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Abstract

Current and future architectures rely on thread-level parallelism to sustain performance
growth. These architectures have introduced a complex memory hierarchy, consisting of
several cores organized hierarchically with multiple cache levels and NUMA nodes. These
memory hierarchies can have an impact on the performance and energy efficiency of parallel
applications as the importance of memory access locality is increased. In order to improve
locality, the analysis of the memory access behavior of parallel applications is critical for
mapping threads and data. Nevertheless, most previous work relies on indirect information
about the memory accesses, or does not combine thread and data mapping, resulting in less
accurate mappings.

In this paper, we propose the Sharing-Aware Memory Management Unit (SAMMU), an
extension to the memory management unit that allows it to detect the memory access behav-
ior in hardware. With this information, the operating system can perform online mapping
without any previous knowledge about the behavior of the application. In the evaluation
with a wide range of parallel applications (NAS Parallel Benchmarks and PARSEC Bench-
mark Suite), performance was improved by up to 35.7% (10.0% on average) and energy
efficiency was improved by up to 11.9% (4.1% on average). These improvements happened
due to a substantial reduction of cache misses and interconnection traffic.

1 Introduction

Shared-memory architectures are increasing the thread-level parallelism (TLP) through larger
numbers of processors per system and cores per chip [3, 10, 15]. This increase of TLP has influ-
enced the memory architecture. Modern memory hierarchies are complex and include memories
with different access latencies and bandwidths. These differences are introduced by multiple
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cache memory levels, as well as non-uniform memory access (NUMA), and they have an impact
on the performance and energy efficiency of parallel applications [31, 49, 24, 51].

The memory hierarchy influences the locality of memory accesses, and thereby presents chal-
lenges for mapping threads to cores and data to NUMA nodes [50]. To improve locality in parallel
applications, threads that access a large amount of shared data should be mapped to cores that
are close to each other in the memory hierarchy, while data should be mapped to the same
NUMA node of the threads that are accessing it [43]. An improvement of memory access locality
leads to an increase of performance and energy efficiency. We characterize this type of thread
and data mapping as sharing-aware. Sharing-aware thread mapping uses knowledge about the
data that is shared between threads, while sharing-aware data mapping uses information about
the threads that access each memory page. Furthermore, these mappings should be performed
together to achieve the best results [44].

Improvements due to sharing-aware mapping happen due to a reduction of cache misses,
improvement of locality and reduction of traffic in slow interchip interconnections [33]. Cache
misses are reduced by decreasing the number of invalidations that happen when write operations
are performed on shared data [38]. For read operations, the effective cache size is increased by
reducing the replication of cache lines on multiple caches [13], which also reduces cache misses.
The locality of main memory accesses is increased by mapping data to the NUMA node where it is
most accessed. The usage of interconnections in the system is improved by reducing the traffic on
slow and power-hungry interchip interconnections, using more efficient intrachip interconnections
instead. Due to these optimizations, sharing-aware thread and data mapping is able to improve
both performance and energy efficiency [22].

Many previous approaches in the area of sharing-aware mapping focus either on thread map-
ping [5] or data mapping [4, 37, 46], but perform them separately only. Additionally, some
mechanisms rely on execution traces to perform a static mapping [37], which has a high over-
head [8] and cannot be used if the sharing behavior of the application changes between execu-
tions. Other approaches require source code annotations [11] or use indirect information about
the memory access pattern and a small number of samples [5, 22, 29], which can result in less
accurate mappings.

In this paper, we propose the Sharing-Aware Memory Management Unit (SAMMU), which
uses the virtual memory implementation in hardware and software to detect the memory access
pattern of a parallel application. SAMMU modifies the memory management unit to analyze
the memory access behavior, which is used to perform online sharing-aware thread and data
mapping. To the best of our knowledge, SAMMU is the first mechanism that keeps track of
the number of memory accesses to each page during TLB access, generating memory access
patterns more accurate than related work. SAMMU requires no changes to the application or its
runtime system, and needs no previous information about application behavior. Our evaluation
shows that SAMMU provides substantial performance and energy consumption improvements.
Compared to previous mechanisms, SAMMU achieves better improvements for most applications.

This paper is an extension of our previous work [17]. The main improvements provided in
this paper are the the following:

� We provide a more detailed explanation of how SAMMU works.

� We perform experiments in different platforms: a full system simulator and a machine with
two NUMA nodes.

� We evaluate the energy consumption improvements that can be achieved by SAMMU.

� We run experiments with more benchmarks (PARSEC in addition to the NPB).
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� We include an analysis of how SAMMU behaves under different scenarios, varying several
architectural parameters.

� We include the mathematical foundations on which SAMMU is based.

This paper is organized as follows: SAMMU is detailed in Sec. 2. The experimental method-
ology is explained in Sec. 3. Performance and energy results are presented in Sec. 4. Related
work and a performance comparison to four algorithms from the state of the art are discussed
in Sec. 5. Concluding remarks and future work are presented in Sec. 6. Appendix A adds an
analysis of a specific function in SAMMU.

2 SAMMU: A Sharing-Aware Memory Management Unit

An ideal mapping mechanism would need to know the future memory access behavior of threads
to make the best mapping decisions. Nevertheless, knowing with 100% accuracy which pages
each thread will access in the future is impossible for most applications. We work to overcome
this issue by basing decisions on access locality principles. They give us the idea that a thread
has a higher probability to access a page in the future if it accessed this same page in the near
past.

We propose to monitor memory accesses in the memory management unit (MMU) of pro-
cessors, which is present in computer systems that support virtual memory (where the MMU is
used to translate virtual addresses to physical ones). To perform the translation, the operating
system stores page tables in the main memory, which contain the physical address and metadata
of each memory page. In most operating systems, threads of a parallel application share the
same page table. A special cache memory, the Translation Lookaside Buffer (TLB), is used to
speed up the address translation. In multicore or multithreaded architectures, each (virtual) core
contains its own (virtual) MMU and TLB.

In this section, we introduce SAMMU, which adds sharing-awareness to the MMU to optimize
the memory accesses of parallel applications. SAMMU works in the same way for multicore and
multithreaded architectures, so we will only refer to cores in the text. We begin with an overview
of the concepts of SAMMU in Sec. 2.1. Afterwards, we explain how SAMMU gathers information
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cesses memory
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Perform address
translation

Evict old entry from
TLB

Fetch new TLB entry
by walking page table

Continue
execution
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Table and Sharing Matrix
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Do not
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Figure 1: Overview of the MMU and SAMMU.
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on memory accesses in Sec. 2.2. We then discuss how we detect the sharing pattern between
threads in Sec. 2.3 and the page usage pattern in Sec. 2.4. We present an example of SAMMU’s
operation in Sec. 2.5, and we discuss implementation and overhead details in Sec. 2.6, Sec. 2.7
and Sec. 2.8, respectively.

2.1 Overview of SAMMU

The default operating system scheduler does not take the sharing pattern of parallel applications
into account when assigning threads to cores. Therefore, SAMMU, besides detecting the memory
access pattern, also needs the kernel to use this information during scheduling. To solve both
issues, SAMMU is implemented partially in hardware and partially in software. The hardware
part of our proposal is responsible for detecting the memory access pattern in the MMU, which
is explained in Sections 2.2, 2.3 and 2.4.

A high-level overview of the operation of the MMU, TLB and SAMMU is illustrated in Fig. 1.
On every memory access, the MMU checks if the page has a valid entry in the TLB. If it does,
the virtual address is translated to a physical address and the memory access is performed. If
the entry is not in the TLB, the MMU performs a page table walk and caches the entry in the
TLB before proceeding with the address translation and memory access.

SAMMU extends the operation of the MMU in two ways, both happening in parallel to the
normal operation of the MMU without stalling application execution:
1. SAMMU counts the number of times that each TLB entry is accessed from the local core.
This enables the collection of information about the pages accessed by each thread. We store
these access counters, one per TLB entry, in a table inside the MMU that we call TLB access
table.
2. On every TLB eviction or when an access counter saturates, SAMMU analyzes statistics
about the page and stores them in two separate structures in main memory. The first structure
is the sharing matrix (SM), which estimates how much threads share data. The second structure
is the page history table, which contains information about the threads and NUMA nodes that
accessed each page. This table is indexed by the physical page address, and each of its entries has
three fields: (i) access threshold (AT), which defines the minimum number of memory accesses
required to update the statistics; (ii) sharers vector (SV), which contains the ID of the last threads
that accessed the page; (iii) NUMA counters (NC), which estimates the number of accesses from
each NUMA node.

The software part of our proposal uses the information detected by the hardware to per-
form thread and data migration. Our algorithm calculates thread mapping as explained in
Section 2.7.1. To perform thread migration according to the calculated mapping, we use the in-
frastructure already present in the kernel. For data mapping, pages are migrated to the NUMA
node indicated by statistics gathered by the hardware, as explained in Section 2.4, and this also
uses the infrastructure already present in the kernel for migration.

2.2 Gathering Information about Memory Accesses

SAMMU gathers memory access information by counting the number of memory accesses to each
page in the TLB of each core. To do so, we add a saturating access counter (AC) to each TLB
entry in the TLB access table. When an AC saturates or its TLB entry gets evicted, SAMMU
collects the information and updates the page history table entry of the related page. To filter
out the information of threads that perform only a few accesses to a page, each page has an access
threshold (AT ) in the page history table that specifies the minimum number of memory accesses
required to update its information. We use an adaptive AT per page in order to handle each
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Figure 2: Operation of SAMMU. In this example, the system consists of 4 NUMA nodes with
2 cores each. The NUMA threshold is 4. Page P is initially located on NUMA node 0. In this
example, thread 3 (core 3, NUMA node 1) saturates the AC of page P .

page’s different access behavior, which would not be possible if a pre-defined or global threshold
were to be used.

SAMMU updates the mapping-related statistics of a page only on two situations: when an
AC related to a TLB entry containing the page’s information saturates; or if the page is evicted
from a TLB and the number of memory accesses registered in the AC of this TLB entry is greater
than or equal to the AT of the page (a value smaller than AT means that the thread does not
use the page enough to influence its mapping).

Fig. 2 shows an example of SAMMU’s operation. SAMMU automatically adjusts the access
threshold of a given page (which starts at zero) based in two cases (Fig. 2- B ):
Case 1 (AC saturates or AC ≥ AT ): When AC saturates or its value is greater than or
equal to its AT on a TLB eviction (Fig. 2- B , D ), AT is updated with the average value of AC
and AT , as illustrated in Eq. 1. Additionally, the mapping statistics are updated, as will be
explained in Sec. 2.3 and Sec. 2.4. It is important to note that, since we use the same number
of bits to store AC and AT , when AC saturates, it will be greater than or equal to AT .

ATnew =
AT +AC

2
, AC ≥ AT (1)

Case 2 (AC < AT ): In the second case, when the number of memory accesses registered
by AC during a TLB eviction is lower than its AT (Figure 2- B , C ), we update AT in such a
way that NUMA nodes with a small number of accesses to the page would have a lower influence
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on the threshold. In this situation, no mapping statistics are updated, only AT . This situation
requires an update function f(·) that subtracts a value from AT :

ATnew = AT − f(AC), AC < AT (2)

Function f(·) must have three properties (we consider AT as a constant):

� f(0) = 0, which means that if there were no accesses to a page, its AT would not be
changed. In other words, if a thread does not access the page, it should not influence that
page’s AT .

� f(AT ) = 0, which means that if a thread were to perform a number of accesses exactly
equal to AT , we would still like to keep this AT with no changes.

� f(AC) = k, where 0 < AC < AT and 0 < k < AT . This means that, for all values of AC
between 0 and AT , we want to reduce the value of AT but still keep its value higher than
zero.

As no linear function can provide the properties required by function f(·) (equal to zero in
the extremities but larger than zero for other values), we chose a quadratic function. We could
use other polynomial functions, but since we need to implement this in hardware, we want to use
the simplest function possible. We use Eq. 3, which guarantees that AT will never be decreased
by more than 25% at each update. In Appendix A, we provide a detailed explanation on how to
find this equation. Further details on how we implement Eq. 3 in hardware are given in Sec. 2.6.1.

ATnew = AT − AT −AC
AT/AC

, AC < AT (3)

Lastly, thread and data mapping have complex interactions with each other, which gives rise
to multiple questions, such as should we migrate threads to the core closer to the NUMA node
that contains most of the data accessed by the corresponding thread or should we migrate the
pages to the NUMA node closer to the cores that most access them? In order to handle these
kinds of questions and to reduce the complexity of mapping decisions, SAMMU handles thread
and data mapping separately. These mappings are explained in the next sections.

2.3 Detecting the Sharing Pattern for Thread Mapping

In order to detect the sharing pattern between threads, SAMMU identifies the last threads that
accessed each memory page. To obtain this information, SAMMU adds a small sharers vector
(SV ) to each page history table entry. Each SV stores the identifiers of the last threads to access
a given page and it overwrites old entries every time new information is available (Fig. 2- D ).
This provides temporal locality to the detection of the sharing pattern.

SAMMU also keeps a sharing matrix (SM) in main memory for each parallel application to
estimate the number of accesses to pages that are shared between each pair of threads. This
information represents the affinity between threads to be provided to a thread mapping algorithm.
In order to be able to update a SM , SAMMU stores the ID of the thread that accessed each TLB
entry in the TLB access table. Other additions to the processor’s architecture include control
registers containing the memory address and dimensions of the sharing matrix, and the ID of
the thread being executed, all of which must be updated by the operating system.

When SAMMU is triggered for a certain page by thread T (Fig. 2- A ), it accesses the SV of
the corresponding page history table entry. If the access counter is greater than or equal to the
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access threshold (Fig. 2- B ), SAMMU increments the sharing matrix in row T for all the columns
that correspond to an entry in the SV (Fig. 2- D ).

SM [T ][SV [i]] = SM [T ][SV [i]] + 1 (4)

We can notice in Eq. 4 that each line of SM is accessed by its corresponding thread only (in
our case, thread T ), which minimizes the impact to the memory coherence protocols. Finally,
SAMMU inserts thread T into the SV of the evicted page by shifting its elements, such that the
oldest entry is removed.

2.4 Detecting the Page Usage Pattern for Data Mapping

In order to identify the page usage pattern of a memory page for mapping reasons, SAMMU
requires the addition of a vector to each page history table entry. The vector, which we call
NUMA counters (NC), has N elements for a system with N NUMA nodes. NC employs
saturating counters to count the relative number of accesses from different NUMA nodes to each
page. The initial value of each NC is 0.

SAMMU’s page usage pattern detection proceeds in the following manner: when a TLB
entry from a core in NUMA node n is selected for eviction or its AC reaches its maximum
value (Fig. 2- A ), SAMMU reads the corresponding page history table entry. If the number of
memory accesses stored in AC is greater than or equal to the threshold AT (Fig. 2- B ), SAMMU
increments the NUMA counter of node n by Vadd, and decrements all other NUMA counters
by 1 (Fig. 2- E ), as in Eq. 5. Vadd is a control register configured by the operating system, and
its value must be at least 2 for its correct functioning (more on this is discussed later in this
section). We set Vadd to 2 as a compromise between two constraints: low values of Vadd increase
the time to adapt to a new access behavior, while high values require a larger number of bits to
store and update the NUMA counters in dedicated hardware. Finally, since the NUMA counters
are saturated, they do not overflow nor underflow.

NC[x] =

{
NC[x] + Vadd if x = n

NC[x] − 1 otherwise
(5)

After updating the values of NC, SAMMU checks if the corresponding page is stored in
NUMA node n. If the page is currently mapped to another NUMA node m, SAMMU evaluates
if the difference between their NUMA counters is greater than or equal to a global value NUMA
threshold (NT ) (Fig. 2- F ), as in Eq. 6. If that is the case, SAMMU notifies the operating
system of the page and its destination node n (Fig. 2- G ). The NUMA Threshold is set by the
operating system according to the number of migrations. If too many migrations are occurring,
the operating system must increase NT to reduce the overhead coming from excessive migrations
(the higher the NT , the lower the number of page migrations).

NotifyOS =

{
true if NC[n] −NC[m] ≥ NT

false otherwise
(6)

The operating system then handles the migration of the page (Fig. 2- H ). The operating system
is also responsible for managing any possible inconsistencies generated by a thread trying to
access a page that is being migrated.
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2.4.1 Additional information about Vadd

In order to demonstrate why Vadd must be at least 2, consider the situation where NUMA nodes
n and m present a similar access pattern to a page P , the value of Vadd is 1, and all NC are set
to 0. Nodes other than n and m do not access page P .

Whenever a core from node n evicts page P (or an AC of page P saturates), the value of
NC[n] would be incremented to 1 and NC[m] would be decremented to 0. Likewise, whenever
a core from node m evicts the same page P , the value of NC[m] would be incremented to 1
and NC[n] would be decremented to 0. In this scenario, the mechanism would not be able to
detect that nodes n and m present more accesses than the others. However, if the value of
Vadd is 2, NC[n] and NC[m] would present higher values after multiple accesses. Therefore, by
incrementing with a larger number, SAMMU is able to handle this access behavior. If more than
two NUMA nodes access a page in similar amounts, a value higher than 2 is required.

2.5 Example of the Operation of SAMMU

In the situation illustrated in Fig. 2, there are 8 cores, 4 NUMA nodes, the NUMA threshold NT
is 4, the sharers vector SV has 2 positions, and Vadd is 2. AC and AT support values up to 32M.
SAMMU is configured to support up to 8 threads per parallel application. Consider that page P
is initially located on NUMA node 0. If thread 3, which is being executed on core 3 (NUMA
node 1), saturates the AC of page P (Fig. 2- A ), SAMMU accesses the page history table entry
of page P .

Since page P was accessed 32M times and its AC saturated, AT (16M) will be updated to 24M
following Eq. 1 (Fig. 2- B , E ). For the sharing pattern, SAMMU checks the sharers vector SV ,
and finds the IDs of threads 4 and 7. It will then increment cells (3, 4) and (3, 7) of the sharing
matrix by 1, and store thread 3 in SV (Fig. 2- D ). This will result in the removal of thread 7
from SV .

Regarding the page usage pattern (Fig. 2- E ), the NUMA counter of node 1 will be incre-
mented by 2, and all others will be decremented by 1. The counter of node 3 remains as 0
because the counter is saturated. Since the difference between NC[1] (node of core 3) and NC[0]
(current node that stores page P ) is greater than or equal to the NUMA threshold (4) (Fig. 2- F ),
SAMMU notifies the operating system to migrate page P to node 1 (Fig. 2- G , H ).

Suppose now that page P was accessed 4M times (instead of 32M) and was selected for a
TLB eviction. In this situation, no updates to the sharing matrix and NUMA counters would
be performed, since AC would be lower than the access threshold (16M). In this case, the access
threshold would be updated to 13M following Eq. 3 (Fig. 2- C ).

2.6 Hardware Implementation Details

2.6.1 Detection Mechanism Implementation

SAMMU can be implemented in several ways. We implemented it in a way to handle only one
event at a time to simplify its hardware requirements. If a TLB eviction happens or an AC
saturates while SAMMU is already handling another event, the event is ignored. If more events
were considered, the accuracy would be higher, but with a trade-off of a more complex hardware
and higher overhead and power consumption. However, since these events are very frequent, we
do not expect a significant impact on accuracy by discarding some of them. We evaluate this in
Section 4.3.

To count the number of accesses to each TLB entry, we added the TLB access table to
the MMU. In order to implement the TLB access table as a scratchpad, without the need for
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tag comparison, we added to each TLB entry a static unique identifier. When a TLB entry
is accessed, its identifier is returned along with the page information. SAMMU then uses this
identifier as an index in the TLB access table.

Regarding the updates to the AT in the page history table, since Eq. 3 requires division
operations, we update the access threshold using the approximation shown in Eq. 7 instead,
where � represents the bit shift operation. The H function returns the position of the highest
bit set to 1 in its parameter.

ATnew = AT −
[(
AT −AC

)
�
(
H(AT ) −H(AC)

)]
(7)

2.6.2 Notifying the Operating System About Page Migrations

In order to notify the operating system when a page needs to migrate, SAMMU can either
introduce an interruption or save in memory a list of pages to be migrated and their destination
NUMA nodes. To avoid interrupting the operating system too frequently, we chose the latter.
The operating system periodically checks this list and performs the migrations.

2.6.3 Handling Context Switches and TLB Shootdowns

In context switches, if the context of a core changes to another process and thereby to another
memory address space, the TLB may be flushed depending on the architecture and operating
system. In case the TLB gets flushed, SAMMU needs to flush the TLB access table. In case the
TLB is not flushed, SAMMU still detects the sharing correctly, since it stores the identifier of
the thread in the TLB access table. The content stored in the page history table is not affected.
When individual TLB entries are flushed by TLB shootdowns due to changes on its page table
entry, the flushed TLB entry can be tracked by SAMMU. Nevertheless, both context switches and
changes on page table entries are much less frequent than TLB evictions and have no significant
impact on the accuracy of SAMMU.

2.7 Software Implementation Details

2.7.1 Performing the Thread Mapping

How often the thread mapping is performed depends on the operating system, as SAMMU is
responsible only for detecting the sharing patterns. A simple implementation consists of analyzing
the sharing matrix and then mapping threads from time to time.

We model thread mapping as a graph problem. There are two graphs: the application
graph and the machine hierarchy graph. In the application graph, vertices represent threads and
edges the affinity between threads. The affinity between each pair of threads is the value of the
corresponding pair of threads in the sharing matrix. In the machine hierarchy graph, vertices
represent components of the memory hierarchy, such as the cores and caches, and edges represent
the links between components. The mapping algorithms of Scotch [41] v6.0 were used to map the
application graph to the machine graph, generating the thread mapping. We check for thread
migrations every 100ms. To reduce the influence of old values, we apply an aging technique in
the sharing matrix every time the mapping mechanism is called by multiplying all of its elements
by 0.75. We evaluated values between 0.6 and 0.95, but the results were not sensitive to this
value.

After generating the thread mapping, to actually migrate the threads, SAMMU makes use
of the thread migration functions already present in all modern operating systems. The Linux
kernel provides the function sched setaffinity internally, which migrates threads to different
cores and handles all steps required for the migration.
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2.7.2 Performing the Data Mapping

To perform the data mapping, the operating system receives from the detection mechanism of
SAMMU which pages should be migrated along with the target NUMA node. Since operating sys-
tems already implement functions to migrate pages between NUMA nodes, SAMMU only needs
to call these functions to perform the migration. The Linux kernel provides the unmap and move

function internally, which moves pages between NUMA nodes and handles all the steps related
to to the migration, including copying the data and modifying the page table.

2.7.3 Increasing the Supported Number of Threads

The operating system starts an application configuring SAMMU to support a certain number
of threads using a control register. If the parallel application creates more threads than the
maximum supported, the operating system can change the supported number of threads during
execution. To do that, it must allocate a new sharing matrix SM and copy the values from the
old SM . It must also update the contents of all sharers vectors SV to use the new number of bits
per entry. Since this is an expensive procedure, we recommend to avoid it by configuring SAMMU
to support a large number of threads from the beginning. For all systems and applications
evaluated, configuring SAMMU to support 256 threads was enough to avoid this procedure.

2.8 Overhead

SAMMU’s overhead consists of storage space in the main memory, circuit area, and execution
time. We detail each of them in the next sections.

2.8.1 Memory Storage Overhead

The main memory stores the page history table and sharing matrix. For the configuration used
in our experiments and shown in Table 1 (Sec. 3.1), each entry of the page history table would
require 8 Bytes. The page history table space overhead would be 0.2% relative to the total main
memory. The sharing matrix would require 256 KByte, each of its elements with 4 Bytes. In
this configuration, SAMMU can track up to 256 threads per parallel application. To support
larger systems, we would need only to use more space per page history table entry, allocating
more NUMA counters and sharers vector entries, and a larger sharing matrix.

2.8.2 Circuit Area Overhead

SAMMU’s logic is implemented in the MMU of each core. In total it requires 8 adders, 2 sub-
tractors, 5 shifters, and 7 multiplexers of various sizes (from 4 to 32 bits) per core. SAMMU
also uses a TLB access table that stores one access counter and one thread ID per TLB entry
in static RAM, similar to the TLB itself. The number of bits of each access counter must be
enough to store the maximum possible value of the access threshold. In this scenario, the addi-
tional hardware required by SAMMU represents 143, 000 transistors per core, which results in
an increase in transistors of less than 0.05% in a modern processor.

2.8.3 Execution Time Overhead

The additional hardware of SAMMU is not in the critical path of the processor because it
operates in parallel to the MMU, such that application execution is not stalled while SAMMU
is operating. Therefore, the time overhead introduced by SAMMU consists of the additional
memory accesses to update the page history table and sharing matrix, which depend on the
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TLB miss rate. To keep the overhead of these memory accesses low, SAMMU does not lock
any structure before its update. The sharing matrix does not need to be locked since each row
is updated only by one thread. Even in case of reusing sharing matrices’ rows due to dynamic
thread creation and execution, no locking mechanism is necessary, since a thread needs to stop
executing, and thereby be unscheduled, before it is destroyed. For a page history table entry,
a race condition can happen in case threads evict the same page (or the corresponding ACs
saturate) at the same time. This race condition would not cause the application to fail, just a
slight reduction in accuracy. Since the time SAMMU takes to update a page history table entry is
small, this race condition is a rare event. On the software level, the operating system introduces
overhead when calculating the thread mapping, and when migrating threads and pages. The
measured execution time overhead from both hardware and software are shown in Sec. 4.3.

3 Experimental Methodology

In this section, we describe the experiments we performed to evaluate SAMMU in a full system
simulator in Sec. 3.1, and on real machines in Sec. 3.2. Afterwards, we show which benchmarks
we used as workloads in Sec. 3.3. Table 1 summarizes the parameters used for SAMMU, the
simulated machine, and the real machines.

3.1 Evaluation in a Full System Simulator

We implemented SAMMU in the Simics simulator [34], extended with the GEMS-Ruby memory
model [39] and the Garnet interconnection model [1]. The simulated machine runs Linux 2.6.15
and has 4 processors, each with 2 cores, with private L1 caches and L2 caches shared by all cores.
Each processor is on a different NUMA node. Cache latencies were calculated using CACTI [45]

Table 1: Configurations of the two types of experiments that we run, on the Simics full system
simulator, and on the real machines with SAMMU traces generated by Pin. The SAMMU
configuration is the same for both types of experiments.

Machine Parameter Value

SAMMU Structure sizes AC, AT : 32 bits, SV : 2x 8 bits, NC: 4x 4 bits
Sharing matrix 256 threads, 4 Byte element size
Control registers Support up to 256 threads, Vadd = 2, NT = 10

Simics Processors 4x 2 cores, 2.0 GHz, 32 nm
L1 cache/proc. 2x 16 KByte, 4-way, 1 bank, 2 cycles latency
L2 cache/proc. 1 MByte, 8-way, 2 banks, 5 cycles latency
TLB/proc. 2x TLBs (64 entries), 4-way, 1 TLB per core
Cache coherency Directory-based MOESI protocol, 64 Byte lines
Main memory 8 GByte DDR3-1333 9-9-9, 4 KByte page size , 8 banks/rank, 2 ranks/DIMM
Interconnection 1/40 cycles latency (intra/interchip), 64/16 Byte bandwidth (intra/interchip)

Pin L1 TLB 64 entries, 4-way, shared between 2 SMT-cores
L2 TLB 512 entries, 4-way, shared between 2 SMT-cores

Xeon32 Processors 2x Xeon E5-2650 (SandyBridge), 8 cores, 2-SMT
Caches/proc. 8x 32 KByte L1, 8x 256 KByte L2, 20 MByte L3
Main memory 32 GByte DDR3-1600, 4 KByte page size

Xeon64 Processors 4x Xeon X7550 (Nehalem), 8 cores, 2-SMT
Caches/proc. 8x 32 KByte L1, 8x 256 KByte L2, 18 MByte L3
Main memory 128 GByte DDR3-1333, 4 KByte page size

11



and the memory timings from JEDEC [27]. The intrachip and interchip interconnection topolo-
gies are bidirectional rings. We simulate the benchmarks with small input sizes due to simulation
time constraints. To compensate for the small input sizes, we reduced the size of cache memories
and TLBs accordingly, as done in [19].

We compare the results in the simulator to its default policy (interleaved page mapping)
and to an oracle mapping. The oracle mapping directly considers all memory accesses, while
SAMMU considers them indirectly on TLB evictions. The oracle performs data and thread
mapping online. For data mapping, we count the number of memory access from the threads of
each NUMA node to each memory page, and each page is mapped to the NUMA node running the
threads that access it the most. For thread mapping, we keep a sharing matrix that is updated
on every memory access. The oracle thread mapping is applied following the same methodology
described in Sec. 2.7.1. All results in the simulator are normalized to the default mapping. Each
experiment in the simulator is executed only once due to the low simulation speed and Simics’
deterministic nature.

3.2 Evaluation on Real Machines

The experiments were performed using two different real machines. The first machine, Xeon32 ,
consists of two NUMA nodes with one Intel Xeon E5-2650 processor per node, with a total of
32 virtual cores. The second machine, Xeon64 , consists of four NUMA nodes with one Intel
Xeon X7550 processor per node, with a total of 64 virtual cores. The machines run version 3.8
of the Linux kernel. Information about the hardware topology was gathered using Hwloc [12].
Besides performance, we measured L3 cache misses per thousand instructions (MPKI), interchip
interconnection traffic (QuickPath Interconnection) and energy consumption (RAPL hardware
counters [25]) using Intel PCM tool [26].

Since SAMMU is an extension to the current MMU hardware and we are unable to change
the circuits inside an Intel processor, we need to find another way to provide to the runtime
environment the same information that SAMMU would generate. To generate this information
for an application, we execute the application in a simulated environment using the Pin [6]
dynamic binary instrumentation tool. The simulated hardware uses the same TLB configuration
as the real machines. We used Pin because it is faster than a full system simulator. To make it
possible to evaluate SAMMU on real machines, the mapping information generated in Pin is fed
into the mapping mechanism in the runtime environment.

The runtime mapping mechanism was implemented in user-space as a dynamic library that
is to the application and provides wrappers to libgomp functions to track the parallel phases.
We use the parallel phases to synchronize the mapping information from Pin to the runtime
mapping mechanism. Whenever a new parallel phase begins, the mapping information generated
at that point of the execution is used to map threads and data via the sched setaffinity and
move pages syscalls, respectively.

All experiments in the real machines were executed 30 times. We show average values as well
as a 95% confidence interval calculated with Student’s t-distribution. We compare the results of
SAMMU to the default mapping performed by the operating system, to random static mappings,
and to an oracle mapping. The operating system mapping is the original scheduler and data
mapping policy of Linux. For the random mapping, we randomly generated a thread and data
mapping for each execution. For the oracle mapping, we generated traces of all memory accesses
for each application and performed an analysis of the sharing and page usage patterns, similar
to [8]. The oracle mapping is similar to the one described in Section 3.1. The main difference
is that the memory accesses are fetched from the trace of a previous execution. Also, since the
behavior of the NPB applications used in our evaluation on the real machines is static, the oracle
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Table 2: Input sizes of the benchmarks used on each system.

Benchmark suite Benchmark Input size in the
simulator

Input size on the
real machines

NPB
BT, LU, SP, UA W A

CG, EP, FT, IS, MG A B

PARSEC
canneal – simmedium

All except canneal – simlarge

mapping is applied statically in this experiment. All results in the real machines are normalized
to the operating system mapping.

3.3 Workloads

We chose the workloads of the OpenMP implementation of the NAS parallel benchmarks
(NPB) [28], v3.3.1, and the PARSEC benchmark suite [9], v3.0, for our experiments. A de-
scription of the data sharing patterns of these applications can be found in [23]. We configured
the benchmarks to run with one thread per virtual core, although some PARSEC benchmarks
execute with multiple threads per virtual core.

For the evaluation on the real machines, the evaluated applications must present the same
sharing and page usage patterns across different executions, as well as keep the same memory
address space, since the trace generated in Pin is used to guide mapping decisions. For this
reason, only the NAS applications (except DC) were executed on the real machines. DC and
the applications from PARSEC do not keep the same memory address space due to dynamic
memory allocations. This makes the information generated in Pin unreliable to guide mapping
in future executions.

Input sizes were chosen to provide similar total execution times and feasible simulation times.
Regarding NAS, benchmarks BT, LU, SP and UA were executed using input size A in Pin and
the real machines, and input size W in Simics. Benchmarks CG, EP, FT, IS and MG were
executed using input size B in Pin and the real machines, and input size A in Simics. DC was
executed with input size W in Simics. Regarding PARSEC, the input size used in canneal was
simmedium, and simlarge for all others. Table 2 summarizes the input sizes used in each system.

4 Experiments and Results

This section presents our collection of experiments with SAMMU. As discussed in the previous
section, we perform experiments on two system types, an evaluation in the Simics system simula-
tor with SAMMU implemented in Simics, and an evaluation on real machines where the behavior
of SAMMU is simulated with Intel Pin prior to running on the machines. The experiments in-
clude performance results related to total execution time and interconnection traffic in Sec. 4.1,
energy consumption results in Sec. 4.2, and overhead results in Sec. 4.3. An exploration of the
performance of SAMMU over scenarios with different architectural parameters in presented in
Sec. 4.4. Finally, a comparison to algorithms from the state of the art in the literature is left to
Sec. 5.2.
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4.1 Performance Results

The execution time and interchip interconnection traffic measured in Simics are shown in Fig. 3a
and 3b. For the real machines, the results regarding execution time can be found in Fig. 4a

Oracle SAMMU

B
T

C
G

D
C

E
P

F
T IS

L
U

M
G

S
P

U
A

B
la

ck
sc

h
o
le

s
B

o
d
y
tr

a
ck

F
a
c
e
si

m
F
e
rr

e
t

F
lu

id
a
n
im

a
te

F
re

q
m

in
e

R
a
y
tr

a
c
e

S
w

a
p
ti

o
n
s

V
ip

s
x
2
6
4

C
a
n
n
e
a
l

D
e
d
u
p

S
tr

e
a
m

c
lu

st
e
r

A
v
g
.

−40 %

−35 %

−30 %

−25 %

−20 %

−15 %

−10 %

−5 %

0 %

E
x
e
c
u
ti

o
n

ti
m

e
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(b) Interchip interconnection traffic.

Figure 3: Performance results in Simics, normalized to the OS. Lower values are better.
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(d) Interchip interconnection traffic on Xeon64.

Figure 4: Performance results, normalized to the OS. Lower values are better.
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and 4b, L3 cache misses per thousand instructions (MPKI) in Fig. 4c, and interchip traffic in
Fig. 4d. In these figures, we also show the average improvements as the geometric means. For
all of these results, the biggest the reduction, the better. The sharing patterns of a subset of our
workloads are illustrated in Fig. 5. These applications whose sharing patterns are shown here
were selected because they represent the different patterns found in all applications.

In applications whose pages are shared within a small subgroup of threads, mapping presents
a high potential for performance improvement. As can be seen for SP in Fig. 5(c), most sharing
happens between neighboring threads, which is very common in parallel applications that use
domain decomposition. In MG and Fluidanimate, the sharing between more distant threads is
more evident than in the other applications. In Ferret and Dedup, which have a pipeline sharing
pattern, threads that share data in the pipeline form sharing clusters.

The threads of tested benchmarks were able to benefit from the shared cache memories and
faster interconnection when mapped nearby in the memory hierarchy, as well as from the faster
access to the shared pages now mapped to their local NUMA nodes. In general, the effect of the
sharing-aware thread and data mapping of SAMMU is a reduction of cache misses and interchip
traffic, observed both in LU and SP. SP presented the highest improvements in the real machines,
with an execution time reduction of up to 35.7% on Xeon64.

Thread and data mapping interact synergically [21], such that the benefits of thread and data
mapping alone are often lower than of the combined mapping. This happens because, if threads
that share a lot of data are not mapped to the same NUMA node, even if the private data of each
thread is mapped to their local NUMA node, all the shared data will require remote memory
accesses from the threads that are not local. By mapping these threads to the same NUMA node,
the shared data will be local to all threads, providing a higher performance improvement. These
interactions between mapping types are a well-researched phenomenon and we therefore do not
perform an in-depth evaluation of them in this paper. Due to these reasons, in our evaluation,
we perform both mappings together, benefiting from the positive interaction between thread and
data mapping. To illustrate how thread mapping also affects data mapping, consider MG. MG’s
sharing pattern indicates that it has a high potential for thread mapping. However, its reduction
of interchip traffic is higher than its reduction of cache misses. The reason is that the threads
that share data were mapped on the same NUMA node, thus reducing interchip traffic as their
shared pages were also mapped to their NUMA nodes. Cache misses were not reduced to the
same degree. Therefore, although MG shows a high potential for thread mapping, we are able
to observe this by looking at interchip traffic, not at cache misses.

Some applications do not present a sharing pattern that benefit from thread mapping. Ex-
amples of this type of application are CG and Vips. The sharing pattern of CG is illustrated
in Fig. 5a(a), where we can observe that each pair of threads has a similar affinity. Therefore,
no thread mapping is able to improve the usage of cache memories. This is the reason that
SAMMU, or even the Oracle mapping, did not decrease the number of cache misses for CG.
However, due to the data mapping, SAMMU improved the memory access locality in CG such
that the volume of interchip traffic was decreased by up to 88.9%, leading to a performance
improvement of up to 22.5%. Likewise, interchip traffic and execution time of Vips were reduced
by 72.7% and 12.8%, respectively.

No performance improvements are expected for some applications, either by thread or data
mapping. For instance, Swaptions has a sharing pattern similar to the one of Vips. However,
the memory usage of Swaptions is much lower than the one of CG, such that almost all its data
fits into the caches. Therefore, although we decrease interchip traffic by 12.2% in Swaptions,
the absolute reduction is very small, since its interchip traffic corresponds to only about 9.5%
of CG’s, and is not affected by data mapping. Another example of application that does not
usually benefit from different mappings is EP. It is a CPU bound application [28] with almost
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Figure 5: Sharing patterns of some applications. Axes represent thread IDs. Cells show the
number of accesses to shared pages for each pair of threads. Darker cells indicate more accesses.

no data sharing among its threads. The reason that no performance improvement was achieved
in the real machine but we achieved significant gains in Simics is that the cache memory space
in Simics is much smaller. Similarly to Swaptions, all of EP’s data fits into the caches of the real
machine. However, this was not the case in Simics, such that the data mapping provided some
performance improvements to the application.

SAMMU was able to reduce the number of cache misses and the traffic in the interconnections
significantly. L3 MPKI (misses per thousand instructions) was reduced by an average of 30.6%.
Interchip traffic was reduced by an average of 66.8% and 39.0% on Simics and Xeon64, respec-
tively. The execution time was reduced by an average of 6.1% on Xeon32, 13.1% on Xeon64
and 10.9% on Simics. This smaller reduction in execution time when compared to MPKI hap-
pens because a better mapping directly influences the number of cache misses and traffic on the
interconnections, while the execution time is influenced by several other factors.

Most applications are more sensitive to data mapping than thread mapping, which can be
observed in the results by the fact that the interchip traffic presented a higher reduction than
cache misses. This happens because, even if an application does not share much data among its
threads, each thread will still need to access its own private data, which can only be improved
by data mapping. It is important to note that this does not mean that data mapping is more
important than thread mapping, because the effectiveness of data mapping depends on thread
mapping, in case of pages shared by multiple threads.

It can be observed that improvements in Simics and Xeon64 are higher than on Xeon32.
This comes from the fact that Simics and Xeon64 have memory hierarchies with more cache
memories and NUMA nodes, so the probability of correctly mapping a page to a node without
any knowledge of the page usage pattern is only 25% on them, while it is 50% on Xeon32. For
this reason, a thread and data mapping that takes the memory hierarchy into account has a
higher performance impact on machines with more complex memory hierarchies.

SAMMU demonstrated its effectiveness with results similar to the oracle mapping. In most
cases, it performed significantly better than the random mapping. This shows that the gains
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Figure 6: Energy consumption results, normalized to the OS. Lower values are better.

compared to the operating system are not due to the unnecessary migrations introduced by the
operating system, but due to a more efficient usage of resources.

4.2 Energy Consumption Results

We have measured the energy consumed per instruction and DIMM energy consumption, which
are shown in Fig. 6. Energy was only measured in Xeon32 because Xeon64 does not support
RAPL. We also measured the total energy consumption, whose behavior is similar to the execu-
tion time results, with the biggest reductions for BT, CG, LU, SP and UA. The other applications
show no difference or a small reduction of energy consumption. Additionally, we observed that
the DIMM energy was reduced more than the processor energy, 9.3% and 5.0% on average respec-
tively, because a sharing-aware mapping has more influence in the memory than in the processor.
The energy per instruction results show that our mechanism not only saves energy by reducing
the execution time, but also by providing a more efficient execution, which is an important goal
for future Exascale architectures [47]. Energy per instruction was improved by 4.1% on average,
and up to 11.9% for SP. The average energy per instruction of the applications using SAMMU
was 3.7nJ per instruction. The lowest and highest energy per instruction happened for BT and
CG, respectively, which required 2.1nJ and 7.4nJ of energy per instruction.

4.3 Performance Overhead of SAMMU

As discussed in Sec. 2.8.3, SAMMU causes an overhead on the execution of the parallel application
on the hardware and software levels. We evaluate the hardware overhead by running SAMMU
without actually performing thread and data migration, and compare the application execution
time to the baseline without SAMMU. For the software overhead, we measure the time spent in
the mapping and migration routines. We only show the performance overhead in Simics because
the real machines do not physically implement SAMMU.

The overhead caused by the hardware and software required by SAMMU in Simics is shown in
Fig. 7. The performance overhead caused by the hardware was 0.27%, due to the introduction of
1.43% additional memory transactions, on average. As explained in Sec. 2.6.1, our implementa-
tion of SAMMU is able to handle only one event per core simultaneously, such that SAMMU was
able to handle 85.5% of the total number of events. SAMMU required an average of 109 cycles
to handle each event. Nevertheless, application execution is not stalled while SAMMU handles
an event. IS has the highest overhead due to its large number of TLB misses, introducing more
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Figure 7: Performance overhead in Simics (% of total execution time). Lower values are better.

memory accesses. Meanwhile, the overhead in the software level was 0.29%, on average. These
results show that SAMMU has a very small performance overhead that is easily overcome by its
performance benefits, as shown previously.

4.4 Exploring Architectural Parameters

We have analyzed how SAMMU behaves on environments with configurations different from
the previous experiments using Simics/GEMS. For that, we varied three important parameters:
cache memory size, memory page size and interchip interconnection latency. In the next sections,
we show results only for the applications whose sharing patterns are illustrated in Fig. 5, which
present different data sharing behaviors.

4.4.1 Cache Size Variations

The cache memory size influences the performance improvements obtained with sharing-aware
mapping because it affects the amount of shared data that can be cached, and the number of
accesses to the main memory. The previous experiments were performed with L2 cache memories
with 1 MByte of capacity and a 5 cycles latency. We now show results for caches with 512 KBytes,
2 MBytes, and 4 MBytes, and latencies of 4, 6, and 6 cycles, respectively, as calculated using
CACTI [45].

The results of varying the cache size are shown in Fig. 8. They follow the same pattern of
the previous experiments: the reduction of execution time depends on the reduction of interchip
interconnection traffic. We can observe that SAMMU was able to improve performance for all
applications and all cache sizes. This shows that SAMMU can benefit architectures regardless
of their cache sizes.

4.4.2 Page Size Variations

Another important parameter for SAMMU is the page size, since it influences the number of
TLB misses and, thereby, evictions. In this context, the normalized execution time and interchip
interconnection traffic measured with different page sizes are shown in Fig. 9a and Fig.9b (the
previous experiments were performed with a 4 KBytes page size). We also show the TLB miss rate
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(a) Execution time.
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(b) Interchip traffic.

Figure 8: Varying L2 cache memory sizes. Results are normalized to the default mapping with
the corresponding cache size. Lower values are better.

in Fig. 9c, and a metric called exclusivity level, introduced in [22], in Fig. 9d The exclusivity level
of a page corresponds to the highest number of memory accesses to the page from a single thread
in relation to the number of accesses from all threads. The exclusivity level of an application is
a weighted average of the exclusivity of all pages considering the number of memory accesses.
The higher the exclusivity level of an application, the higher its potential for sharing-aware data
mapping.

TLB miss and eviction rates drop considerably when the page size increases, decreasing the
number of updates to the sharing matrix and page history table. Since SAMMU detects the
sharing pattern in the page level granularity, increasing page size can also lead to the detection
of different patterns. The analysis of the exclusivity level shows that, for all applications except
Ferret, the interference of accesses in different offsets is low when the page size is 1 KByte or
4 KBytes, but increases noticeably in larger page sizes. In relation to data mapping, the lower
exclusivity level with larger page sizes tends to limit performance improvements. This happens
because there are more threads executing in cores from different NUMA nodes that share a page
when it is larger, which is reflected in the lower reduction of interchip traffic and, thereby, in
the lower performance gain. In some cases, the best performance improvements happened with
an intermediate page size, such as for MG. This happened because pages were migrated earlier
during the execution, such that the benefits of the improved data mapping were taking effect
earlier too.

It is important to note that the memory footprint of the applications used in the simulations
is very small due to the small input size required by simulation time constraints. Applica-
tions with higher memory footprints keep similar exclusivity levels with larger page sizes [22].
Therefore, SAMMU would maintain similar performance improvements with larger page sizes
for applications that use large amounts of memory.

4.4.3 Interchip Interconnection Latency Variations

The interchip interconnection latency influences the time it takes to send cache coherence mes-
sages, such as cache line invalidations, as well as cache line transfers between caches, affecting
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(a) Execution time. Lower values are better.
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(b) Interchip traffic. Lower values are better.
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Figure 9: Varying memory page sizes. Results of Fig. 9a and 9b are normalized to the default
mapping with the corresponding page size.

thread mapping. Regarding data mapping, the interchip interconnection latency influences the
time it takes to perform remote memory accesses. Local memory accesses are not affected. In
this section, we briefly evaluate how SAMMU behaves with latencies between 10 and 70 cycles
(previous experiments used a latency of 40 cycles).

The results obtained with the interchip interconnection latency variation are shown in Fig. 10.
In the absolute values, we chose to show cycles per instruction (CPI) instead of execution time
due to the high difference of execution time between the applications. We can observe that
the CPI measured using the standard operating system mapping increases significantly with the
increase of the interchip latency for most applications. On the other hand, the CPI obtained
by SAMMU suffers a much lower impact from the latency increase. SAMMU is less influenced
by this latency because it is able to reduce the number of coherence messages, cache-to-cache
transfers and remote memory accesses.
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Figure 10: Varying interchip interconnection latency. Lower values are better.

5 Related Work

In this section, we first describe several related mapping mechanisms and then compare some of
them to SAMMU.

5.1 State-of-the-art Thread and Data Mapping

Traditional data mapping policies, such as first-touch and next-touch [32], have been used by
operating systems to allocate memory on NUMA machines. In the case of first-touch, pages are
not migrated during execution. Next-touch can lead to excessive data migrations if the same
page is accessed from different nodes. A more advanced policy named NUMA Balancing [14] was
included in Linux 3.8. In this policy, the kernel introduces page faults during the execution of the
application to perform lazy page migrations, reducing the number of remote memory accesses.
However, NUMA Balancing does not detect the sharing pattern between the threads.

Marathe et al. [37] present an automatic page placement scheme for NUMA platforms by
tracking memory addresses from the performance monitoring unit (PMU) of Itanium. Their
work requires the generation of memory traces to guide data mapping for future executions
of the applications, which may lead to a high overhead [8]. Trahay et al. [48] propose a tool
that generates and analyzes memory traces using hardware counters. A similar technique is
used in Marathe and Mueller [36] to perform data mapping dynamically. They enable the
profiling mechanism only during the beginning of each application due to its high overhead,
losing the opportunity to handle changes in the rest of the application’s execution. Tikir and
Hollingsworth [46] use UltraSPARC III hardware monitors to guide data mapping, but do not
perform thread mapping. Their proposal is limited to architectures with software-managed TLBs,
while SAMMU focuses on architectures with the more common hardware-managed TLBs, such
as x86. Data mapping alone is not able to improve locality when more than one thread accesses
the same pages, since threads may be mapped to cores of different NUMA nodes.

Azimi et al. [5] map threads based on information from the hardware counters of Power5
processors that sample the memory addresses resolved by remote caches. Accesses resolved by
local caches are not considered, generating an incomplete sharing pattern. Only thread mapping
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Figure 11: Execution time comparison to related work on Xeon64, normalized to the OS. Lower
values are better.

was performed, which does not improve the locality of memory accesses in NUMA architectures.
Barghi and Karsten [7] propose a locality-aware scheduler for actor model-based applications
which tries to avoid migrating actors to a different NUMA node, without any data migration.

The kMAF affinity framework is proposed in [22]. It performs both thread and data mapping
and gathers information from page faults. Lepers et al. [30] developed AsymSched, a thread and
memory mapping algorithm that optimizes the bandwidth for communicating threads. They also
show that the asymmetry of the interconnections has a big impact on performance. Carrefour [20]
is a similar mechanism that uses sampling to detect page usage. Due to its overhead, the authors
restrict the mechanism to 30,000 pages, which limits its use to applications with a low memory
usage. These mechanisms generate thread mapping information based on a very small number of
samples compared to SAMMU, as all memory accesses are handled by the MMU. LAPT [16] and
IPM [18] also add hardware to monitor the memory accesses, but do not track all memory accesses
as SAMMU, obtaining less accurate information. Some techniques, such as ForestGOMP [11],
require annotations in the source code and depend on specific parallelization libraries. Similarly,
Ogasawara [40] proposes a data mapping method that is limited to object oriented languages,
and Majo and Gross [35] propose a mechanism that works only in Intel Thread Building Blocks.
Anbar et al. [2] propose PHLAME, an execution model in which programmers can provide a
description of the locality between data and threads, which the runtime uses to perform locality-
aware mapping.

The usage of the instructions per cycle (IPC) metric to guide thread mapping is evaluated
in Autopin [29]. Autopin itself does not detect the sharing pattern, as it only verifies the IPC of
several mappings fed to it and executes the application with the thread mapping that presented
the highest IPC. In [42], the authors propose BlackBox, a scheduler that, similar to Autopin,
selects the best mapping by measuring the performance that each mapping obtained. When
the number of threads is low, all possible thread mappings are evaluated. When the number
of threads makes it unfeasible to evaluate all possibilities, the authors execute the application
with 1000 random mappings to select the best one. These mechanisms that rely on statistics
from hardware counters take too much time to converge to an optimal mapping, since they need
to first check the statistics of the mappings. The convergence is usually not possible because the
number of possible mappings is exponential in the number of threads. Also, these statistics do
not accurately represent sharing and data access patterns.

5.2 Comparison to Related Work

We compare SAMMU on Xeon64 to four previously mentioned techniques: the Marathe [36] data
mapping mechanism, Autopin [29], the kMAF affinity framework [22] and NUMA Balancing [14].
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We selected these techniques because they can be reasonably run on real hardware. Autopin was
executed with 5 mappings: the Oracle mapping and 4 random mappings. After a warm-up time
of 500ms, every mapping was evaluated for 150ms. Then, the mapping with the highest IPC was
used for the rest of the execution. Autopin, kMAF and NUMA Balancing were directly executed
on the real machine. We implemented Marathe using a long latency load profile [36] in Pin and
fed the information during the execution of the application in the real machine, as in Sec. 3.2.

Fig. 11 shows the execution time of SAMMU and related work on Xeon64. Values are
normalized to the results of the operating system. For CG, Marathe presented slightly better
results than SAMMU. This happens because, as previously explained, CG is an application only
affected by data mapping, such that SAMMU introduces thread migrations during execution
that add overhead. These unnecessary migrations could be avoided if our mapping algorithm
presented features to allow migrations only if the detected sharing pattern has high potential for
mapping. Autopin, in several executions, selected a mapping different from the Oracle, which
shows that indirect metrics are not accurate. Also, its performance improvement is lower than
ours because it needs to evaluate several other mappings. The results of NUMA Balancing and
kMAF are lower than SAMMU for most of the benchmarks. Due to their sampling mechanism,
these mechanisms need more time to detect the memory access behavior and therefore lose
opportunities for improvements.

The comparison to the related work shows that mechanisms that perform both thread and
data mappings are able to achieve better improvements than mechanisms that perform these
mappings separately. Also, it shows that SAMMU, with its hardware support, is able to achieve
a higher accuracy than other mechanisms due to the high number of memory accesses considered
when detecting the memory access pattern. Thereby, it is able to detect the pattern faster,
providing better performance improvements.

6 Conclusions and Future Work

The locality of memory accesses has a high influence on the performance and energy efficiency
of shared-memory architectures. In order to improve locality, we need a mechanism to analyze
the memory access behavior of parallel applications. In this paper, we presented SAMMU, a
mechanism that is implemented as an extension of the memory management unit of the processors
that analyzes the memory access behavior during run time. Using the information analyzed by
SAMMU, the operating system can perform the sharing-aware mapping of threads and data
during the execution of the applications without any prior knowledge of their behavior. It
detects the memory access pattern completely in hardware, directly considering the memory
accesses. SAMMU requires only minimal changes to the hardware and operating system, adding
less than 0.05% of circuit area in modern processors.

We performed experiments with the NAS OpenMP benchmarks and PARSEC on a full system
simulator and two real machines. The results showed performance improvements of up to 35.7%
(10.0% on average) and improved processor energy efficiency by up to 11.9% (4.1% on average).
The L3 cache MPKI was reduced by an average of 30.6% in the real machines. The interchip
interconnection traffic was reduced by an average of 39.0% and 66.8% in the real machines and
simulator, respectively. The performance overhead represented only 0.27% and 0.29% on average
on the hardware and software level, respectively. We also demonstrated that SAMMU is able
to handle a wide range of architectures by varying the simulation parameters. Compared to
previous work, SAMMU presented the best performance improvements for most applications.

For the future, we plan to evaluate SAMMU using parallel applications with several processes
that do not necessarily share the same virtual address space.
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O. A. Navaux. LAPT: A Locality-Aware Page Table for thread and data mapping. Parallel
Computing, 54(May):59–71, 2016.

[17] Eduardo H. M. Cruz, Matthias Diener, Laércio L. Pilla, and Philippe O. A. Navaux. A
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A Analysis of the Equation that Updates the Access
Threshold

In the Case 2 explained in Sec. 2.2, we defined three properties for the function f(·) that
subtracts a value from AT :

ATnew = AT − f(AC) (8)

f(0) = 0 (9)

f(AT ) = 0 (10)

f(AC) = k (11)

Where we consider AT as a constant, 0 < AC < AT and 0 < k < AT .
No linear equation can provide the properties required by function f(·). We then chose to use

a quadratic equation. We could use other polynomial equations, but since we need to implement
this in hardware, we want to use the simplest equation possible. The quadratic equation is
concave down. Therefore, to find function f(·):

f(AC) = (−1) × (AC) × (AC −AT ) × c (12)

= AC ×AT × c−AC2 × c (13)

The roots of the equation are 0 and AT . We multiply by −1 so the equation is concave
down. We also multiply by a constant c to help us control the concavity of the function to keep
f(AC) < AT . To find the possible values of c, we need to differentiate f(·) to find its critical
point.

f ′(AC) = AT × c− 2 × c×AC (14)

To find the critical point, we equal the derivative to 0.

f ′(AC) = 0 (15)

AT × c− 2 × c×AC = 0 (16)

2 × c×AC = AT × c (17)

AC =
AT × c

2 × c
(18)

AC =
AT

2
(19)

Now, we know that, regardless the value of c and AT , the maximum value of f(AC) happens
when AC = AT/2. That is, when the Access Counter is half of the current Access Threshold. We
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can use this value of AC in Eq. 13 to get the maximum value that f(AC) can subtract from AT
in Eq. 8.

f

(
AT

2

)
=
AT

2
×AT × c−

(
AT

2

)2

× c (20)

=
AT 2

2
× c− AT 2

4
× c (21)

=
2

4
×AT 2 × c− AT 2

4
× c (22)

=
c×AT 2(2 − 1)

4
(23)

=
c×AT 2

4
(24)

Eq. 24 specifies the maximum value of f(AC). We need now to find the possible values of c
such that f(AC) < AT .

c×AT 2

4
< AT (25)

c <
4 ×AT

AT 2
(26)

c <
4

AT
(27)

Since we want to reduce the impact of threads that access the page few times as much as
possible, as well as keep the hardware implementation as simple as we can, we chose to use
c = 1/AT . Therefore, the equation used to update the Access Threshold in Case 2 is given by
Eq. 32, found by substituting the value of c in Eq. 8 and Eq. 13 by c = 1/AT .

ATnew = AT − f(AC) (28)

= AT −
(
AC ×AT × c−AC2 × c

)
(29)

= AT −
(
AC ×AT × 1

AT
−AC2 × 1

AT

)
(30)

= AT − AC × (AT −AC)

AT
(31)

ATnew = AT − AT −AC(
AT
AC

) , AC < AT (32)

Eq. 32 guarantees that AT will never be decreased by more than 25% at each update. The
behavior of the equations that control the updates of the Access Threshold are illustrated in
Fig. 12 and Fig. 13. In the following equations, we prove that AT will never be decreased by
more than 25% at each update. For that, the value of ATnew/AT must be greater than or equal
to 0.75.

ATnew
AT

=
AT − AT−AC

( AT
AC )

AT
(33)

= 1 − AT −AC(
AT 2

AC

) (34)

= 1 − AC ×AT −AC2

AT 2
(35)
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Figure 12: Value of ATnew relative to AT . For Eq. 7, we consider AT as 10M .
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Figure 13: Behavior of Eq. 32 and Eq. 7 when varying AT from 100K to 10M .
.

At this point, we can make a change of variables, considering AC = αAT . Since in Case 2
AC < AT , α must be 0 ≤ α < 1.

ATnew
AT

= 1 − αAT ×AT − (αAT )2

AT 2
(36)

= 1 − αAT 2 − α2AT 2

AT 2
(37)

= 1 −
(
α− α2

)
(38)

= α2 − α+ 1 (39)

Therefore, we know that ATnew/AT is a quadratic equation and is concave up, which means it
has a global minimum value. To get the minimum value of ATnew relative to AT , we need first
to differentiate Eq. 39.

d(α2 − α+ 1)

dα
= 2α− 1 (40)
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Now, we need to find the value of α when its derivative is equal to 0.

2α− 1 = 0 (41)

α =
1

2
(42)

Then, we know that the minimum value of ATnew relative to AT happens when α = 1/2. In
other words, when the value of the Access Counter AC is half of the Access Threshold AT . To
find the minimum value, we need to insert the value of α = 1/2 in Eq. 39.

ATnew
AT

= α2 − α+ 1 (43)

=

(
1

2

)2

− 1

2
+ 1 (44)

=
3

4
= 0.75 (45)

With this, we demonstrated that, for Case 2, the minimum value of ATnew is 0.75 ×AT , a
25% decrease, and happens when AC is half of AT .
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