
HAL Id: hal-03122074
https://hal.science/hal-03122074v1

Submitted on 26 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Budget-aware performance optimization of workows in
multiple data center clouds

Karima Oukfif, Fares Battou, Samia Bouzefrane

To cite this version:
Karima Oukfif, Fares Battou, Samia Bouzefrane. Budget-aware performance optimization of workows
in multiple data center clouds. The 6th International Conference on Mobile, Secure and Programmable
Networking, Oct 2020, Paris, France. pp.144-160. �hal-03122074�

https://hal.science/hal-03122074v1
https://hal.archives-ouvertes.fr

Budget-aware performance optimization of work�ows in

multiple data center clouds

Karima Ouk�f �1[0000−0003−4912−674X], Fares Battou2, and Samia
Bouzefrane3[0000−0002−0979−1289]

1 LARI Lab, Mouloud Mammeri University of Tizi-Ouzou, Tizi-Ouzou, Algeria
karima.oukfif@gmail.com
2 University of Lille, France

3 CEDRIC Lab, Conservatoire National des Arts et Metiers, Paris, France

Abstract. Users pay to use resources in cloud systems which makes them more demanding
on performance and costs. Optimizing the response time of the applications and meeting
user's budget needs are therefore critical requirements when scheduling applications.
The approach presented in this work is a scheduling based-HEFT algorithm, which aims to
optimize the makespan of tasks work�ow that is constrained by the budget. For this, we
propose a new budget distribution strategy named Estimated task budget that we integrate
in our budget-aware HEFT algorithm. We use a multiple datacenters cloud as a real platform
model, where data transfer costs are considered. The results obtained by our algorithm relative
to recent work, show an improvement of makespan in the case of a restricted budget, without
exceeding the given budget.

Keywords: Work�ow · Multiple data centers cloud · Makespan Optimization · Budget dis-
tribution · HEFT.

1 Introduction

Cloud platforms have become the trend for running applications. The cloud-computing paradigm
has revolutionized the way of assessing computing resources by proposing a highly versatile avail-
ability of resources through a pay-as-you-go model. These features have enabled users to migrate
their applications to cloud platforms. Work�ows are examples of scienti�c applications which in-
volve a higher performance-computing environment to be executed and cloud platforms o�er huge
opportunities to solve them. A work�ow is a popular model for representing scienti�c computing,
including complicated simulation and precise analysis of massive data [10]. Scheduling work�ows,
considered as NP-hard [4] problem, still remains a fundamental issue in cloud computing although
it has been widely studied over the years [11,12].

During work�ows scheduling in the cloud, both cloud providers and users are most involved with
the makespan and monetary costs criteria. Makespan refers to the completion time of the entire
work�ow and the price that users need to pay due to the usage of cloud resources is the monetary
cost. In cloud computing, resources of di�erent capabilities at di�erent prices are provided. Normally,
faster computing resources are more expensive than slower ones. Thus, di�erent scheduling strategies
of a work�ow using di�erent resources may result in di�erent makespan and di�erent monetary cost.
Therefore, the problem of work�ow scheduling in the cloud requires both time and cost constraints
to be satis�ed [16].

2 K. Ouk�f et al.

These two criteria have con�icting objectives, and it is important to suggest a trade-o� between
them. This trade-o� in�uences the di�erent scheduling objectives, which include reducing costs while
meeting the deadline, optimizing makespan while meeting the budget, or achieving the deadline and
budget as a more �exible objective [10].

In this work, we focus on optimizing makespan while meeting the budget constraint. The intu-
ition behind this strategy is to �nish a work�ow at a given budget as soon as possible. The objective
is to minimize makespan under budget restrictions. Several authors have worked on this issue in
single data center clouds, as detailed in the related work section. In this work, we are dealing with
the same problem in the context of multiple data centers clouds. Indeed, currently cloud providers
have tens of thousands of servers for providing su�cient computing resources for applications. These
resources are deployed in multiple data centers.

We propose a budget-aware HEFT algorithm for performance optimization of work�ows in IaaS
multiple data centers cloud. Our goal is to optimize the makespan and meeting the budget while
scheduling work�ows. For this, we propose a novel budget distribution approach based on estimating
task features.

The rest of this paper is organized as follows. Section 2 gives an overview of the related work, fol-
lowed by our budget-aware scheduling algorithm formalization in sections 3. The proposed schedul-
ing algorithm based on HEFT is outlined and evaluated in Sections 4 and 5 respectively. Finally,
Section 6 summarizes the results and concludes the paper.

2 Related Work

It is generally accepted that the problem of work�ows scheduling upon distributed systems is NP-
hard [4]. In this mind, heuristic and meta-heuristic strategies are used to generate high-quality and
approximate solutions with polynomial time complexity. Makespan and cost still remain the most
relevant criteria to optimize while scheduling work�ows in clouds. Several approaches have been
proposed to optimize makespan, cost or both.

Work such as [15] and [8] proposed budget and deadline constrained heuristics based upon Het-
erogeneous Earliest Finish Time (HEFT) to schedule work�ow over cloud resources. The proposed
heuristics present a bene�cial trade-o� between execution time and execution cost under given
constraints.

A list multiobjective optimization technique is designed by [9] to minimize monetary costs
for deadline constrained work�ows in cloud environments. The authors select the non-dominated
solutions by combining the quick non-dominated sorting approach with the crowding distance.

In [2, 18], the authors focus on budget and deadline aware work�ow scheduling. Their idea
presented in [2] is to satisfy both budget and deadline constraints while introducing a tunable
cost-time trade o� over heterogeneous instances. In [18] a work�ow scheduling algorithm to �nd a
feasible solution for a work�ow that meets budget and deadline constraints is proposed. Based on the
execution cost of the task on the slowest resources and the optimistic spare budget, the algorithm
generates the task optimistic available budget. Then, it builds the set of suitable resources according
to the task's optimistic available budget to control the range of resources selection, and thus controls
the task execution cost.

Many studies have addressed the issue of scheduling work�ows e�ectively given budget con-
straints. In order to achieve this goal, many works apply budget distribution strategies for work�ow
scheduling in the cloud. A budget distribution strategy consists of assigning a sub-budget for each
task of the work�ow.

Budget-aware performance optimization of work�ows in multiple data center clouds 3

The algorithm presented by [17] is an extension of the HEFT heuristic except for the selection
phase (task-ressource assignment). The algorithm distributes the budget to all tasks in proportion
to their average execution time on the available resources. Then, the resource chosen is the one that
allows the task to be accomplished early at a cost not greater than its allocated sub-budget.

The authors in [1] propose a work�ow partitioning that focuses on the dependency structure
inherent to work�ow tasks. The partitioning leads to several levels each containing independent
tasks. Several methods are introduced to distribute the global budget over these levels. According
to the authors, the most e�ective strategy is the so-called 'All-in' which places the entire budget on
the entry-level. Thus any remainders are trickled down to later levels. In our work, we implemented
this strategy for comparison purposes.

In [13] authors propose a scheduling algorithm whose objective is to optimize a work�ow's
execution time under a budget constraint. Their approach focuses on �ner-grained pricing schemes
that provide users with more �exibility and the ability to reduce the inherent wastage that results
from coarser-grained ones. Their approach partitions the DAG into a bag of tasks prior to its
execution and then distributes the budget over the tasks. The drawback of their clustering phase
is the parallelism limitation because of grouping several dependent tasks of work�ow at the same
level, which leads to the performance degradation of the work�ow.

The authors in [5] extended the two well-known algorithms, MIN-MIN [3] and HEFT [14] to
budget-aware scheduling algorithms for scienti�c work�ows with stochastic task weights on hetero-
geneous. In addition, they improved these versions with re�ned ones that aim to re-schedule some
tasks on faster VMs.

In [6], the authors proposed a normalization-based budget for constraint work�ow scheduling
algorithm. Their algorithm controls the resource selection phase of each task according to the
available budget, thereby increasing the probability of the 'best' resource selection.

All of these studies deal with the workfow scheduling problem in a single data center cloud and
eliminate or underestimate data transfer costs, unlike today's cloud providers that rely on multiple
data centers. The cost model used in previous studies did not consider the charge of data transfers
in the cloud although most cloud providers charge for the actual data storage depending on the
amount of data being stored. Moreover, we propose a new way of distributing the budget over the
work�ow tasks de�ned based on estimating their characteristics.

In this paper, we assume a multiple data centers cloud platforms that provide for work�ow
applications heterogeneous resources under budget and we consider a charged peer-to-peer transfer
mode instead of resorting external global storage.

3 Problem Formalization

This section begins by detailing the application and the platform models, then we formalize the
work�ow scheduling problem. The aim of our scheduling heuristic is to �nd a schedule S for the
work�ow (w) with a minimum makespan while respecting the budget.

3.1 Application model

A scienti�c work�ow application (w) is modeled as a DAG (Directed Acyclic Graph): G = (V,E),
where V is a set of n vertices representing tasks ti (1 6 i 6 n), and E is a set of directed edges. An
edge e(i, j) ∈ E corresponds to a dependence constraint between task ti and tj , in which ti is an
immediate parent task of tj , and tj the immediate child task of ti. A child task cannot be executed

4 K. Ouk�f et al.

until all of its parent tasks are completed. A task with no parent tasks is called an entry task and a
task with no children tasks is called an exit task. The data matrix, with n×n dimensions, represents
the data volume exchanged between tasks.

3.2 Cloud resource model

We consider platforms de�ned by an IaaS cloud where computer resources (instances) can be de-
ployed on di�erent data centers. During this section, we use the time model that speci�es the data
transfer times between data centers that we detailed in our previous work [12]. Then we present
a cost model that takes into account the costs of the instances as well as those of the transferred
data.

Time model In IaaS clouds, computer resources are instantiated as Virtual Machines (VMs)
which are deployed on di�erent data centers. Typically, cloud providers o�er multiple types of VM ;
VM = vm1, vm2, ..., vmq is the set of VMs with heterogenous processing capacity.

The estimated execution time of the task ti in a VM of type vmp is de�ned by the computing
time (CT (ti, vmp)).

The transfer time TT(i,j) (see equation (1)) taken to transfer data from task ti (executed on vmp

lodged in data center DCa) to task tj (executed on vmk lodged in data center DCb) corresponds
to an edge (i, j) ∈ E in the application graph (DAG).

TT(i,j) =
dataij

Transferrate(p,k)

(1)

The transfer time TT(i,j) is proportional to the size of the output data dataij produced by task
ti and transferred to tj , and is inversely proportional to the heterogeneous transfer rates or the
bandwidths Transferrate(p,k)

when the tasks are executed on di�erent data centers.

We note that when two communicated tasks are executed on the same VM , the transfer time is
equal to zero and when they are executed on di�erent VMs that are lodged in the same data center
also the transfer time is neglected. Thereby, the total computing time TCT (ti, vmp) of a task in a
VM is computed as shown in Equation (2).

In this equation, m refers to the number of parent tasks of ti (predecessors). The boolean sm is
equal to 0 if ti and tj run on the same virtual machine (p = k) or to 1 otherwise. Besides, the value
rm is equal to 1 to indicate that the VMs can be hosted in di�erent datacenters.

TCT (ti, vmp) = CT (ti, vmp) +

m∑
j=1

sm.rm.TT(j,i) (2)

In the formula (2) the product sm × rm indicates the inclusion of data transfer times between
the VMs according to the following two cases:

1. Transfer time between VMs in the same datacenter is neglected:

rm =

{
1 ifDCa 6= DCb

0, else

Budget-aware performance optimization of work�ows in multiple data center clouds 5

2. Transfer time between VMs in the same datacenter is not neglected:

rm = 1 , then sm × rm = sm

In order to calculate the makespan, which refers to the total execution time TCT (w) of all the
tasks of the work�ow, it is necessary to de�ne for each task these two attributes EST (ti, vmp)
(Earliest Start Time) and EFT (ti, vmp) (Earliest Finish Time) as following:

The EST (ti, vmp) of the task ti on the machine vmp, is calculated according to the following
recursive procedure: If the task has no parent tasks, then EST (ti, vmp) = 0, otherwise the task
can start executing as soon as its parent tasks are �nished and their output data is transferred.
However, if the resource is occupied by another task at this point, the execution of the task ti should
be delayed until this virtual machine vmp is free again.

The procedure (3) calculates the value of EST (ti, vmp):

EST (ti, vmp) =

{
0, if ti has no parent tasks

max{avail[vmp],maxtk∈pred(ti){EFT (tk, vmq)}}, else
(3)

Where: pred(ti) is the set of immediate predecessors of the task ti (parents of ti), avail[vmp] is
the next instant time when the resource vmp will be ready or available for task execution.

To determine EST (ti, vmp), the maximum value between avail[vmp and
maxtk∈pred(ti){EFT (tk, vmq)} is selected, where avail[vmp] is the maximum completion time of
previous tasks of ti on the same virtual machine vmp. The value avail[vmp] guarantees that a
virtual machine processes one task at a time, while maxtk∈pred(ti){EFT (tk, vmq)} guarantees that
a child task starts after all of its parents have �nished their execution.

The EFT (ti, vmp) of the task ti on the machine vmp is given by the following equation:

EFT (ti, vmp) = EST (ti, vmp) + TCT (ti, vmp) (4)

The makespan or the total computing time TCT (w) of the work�ow is de�ned by the equation
(5), and which corresponds to the completion time of the last task in the work�ow.

TCT (w) = max{EFT (ti, vmp)} (5)

Cost model To deal with the pay-as-you-go cost model of the cloud, we need to incorporate the
budget constraint in our approach.

The total cost of the whole work�ow execution is the sum of the cost due to the execution of
all its tasks in the platform.

The cost due to the execution of a task on a given VM vmp is de�ned by the equation (6) and
the cost of data transfers for this task is given by the equation (7).

Cost(ti, vmp) = CT (ti, vmp)× UCvmp (6)

Trcost(ti) =

m∑
i=j

dataij × rm × UCdata (7)

Where UCvmp
is the per time unit cost for using the vmp, UCdata is the unit cost for transferring

data and m the number of successor tasks of ti. In the equation (7), dataij refers to the data

6 K. Ouk�f et al.

transferred from ti to tj . The boolean rm indicates if the data transfers are achieved in the same
datacenter (rm = 0) thereby the data transfers fees are eliminated, or within di�erent ones (rm = 1).
The cost for a task is then given by the equation (8).

Cost(ti) = Cost(ti, vmp) + Trcost(ti) (8)

Altogether, we give the total cost for the work�ow execution as (9):

Cost(w) =

n∑
i=1

Cost(ti) (9)

Objective Given a budget B, our objective is to �nd the schedule that minimizes the makespan
while the budget is respected, namely: min{TCT (w)} while Cost(w) ≤ B.

4 Budget-aware HEFT Based Scheduling algorithm

In this section, we will �rst describe the HEFT algorithm, then we propose a new budget distribution
approach named Estimated task budget. Afterward, we present the Budget-aware HEFT heuristic
for scheduling work�ows with budget constraints in multiple datacenter cloud. HEFT heuristic is
one of the most popular list-based scheduling algorithms. It determines the scheduling of a DAG
in a heterogeneous environment in order to minimize the makespan of the application. HEFT is
integrated into important projects like ASKALON project [7] to provide scheduling for a quantum
chemistry application.

4.1 HEFT Algorithm

HEFT is a well-established list scheduling algorithm that prioritizes a work�ow task with a higher
rank. It determines the rank value for each task, based on the average execution time and the
average communication time between the resources of two successive tasks.

The HEFT algorithm orders the tasks on the di�erent resources in a given order based on a value
of a rank attribute. Ranks in HEFT are calculated based on the estimated average computation
and communication times of the tasks. Indeed, the tasks are sorted according to their scheduling
priorities, which are based on the increasing rank (upward rank, noted ranku). The value ranku is
the maximum distance of a task from the DAG output task. The rank of a task is de�ned recursively
as follows:

ranku(ti) =

{
CT (texit), if ti = texit

CT (ti) + maxtj∈succ(ti){TT (i,j), ranku(tj)}, else
(10)

Where:

� succ(ti) is the set of immediate successors of task ti.
� CT (ti) the average cost of running the task ti.
� TT (i,j) is the average cost of the communications of the edge (i, j).

Budget-aware performance optimization of work�ows in multiple data center clouds 7

This rank is calculated for all the tasks of the DAG starting with the exit task. The exit task
has as rank only the average of the computation times on the di�erent resources since it has no
successor tasks.

The HEFT algorithm works in two phases; (i) The prioritization phase during which the priori-
ties of all tasks are calculated using ranku. Next, a list of tasks is generated by sorting the tasks ac-
cording to their decreasing rank (priorities). (ii) The resource selection phase during which the tasks
are assigned to computing resources which minimize their (Finish Time). The time FT (ti, vmp) of
a task i on a computational resource vmp corresponds to the time at which the task �nishes its
execution, that is to say, the time of its start time ST (ti, vmp) (Start Time) added to the time of
its execution.

The HEFT algorithm proceeds according to the algorithm (1).

Algorithm 1: HEFT algorithm

Data: W : work�ow, PF : platform ;
Result: S: a schedule;

1 begin

2 Calculate the rank for all the tasks by traversing the DAG upwards from the exit tasks
according to the equation (10);

3 Sort the tasks in a list following the rank in descending order ;
4 while there are unscheduled tasks in the list do
5 Select the �rst task ti in the task list;
6 foreach vmp with p = 1..V M do

7 Calculate FT (ti, vmp) ;
8 Assign the task ti to the machine vmp such that FT (ti, vmp) is minimum ;

9 end

10 end

11 end

Before detailing our algorithm, we explain the new budget distribution strategy that we designed
for our budget-aware HEFT scheduling algorithm.

4.2 Budget Distribution

The main of budget distribution is to scatter the provided budget (B) to the work�ow tasks. Each
task receives a fragment of this budget. Several methods of budget distribution have been proposed.
Example of recent strategies we quote [1,5] cited in the related work section. In this work, we propose
a novel budget distribution strategy for our budget-aware scheduling algorithm, the Estimated Task
Budget. With the Estimated Task Budget (ETB) strategy, we estimate the budget required for each
task according to the costs of its processing time and the costs of the data transfers that it needs.
This estimation is much closer to the speci�c needs of each task than any other fair approach. The
ETB approach better re�ects the needs of the tasks when the work�ow is running in multiple data
centers clouds. This is possible by also estimating the costs of transfers made between datacenters,
which are not always free. Therefore, the initial budget used to cover the total execution of a
work�ow w can be distributed to the work�ow tasks according to the features of each of them. We
propose to estimate the proportional budget B(ti) reserved for a task ti using the equation (11).

8 K. Ouk�f et al.

B(ti) =
CT (ti)∑n
i=1 CT (ti)

× UCvmp
+

∑m
j=1 dataji∑

(x,y)∈E data(xy)
× UCdata (11)

For each ready task, we calculate the corresponding sub-budget B(ti) of the initial budget (B)
in proportion to the entire work�ow. The �rst summand in the equation (11) concerns the unit cost
of an instance by the ratio of the average computing time of a given task to the overall computing
time of the work�ow. The second summand represents the unit transfer cost by the ratio of the
required data of a given task ti to the total data to be transferred in the work�ow.

Any unused fraction of the budget consumed when assigning previous tasks is recovered by the
algorithm. For this purpose, the algorithm uses the variable Bremain which is initialized to zero for
entry tasks but reclaims any remaining budget in previous assignments for the other tasks.

4.3 Budget-aware HEFT Algorithm

In this subsection, we present a budget-aware HEFT algorithm to allow its execution on work�ows
in multi-datacenter cloud platforms with budget constraints. We call this algorithm B −HEFT .

Initially, the HEFT heuristic [14] is presented to schedule a task graph on a set of heterogeneous
processors. The adaptation of the HEFT heuristic, for the execution of work�ow on platforms
such as multi-datacenters clouds with budget constraint, requires rethinking the stage of instance
selection to a given task (or the assignment of tasks to VMs phase).

Using the proposed time model described in section 3.2, we adapted the HEFT heuristic to the
multi-datacenter cloud model. Moreover, we use the Estimated task budget for distributing the
global budget over the work�ow tasks.

The B −HEFT is described by the following algorithm (2).
Our algorithm started by sorting the tasks in a list following the ranku in descending order

(lines 2 and 3). Initially, for each task ti in the ordered list, our algorithm a�ects the cheapest
VM in the platform PF (lines 7 and 8) as the best VM , which does not necessarily provide the
minimum earliest �nish time for this task. The EFT (ti, vmp) is obtained using the equation (4)(line
9). The algorithm calculates the share of the budget for each task using the proposed Estimation
task budget (line 10). In addition, the algorithm recovers any part of the remaining budget from
previous tasks (line 11). From line 12 to line 19, the algorithm calculates the EFT (ti, vmp) according
to the equation (4) with each VM vmp. Then, the task cost is generated using equation (8). The
B-HEFT algorithm veri�es the �nish time, checks if the budget B(ti) is not exceeded, and updates
the minimal �nish time and the best vm if it's necessary. Afterward, the algorithm evaluates the
remaining budget by subtracting its real cost from its own reserved budget. Finally, the algorithm
returns the best vm for the task (line 19).

5 Evaluation and Results

In this section, we present the experiments carried out to evaluate the performance of the proposed
approach.

To assess the performance of our approach, we tested the algorithms with work�ows generated
based on the characteristics of two well-known real work�ow applications, Montage and CyberShake,
from two di�erent scienti�c �elds.

Budget-aware performance optimization of work�ows in multiple data center clouds 9

Algorithm 2: B-HEFT algorithm

Data: W :work�ow, PF : platform, B: Budget;
Result: S: a schedule;

1 begin

2 Calculate the rank for all the tasks according to the equation (10);
3 Sort the tasks in a list following the rank in descending order ;
4 while there are unscheduled tasks in the list do
5 Select the �rst task ti in the task list;
6 // initialization: BestV M as the cheapest VM ;
7 UCvm = min{UCvmp} with p = 1..V M ;
8 BestV M = vm;
9 Calculate EFT (ti, BestV M) according to the equation (4) ;

10 Calculate B(ti) according to the equation (11) ;
11 B(ti) = B(ti) +Bremain;
12 foreach vmp with p = 1..V M do

13 Calculate EFT (ti, vmp) according to the equation (4) ;
14 Calculate Cost(ti) according to the equation (8) ;
15 if ((EFT (ti, vmp) < EFT (ti, BestV M)) and (cost(ti) ≤ B(ti))) then
16 EFT (ti, BestV M) = EFT (ti, vmp) ;
17 BestV M = vmp ;
18 Bremain = B(ti)− cost(ti)

19 end

20 Assign ti to BestV M ;

21 end

22 end

23 end

The CyberShake work�ow is a data-intensive application of seismology used to describe earth-
quakes by generating synthetic seismograms. The Montage work�ow is used in astronomy for gen-
erating mosaics personalized from the sky using a set of input images. Most of its tasks are I/O
intensive. These work�ows are generated by Work�owGenerator4 tool. The structure of the small
work�ows are shown by Fig. 1.

We modeled an IaaS provider platform with a platform of three data centers with 125 MBps as
Bandwidth and $0.055 per GB as data transfer cost. In each data center, three types of VMs can
be allocated. Their characteristics (CPU power and cost) are similar to the c4 compute-optimized
instance types o�ered by Amazon EC2. The con�gurations of the VM type used are shown in Table
(1).

In the experiments, di�erent budget intervals were employed. We assume that the minimum
budget (Bmin) for running the work�ow equals the cost of running all tasks on the single cheapest
VM. We establish four di�erent budget intervals based on this minimum budget as indicated in
equation (12), then we use the rounding to an integer value for B.

B = α ? Bmin where 0 < α < 5 (12)

4 https://con�uence.pegasus.isi.edu/display/pegasus/Work�owGenerator

10 K. Ouk�f et al.

(a) CyberShake (b) Montage

Fig. 1: Structure of the small scienti�c work�ows

Table 1: Type and prices of VMs
VM type Name vCPU Price per Seconde ($)

1 small 2 0.0045
2 medium 4 0.009
3 large 8 0.018

We assessed di�erent work�ows to compare performance with respect to work�ow size. We used
25, 50 and 100 tasks for Montage work�ow and used 30, 50 and 100 tasks for CyberShake work�ow.

To a�ord a baseline comparison, we implemented a 'uniform' distribution as a basic strategy
and an adapted version of the 'All-in' distribution proposed in [1].

The uniform distribution strategy operates blindly, sharing the budget provided over the set
of tasks by equal sharing. Except for the number of tasks, no other information concerning the
work�ow structure or task characteristics is considered. With the 'All-in' distribution strategy,
the total budget is assigned to the �rst level. After serving all tasks at this level, any remaining
budget is trickled to the next level. Since our B-HEFT algorithm does not perform level building
preprocessing, we implement an 'All-in' version based on the ordered list of tasks instead of levels.
In this case, the total budget is given for the �rst ready task in the work�ow. Then after serving
this �rst task, the remaining budget will be devoted to the next ready task in the list, and so on.

5.1 Montage work�ow

Fig. 2 shows the makespan achieved for Montage work�ow using di�erent budgets. With the dif-
ferent sizes of Montage work�ow, our algorithm, plotted as 'Estimated' for Estimated task budget
shows identical makespan as 'All-in' approach. Both 'Estimated' and 'All-in' perform better than
the 'Uniform' strategy. This is due to the fact that when 'uniform' equitably distributes a re-
stricted budget (B=1, B=2 for Montage-25 for example) between all the tasks, the share of each
becomes insu�cient. Then the algorithm assigns the tasks to the cheap instances, thus increasing
the makespan (since the cheap instances are also slow). We point out the power of our algorithm
to improve makespan compared to 'All-in' using a minimal budget.

In fact, our algorithm, using the 'Estimated' approach for sharing the budget, distributes for
each task a su�cient sub-budget which is close to its real cost. On the other hand, 'All-in' is more

Budget-aware performance optimization of work�ows in multiple data center clouds 11

generous with the �rst tasks of the work�ow (starting with the input tasks) by assigning them the
maximum budget, therefore being able to run on faster instances. Unfortunately for the last tasks,
if the budget is not su�cient, they run on slow instances which lengthens the makespan.

Fig. 2: Makespan for Montage work�ows grouped by Budget

The costs recorded for Montage work�ow based on di�erent budgets are shown in Fig. 3. The
costs recorded by our strategy are very close to those obtained by the 'All-in' case. The 'Uniform'
strategy got reduced costs for the restricted budgets because it assigns the tasks to the cheap
instances in this case to the detriment of the makespan. These bene�ts are visible in particular for
signi�cant sizes work�ows like Montage with tasks sizes 50 and 100 (�gure 3 (b) and (c)). In most
cases, the three strategies meet the budget.

5.2 CyberShake work�ow

Fig. 4 shows the makespan achieved for CyberShake work�ow using di�erent budgets. With Cy-
berShake, our approach also achieves makespan identical to those obtained by 'All-in' with relaxed
budgets, but rather better in the case of a restricted budget for all the CyberShake task sizes (Fig. 4
(a),(b) and (c)).

The makespan obtained by 'Uniform' is high compared to 'Estimated' and 'All-in' especially
in with restricted budgets. Note that in the case of CyberShake with 100 tasks, 'Uniform' fails to

12 K. Ouk�f et al.

Fig. 3: Cost for Montage work�ows grouped by Budget

Budget-aware performance optimization of work�ows in multiple data center clouds 13

Fig. 4: Makespan for CyberShake work�ows grouped by Budget

14 K. Ouk�f et al.

optimize the makespan even with a relaxed budget (Fig. 4) (c)). Our approach achieves performances
identical to those obtained by the 'All-in' strategy with relaxed budgets, but rather better in the
case of a restricted budget.

As shown in Fig. 5, the results of CyberShake work�ow regarding the costs are plotted. The
costs realized by our approach are very close to those obtained by 'All-in' except for the work�ow
of size 100. In this case, 'All-in' behaves better compared to our approach. This is due eventually
to the fact that the estimated values of the task's characteristics are not su�ciently accurate when
dealing with a large number of tasks.

With the 'Uniform' strategy, the tasks costs are reduced. But in reality, the approach is unable
to o�er su�cient budgets for tasks with restricted budgets. It just runs them on cheap instances
without actually meeting the task's needs. When o�ering a relaxed budget, 'Uniform' recorded costs
as high as these of the other two approaches.

Fig. 5: Cost for CyberShake work�ows grouped by Budget

Budget-aware performance optimization of work�ows in multiple data center clouds 15

6 Conclusion and Future work

In this paper, we presented a budget-aware HEFT algorithm for optimizing makespan when meeting
the budget. The budget-aware algorithm is based on an estimated task budget which calculates the
budget share required for each task in the work�ow. We target as a platform the multi-datacenter
clouds so that the costs of data transfers between data centers are considered.

We evaluated the makespan and costs using two real-world work�ows with budget scenarios.
Our approach shows identical makespan as 'All-in' distribution strategy but surpasses it in the case
of restricted budgets. The 'Uniform' approach is far from being competitive with our algorithm by
recording slower makespan. This makes the power of our algorithm to improve makespan with a
minimal budget. In most cases, our algorithm behaves as an 'All-in' approach, without exceeding
budget constraints.

Future work will focus on extending the experimental tests with large scale work�ows. Other
more precise performance metrics will be used to better assess the proposed algorithm.

References

1. Vahid Arabnejad, Kris Bubendorfer, and Bryan Ng. Budget distribution strategies for scienti�c work�ow
scheduling in commercial clouds. In 2016 IEEE 12th International Conference on e-Science (e-Science),
pages 137�146. IEEE, 2016.

2. Vahid Arabnejad, Kris Bubendorfer, and Bryan Ng. Budget and deadline aware e-science work�ow
scheduling in clouds. IEEE Transactions on Parallel and Distributed Systems, 30(1):29�44, 2018.

3. Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L Bölöni, Muthucumaru Maheswaran, Albert I
Reuther, James P Robertson, Mitchell D Theys, Bin Yao, Debra Hensgen, et al. A comparison of eleven
static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing
systems. Journal of Parallel and Distributed computing, 61(6):810�837, 2001.

4. Peter Brucker and P Brucker. Scheduling algorithms, volume 3. Springer, 2007.
5. Yves Caniou, Eddy Caron, Aurélie Kong Win Chang, and Yves Robert. Budget-aware scheduling

algorithms for scienti�c work�ows with stochastic task weights on heterogeneous iaas cloud platforms.
In 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 15�26. IEEE, 2018.

6. K Kalyan Chakravarthi, L Shyamala, and V Vaidehi. Budget aware scheduling algorithm for work�ow
applications in iaas clouds. Cluster Computing, pages 1�15, 2020.

7. Thomas Fahringer, Alexandru Jugravu, Sabri Pllana, Radu Prodan, Clovis Seragiotto Jr, and Hong-
Linh Truong. Askalon: a tool set for cluster and grid computing. Concurrency and Computation:
Practice and Experience, 17(2-4):143�169, 2005.

8. Robabeh Ghafouri, Ali Movaghar, and Mehran Mohsenzadeh. Time-cost e�cient scheduling algo-
rithms for executing work�ow in infrastructure as a service clouds. Wireless Personal Communications,
103(3):2035�2070, 2018.

9. Pengcheng Han, Chenglie Du, Jinchao Chen, Fuyuan Ling, and Xiaoyan Du. Cost and makespan
scheduling of work�ows in clouds using list multiobjective optimization technique. Journal of Systems
Architecture, page 101837, 2020.

10. Pingping Lu, Gongxuan Zhang, Zhaomeng Zhu, Xiumin Zhou, Jin Sun, and Junlong Zhou. A review of
cost and makespan-aware work�ow scheduling in clouds. Journal of Circuits, Systems and Computers,
28(06):1930006, 2019.

11. Karima Ouk�f, Lyes Bouali, Samia Bouzefrane, and Fatima Oulebsir-Boumghar. Energy-aware dpso
algorithm for work�ow scheduling on computational grids. In Future Internet of Things and Cloud
(FiCloud), 2015 3rd International Conference on, pages 651�656. IEEE, 2015.

16 K. Ouk�f et al.

12. Karima Ouk�f, Fatima Oulebsir-Boumghar, Samia Bouzefrane, and Soumya Banerjee. Work�ow
scheduling with data transfer optimisation and enhancement of reliability in cloud data centres. Inter-
national Journal of Communication Networks and Distributed Systems, 24(3):262�283, 2020.

13. Maria A Rodriguez and Rajkumar Buyya. Budget-driven scheduling of scienti�c work�ows in iaas
clouds with �ne-grained billing periods. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 12(2):1�22, 2017.

14. Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-e�ective and low-complexity task
scheduling for heterogeneous computing. IEEE transactions on parallel and distributed systems,
13(3):260�274, 2002.

15. Amandeep Verma and Sakshi Kaushal. Cost-time e�cient scheduling plan for executing work�ows in
the cloud. Journal of Grid Computing, 13(4):495�506, 2015.

16. Fuhui Wu, Qingbo Wu, and Yusong Tan. Work�ow scheduling in cloud: a survey. The Journal of
Supercomputing, 71(9):3373�3418, 2015.

17. Wei Zheng and Rizos Sakellariou. Budget-deadline constrained work�ow planning for admission control.
Journal of grid computing, 11(4):633�651, 2013.

18. Naqin Zhou, Weiwei Lin, Wei Feng, Fang Shi, and Xiongwen Pang. Budget-deadline constrained ap-
proach for scienti�c work�ows scheduling in a cloud environment. Cluster Computing, pages 1�15,
2020.

	Budget-aware performance optimization of workflows in multiple data center clouds

