamical model was described in Section 2.
The collapse along all 3-axes to a final equilibrium can be translated
to initial condition (linear) space, through a critical relation between
δL and the anisotropic eigenvalues, νev and νpv: δL = δL, crit(ev , pv).

At a given mass with top hat radius Rc, Mc ∝ R3
c , at the red-

shift in question, there are probability distributions of δL(rc|Rc),
ev(rc|Rc), and pv(rc|Rc) with mean values 〈δL〉(rc|R), 〈ev〉(rc|R),
and 〈pv〉(rc|R) and dispersions about those means, The BM1 semi-
analytic approximation neglects pv , replaces ev by 〈ev〉(rc|Rc), and
uses δL(rc|Rc) = δL,crit(〈ev〉). This also results in a function giving
the cluster top-hat scale Rc(δL, crit, 〈ev〉). As the mass drops 〈ev〉 and
δL, crit rise, the mass-peaks have greater initial anisotropy than high-
mass peaks. With this approximation mass is on average related to
δL, crit, so the mass-peak finding criterion, ∇M = 0, translates into a
density-peak finding criterion, ∇δL = 0. The position and mass delta
function relations, r = rc and M = Mc, can be transformed into delta
function relations for the δL:

δ(r − rc)δ(ln M − ln Mc)

= det|∇∇ ln M|δ(∇ ln M)δ(ln M − ln Mc)

→ det|∇∇δL|δ(∇δL)| dδL

d ln M
|δ(δL − δL,crit)

= np,op(ν|Rc)| dν

d ln M
|δ(ν − νcrit) . (A1)

Here np, op(ν)dν is the conventional BBKS density-peak operator
as a function of peak height ν = δL/σ 0. (Whether one uses the
conventional ρ/ρ̄ − 1 or ln ρ/ρ̄ for δL does not matter here in this
fully linear regime.)

The mass-Peak Patch algorithm, and halo finding generally, is
based on top hat filtering. The original BBKS peak description was
more focused on Gaussian filtering, hence to relate to the well known
BBKS paper, we shall adopt Gaussian filtering in this appendix.
Typically RTH = Rc ≈ 2RG is found in full peak patch simulations,
with a small variance around it, and this also follows from the
analytic theory. Instead of determining RTH, BBKS adopted a relation
M = ρ̄0(2π )3/2R3

G that used the Gaussian volume which gives RTH =
1.56RG rather than the peak patch ≈2RG. For Gaussian filtering
dδL/d ln M = R2

G∇2δL/3 = R2
Gσ2I1/3, where the spectral parameter

σ 2
2 = 〈

(∇2δL)2
〉

and the dimensionless curvature variable I1 =
∇2δL/σ 2 are familiar from BBKS. The approximate semi-analytic
relation for the hierarchical peaks operator nhpk,op(r, ln Mc)d3rd ln M

is then expressible in terms of the BBKS peak density operator

np,op(r|RG, ν)d3rdν, where ν = δL/σ 0 and σ 2
0 = 〈δ2

L〉, by

nhpk,op(rc, ln Mc, qc) = σ2R
2
G

3σ0
I1np,op(rc, νcrit,c, qc), (A2)

where qc can be an additional internal property of the haloes.
In BBKS, the determination of the one-point distribution

〈npk〉(ν)dν of overdensity peaks was emphasized, but estimate of
object numbers was done by integrating over a Prob(ν th|ν) selection
function of peaks above a threshold ν th. Now with the peak patch
theory, we have a selection function Prob(ν th|ν) = δ(ν − νcrit(Mc)).
Selection functions may be a simple way to extend the analytics
described here to take into account the spread of ν about νcrit(Mc) =
〈δL|Mc〉/σ 0(Rc) for given Mc. However all the anisotropic variables
would have their own selections, and all would have to be calibrated
by the full peak patch simulations, especially relevant if clustering
functions are the target. In the next section, we allow a range of ν for
a specified mass which can be thought of as motivated by the spread
about the mean νcrit(Mc)).

In these density distribution functions, we carry along variables
q, which include the original ones defined below, plus others
fundamental to anisotropy and alignment studies, in particular ε′

L,ij

included in BM1 and BKP but which were not included in the
original BBKS treatment. Just as ν and I1 are correlated (〈νI1〉 =
−γ, γ = σ 2

1 /σ0σ2), so all components of anisotropic strain ε′
L,ij

and anisotropic curvature ∇2ε′
L,ij = [∇i∇j Tr(εL)]′ are correlated. In

particular, 〈I1|ν〉 ≈ −γ ν for large ν.
One might wonder how elements of exclusion enter into this semi-

analytic framework since no exclusion operator dependent on higher
mass peaks enter into this formula. Since peaks of the linear density
field must be exactly νcritσ 0(Rc), it is not that likely that there will be
other peaks within radius Rc satisfying exactly this criterion. There
are semi-analytic approximations to half and full exclusion which
are integrals over higher masses of npk〈I1|ν〉 that give an idea of what
the further exclusion acting on the mass function is like, given the
restrictions associated with the first upcrossing peaks through νcrit.

Our target here is to explore semi-analytically the nhpk ∝ np

approximation described above to make the two-point correlation
of hierarchical peaks,

〈nhpk,op(r1, R1, q1|C1)nhpk,op(r2, R2, q2|C2))〉, (A3)

tractable analytically.

A2 Gaussian statistics of the field and its derivatives

We now expand the BBKS treatment of np,op(rc, νc, qc)d3rcdνcdqc

to include the qc. Let us focus on the field δL defined above smoothed
over a scale R by a filter function W

δL(r, R) =
∫

d3k
(2π )3

δL(k)W (kR)eik·r . (A4)

In peak patches, the top hat form of W is used. BBKS emphasized
more on the Gaussian form, which balances the spread in k space of
the Fourier transform of W and the spread of W in x space.

Since we have translated the M = Mc criterion into a δL criterion
using mean-field results, the mass-peak statistics are determined by
the distribution of δL and its first and second derivatives (to define
peaks using a constraint of zero gradient and negative curvatures). In
addition, we will need the anisotropic parts of the strain tensor,
or equivalently the tide ∇ i∇ j�N, the second derivative of the
gravitational potential �N, since in linear theory it is proportional
to the strain, as noted in Section 2.
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1710 B. Regaldo-Saint Blancard et al.

Figure A1. Oriented correlation function of Gaussian peaks with height between 1.5σ and 2.5σ for a power-law power spectrum with spectral index ns =
−2. Left-hand panel: correlation function in the plane y = 0. Right-hand panel: correlation function along the minor (z-axis) in cyan and major eigendirection
(x-axis) of the shear in purple as labelled. For comparison, the isotropic correlation function is shown with dashed lines.

Figure A2. Correlation function of Gaussian peaks of height between 1.5σ

and 2.5σ in red and 2.5 and 3.5 in purple for a power-law power spectrum
with spectral index ns = −2.

We shall mostly follow the normalized variable convention used
in Pogosyan et al. (2009), Codis et al. (2015b): φij = −εL, ij/σ 0,
x = Tr(φij ) = δL/σ0, xk ≡ ∇kδL/σ 1, and xkl ≡ ∇k∇ lδL/σ 2. The
normalizations use their respective variances

σ 2
i (R) ≡ 1

2π2

∫ ∞

0
dkk2Pk(k)k2iW 2(kR) . (A5)

Note that BBKS used ζ ij = −xkl and ηi = xi and ν for x.
The catalogue of object information we are carrying is therefore

C = {x, φij , xij , xi}, which amounts to 15 = 6 + 6 + 3 variables in all.
The displacement ∇−2∇i Tr(εL) adds three extra variables to the list
if we are interested in the linear velocity distribution – the velocities
of peaks are reduced because of the correlation of the displacement
and xi. In BM1, the general numerical peak patch catalogue also
carried along the binding energy, which is a linear quantity. So the
standard peak patch catalogue-object list has 20 variables, plus the
position rc and mass scale Mc.

The joint two-point probability distribution function (PDF here-
after) of the set of 15 normalized fields X = {φij , xij , xi} and
X ′ = {φ′

ij , x
′
ij , x

′
i} at two prescribed comoving locations separated

by a distance r is P(X, X ′). For Gaussian initial conditions, this
joint PDF is the multivariate Normal

N (X, X ′) =
exp

[
− 1

2

(
X
X ′

)T

· C−1 ·
(

X
X ′

)]

det|C|1/2 (2π )15 , (A6)

where C0 ≡ 〈X · XT〉 and C× ≡ 〈X · X ′T〉 are the diagonal and off-
diagonal components of the covariance matrix

C =
(

C0 C×
CT

× C0

)
. (A7)

Because of statistical homogeneity the off-diagonal covariance
depends only on the separation vector r . Equation (A6) is the
only ingredient needed to compute the expectation value of any
quantity involving the strain tensor, the density gradient, and second
derivatives.

A3 Peak clustering

In particular, equation (A6) can be used to compute the two-point
correlation ξ pp(r, ν) of overdensity peaks as a function of ν separated
by r which is given by

1 + ξpp(r, ν) =
〈
np(X)np(X ′)

〉
〈
np(X)

〉2 , (A8)

where the Klimontovich or ‘localized’ density of peaks in three
dimensions reads (Kac 1943; Rice 1945; Bardeen et al. 1986)

np(X)=−
(

σ2

σ1

)3

det(xij )δD(xi)δD(x − ν)�H(−λ3) , (A9)

with λ1 < λ2 < λ3, the eigenvalues of the density hessian matrix, δD

the Dirac delta function, and �H the Heaviside step function. The
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Clustering and alignments of peak patch haloes 1711

Figure A3. Oriented peak–peak correlation function for a Gaussian random field with spectral index ns = −2. Left-hand panel: Mollweide projection of the
sphere at r = R (top panel) and r = 3R (bottom panel). The vertical axis is the major direction of the strain tensor, the minor direction corresponds to the two
minima of the maps in dark blue while the intermediate direction corresponds to the saddle points at the centre of the maps and on the left and right edges.
Right-hand panel: Decomposition of the oriented peak–peak correlation function on to spherical harmonics as a function of the separation.

dimensional factor (σ 1/σ 2)3 ensures that the ensemble average

〈
np(X)

〉=
∫

dX np(X)P(X), (A10)

appearing in the denominator of equation (A8), is the mean number
density of peaks in the band ν to ν + dν for a given mass (Gaussian
filtering scale).

Because of the constraint on the sign of the second derivatives, the
peak two-point correlation cannot be computed analytically. Hence,
we define the conditional probability that xij and x ′

ij satisfy the PDF,
subject to the condition that xi = x ′

i = 0 and x = x
′ = ν and resort

to Monte Carlo methods in MATHEMATICA in order to evaluate
numerically equation (A8). Namely, we draw random numbers of
dimension 12 from the conditional probability that xij and x ′

ij satisfy
the PDF, subject to the condition that xi = x ′

i = 0 and x = x
′ =

ν (using RandomVariate). For each draw (k) if λ3(x(k)
ij ) < 0 and

λ3(x ′(k)
ij ) < 0, we keep the sample and evaluate det(x(k)

ij )det(x ′(k)
ij ) and

otherwise we drop it. Eventually,

〈
np(X)np(X ′)

〉 ≈ 1

N

∑
k∈S

[
det(x(k)

ij )det(x ′(k)
ij )

]
×P(x = x ′ = ν, xi = x ′

i = 0) , (A11)

where N is the total number of draws, and S is the subset of the
indices of draws satisfying the constraints on the eigenvalues. The
same procedure can be applied to evaluate the denominator

〈
np(X)

〉
.

Equation (A8) then yields ξ pp(r, ν). This algorithm is embarrassingly
parallel. It is straightforward to generalize it, for instance, to the
computation of the correlation function ξ pp(r, >ν) of peaks above
a given threshold in density, or within a bin of rarity. Obviously, in
those cases, the required number of draws is larger and increases
with the value of the threshold (as the event x > ν becomes rarer) or
the size of the bin.

A4 Oriented stacks of peaks

Going one step further, the idea is now to also do the calculation in
the frame of the tidal tensor φij, which can be done by adding the
constraint

BE (X) = 2π2(φ33 − φ22)(φ22 − φ11)(φ33 − φ11)δD(φ12)

×δD(φ13)δD(φ23)�H(φ33 − φ22)�H(φ22 − φ11), (A12)

which boils down to imposing the off-diagonal coefficients of the
tidal tensor to be zero, the curvatures to be ordered and to adding the
Jacobian of the transformation by means of the usual Vandermonde
determinant (φ33 − φ22)(φ22 − φ11)(φ33 − φ11) with an additional
2π2 due to the integration over the Euler angles.

As mentioned above, instead of using a delta-function at the mean
〈ν|Rc〉 = νcrit, we use a range of ν with spread �ν about the mean.
The oriented two-point correlation ξE

pp(r, ν, �ν) of peaks in the range
ν ± �ν separated by r is then given by

1 + ξE
pp(r, ν, �ν) =

〈
BE (X)Np(X)Np(X ′)

〉〈
BE (X)Np(X)

〉 〈
Np(X)

〉 , (A13)

where the‘localized’ density of peaks in the ν ± �ν range is

Np(X) = −
(

σ2

σ1

)3

det(xij )δD(xi)�H(−λ3)

×�H(x − ν + �ν)�H(ν + �ν − x) . (A14)

Once again we undertake a Monte Carlo evaluation of this correlation
function. We define the conditional probability that xij, φii, x

′
, and

x ′
ij satisfy the PDF, subject to the condition that xi = x ′

i = 0 and
φi �= j = 0 and use the Monte Carlo methods in MATHEMATICA to
determine equation (A8) numerically. To do this, we draw random
numbers of dimension 16 from the conditional probability that xij,
φii, x

′
, and x ′

ij satisfy the PDF, subject to the density peak conditions
xi = x ′

i = 0 and the φi �= j = 0 strain eigenframe condition. For each

MNRAS 504, 1694–1713 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/2/1694/6247618 by C
N

R
S user on 05 M

ay 2023



1712 B. Regaldo-Saint Blancard et al.

draw (k) if λ3(x(k)
ij ) < 0, λ3(x ′(k)

ij ) < 0, ν − �ν < x(k) < ν + �ν, ν

− �ν < x
′(k) < ν + �ν, and φ

(k)
11 < φ

(k)
22 < φ

(k)
33 , we keep the sample

and evaluate det(x(k)
ij )det(x ′(k)

ij )(φ(k)
33 − φ

(k)
22 )(φ(k)

22 − φ
(k)
11 )(φ(k)

33 − φ
(k)
11 );

otherwise we drop that draw. Eventually,

〈
np(X)np(X ′)

〉 ≈ 2π2

N

(
σ2

σ1

)6

P(xi = x ′
i = φi �=j = 0)

×
∑
k∈S

det(x(k)
ij )det(x ′(k)

ij )(φ(k)
33 −φ

(k)
22 )(φ(k)

22 −φ
(k)
11 )(φ(k)

33 −φ
(k)
11 ), (A15)

where N is the total number of draws, and S is the subset of the
indices of draws satisfying the constraints on the eigenvalues. The
same procedure can be applied to evaluate the two terms of the
denominator. Equation (A8) then yields ξE

pp(r, ν, �ν).
As an illustration, Fig. A1 shows the resulting oriented peak–

peak correlation function ξE
pp(r, ν, �ν) for ν = 2 and �ν = 0.5 in

the case of a power-law power spectrum with spectral index ns =
−2. For simplicity, we only show here the slice corresponding to
y = 0 on the left-hand panel and the correlation function along the
major (cyan) and minor (purple) axis on the right-hand panel. For
comparison, we also compute the isotropic peak–peak correlation
function and display it on the same plot with black dashed lines. In
this case, we used 170 millions draws of the fields per spatial location.
Interestingly, the result of this calculation is qualitatively quite similar
to the oriented halo clustering in Lagrangian space obtained in
Fig. 4. Peaks cluster along the major axis of the strain tensor mostly
between 3 and 4 smoothing lengths from the central object which
is surrounded by an exclusion zone. Although qualitatively correct,
we cannot expect this simple model to be quantitatively correct. It
depends significantly on the distribution of peak heights we have
chosen, hence on the mass. For instance, as can be seen in Fig. A2,
high peaks tend to be more biased and more clustered. The size
of the exclusion zone is also sensitive to the width of the height
distribution. To go a step further, we can cover the entire full mass
range in the correlations by taking into account the specific rising
forms of δL, crit(M) and the M-dependent spread about it with dropping
M, as determined most accurately by fits to these distributions in the
peak patch simulations, or with analytic approximations to such.
Here, the large mass asymptotic δL, crit(M) ≈ 1.7 was used. The nhpk

formula also has an extra Tr(xij) multiplier, restricted to being of one
sign because the piercing of the mass boundary first occurs from

lower to higher M, an upcrossing constraint on the hierarchical peak
patch trajectories. This is a familiar condition in the excursion-set
treatments. An important extension is to use Top Hat rather than
Gaussian filtering to better correspond to what the peak patch code
does. Since the peak patch simulation is in fact a Monte Carlo
method for computing quantities precisely, and it automatically take
all effects into account, and more, it is better to just use the extremely
large number of Lagrangian halo samples, possibly from multiple
large boxes, to determine the correlations. Thus, that is what we have
done in the body of the paper.

The analytic Monte Carlo formalism presented here also allows
us to understand better the spherical harmonic decomposition of the
3D oriented peak–peak correlation function. This is illustrated on the
right-hand panel of Fig. A3 for a few separations. We also display on
the left-hand panel the Mollweide projection of the oriented peak–
peak correlation function at separation one and three smoothing
lengths. The structure we find is quite similar to what was found
for peak patch haloes in the main text. At small separation, the
monopole is negative because there is an exclusion zone, and all the
other harmonics are negligible there because the peak is locally close
to isotropic (especially so for rare high-mass peaks). Then there is
an increase with increasing separation as the anisotropic cosmic web
starts to play a role. The signal is largely dominated by the quadrupole
as expected (due to the main filament) and it peaks at about three
smoothing lengths – which corresponds to the typical separation
between the peaks – before decreasing for large separations. Other
harmonics up to l = 6 appear but the signal clearly diminishes
with the order of the harmonics. Directly below the (2,0) harmonics
comes the (2,2) and (4,0) terms, which characterize the anisotropy
due to the intermediate (i.e. wall) direction and the bifurcation of
filaments. Following the isotropic case (see Desjacques et al. 2018,
for a review), one could derive analytically the large separation bias
expansion in this case. This is however beyond the scope of this
paper.

A P P E N D I X B: SP H E R I C A L H A R M O N I C S

Fig. B1 shows Mollweide representations of the first spherical
harmonics. The major direction is along the vertical axis, the
intermediate direction crosses the centre and the left and right edges,
and the minor direction passes through (θ = π /2, ϕ = ±π /2) points.
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Figure B1. Representation of the first spherical harmonics, real and imaginary parts as labelled. θ = 0 (respectively θ = π ) corresponds to the North (South)
pole, (θ = π /2, ϕ = 0) is at the centre of the projections, and ϕ values increase from left to right.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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