
HAL Id: hal-03122200
https://hal.science/hal-03122200

Submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Strong geometry dependence of the Casimir force
between interpenetrated rectangular gratings

Mingkang Wang, Lu Tang, C. Y. Ng Riccardo Messina, Brahim Guizal, J. A.
Crosse, Mauro Antezza, Che Ting Chan, Ho Bun Chan

To cite this version:
Mingkang Wang, Lu Tang, C. Y. Ng Riccardo Messina, Brahim Guizal, J. A. Crosse, et al.. Strong
geometry dependence of the Casimir force between interpenetrated rectangular gratings. Nature
Communications, 2021, 12, pp.600. �10.1038/s41467-021-20891-4�. �hal-03122200�

https://hal.science/hal-03122200
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ARTICLE

Strong geometry dependence of the Casimir force
between interpenetrated rectangular gratings
Mingkang Wang 1,2,3, L. Tang1,2,3, C. Y. Ng1, Riccardo Messina 4,5, Brahim Guizal 5, J. A. Crosse6,7,

Mauro Antezza 5,8, C. T. Chan1 & H. B. Chan 1,2,3✉

Quantum fluctuations give rise to Casimir forces between two parallel conducting plates, the

magnitude of which increases monotonically as the separation decreases. By introducing

nanoscale gratings to the surfaces, recent advances have opened opportunities for controlling

the Casimir force in complex geometries. Here, we measure the Casimir force between two

rectangular silicon gratings. Using an on-chip detection platform, we achieve accurate

alignment between the two gratings so that they interpenetrate as the separation is reduced.

Just before interpenetration occurs, the measured Casimir force is found to have a geometry

dependence that is much stronger than previous experiments, with deviations from the

proximity force approximation reaching a factor of ~500. After the gratings interpenetrate

each other, the Casimir force becomes non-zero and independent of displacement. This work

shows that the presence of gratings can strongly modify the Casimir force to control the

interaction between nanomechanical components.

https://doi.org/10.1038/s41467-021-20891-4 OPEN

1 Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. 2William Mong Institute of
Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. 3 Center for
Metamaterial Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. 4 Laboratoire Charles Fabry,
UMR 8501, Institut d’Optique, CNRS, Université Paris-Saclay, 2 Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France. 5 Laboratoire Charles Coulomb
(L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France. 6 New York University Shanghai, 1555 Century Ave, Pudong, 200122
Shanghai, China. 7 NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, 200062 Shanghai, China. 8 Institut Universitaire de
France, 1 rue Descartes, F-75231 Paris, France. ✉email: hochan@ust.hk

NATURE COMMUNICATIONS |          (2021) 12:600 | https://doi.org/10.1038/s41467-021-20891-4 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-20891-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-20891-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-20891-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-20891-4&domain=pdf
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-0418-4284
http://orcid.org/0000-0003-1992-0491
http://orcid.org/0000-0003-1992-0491
http://orcid.org/0000-0003-1992-0491
http://orcid.org/0000-0003-1992-0491
http://orcid.org/0000-0003-1992-0491
http://orcid.org/0000-0002-0743-8852
http://orcid.org/0000-0002-0743-8852
http://orcid.org/0000-0002-0743-8852
http://orcid.org/0000-0002-0743-8852
http://orcid.org/0000-0002-0743-8852
http://orcid.org/0000-0003-4540-5864
http://orcid.org/0000-0003-4540-5864
http://orcid.org/0000-0003-4540-5864
http://orcid.org/0000-0003-4540-5864
http://orcid.org/0000-0003-4540-5864
http://orcid.org/0000-0002-3806-6430
http://orcid.org/0000-0002-3806-6430
http://orcid.org/0000-0002-3806-6430
http://orcid.org/0000-0002-3806-6430
http://orcid.org/0000-0002-3806-6430
mailto:hochan@ust.hk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The prediction of the attractive force between two planar
perfect mirrors by Casimir is based on the effect of
boundary conditions imposed on the zero-point fluctua-

tions of the electromagnetic field1. As the separation between the
two flat surfaces is decreased, the Casimir force increases rapidly
and monotonically. Lifshitz extended the analysis to real materials
by considering the polarization fluctuations within the interacting
bodies and calculated the force in terms of the dielectric prop-
erties of the material2,3. In the past two decades, advances in
mechanical transducers and atomic force microscopes have
enabled precision measurements of the Casimir force4–17. A
number of these experiments address important issues such as the
role of relaxation at low frequencies in the calculation of the
Casimir force18–20. Apart from fundamental interest, studies of
the Casimir force are also relevant to the fabrication and opera-
tion of nanomechanical systems in which the movable compo-
nents are in close proximity21–24.

One remarkable property of the Casimir force is its nontrivial
dependence on the geometry of the interacting objects. For slight
deviations from the parallel-plate configuration, the proximity
force approximation (PFA)25 is often used to estimate the Casi-
mir force. Under the PFA, the surfaces of the two bodies are
divided into small parallel plates. The total force is obtained by
summing up the local forces between pairs of plates that are
assumed to be given by Lifshitz’s formula. While the PFA pro-
vides a convenient way to estimate the Casimir force for simple
geometries, it is not applicable for objects with complicated
shapes26. The dependence of the Casimir force on geometry and
the interplay with optical properties of the material27–33 opens
new opportunities for applications in which the Casimir force
needs to be controlled.

The vast majority of experiments on the Casimir force require
replacing at least one of the planar surfaces by a sphere to avoid
the difficulty of maintaining parallelism between the surfaces at
small separations34. Other configurations including plate-plate35

and sphere-sphere36 have also been measured experimentally.
Provided that the radius of the sphere is much larger than the
separation, the Casimir force in the sphere-plate geometry can be
estimated using the PFA. To reveal the geometry dependence of
the Casimir force, it is necessary to introduce nanoscale gratings
onto the interacting bodies. Deviations from the PFA were
observed in a configuration where the flat surface in the sphere-
plate geometry is replaced by silicon or gold gratings37–39. The
largest deviation observed so far are ~80%39. Even though
the PFA cannot predict the Casimir force accurately in these
experiments, it is computationally undemanding and is useful for
a quick estimate of the order of magnitude of the force.

Recent progress in theoretical and numerical methods has
enabled the calculation of Casimir forces for objects of arbitrary
shapes34. A number of groups have developed schemes based
on the scattering theory to calculate the Casimir force for grat-
ings27–33,40. The accuracy of these calculations improves as the
number of Fourier components in the computation is increased.
One-dimensional and two-dimensional gratings of different
shapes have been extensively considered41. If gratings are present
on both interacting surfaces, the Casimir force can be calculated
provided that the two objects are separated by a planar boundary.
In other words, schemes based on the scattering theory are valid
as long as the two gratings do not interpenetrate. Apart from the
force, the calculations can also yield the Casimir torque between
two gratings42,43. Such torque between gratings has been pre-
dicted to be significantly stronger than those in anisotropic
materials that were recently demonstrated in experiments44.

When nanoscale gratings are present on both surfaces, mea-
surement of the Casimir force poses additional challenges. Other
than the usual alignment requirements for flat plates35,45, the

relative orientation and lateral shift between the two gratings also
need to be accurately controlled. So far, only one team has
measured the Casimir force between two gratings26. By
imprinting the sinusoidal grating pattern onto a gold sphere and
measuring the force in-situ, the lateral Casimir force between the
two corrugated surfaces has been demonstrated to deviate sig-
nificantly from the PFA46. The measurement was performed
when the two gratings were well-separated from each other
without any interpenetration. A prior experiment measured the
nonmonotonic Casimir force when two T-shaped protrusions
interpenetrate14. However, due to the limited resolution of optical
lithography in the fabrication process, the protrusions are roun-
ded at the corners. Moreover, there are nonuniformities among
the different units, introducing uncertainties so that deviations
from the PFA cannot be unambiguously identified. To our
knowledge, the strong geometry dependence of the Casimir force
in the regime of interpenetration for rectangular gratings remains
unexplored.

In this paper, we measure the Casimir force between two
rectangular silicon gratings. With the gratings defined in a single
electron-beam lithography step, they are accurately aligned so
that they interpenetrate as the distance between them is reduced
using an on-chip comb actuator45. The Casimir force gradient is
inferred from the shift in the resonance frequency of a doubly
clamped beam that supports one of the gratings. Right before
interpenetration occurs, the measured Casimir force is shown to
be ~500 times larger than the PFA, yielding a geometry depen-
dence that is about two orders of magnitude stronger than pre-
vious experiments14,37–39,46. After interpenetration, a novel
distance dependence of the Casimir force emerges. The force is
shown to be non-zero but independent of displacement. For this
geometry, the PFA and the pairwise-additive approximation
(PAA) yield different estimates of the Casimir force. Specifically,
the PFA and the PAA works well only for the region after and
before interpenetration, respectively. The experiment involves a
number of improvements to the detection platform to enable the
fabrication structures in which, for a certain range of parameters,
the PFA breaks down completely and fails to estimate even the
order of magnitude of the Casimir force. There is good agreement
between measurement and exact calculations using boundary
element methods over the entire distance range, including the
region where the PFA breaks down.

Results
The Casimir force between perfect rectangular gratings. We
consider the Casimir force for two identical rectangular gratings
made of silicon. As shown in Fig. 1a, each grating has thickness t
of 2.58 μm and periodicity p of 2 μm. For each rectangular pro-
trusion, the width w and length h are chosen to be 908 nm and
1.5 μm respectively. Initially, the separation s in the y-direction
between the tip of the protrusions on the two gratings is 430 nm.
The two gratings are offset laterally by p/2 such that as the bottom
grating (blue) moves towards the top one (red) in the positive y-
direction, they interpenetrate when the displacement d exceeds s.

Calculations of the Casimir force for the full range of d for this
geometry, as we will later describe, requires computationally
intensive numerical methods. To gain intuitive insight, we first
consider a rough estimation of the Casimir force using the PFA.
The analysis divides the range of displacements into 4 stages, as
shown in Fig. 1b. In stage I for d= 0–430 nm, the PFA takes into
account one plate located at the tip of a protrusion and another
plate on the body of the supporting beam (e.g., the yellow lines in
Fig. 1b, I). With d < 430 nm, the separation between these two
plates that face each other in the y-direction is >1.5 μm, so that
the total force is close to zero (black line in Fig. 1c). A sudden
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change takes place when d reaches s as the sides of adjacent
rectangular protrusions on the two gratings start to overlap
(Fig. 1b, II). Following the common procedure of calculating the
lateral Casimir force with the PFA46, we consider the Casimir
energy due to the overlap of the sidewalls that face each other in
the x-direction (the yellow lines in Fig. 1b, IV). Since the energy
increases linearly with d-s due to the increase in the overlap area,
the spatial derivative of the energy gives a constant, non-zero
force that is independent of displacement. As shown in Fig. 1c,
region II (d= 430–500 nm) contains this discontinuous jump of
the force from near zero to the constant value. Contributions
from the normal force between plates that face each other in the
y-direction remain small for region III (d= 500 nm to 1.45 μm),
so that the total force is almost constant. In region IV (d > 1.45
μm), the tip of the protrusions and the body of the supporting
beam become close and the total force rapidly increases, in a
manner similar to that between two infinite parallel plates.

In many experiments on the Casimir effect, the quantity that is
directly measured is the spatial gradient of the force. Figure 1d
plots the derivative of the force obtained from the PFA results in
Fig. 1c as a black line. The most prominent feature is a delta
function at d= s when the tops of the red and blue protrusions
are aligned. Other than this spike, the distance dependence of the
force gradient resembles that between two parallel plates,
increasing with d and rising sharply when the top of the
protrusions approaches the troughs on the beam. While the PFA
provides a useful starting point in analyzing the Casimir force
between the two perfectly rectangular gratings, the infinite force

gradient is clearly unphysical. The strong geometry dependence
of the Casimir force in this system requires the use of more
precise theories.

We perform numerical calculations of the Casimir force using
SCUFF-EM47, an open-source software capable of calculating the
exact Casimir force between objects of arbitrary shapes provided
that sufficient computation power is available. SCUFF-EM
calculates the force by evaluating the integral of Casimir energy
using a classical boundary elements interaction matrix (see
Methods for details). The red lines from SCUFF in Fig. 1c, d show
that the sharp rise in the force is smoothed out and the delta
function in the force gradient becomes a finite peak. Notably, in
regions III and IV after interpenetration occurs, the value of the
distance-independent Casimir force given by SCUFF-EM agrees
well with the PFA, while in region II, the PFA predicts an
unphysical infinite force gradient.

With different parameters for the rectangular grating, the
Casimir force changes but the key features in Fig. 1c, d remain. In
particular, if the lateral distance g ¼ p=2� w between protru-
sions on the two gratings is reduced, the distance-independent
force in region III becomes significantly larger. Furthermore, the
peak in the force gradient becomes higher and sharper (see
Supplementary Note 2 for the calculations of Casimir force for
different grating parameters).

The gratings geometry has been investigated in detail by a
number of theory groups using the scattering theory. When a
sufficient number of Fourier components are used, the scattering
theory yields accurate calculations of the Casimir force provided
that the two gratings are separated by a planar boundary. In other
words, even though algorithms based on the scattering theory
cannot be used to analyze the Casimir force in regions III and IV,
they are applicable before the two gratings interpenetrate. In
Fig. 1c, d, the results from the scattering theory are plotted as
purple squares. They are calculated using the Fourier Modal
Method48 with Adaptive Spatial Resolution49,50 (see Methods for
details). At d= 300 nm, calculation with the number of Fourier
modes equal to 100 yields 1% accuracy. In principle, the
scattering theory is applicable for displacements up to d=
430 nm when interpenetration occurs. However, calculations
beyond d= 300 nm are beyond our computation capability due to
the computational power and time required for convergence. The
good agreement between the calculations of SCUFF-EM and the
scattering theory in region I provides an important consistency
check on the validity of our calculations. Both calculations show
strong deviations from the PFA. The deviations are plotted in the
inset of Fig. 1c as the ratio of the SCUFF-EM and scattering
theory calculations to the force obtained from the PFA. At d=
430 nm, the deviation attains maximum, reaching a factor of
~1000. The rectangular gratings can therefore generate Casimir
forces with geometry dependences much stronger than previous
experiments14,37–39,46.

Distance control by comb actuators. Our experiment was
designed to measure the Casimir force between two silicon
gratings that are defined by electron-beam lithography and sub-
sequently dry-etched into the device layer of a silicon-on-
insulator wafer. The dimensions of the grating produced (Fig. 2b)
is similar to the perfectly rectangular silicon gratings considered
previously, albeit with the corners slightly rounded in the fabri-
cation process. Even though the gratings are not perfectly rec-
tangular, many of the important features of the Casimir force are
retained, including the strong geometry effects and novel
dependence on displacement discussed in the previous section.
The measurement is performed using a monolithic platform with
an integrated force gradient sensor and an actuator that controls
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Fig. 1 The Casimir force between perfectly rectangular gratings.
a Schematic of a part of the perfectly rectangular silicon grating. Initially,
the displacement d of the movable grating (blue) along the y-direction is
zero. The inset shows the top-view schematic. h represents the length of a
grating finger. The lateral separation between adjacent grating fingers is
g ¼ p=2� w � 92 nm and the initial separation in y is s � 430 nm. b Top-
view schematic for the interpenetration of the two gratings. I–IV panels
depict the four stages of the interpenetration. The black dotted line denotes
the initial location of the bottom edge of the blue movable grating. d is
defined as the displacement of the movable grating from this initial position.
The dashed frame encloses a unit cell. The bars measure 1 μm. c Calculated
Casimir force per unit cell in the y-direction as a function of displacement d.
The black line is the force calculated using the PFA. The red circles and
purple squares are the Casimir force calculated by SCUFF-EM and the
scattering theory respectively. Inset: The ratio ρ of the Casimir force to the
force obtained by the PFA. The black dashed line marks where
interpenetration occurs. d The gradient of the Casimir force.
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the displacement. Substantial improvements from previous
experiments14,45 are implemented to achieve the alignment
accuracy and actuator stability that are essential for measuring the
Casimir force between two rectangular gratings. In particular, a
fabrication process involving electron-beam lithography was
developed (Supplementary Note 4) to yield highly precise rec-
tangular structures with minimal rounding of the corners.

Figure 2a shows a top-view scanning electron micrograph of
the device that is fabricated using a combination of both electron-
beam and optical lithography on the 2.58-μm thick device layer of
a highly doped silicon-on-insulator wafer (See Methods). The red
dash frame highlights the location of the gratings that consists of
30 repetitions of the unit cell depicted by the white dashed line in
Fig. 2b. As shown in the schematic in Fig. 2c, one side of the
gratings is located on a doubly clamped beam (red) and the other
side is attached to movable comb actuators (blue). The comb
actuators produce displacement in the y-direction to control the
separation between the two gratings while the beam detects the
force gradient exerted on the top gratings (red) by the shift in its
resonance frequency.

As shown in Fig. 2a, the comb actuator consists of 10 sets of
fixed and movable comb fingers. Only two sets are shown in
Fig. 2c for simplicity. The gray combs are fixed to the substrate
while the blue movable combs are suspended by serpentine
springs. When a voltage difference Vcomb is applied between the
fixed and movable combs, an attractive electrostatic force that is

proportional to V2
comb is generated to produce displacement of the

movable comb. The blue grating is pushed towards the red one
attached on the beam, with a displacement d in the y-direction
that is determined by the balance between the electrostatic force
and the restoring force from the springs:

d ¼ αV2
comb ð1Þ

where α is a proportionality constant.
Figure 2b shows the false-colored micrographs of part of the

gratings. At displacements large enough for the gratings to
interpenetrate, the overlapping edges of the two sets of gratings
are only separated by a distance g ¼ p=2� w � 90 nm in the x-
direction. This separation must be maintained as the lower unit is
pushed towards the upper one by the comb actuator. Ideally, a
perfect comb actuator produces displacement only in the y-
direction. However, nonuniformities in fabrication could lead to a
small, undesirable component of the displacement in the lateral
(x) direction as Vcomb is applied. To meet the stringent
requirement of maintaining a stable g, the lateral stability of
our comb actuators has been improved from previous experi-
ments by a factor of 314,45. For example, serpentine springs are
redesigned so that their spring constants in the x-direction exceed
those in the y-direction by a factor of >100. In addition, the lateral
alignment between the fixed and movable combs is also improved
to minimize the difference in the distances of each comb finger to
its two near neighbors. From micrographs and measurement, we
estimate that g changes by less than 5 nm over the full scale of
displacement in the y-direction.

Force gradient sensor and its calibration. The grating at the top
consists of rectangular protrusions from a doubly clamped beam
(red in Fig. 2c) that serves as a detector of the force gradient on
the grating. In the presence of a magnetic field perpendicular to
the substrate, an a.c. current with frequency ωD applied to the
beam generates a periodic Lorentz force that excites the funda-
mental in-plane vibrational mode. As the beam vibrates in the
magnetic field, a back electromotive force is induced to modify
the current by an amount that is proportional to the vibration
amplitude. Figure 2d shows that the vibration amplitude peaks at
the resonance frequency ωR/2π of ~1.02MHz with a quality
factor Q ≈ 91000. All measurements are performed at 4 K and
<1 × 10−6 Torr.

At small separations, the grating on the movable comb (blue)
exerts measurable Casimir and electrostatic forces on the grating
on the beam. Due to the spring softening effect, the resonance
frequency of the beam shifts by an amount ΔωR that is
proportional to the spatial gradient of the total force:

F0 d;Veð Þ ¼ kΔωR ð2Þ
where k < 0 is a proportionality constant. The total force F(d, Ve)
depends on the displacement d and applied voltage Ve between
the top and bottom gratings. It consists of two components: the
electrostatic force is given by Fe ¼ 1

2C
0 dð Þ Ve � V0ð Þ2 where V0 is

the residual voltage and C0 dð Þ is the spatial derivative of the
capacitance between the two gratings in the y-direction evaluated
at displacement d. Forces that cannot be balanced by the
application of Ve including the Casimir force, are represented by a
second term Fc. Taking spatial derivative yields the gradient of the
total force:

F0 d;Veð Þ ¼ β dð Þ Ve � V0ð Þ2þF0
c dð Þ ð3Þ

where β(d)= C″(d)/2.
Figure 3a plots the measured ΔωR as a function of Ve for

several values of Vcomb. Each Vcomb gives a fixed displacement d
according to Eq. (1), labeled in the figure. The contribution of the
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Fig. 2 On-chip platform for force measurement and distance control.
a Top-view scanning electron micrographs of the whole device. The red
dash frame highlights the two sets of gratings that interact via the Casimir
force. The scale bar measures 100 μm. b Zoom-in false-colored
micrographs of a part of the gratings at displacements of 0 μm and ~1.5 μm.
The white dash frame presents one unit cell of the gratings. The scale bar
measures 1 μm. c A simplified schematic (not to scale) of the device. The
gray parts, including the fixed electrodes of the comb actuator and the
anchors of the movable combs, are fixed on the substrate via an underlying
silicon oxide layer. The movable part of the comb actuator, colored in blue,
is suspended over the substrate by four springs. The beam (red), with a
length of 100 μm and a width of 1.5 μm, is excited to vibrate in-plane with
amplitude of ~2 nm. It serves as a sensor for the force gradient. Gratings are
attached to the beam and the moveable actuator. There are 30 unit-cells.
Voltages Vac, Ve, and Ve+ Vcomb are applied to the beam, the movable comb
and the fixed comb, respectively, as described in the main text.
d Mechanical response of the beam of the fundamental in-plane mode with
a resonance frequency ωR=2π � 1:02MHz and quality factor Q � 91000.
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electrostatic force gradient is quadratic in Ve � V0 with
coefficient β dð Þ=k while voltage-independent forces including
the Casimir force produce a vertical offset of the parabolas.
Figure 3b shows the dependence of ΔωR on d and Ve as a 3D
surface plot. At Ve= V0(d) where each parabola attains its
maximum, the contribution of the electrostatic force is
minimized.

Vo is measured to be close to zero, varying from 5 to 50mV
over the full range of d shown in Fig. 3c. At displacements
between 0.6 and 1.4 μm, the electrostatic force gradient is close to
zero. The parabolic fits have small curvatures (e.g., the one at
0.88 μm in Fig. 3a) and give large uncertainties in V0.
Furthermore, the gratings under measurement are not perfectly
rectangular in the top view and the sidewalls are not perfectly
smooth. Different parts of the interacting surfaces have different
crystal orientations, especially the rounded corners. Variations in
the work function51 could result in V0 not constant with
displacement.

The constants α for the comb actuator and k for the sensing beam
are calibrated by fitting the frequency shift induced by the
electrostatic force gradient to β(d) calculated using finite-element
simulations by the numerical package COMSOL. As discussed in
Methods, the boundary conditions used in the calculations are
obtained from the digitized top views of the sample. Figure 3d plots
a least-square fit of the measured electrostatic force gradient per
unit cell at Ve−V0= 100mV, yielding α ¼ 1:05 ´ 10�6 ± 2:15´
10�8 Nm�1s rad�1 and k ¼ �8:73 ± 0:03 nmV�2. The fitting
process scales V2

comb and ΔωR in the experiment (blue dots) by
factors α and k, respectively, to minimize deviations from the
calculated electrostatic force as a function of displacement (red line).
There is good agreement between measurement and the fit.

Comparison of measured force gradient with theory. We
minimize the contributions of the electrostatic force by setting Ve

=V0 and measure ΔωR as Vcomb is increased. Using the calibrated
values of constants α and k, the results are converted into the
dependence of the force gradient on d, as shown by the blue data
in Fig. 4a. The force gradient is then integrated over displacement

to yield the force as a function of d in Fig. 4b. The uncertainty of
force accumulates during the integration leading to error bars
increasing with displacement. Calculations of the Casimir force
and force gradient for gratings of the same shape as those in our
experiment are plotted as red lines. The calculations are per-
formed with SCUFF-EM, using a geometry obtained from digi-
tizing the top-view scanning electron micrograph of the gratings
(see Supplementary Note 1 for the digitizing micrographs). Each
unit cell is assumed to be infinite and invariant in the z-direction.
Calculations of the Casimir force is repeated for six different
grating units along the beam to yield an averaged value. The finite
conductivity of silicon is included (see Methods). To simplify the
calculations, a temperature of 0 K is used instead of the actual
temperature of 4 K in the experiment. This approximation is
justified because the separation between the relevant parts of the
two bodies is smaller than 500 nm for all displacements. For
example, at displacement d= 1.6 μm where the top of the grating
is about 0.3 μm from the main body of the beam, the calculated
Casimir forces for 0 K and 4 K differ by <0.3%.

The measured force/force gradient on the gratings is in good
agreement with the SCUFF-EM calculations. In particular, the
peak in the Casimir force gradient at the onset of interpenetration
(d∼ 0.43 μm, labeled by the dashed line) and the sharp rise when
the tip of the grating approaches the main body of the beam
(stage IV) are both reproduced in the measurement. The four
regions discussed in the section for perfect rectangular gratings
can be readily identified in Fig. 4b. Specifically, region I (d=
0–430 nm) corresponds to the range of displacement before
interpenetration. The measured force rapidly increases when
interpenetration occurs in region II (430–600 nm). In region III
(d= 600–1450 nm) the force is nearly independent of displace-
ment. The force increases rapidly in region IV (d > 1450 nm) due
to the interactions between the top of the gratings and the body of
the beam. However, there are also a number of important
differences from perfect rectangular gratings. First, the force
gradient in Fig. 4a peaks at a displacement that is larger than the
onset of interpenetration (marked by the dashed line in Fig. 4a),
instead of before the onset as in Fig. 1d for rectangular gratings.
Such difference can be attributed to the rounded corners of the
grating fingers. Second, the measured force gradient shows small
fluctuations about zero for d between 0.8 and 1.4 μm due to the
roughness in the sidewalls. These fluctuations are also present in
the calculations that are based on the top view of six units. From
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Fig. 3 Calibration using the electrostatic force. a Measured ΔωR as a
function of Ve. The dots are measured data and the solid lines are parabolic
fits. For each parabola, the displacement of the grating attached to the
comb actuactor is labeled with the corresponding color. bMeasured ΔωR as
a function of displacement d and Ve. c Measured residual voltage V0 as a
function of displacement. Error bars show the spread of data over several
independent measurements. d Measured electrostatic force gradient with
Ve ¼ V0 þ 100mV (blue) is fitted with calculations using the finite
elements method (red). The error bars are comparable to the dot size.
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Fig. 4 Measured Casimir force and force gradient. a Measured Casimir
force gradient (blue) as a function of displacement. The red line is
calculated by SCUFF-EM based on the digitized profiles. The standard
deviations over independent measurements are comparable to the dot
sizes. b The measured force gradient is integrated over displacement to
yield the force. Error bars are obtained from propagating the uncertainties
in the measured force gradient. The red line is calculated by SCUFF-EM and
the black line is generated by the PFA. The pink band shows the uncertainty
of SCUFF-EM arising from the pixel size of micrographs (5 nm). The inset
plots the ratio ρ of the measured force to the force calculated with the PFA.
The dashed line labels where the gratings interpenetrate.
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images of the sidewall, we estimate the roughness to be less than
10 nm. In Fig. 4b, the measured force shows a slight increase with
displacement in region III rather than remaining constant as in
the SCUFF-EM calculations. This increase is attributed to a non-
zero mean force gradient that accumulates in the integration to
yield the force. Plausible reasons for the deviation include effects
due to patch potentials51, lateral shift of the movable combs not
accounted for in our model, sidewall imperfection and uncer-
tainty in digitizing the micrographs. For example, we estimate the
uncertainty introduced to the Casimir force by expanding and
shrinking the digitized boundary by 2.5 nm (within one-pixel of
micrographs) in the normal direction of the boundary. The
results are shown as the pink band in Fig. 4b. Taking into account
the sensitive dependence of the force on the separation of surfaces
and the difficulties in accurately determining the shape of the
structure, we consider the measured force in good agreement with
theoretical calculations of the Casimir force.

As discussed previously, the Casimir force on perfect
rectangular gratings shows a strong geometry dependence. Due
to the rounded corners in our samples, the geometry dependence
is slightly weakened in our samples. Nevertheless, the measured
deviation from the PFA strongly exceeds those from previous
experiments14,37–39,46. The black line in Fig. 4b shows the force
produced by the PFA on the digitized geometry of the grating. It
is near zero in region I and increases sharply in region II once
interpenetration of the two gratings takes place. In regions I and
II, results from the PFA deviate from both the measured force
and the force calculated using SCUFF-EM. In particular, the
smooth increase of the measured Casimir force becomes an
abrupt change in the PFA. In the inset of Fig. 4b the ratio between
the measured force and the PFA shows a peak at a value of ≈500
at d ≈ 426 nm, which is weaker than the 1000 times deviation
shown in the perfectly rectangular silicon gratings (Fig. 1c).
Nevertheless, such geometry dependence is stronger than those
observed in the grating-plane geometry38,39 by a factor >100.

In region III, after the two gratings interpenetrate, the Casimir
force is non-zero but is almost independent of distance. The force
is expected to depend strongly on the lateral distance g between
two adjacent grating fingers. While it is not feasible for us to
fabricate many different devices with different g to study this
behavior, we analyze the dependence of the force on g using the
PFA as it agrees well with the exact calculations of SCUFF-EM in
region III. So far, all the results of the PFA presented are based on
the real optical properties of silicon used in the experiment. For
simplicity and without loss of generality, we now consider
rectangular gratings made of perfect metal separated by different
values of g. The PFA considers the overlapping surfaces as parallel
plates with energy π2�hc=720g3 per unit area. As the overlap area
increases linearly with displacement, the Casimir force given by
the spatial derivative of energy remains constant, with a
magnitude inversely proportional to g3. A similar study is also
performed to determine the dependence of the peak in the force
gradient (Fig. 4a) on g, as described in Supplementary Note 2. For
gratings made of materials with finite conductivity, it is expected
that for small g the scaling will change to 1=g2 in the
nonretarded limit.

Comparisons to pairwise-additive approximation. Apart from
the PFA, another well-known method to estimate the Casimir
force is the pairwise additive approximation (PAA)52,53. It divides
the interacting objects into elementary constituents and sums up
the interaction energy under the assumption that the interaction
between two elements is not affected by the presence of others. We
calculate the force using PAA (see Methods) and compare it to the
exact Casimir force calculated by SCUFF-EM in Fig. 5a, b for the

silicon grating geometry of our device and the silicon gratings that
are perfectly rectangular considered at the beginning of the paper,
respectively. In most of region I, before interpenetration, the PAA
provides a good estimate of the Casimir force. However, in regions
II and III deviations become apparent. In particular, in region III
the PAA reproduces a non-zero force that is largely independent
of d. However, the magnitude is overestimated by ~50% (Fig. 5c).
The overestimation represents a breakdown of the PAA since it
regards the medium between the interacting elements as vacuum.
While the determination of the applicable range of the PAA is
beyond the scope of this paper, the observed behavior appears to
be consistent with the notion that the PAA generally works better
when the separation between the interacting bodies is large, so that
the vacuum media assumption is nearly valid54. For example, in
region I the two gratings are far from each other while in region
III, the lateral separation g between adjacent grating fingers is only
~90 nm. In the regime of interpenetration, it is more likely for
material to be present between two interacting elements. Intui-
tively, it is expected that deviations from PAA are larger in region
III compared to region I.

The inset of Fig. 5c plots the ratio of the forces calculated by
the PAA to that by the scattering theory and SCUFF-EM for
silicon gratings that are perfectly rectangular, in purple and red,
respectively. As expected, the purple and red results largely
coincide with each other because both the scattering theory and
SCUFF-EM work well in Region I before interpenetration (Fig. 1).
At displacement of 0.3 μm, the ratio is ~1.07. The value decreases
as the two gratings move farther apart.

Figure 5d plots the peak in the force gradient of the perfect
rectangular gratings calculated by PAA in green. Unlike the exact
Casimir force gradient calculated by SCUFF-EM (red), the peak
from PAA is symmetric about the displacement where the
interpenetration of the two gratings occurs. For the perfect
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Fig. 5 Force calculated with the pairwise additive approximation.
Comparison of the Casimir force calculated by SCUFF-EM (red), PAA
(green), measurement (blue), and PFA (black) for one unit cell of the
silicon grating that is a digitized from the top view of the experimental
device and b perfectly rectangular. The measured data and error bars are
the same as Fig. 4. c Ratio η of the forces calculated by PAA to scattering
theory (purple) and SCUFF-EM (red) for perfectly rectangular gratings. The
black dashed line marks where interpenetration occurs. Inset: Zoom-in for
displacement between 0 nm and 300 nm. d The gradient of the Casimir
force calculated using PAA (green) is symmetric about the dashed line that
marks the distance at which interpenetration takes place for silicon gratings
that are perfectly rectangular. The actual Casimir force gradient peak (red)
is at a slightly smaller displacement and is asymmetric. The optical
properties of silicon are used for all calculations (see Methods).
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rectangular grating, the asymmetry of the peak in the force
gradient is therefore indicative of the breakdown of the PAA.

Discussion
It is instructive to compare the Casimir forces in our inter-
penetrating gratings to 3D sealed cavities55–58. The latter includes
3D pistons where one of the plates is movable. It has been pre-
dicted that interesting effects such as repulsive Casimir forces
occur in these geometries. While the shape of our device in the
regime of interpenetration (Fig. 2b, III) bears some resemblance
to 3D sealed cavities, there are important fundamental differ-
ences. First, our gratings only confine the electromagnetic fields
in the x–y plane. There is no confinement at all in the z-direction
normal to the substrate. Second, the presence of the lateral gap
between the fixed and movable gratings makes the boundary
conditions completely different from sealed cavities where such
gaps are absent. Therefore, we do not anticipate that our devices
can yield insights on Casimir effects in sealed cavities.

In conclusion, using an integrated on-chip platform, we measure
the Casimir force between two nanoscale rectangular silicon grat-
ings that are accurately aligned so that they interpenetrate as the
distance between them is reduced using a comb actuator. Right
before interpenetration occurs, the measured Casimir force shows a
geometry dependence that is much stronger than previous experi-
ments. To verify the validity of our calculations of the Casimir force
using boundary element methods, we compare the results of a
perfect rectangular grating to scattering theory and obtain good
agreement. As the gratings interpenetrate each other, a novel dis-
tance dependence of the Casimir force emerges. The measured force
is largely independent of displacement, with a non-zero magnitude
determined by the lateral separation between adjacent grating fin-
gers. Estimations of the force by the PFA and the PAA yield dif-
ferent values. The PAA works well only for the region before
interpenetration while the PFA reproduces the non-zero displace-
ment independent force after the two gratings interpenetrate. Our
work opens opportunities to design structures to yield Casimir
forces that strongly exceed the PFA. The possibility to align
nanoscale features on two objects with high accuracy paves the way
for investigating Casimir physics in novel and complex geometries.

Methods
Device fabrication. The devices are fabricated on a boron p-doped silicon-on-
isolator wafer with 2.58 μm device layer and 2 μm buried oxide layer [see Sup-
plementary Note 3 for the details of the fabrication process]. Using the Van der
Pauw method, the sheet resistance of the device layer at 4 K is measured to be 0.013
Ω cm, corresponding to carrier concentration of 6.0 × 1018 cm−3.

The two gratings are defined by a single electron-beam lithography step, which
ensures they are accurately aligned. Other larger structures including the comb
actuator and the serpentine springs are defined by optical lithography to reduce the
fabrication time. The patterns of photo- and electron-beam resist are transferred
onto a polysilicon-stacked-on-silicon-oxide etch mask. Two layers of the mask are
utilized to improve the accuracy of the defined pattern. Without the protection of
the etching mask, the exposed silicon is removed by the deep reactive ion etch.
Next, the movable electrode and the beam are freed by etching away the buried
oxide layer under it with hydrofluoric acid. The etching time is controlled so that
the anchors of the four springs remain fixed on the handle wafer to support the
suspended movable comb.

The hydrofluoric acid also removes the native oxide and passivates the silicon to
prevent the formation of native oxide for several hours. We put the sample into a
sealed probe within this time window, and pump the chamber to pressure ∼1.0 ×
10−6 Torr. After that, we load the sample into 4 K liquid helium.

Calculations of electrostatic force and the Casimir force. The calculation of the
electrostatic/Casimir force is based on one unit cell of the gratings digitized from
the scanning electron micrograph of the top of the structure [See Supplementary
Note 1]. We reduce the calculation of the electrostatic/Casimir force into a two-
dimensional problem where the shape in the z-direction is assumed to be invariant
and infinite. The effects of the substrate are negligible because the distance between
the structures is around 90 nm (Fig. 2b III, IV) which is much smaller than the
distance of 2 μm from the substrate.

The electrostatic force is calculated using COMSOL. For calculations of the
Casimir force, the dielectric function of silicon ε(iξ) is given by59:

ε iξð Þ ¼ 1:035þ 11:87� 1:035ð Þ
1þ ξ2=ω2

0

� � þ ω2
p= ξ ξ þ Γð Þ½ �; ð4Þ

where ω0= 6.6 × 1015 rad s−1, ωp= 2.37 × 1014 rad s−1, Γ= 6.45 × 1013 rad s−1.
The expression is based on the Lorentz–Drude model where the first two terms
describe the dielectric function of intrinsic silicon60. The last term accounts for the
extra carriers due to doping61 where ωp and Γ are deduced from the measured
sheet resistance of the doped silicon (0.013 Ωcm). An effective mass of 0.34 me is
used for electrons in the p-doped silicon.

Calculations with the scattering approach were performed using the theoretical
framework described in refs. 62,63. This method is based on a plane-wave
description of the electromagnetic field in any region of space, while the bodies
involved (of arbitrary geometry and material properties) are described in terms of
their classical scattering (reflection and transmission) operators. This framework
has been more recently applied to study the Casimir force32,33 and the heat
transfer50 between gratings. In this case, the scattering operators have been
obtained by using the Fourier Modal Method48, based on a Fourier decomposition
of the field explicitly taking into account the periodicity of the system and the
introduction of the number of Fourier components of the field as a convergence
parameter (see ref. 32 for details). More specifically, we have employed Adaptive
Spatial Resolution49, a modification introduced to accelerate convergence, in
particular in the case of metals.

Force calculations using the PAA. The full van der Waals potential energy between
two identical atoms with polarizability α(ω), separated by a distance r is given by64:
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where ω= iξ is the imaginary frequency, α is polarizability of the atoms, ε0 is the
permittivity of vacuum, and c is the speed of light. For the pairwise summation
method, the potential between each atom in the first object with each atom in the
second object is summed. The summation is performed by integrating UA�A over
the volumes of the objects VA and VB weighted by the number density N of atoms:
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The polarizabilities can be replaced by the dielectric function using the
Clausius–Mossotti relation:

ε ωð Þ � 1
ε ωð Þ þ 2

¼ Nα

3ε0
ð7Þ

yielding:
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Details of the algorithm for calculation of Eq. (8) for our geometry are
presented in Supplementary Note 5. The forces and force gradients in Fig. 5 are
obtained by taking the first and second spatial derivatives of Uc.

Data availability
All data supporting the findings of this study are available within the article and its
Supplementary Information or from the corresponding author upon reasonable request.
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