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Abstract

In his 1976 book, G. Shafer reinterprets Dempster lower probabilities as degrees
of belief. He studies the fusion of independent elementary partially reliable
pieces of evidence coming from different sources, showing that not all belief
functions can be seen as the combination of simple support functions, repre-
senting such pieces of evidence, using Dempster rule. It only yields a special
kind of belief functions called separable. In 1995, Ph. Smets has indicated that
any non-dogmatic belief function can be seen as the combination of so-called
generalized simple support functions, whose masses may lie outside the unit
interval. It comes down to viewing a belief function as the result of combining
two separable belief functions, one of which models reports from sources, and
the other one expresses doubt, via a retraction operation. We propose a new
interpretation of the latter belief function in terms of prejudice of the receiver,
and consider retraction as a special kind of belief change. Its role is to weaken
the support of some focal sets of a belief function, possibly stemming from the
fusion of the incoming information. It provides an alternative extensive account
of non-dogmatic belief functions as a theory of merging pieces of evidence and
prejudices, which partially differs from Shafer approach’s based on support func-
tions and coarsenings. Retraction differs from discounting, revision, and from
the symmetric combination of conflicting evidence. The approach relies on a
so-called diffidence function on the positive reals ranging from full confidence to
full diffidence. We also discuss information orderings and combination rules that
rely on diffidence functions. Finally, we study the diffidence-based ordering and
combination in the consonant case, and show that the diffidence view suggests
a new branch of possibility theory, in agreement with likelihood functions.

Keywords: Evidence theory, information fusion, separable belief functions,
likelihood functions, belief change, possibility theory, information ordering

Email addresses: dubois@irit.fr (Didier Dubois), francis.faux@univ-jfc.fr (Francis
Faux), prade@irit.fr (Henri Prade)

This paper is a revised and extended version of a conference paper [8]. Section 4 has been
significantly expanded; Sections 5 and 6 are new.

Preprint submitted to International Journal of Approximate Reasoning January 31, 2020



1. Introduction

The theory of belief functions originates in the work of Dempster [4] on up-
per and lower probabilities induced by imprecise observations from a sample
space. Mathematically, Dempster lower probabilities are induced by a random
set and coincide with Shafer belief functions. In his seminal book [34], Shafer
revisits Dempster’s view and presents his theory of evidence essentially as an
approach to the fusion, by means of an aggregation function (called orthogonal
sum or yet Dempster’s rule of combination), of independent, more or less reli-
able pieces of evidence. He tries to reconstruct belief functions by combining
elementary pieces of uncertain evidence in the form of so-called simple support
functions, each representing a Boolean proposition coming from a source along
with a reliability coefficient. As recalled in [37] (and in detail in [36]), such
simple-support functions already appear in the works of scholars like Hooper
and Lambert from the turn of the XVIIIth century on, with the purpose of
merging uncertain testimonies at courts of law.

However, in evidence theory, only some belief functions, called separable,
can be decomposed in this way. Many others prove to be not separable, i.e., are
not the orthogonal sum of simple support functions. In his book [34], Shafer
considers a more general class of belief functions called support functions that
can be induced from separable belief functions via a coarsening of the frame of
discernment. Finally, he showed that the other belief functions can be obtained
as a limit of sequences of support functions.

Smets [40] proposed another approach to decompose so-called non-dogmatic
belief functions into elementary components. He first generalized simple support
functions, allowing some masses to escape the unit interval. Then he showed
that any non-dogmatic belief function is the conjunctive combination (i.e., the
orthogonal sum without the normalisation factor) of such generalized elementary
belief functions. Actually, any non-dogmatic belief function can be decomposed
into two standard separable belief functions combined by a so-called retraction
operation. The former belief function (expressing confidence) results from the
fusion of independent testimonies (understood here in a general sense, from
expert opinions to sensor measurements), while the other (expressing doubt)
plays the role of an inhibitor that can attenuate, via retraction, the strength
of information supplied by the former. This pair of belief functions is called
“Latent Belief Structure” by Smets [40]. In this bipolar approach, retraction
behaves in such a way that if the strength of the reasons to believe a proposition
and the strength of those not to believe it counterbalance each other, a vacuous
belief function is obtained. This setting was further studied by Denœux [5] who
introduces a new information ordering and an idempotent combination rule.
Our aim is to revisit Smets latent belief structures, so as to use them as a basis
for a more intuitive and systematic approach to an important part of evidence
theory in the spirit of Shafer’s book.

Our paper first revisits the concept of degree of support, valued on the
unit interval, introduced by Shafer [34], then generalized to the positive real
line by Smets. We interpret the mass allocated to the tautology in a simple
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support function in terms of diffidence with respect to a proposition taking the
form of a subset. The degree of diffidence can express a range of attitudes
from belief reinforcement (if less than 1), to belief attenuation (if more than 1).
Such degrees can be synthetized by a full-fledged set-function that is able to
represent any non-dogmatic belief function. We show how to express Moebius
mass functions in terms of the diffidence functions and conversely.

In order to avoid the use of deviant simple support functions (with diffidence
values greater than 1), we propose to use the retraction operation. We consider
it as a belief change operation, that is capable of erasing focal elements from a
belief functions, due to prior meta-information or prejudices against such focal
elements. The paper proposes a systematic study of this form of belief change,
which corresponds to an asymmetric merging of reasons to believe and, to quote
Smets [40],“reasons not to believe”. This approach also provides a systematic
account of non-dogmatic belief functions as resulting from the attenuation of
the support granted to the result of merging unreliable evidence, due to meta-
information possessed by the receiver (that can take the form of prejudices),
which provides reasons not to believe the result of the merging.

For instance, consider a variant of an example in [44]: suppose we are in the
presence of two uncertain reports. The first one claims that a certain person,
say Linda, is a banker. Another source asserts that Linda is a philanthropist.
The conjunctive rule (typically the Dempter’s rule of combination) allocates a
positive belief degree to the conjunction, i.e., the fact that she is a philanthropist
banker. If we suppose now that, prior to receiving these pieces of information,
the prejudiced receiver does not believe in philanthropist bankers, this degree
should be less than it would have been if this prejudice was not present in the
mind of the receiver. Such a situation can be captured by a retraction operation
applied to latent belief structures. It leads us to consider retraction as a specific
belief change operation.

The organization of the paper is as follows. In Section 2, some necessary
background on belief functions is introduced. We review the general bipolar
decomposition of belief functions into positive and negative elementary infor-
mation items proposed by Smets [40]. Section 3 presents a version of evidence
theory based on diffidence functions, introduced by Smets, extended to the
whole power set. Section 4 presents a generalized setting for the merging of
elementary testimonies in the presence of meta-information such as prejudices,
focusing on the process of belief attenuation by means of the retraction oper-
ation. This framework is illustrated on the Linda example, highlighting the
difference between belief retraction and source discounting, belief revision and
the fusion with conflicting inputs. We also reinterpret the normalization fac-
tor in Dempster’s rule of combination as a retraction due to prejudice against
contradiction. Section 5 tries to highlight the meaning of the diffidence-based
information ordering of belief functions, as opposed to other better known pro-
posals. Also the assumption underlying the idempotent diffidence combination
rule from [5] is laid bare. Finally, in Section 6, we reconsider possibility the-
ory in terms of the diffidence function, and indicate that the diffidence-based
ordering is related to the comparison of likelihood ratios in statistics.
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2. Background

Consider a finite set Ω, called the frame of discernment, whose elements
represent descriptions of possible situations, states of the world, one of which,
denoted by ω∗, corresponds to the truth. In Shafer evidence theory [34], the
uncertainty concerning an agent’s state of belief on the real situation ω∗ ∈ Ω
is represented by a basic probability assignment (BPA) 2 defined as a mapping
m : 2Ω −→ [0, 1] such that m(∅) = 0 and verifying:∑

E⊆Ω

m(E) = 1.

The mass m(E) represents the probability attached to the claim of knowing
only that ω∗ ∈ E and nothing more. Each subset E ⊆ Ω such as m(E) > 0
is called a focal set of m. The constraint m(∅) = 0 has been relaxed in Smets’
Transferable Belief Model (TBM) [42]. A BPA m is called normal if ∅ is not
a focal set (subnormal otherwise), vacuous if Ω is the only focal element, non-
dogmatic if Ω is a focal set, categorical if m has only one focal set, and it differs
from Ω.

A simple BPA (SBPA) is a BPA whose focal sets consist of two sets E ⊂ Ω
and Ω, of the form:

m(E) = s ∈ [0, 1],

m(Ω) = d ∈ [0, 1]

with s+ d = 1.

and is denoted by m = Ed, where E 6= Ω, in [40, 5]. When E 6= ∅, an SBPA
models an elementary testimony, where the value d ∈ [0, 1] represents the prob-
ability that the piece of information ω∗ ∈ E is useless (can be deleted) either
because a sensor is flawed or a human witness is not competent. We call the
value d diffidence value, as it evaluates the lack of reliability of the source of
information. In contrast, the piece of information ω∗ ∈ E can be trusted with
strength s = 1 − d, called degree of support. At the limit, a vacuous BPA can
thus be denoted by E1 (useless testimony) for any E ⊂ Ω, and a categorical
BPA E 6= Ω can be denoted by E0 (safe testimony).3

A belief function Bel(A) is a non-additive set function which represents the
total quantity of evidence supporting the proposition ω∗ ∈ A ⊆ Ω; it is defined

2Sometimes called mass function.
3Smets [40] uses the notation Ew for SBPA’s, with diffidence value w. However, the symbol

w denotes the weight of evidence in Shafer’s book, defined by w = − log(1 − s) where s is
the degree of support. The reason why Shafer calls w weight of evidence is because such
values add when combining two SBPAs focused on the same proposition E (Ed1 ⊕ Ed2 =
Ed1d2 , corresponding to a weight of evidence w1 + w2, where ⊕ stands for Dempter’s rule of
combination). In this paper, we prefer to use other symbols than w for diffidence numbers,
so as to avoid confusion between Shafer weights of evidence and Smets diffidence values.
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by:

Bel(A) =
∑
∅6=E⊆A

m(E).

A belief function based on an SBPA is called a simple support function (SSF).
A BPA m can be equivalently represented by its associated plausibility or com-
monality functions respectively defined for all A ⊆ Ω by:

Pl(A) =
∑

A∩B 6=∅

m(B) = 1−Bel(A),

Q(A) =
∑
B⊇A

m(B).

The plausibility Pl(A) reflects the total quantity of evidence that does not
support the proposition ω∗ 6∈ A. The commonality function is instrumental for
combining belief functions, but its meaning is less obvious. However, we can see
Q(A) as the total quantity of incomplete evidence that makes all elements of A
possible.

A BPA m can be recovered from Bel using the Möbius transform [34] or
from the commonality function Q in a similar way, reversing the direction of set
inclusion:

m(A) =
∑
B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω,

m(A) =
∑
B⊇A

(−1)|A|−|B|Q(B), ∀A ⊆ Ω,

where |X| represents the cardinality of X.
In [9] information fusion is described as a specific aggregation process which

aims at extracting truthful knowledge from incomplete or uncertain information
coming from various sources. In [1] an informal definition of fusion is proposed:
“fusion consists in conjoining or merging information that stems from several
sources and exploiting that conjoined or merged information in various tasks
such as answering questions, making decisions, numerical estimation, etc.” We
now present the main conjunctive fusion rules in evidence theory.

The conjunctive combination [11] of BPA’smj derived from k distinct sources,
denoted by m ∩© = m1 ∩© . . . ∩©mk is expressed by:

∀A ⊆ Ω,m ∩©(A) =
∑

A1,...,Ak⊆Ω:A1∩...∩Ak=A

 k∏
j=1

mj(Aj)

 . (1)

Note thatm ∩© is not always normal, since there may exist focal setsA1, . . . , Ak
whose intersection is empty. This combination has been extensively used by
Smets in the TBM [42].

The orthogonal sum of belief functions, denoted by ⊕, is a normalized ver-
sion of the conjunctive combination rule that was first proposed in [4]. It is
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extensively used by Shafer [34] and is defined by:

m⊕(A) = K ·m ∩©(A), A 6= ∅, (2)

m⊕(∅) = 0.

It is also known as the orthogonal combination rule. The normalization factor
K is of the form (1− c(m1, . . . ,mk))−1 where

c(m1, . . .mk) =
∑

A1∩...∩Ak=∅

 k∏
j=1

mj(Aj)

 = m ∩©(∅)

represents the amount of conflict between the k sources. Note that this combi-
nation rule is defined only if c(m1, . . . ,mk) < 1.

These two combination rules are commutative, associative, and the vacuous
BPA A1 is an identity for both combination rules: m ∩©A1 = m ⊕ A1 = m.
These rules are generally used to combine BPAs from independent (hence dis-
tinct) sources.

The conjunctive rule can be expressed by multiplying commonality functions
as we have Qm1 ∩©... ∩©mk = Q1 ·Q2 · · ·Qk. Dempster rule is simply expressed by
normalizing the latter and it holds Qm1⊕...⊕mk = K.Q1 ·Q2 · · ·Qk.

Shafer [34] calls separable support function a belief function that is the result
of Dempster’s rule of combination applied to SSFs with SBPAs Adii , where Ai 6=
Ω, 0 < di < 1, i = 1, . . . , k, namely m = ⊕ki=1A

di
i . It is obtained by merging

elementary independent testimonies. If all the focal sets Ai are distinct, this
representation is unique. Since A1 is an identity for⊕, a separable belief function
can be equivalently represented by means of a function δ : 2Ω \ {Ω} → (0, 1]
called diffidence function in this paper:

m =
⊕
∅6=A⊂Ω

Aδ(A), δ(A) ∈ (0, 1], ∀A ⊂ Ω, A 6= ∅, (3)

where δ(Ai) = di, i = 1, . . . , k, and δ(A) = 1 otherwise. This is called the
normalized canonical decomposition of m, when it is separable (hence non-

dogmatic since m(Ω) =
∏k
i=1 dk > 0).

Denœux [5] has modified this concept using the conjunctive combination of
subnormal BPA’s. Any BPA m that can be written as:

m = ∩©A⊂ΩA
δ(A), ∀A ⊂ Ω. (4)

where 0 < δ(A) ≤ 1, is then said to be unnormalized separable (u-separable).
We can easily express commonality functions in terms of diffidence functions.

Note that if mi = Adii , i = 1, . . . , n, then its commonality function is Qi(A) =
1 if A ⊆ Ai and di otherwise. So, if m = ∩©n

i=1mi, then it is clear that if A 6= ∅,

Q(A) =
∏

i:A6⊂Ai

di =
∏

B:A 6⊂B

δ(B).
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3. Evidence theory based on diffidence functions

This view of belief functions as the result of merging unreliable testimonies
goes back to early works in the history of probability as recalled by Shafer
[35, 36], and this problem was still viewed as central for the notion of probability
in the XVIIIth century as shown by the corresponding item in the Encyclopedia
of Diderot and d’Alembert, as recalled by Pichon et al. [33]. It contrasts with
the view of Dempster [4] in terms of upper and lower probabilities induced by
imprecise statistical information. Shafer [34] [Th. 7.2 p.143] shows that if Bel
is a separable belief function, and A and B are two of its focal sets such as
A∩B 6= ∅, then A∩B is a focal set of Bel.4 But the converse is not true. This
necessary condition clearly indicates that not all belief functions are separable.

To overcome this difficulty, Smets [40] generalized the concept of simple
support function, allowing the diffidence values to range on the positive reals.
A generalized simple support function (GSSF) focused on E is still denoted by
Ed, but now d ∈ (0,+∞). According to Smets [40], a GSSF focusing on a subset
E with a small diffidence value d < 1 represents the idea that “one has some
reason to believe that the actual world is in E (and nothing more)”, whereas,
when d > 1, it expresses the idea that “one has some reason not to believe that
the actual world is in E”.

Smets has shown that any non dogmatic belief function can be decomposed
into the conjunctive combination of GSSF’s, i.e. (4) holds if we extend the range
of diffidence functions δ from (0, 1] to (0,+∞). He showed that for every A ⊂ Ω,
the values δ(A) can be obtained from the commonality function of m as:

δ(A) =
∏
B⊇A

Q(B)(−1)|B|−|A|+1

=

∏
C∩A=∅,|C|odd

Q(A ∪ C)∏
C∩A=∅,|C|even

Q(A ∪ C)
. (5)

Note that in the above expression (5), there are as many factors in the numerator
as in the denominator (see Shafer [34] Lemmas 2.1 and 2.2 p. 47-48). In the
following we are interested in retrieving the mass function m from its diffidence
function δ via the commonality function rather than through the conjunctive
combination.

3.1. Diffidence functions, revisited

The range of the diffidence function δ can be extended to the whole of 2Ω,
even if only sets A ⊂ Ω appear in the decomposition formula (4). This idea was

first suggested in [22]. Indeed, since δ(A) =
∏
B⊇AQ(B)(−1)|B|−|A|+1

, we can

define δ(Ω) = Q(Ω)(−1)|Ω|−|Ω|+1

and we get:

δ(Ω) = 1/Q(Ω). (6)

4The condition A∩B 6= ∅ can be dropped if we allow for u-separable sub-normalized belief
functions.
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This expression is well-defined for non-dogmatic belief functions only since for
them, Q(Ω) > 0 by definition. Of course, δ(Ω) > 1,5 but this will be also
the case for the diffidence values of other subsets for all non-dogmatic belief
functions.

Moreover, note that Q(Ω) =
∏
B:Ω6⊂B δ(B) =

∏
B 6=Ω δ(B). So, we can define

an (extended) diffidence function as a mapping δ : 2Ω → (0,+∞), such that:∏
A⊆Ω

δ(A) = 1, and δ(Ω) ≥ 1. (7)

Based on this extended definition, we can express the commonality function of
a BPA m in terms of its diffidence function in a way more faithful to the usual
expression of commonality:

Proposition 1. The commonality function Q can be obtained from the diffi-
dence function δ of a BPA m as : for any A ⊆ Ω,

Q(A) =
1∏

A⊆B δ(B)
. (8)

Proof: Q(A) =
∏
B:A6⊂B δ(B) = 1∏

A⊆B δ(B) since
∏
A⊆Ω δ(A) = 1. �.

Note that in (8), the value δ(Ω) appears explicitly in all the expressions of
Q(A) for all subsets A.

Finally, we can retrieve the BPA m, from the diffidence function δ computed
from it.

Theorem 1. For any non dogmatic belief function, the BPA m : 2Ω −→ [0, 1]
is obtained from the diffidence function δ directly as:

m(A) =
∑
A⊆B

(−1)|B|−|A|(
1∏

B⊆C δ(C)
). (9)

Proof: The BPA m is obtained from the commonality function as: m(A) =∑
A⊆B(−1)|B|−|A|Q(B). Due to (8), m(A) =

∑
B:A⊆B(−1)|B|−|A|( 1∏

B⊆C δ(C) ).

�

Note that the mass function mδ derived, from any function δ obeying (7),
via (9), is not always positive. Indeed, suppose that δ(A) = λ < 1, δ(B) = µ >
1, δ(C) = 1, C 6= Ω otherwise, and λµ < 1 (so δ(Ω) = 1/λµ > 1). By means of
the conjunctive rule, one gets the BPA: mδ(A ∩ B) = (1 − λ)(1 − µ),mδ(A) =
(1−λ)µ,mδ(B) = (1−µ)λ,mδ(Ω) = λµ. It is clear that mδ(A∩B), and mδ(B)
are negative.

So the function m 7→ δ is injective, but it is not surjective. Namely, given a
non-negative function δ such that

∏
A⊆Ω δ(A) = 1 and δ(Ω) ≥ 1, Qδ obtained

5This value cannot be used to define a GSSF focused on Ω, since Ωd is not defined.
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by (8) is a set-function that may range partially outside [0, 1], i.e., Qδ is not
always a commonality function.

Example 1. Consider Ω = {a, b} and δ(∅) = 1, δ({a}) = 4, δ({b}) = 0.1. Then
δ(Ω) = 1/0.4 and Q({b}) = 4.

However diffidence functions such that δ(A) ≤ 1,∀A ⊂ Ω are in one to one
correspondence with BPAs of separable belief functions. In fact as the sets A
with δ(A) < 1 are characteristic of the separable BPA with diffidence function
δ, we can claim that

Proposition 2. Given a non-dogmatic BPA m, and δ its diffidence function,
if δ(A) < 1 then A is a focal set of m.

Proof: Suppose δ(A) < 1. When reconstructing m using the conjunctive rule
of combination, we combine GSSFs mB such that mB(B) = 1− δ(B);mB(Ω) =
δ(B),∀B ∈ Ω. Of course, in the combination, we can delete mB when δ(B) = 1.
It is clear that via such combination, we get that the resulting mass of set A is
m(A) ≥ mA(A)

∏
B 6=AmB(Ω) = (1− δ(A))

∏
B 6=A δ(B) > 0. Hence if δ(A) < 1,

then A is a focal set of m. �

The converse is false, namely there may be focal sets C for which δ(C) ≥ 1.

Example 2. Let m be the non-dogmatic BPA such that m(A) = 0.088,m(B) =
0.528,m(A ∩ B) = 0.032,m(Ω) = 0.352. It canonically decomposes as m =
A0.8 ∩©B0.4 ∩©(A∩B)1.1. Clearly, A∩B is focal (m(A∩B) > 0), but δ(A∩B) > 1.
And A ∩ B is also a focal set of the decomposable BPA m′ = A0.8 ∩©B0.4 since
m′(A ∩B) = (1− 0.8)(1− 0.4) = 0.12 and δ′(A ∩B) = 1.

The interpretation of the δ function in terms of diffidence contrasts with
the proposal in [31] to interpret its logarithm in terms of mutual measures of
information related to sources.

3.2. The bipolar representation of belief functions

We start from the expression of a BPA m in terms of the conjunctive combi-
nation of GSSF’s given by (4) using the diffidence function δ. Let T ,P ⊆ 2Ω be
families of subsets such that A ∈ T ⊆ 2Ω if and only if δ(A) < 1 and B 6= Ω ∈ P
if and only if δ(B) > 1. We call sets in T testimonies. Factors of the form Aδ(A),
where A ∈ T , represent evidence in favor of A. The sets B ∈ P are proposi-
tions against which there are prejudices (we call such propositions prejudices for
short). More generally, according to Smets [40], they are propositions you have
“some reason not to believe” to the extent suggested by the fusion of pieces of
evidence in T .

By construction, T ∩ P = ∅. As we shall see later, the role of such factors
as Bδ(B), δ(B) > 1 in the decomposition of m will be to weaken the supports
(possibly make them vanish) of intersections of sets representing propositions
coming from several independent sources. For instance, for the BPA m in the
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above Example 2, T = {A,B} and P = {A ∩ B}, and the mass assigned to
A ∩B is decreased from 0.12 (when P = ∅) to 0.032.

Define δ+ and δ− to be standard diffidence functions valued in (0, 1) defined
from the original one δ associated to m, such that: δ+(A) = min(1, δ(A)), and
δ−(A) = min(1, 1/δ(A)),∀A ⊂ Ω. The decomposition (4) of a separable belief
function can be extended to non-dogmatic belief functions as:

m = ∩©A⊂ΩA
δ(A) = ( ∩©A⊂ΩA

δ+(A)) ∩©( ∩©B⊂ΩB
1

δ−(B) ).

Let m+ = ∩©A⊂ΩA
δ+(A) be the separable BPA with diffidence function δ+

and m− = ∩©B⊂ΩB
δ−(B) be the separable BPA with diffidence function δ−.

The commonality function of m can be expressed using (8) in terms of the
commonality functions of m+ and m−, say Q+ and Q− respectively as:

Q(C) =
1∏

C⊆A δ(A)
=
δ−(Ω)

∏
C⊆B,B∈P δ

−(B)

δ+(Ω)
∏
C⊆A,A∈T δ

+(A)
=
Q+(C)

Q−(C)

noticing that δ(Ω) = δ+(Ω)
δ−(Ω) . An operation 6∩©, called retraction, can thus be

defined by the division of commonality functions [40]:

Q1 6∩©Q2 =
Q1

Q2
.

It is called decombination by Smets [40] or sometimes removal [38]. We can
write the decomposition (4) of a non-dogmatic belief function using retraction
as

m = ( ∩©A∈T A
δ+(A)) 6∩©( ∩©B∈PB

δ−(B)).

A non-dogmatic BPA m can thus be decomposed in a unique irredundant way
as a pair (m+,m−), of separable belief functions induced by separable BPAs
m+ and m−, such that m = m+ 6∩©m−. The existence of positive and negative
information is generally coined under the term bipolarity [15], an idea already
exploited to discuss latent belief structures more than 15 years ago in [16].

The confidence component denoted by m+ is a BPA obtained from the merg-
ing of SBPAs, with focal sets in T , and the diffidence component denoted by
m− is a BPA obtained likewise, with focal sets in P. The pair (m+,m−) of
separable BPAs is called a latent belief structure by Smets [40].

Testimonies in T are focal sets, but not all focal sets are in T , as focal
sets may include intersections of source sets. A belief function with diffidence
function δ is separable if and only if δ = δ+. So a u-separable belief function will
be of the unique form: m = ∩©A∈T A

δ+(A), in which case, as shown by Shafer
[34] any intersection of a set of sources ∩i∈T Ai of m will be a focal set as well.

It is easy to check that a belief function is separable by inspecting its diffi-
dence function but it is much less obvious by considering its BPA. Nevertheless,
replacing commonality by its expression in terms of m, equation (5) leads to a
characteristic condition for separability on the BPA: the BPA m is separable if
and only if

10



∀A ⊂ Ω,

∏
C∩A=∅,|C|odd

∑
D⊇C m(A ∪D)∏

C∩A=∅,|C|even

∑
D⊇C m(A ∪D)

≤ 1.

On a two-element frame, all belief functions are separable; this is not the case
for more than 2 elements. In the general case, checking this condition is quite
unwieldy. The problem of proving separability directly from the BPA proves
to be not trivial and has exponential complexity in the number of elements of
the frame due to the use of focal sets. In [8] these separability conditions are
completely solved in the simple case of two overlapping focal sets on a 4-element
frame.

3.3. Related work

Shafer’s theory of evidence [34] includes as a pivotal notion the rule of com-
bination of pieces of evidence known as orthogonal sum. It seems clear that
the thesis in this book is that a belief function should be the result of merging
elementary pieces of evidence. Doing so only yields separable belief functions.
However there is a need to go beyond separable belief functions. In Shafer’s
book this is done by considering support functions, that are defined as belief
functions that result from coarsening a separable belief function. Coarsening
consists in building an approximation space on Ω, in the form of a partition
{A1, A2, . . . , Aq}. Each subset A ⊆ Ω is replaced by its upper approximation
A∗ = ∪{Ai : Ai ∩ A 6= ∅} (in the sense of rough set theory [29]).6 Conversely,
Ω is a refinement of Θ = {θ1, θ2, . . . , θq} if all elements θi are expanded into
disjoint sets Ai,∀i = 1, . . . , q. Given a BPA m on Ω, the new BPA m∗ on the
coarsened space Θ = {θ1, θ2, . . . , θq} is such that

∀B ⊆ Θ,m∗(B) =
∑

E⊂Ω:E∗=∪θi∈BAi

m(E)

(the sum of masses of focal sets of m with the same upper approximation). A
BPA µ on Θ defines a support function if and only if there exists a refinement
Ω of Θ and a separable BPA m on Ω such that µ = m∗. As noticed by Smets
[40], coarsening is not in agreement with Dempster rule of combination, i.e.,
(m1 ⊕m2)∗ 6= m∗1 ⊕m∗2. He advocates his decomposition method as avoiding
this problem.

Interestingly, Shafer proves that a characteristic property of support func-
tions is that their core defined by ∪{E ∈ F(m)} is a focal set of m. Support
functions of Shafer are closely related to non-dogmatic belief functions. It is
obvious that the latter are support functions, since m(Ω) > 0. Conversely, sup-
port functions are non dogmatic on their cores (eliminating impossible elements
from Ω). Smets’ decomposition in terms of latent belief structures can thus be
viewed as an alternative interpretation of Shafer support functions.

6In fact, Chapter 6 of Shafer’s book contains the basic notions of rough set theory, written
before Pawlak proposed them.
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Ten years before Smets’ 1995 paper [40], Ginsberg [20] had proposed a special
case of the retraction operator applied to belief functions in a frame of discern-
ment with only two elements Ω = {a, b}. Two coefficients (α, β), α+ β ≤ 1, are
given, where α = m(a) and β = m(b). An operation of inversion 6∩© is defined
such that the pair (x, y) = (α, β) 6∩©(γ, δ) is the solution of (γ, δ)⊕ (x, y) = (α, β)

using the orthogonal rule. The solution is of the form x =
(αδ̄ − β̄γ)(γ̄)

γ̄δ̄ − β̄γγ̄ − ᾱδδ̄
and

y =
(βγ̄ − ᾱδ)(δ̄)
γ̄δ̄ − β̄γγ̄ − ᾱδδ̄

with x̄ = 1− x for x ∈ {α, β, γ}. It is clearly a retraction

of the BPA defined by (γ, δ) from the BPA defined by (α, β) such that:

(α, β) 6∩©(γ, δ) = {a}δa ⊕ {b}δb ⊕ {a}1/δc ⊕ {b}1/δd = {a}δa/δc ⊕ {b}δb/δd

with δa = 1−α−β
1−β , δb = 1−α−β

1−α , δc = 1−γ−δ
1−δ and δd = 1−γ−δ

1−γ . Ginsberg’s notion
can therefore be viewed as the forerunner of the retraction operation of Smets.

In [26], Kramosil proposed an alternative solution to solve the inversion
problem (find m such that m ⊕m1 = m2) based on the apparatus of measure
theory. His approach was to replace probability measures, used for defining
classical belief functions, by the so-called signed measures which can take values
outside the unit interval of real numbers including the negative and even infinite
ones. A basic signed measure assignment (BSMA) defined on Ω is a mapping
m : 2Ω → R? = R ∪ {+∞,−∞} such that m(∅) = 0 and m takes at most
one of the infinite values −∞,+∞. A commonality function induced by a
BSMA m is the mapping q : 2Ω → R? defined by q(A) =

∑
B⊇Am(B) for each

A ⊆ Ω. A finite BSMA m over Ω is called invertible, if q(A) 6= 0 holds for
each A ⊆ Ω. Kramosil suggested that the notion of q-invertibility may be seen
as generalizing non-dogmaticism. It is interesting to point out that the idea of
prejudice was evoked in [25]. In the latter paper, Kramosil suggested that a
negative degree of belief could quantify “some a priori prejudice of the subject
in question which needs to be neutralized by some positive degree of belief to
arrive at the absolutely neutral outcome position defined by the vacuous belief
function”. In [30], Pichon has pursued Kramosil’s seminal work by defining the
so-called conjunctive signed weight function as a mapping sδ : 2Ω\{Ω} → R\{0}
such that sδ(A) =

∏
B⊇A q(B)(−1)|B|−|A|+1

for all A ⊆ Ω. But the absence of a
semantic and intuitive interpretation of such generalized belief functions and the
fact that only the conjunctive rule is used to combine BSMAs (normalisation
cannot be applied) are impediments to the potential use of this approach.

Some sufficient conditions for separability and non-separability of belief func-
tions are given by Ke et al. [23]. In [31], Pichon makes a critical review of Smets’
canonical decomposition. He argues that Smets’ solution has a major weakness,
namely, it involves elementary items whose proposed semantics lacks formal
justifications. He proposed a new canonical decomposition based on a means
to induce belief functions from the multivariate Bernoulli distribution and on
Teugels representation of this distribution [43]. According to this decomposi-
tion, a belief function results from as many crisp pieces of information as there
are elements in its domain, from simple probabilistic knowledge concerning their
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marginal reliability, and dependencies between their reliabilities. All belief func-
tions are then viewed as the result of dependent merging of SSFs focused on
complements of singletons, which is enough to generate all subsets of the frame
by conjunctive combination. The use of a dependency model is a crucial ad-
ditional degree of freedom that extends the range of belief functions generated
from elementary SSFs beyond separable ones, namely it is powerful enough to
cover all belief functions. In this approach, the use of the Bernoulli distribution
facilitates the mastering of dependences between sources. The purely techni-
cal restriction to such SSFs is counterbalanced by the freedom in choosing a
dependence structure.

In contrast, our paper sticks to the spirit of Smets’ decomposition, trying to
interpret the non-standard SSF’s involved as prejudices7 or meta-information
and to envisage the retraction operation as a natural form of non-symmetric
combination between prior information and new input ones coming from sources.

4. Information fusion using retraction

In this section, we focus on the notion of retraction as a tool for belief
change. First we study the retraction of an SSF from another SSF, and then
the retraction of an SSF from a separable belief function. We interpret the effect
of retraction in terms of prejudices affecting the result of an information fusion
process. It leads us to view any non-dogmatic belief function as the result of a
prejudiced fusion of elementary pieces of evidence.

4.1. Properties of retraction

Consider the retraction Ax 6∩©By = Ax ∩©B1/y of a simple BPA By, y < 1
supporting B from a simple support function Ax, x < 1. It corresponds to
diffidence functions δA(E) = x if E = A, 1/x for E = Ω and 1 otherwise;
δB(E) = y if E = B, 1/y for E = Ω and 1 otherwise. So the retraction of By

from Ax yields the diffidence function δ = δA/δB .
However the result Ax 6∩©By is NOT a belief function in general as the BPA

induced by δ may fail to be positive. Actually, retracting an SSF By from Ax

when B 6= A, never yields a belief function since we get δ(B) = 1/y > 0. This
is summarized by the following observation:

Proposition 3. If x, y ∈ (0, 1), Ax 6∩©By is a belief function if only if A = B
and x/y < 1.

Proof: The mass m(B) resulting from Ax 6∩©By is m(B) = (1 − 1/y)x < 0 if
B 6= A. So it is not a belief function. If A = B,m(A) = 1−x/y > 0 if and only

7Taken literally, i.e., propositions judged true or false by the agent prior to receiving the
new evidence
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if x < y. �

In this simple case, we could write the result of the retraction operation as
Ax 6∩©Ay = Amin(1,x/y). At the limit, Ax 6∩©Ax yields the vacuous belief function
(m(Ω) = 1), resulting in total ignorance.

Besides, retraction does not work if we try to retract from a belief function
a set that is not focal.

Proposition 4. Consider a non-dogmatic BPA m with focal sets forming a
family F , and let B 6∈ F . Then, if y < 1, m′ = m 6∩©By is not a belief function.

Proof: Compute m′(B) using the conjunctive rule. Since B 6∈ F and
since m is non-dogmatic, B will be a focal set of m′ with support m′(B) =
(1− 1/y)

∑
A:B⊂Am(A) < 0. This mass is negative, hence the result. �

The same problem will occur if we we try to retract from a belief function a
focal set that only overlaps some other focal sets, without containment.

Proposition 5. Consider a non-dogmatic normal BPA m with focal sets form-
ing a family F , and let B 6= Ω ∈ F such that B neither contains nor is contained
in another focal set different from Ω. Then, if y < 1, m′ = m 6∩©By is not a belief
function.

Proof: It is clear that the set F ′ of focal sets of m′ contains F since Ω is
focal for By. Moreover the other focal sets of m′ are of the form A∩B,A ∈ F .
However A ∩B 6∈ F by assumption. So m′(A ∩B) = m(A)(1− 1/y) < 0. �

Clearly the belief function in the previous proposition is not separable. It
is easy to see from the above example that in order to avoid the conditions in
Proposition 5, it is necessary and sufficient to require that the set of focal sets of
m be closed under intersection, which is a necessary but not sufficient condition
of separability.

Example 3. Consider the belief function with focal sets A,B,Ω, where A∩B 6=
∅ and A 6⊂ B,B 6⊂ A, and let us try to retract B by computing m′ = m 6∩©By for
y < 1. It is easy to see that m′(A ∩B) = (1− 1/y)m(A) and also
m′(A) = m(A)/y;m′(B) = m(B) + (1 − 1/y)m(Ω);m′(Ω) = m(Ω)/y. Clearly,
m′(A ∩ B) < 0 so that we cannot retract B without going out of the range
of belief functions. However if A ∩ B is also focal for m, then m′(A ∩ B) =

(1 − 1/y)m(A) + m(A ∩ B). Now, if 1 > y > max( m(Ω)
m(B)+m(Ω) ,

m(A)
m(A∩B)+m(A) ),

the result is a belief function where the masses of B and A ∩B are decreased.

As we have seen, retracting a focal set B from m consists in the conjunctive
combination m′ = m ∩©Bz with z = 1/y > 1. It is clear that the resulting BPA
is of the form:

∀E ⊆ Ω,m′(E) = zm(E) + (1− z)
∑

A:A∩B=E

m(A).
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Note that the term
∑
A:A∩B=Em(A) is the result of (un-normalized) condition-

ing of m by B, and could be written [m ∩©B0](E), using the categorical belief
function B0.

Proposition 6. Suppose the set of focal sets of m is closed under conjunction.
Then m′ = m ∩©Bz with z > 1 will be a regular BPA provided that

z < min(
Q(B)

Q(B)−m(B)
, min
E⊂B

∑
D⊆Bm(E ∪D)∑
∅6=D⊆Bm(E ∪D)

, min
E 6⊆B

1/m(E)).

Proof: Clearly, focal sets of m′ are the same as those of m. Then we have,
using the previous identity:

∀E ∈ F ,m′(E) =


zm(B) + (1− z)Q(B) if E = B,

m(E) + (1− z)
∑
∅6=D⊆Bm(E ∪D) if E ⊂ B,

zm(E) otherwise.

(10)

Enforcing m′(E) > 0 directly yield the upper bounds on z. �

We can see that retraction will decrease the masses of B and its subsets that
are focal. But the condition for ensuring the result is a regular mass function is
non-trivial.

4.2. Retraction of focal set from a separable belief function

Retraction will behave better on a separable belief function. Indeed, not
only Proposition 5 does not apply since the set of focal sets is closed under
conjunction, but the masses will have specific regularities. Let m = ∩©k

i=1E
δi
i ,

where the Ei’s are distinct, δi < 1,∀i, and, for the moment being, there is
no containment relation between them. Denote by I, J subsets of indices in
{1, . . . , n}. Focal sets of m are of the form EI = ∩i∈IAi; I ⊆ {1, . . . , k} with
masses:

m(EI) =
∏
i∈I

(1− δi)
∏
i/∈I

δi (11)

(where we allow that some EI ’s may be identical).

∩© EJ EI , I ⊂ J EI : J ⊂ I EI ,no inclusion

EJ (1− z) EJ EJ EI EJ∪I
Ω (z > 1) EJ EI EI EI

Table 1: Combination with a focal set

Suppose we combine m with a generalized SSF Bz, z > 1, with B = EJ . Com-
bining this BPA with (EJ)z yields a BPA m′ = m ∩©(EJ)z whose focal sets are
obtained as follows (see Table 1):
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• EJ : m′(EJ) is obtained by combining (EJ ,m(EJ)) with (Ω, z), or by
combining (EI ,m(EI)), for I ⊆ J with (EJ , (1 − z)). Hence m′(EJ) =
zm(EJ) + (1− z)(

∑
I⊆J m(EI)) = m(EJ) + (1− z)(

∑
I⊂J m(EI)) (where

E∅ = Ω by convention). It is also m′(EJ) = zm(EJ) + (1− z)Q(EJ).

• {EI : J ⊂ I}: m′(EI) is obtained by combining (EI ,m(EI)) with (Ω, z),
or with (EK ,m(EK)) for K ∪ J = I (equivalently, I\J ⊆ K ⊆ I) with
(EJ , (1− z)). Hence m′(EI) = zm(EI) + (1− z)(

∑
I\J⊆K⊆I m(EK))

• {EI : J 6⊂ I}: m′(EI) is only obtained by combining (EI ,m(EI)) with
(Ω, z), hence m′(EI) = zm(EI).

Example 4. Suppose a separable belief function with BPA m is the result of
combining three SSFs Edii , i = 1, 2, 3 where no inclusion between the sets Ei
holds. Suppose we try to retract E1 with strength z > 1. Table 2 provides the
resulting focal sets of the combination with Ei ∩ . . . ∩ Ek denoted by Ei...k

∩© E1 E2 E3 E12 E13 E23 E123 Ω

E1 E1 E12 E13 E12 E13 E123 E123 E1

Ω E1 E2 E3 E12 E13 E23 E123 Ω

E12 E12 E12 E123 E12 E123 E123 E123 E12

Table 2: Combination with focal sets E1 or E1 ∩ E2

We get the following masses after retraction

• m′(E1) = m(E1) + (1− z)m(Ω)

• m′(Ω) = zm(Ω)

• m′(E1 ∩ E2) = m(E1 ∩ E2) + (1− z)m(E2)

• m′(E1 ∩ E3) = m(E1 ∩ E3) + (1− z)m(E3)

• m′(E1 ∩ E2 ∩ E3) = m(E1 ∩ E2 ∩ E3) + (1− z)m(E2 ∩ E3)

• m′(E2) = zm(E2);m′(E3) = zm(E3);m′(E2 ∩ E3) = zm(E2 ∩ E3)

In terms of diffidence values for the SSFs it reads

• m′(E1) = (1− zd1)d2d3

• m′(Ω) = zd1d2d3

• m′(E1∩E2) = (1−d1)(1−d2)d3 +(1−z)d1(1−d2)d3 = (1−d2)d3(1−zd1)

• m′(E1 ∩ E3) = (1− zd1)d2(1− d3)

• m′(E1 ∩E2 ∩E3) = (1− d1)(1− d2)(1− d3) + (1− z)d1(1− d2)(1− d3) =
(1− d2)(1− d3)(1− zd1)
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• m′(E2) = zd1(1− d2)d3;m′(E3) = zd1d2(1− d3); m′(E2 ∩ E3) = zd1(1−
d2)(1− d3)

When z increases from 0 to 1/d1 the masses of E1 and its subsets de-
crease in the same proportion, while those of E2, E3 and its intersection in-
crease. It is clear that when z attains its maximal value 1/d1, focal set E1 is
deleted along with its subsets E1 ∩ E2, E1 ∩ E3, E1 ∩ E2 ∩ E3 and other focal
sets are improved accordingly, in fact we observe the unsurprizing result that

Ed1
1 ∩©Ed2

2 ∩©Ed3
3 6∩©E1/d1

1 = Ed2
2 ∩©Ed3

3 (since zd1 = 1).

When retracting E1 ∩ E2 (line 3 of Table 2) one gets the following results

• m′(E1 ∩ E2) = m(E1 ∩ E2) + (1 − z)(m(E1) + m(E2) + m(Ω)) = d3(1 −
z(d1 + d2 − d1d2))

• m′(E1) = z(m(E1)) = z(1 − d1)d2d3, m′(E2) = z(m(E2)) = zd1(1 −
d2)d3;m′(Ω) = zm(Ω) = zd1d2d3

• m′(E1 ∩ E2 ∩ E3) = m(E1 ∩ E2 ∩ E3) + (1 − z)(m(E3) + m(E1 ∩ E3) +
m(E2 ∩ E3)) = (1− d3)(1− z(d1 + d2 − d1d2))

• m′(E3) = z(m(E3)) = zd1d2(1 − d3);m′(E2 ∩ E3) = z(m(E2 ∩ E3)) =
zd1(1− d2)(1− d3);m′(E1 ∩ E3) = z(m(E1 ∩ E3)) = z(1− d1)d2(1− d3)

When z increases from 0 to 1/(d1 +d2−d1d2) the masses of E1∩E2 and its
subset E1∩E2∩E3 decrease in the same proportion, while those of other subsets
increase. It is clear that when z attains its maximal value, focal sets E1 ∩ E2

and E1 ∩ E2 ∩ E3 are deleted and other focal sets are improved accordingly.

Proposition 7. Retracting a focal set EJ from a separable BPA m will decrease
its mass and may delete it.

Proof: Note that m′(EJ) can be expressed as:

m′(EJ) =
∑
I⊆J

m(EI)− z
∑
I⊂J

m(EI)

=
∑
I⊆J

∏
i∈I

(1− δi)
∏
i/∈I

δi − z
∑
I⊂J

∏
i∈I

(1− δi)
∏
i/∈I

δi

= (
∏
i/∈J

δi)(
∑
I⊆J

∏
i∈I

(1− δi)
∏
i∈J\I

δi − z
∑
I⊂J

∏
i∈I

(1− δi)
∏
i∈J\I

δi

But notice that
∑
I⊆J

∏
i∈I(1− δi)

∏
i∈J\I δi = ((1− δi) + δi)

|J| = 1.
Hence

m′(EJ) = (
∏
i/∈J

δi)(1− z(1−
∏
i∈J

(1− δi)))

Clearly the focal set EJ is deleted in m′ if and only if
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z =

∑
I⊆J m(EI)∑
I⊂J m(EI)

=
Q(EJ)

Q(EJ)−m(EJ)
=

1

1−
∏
i∈J(1− δi)

.

�

Proposition 8. Retracting a focal set EJ from a separable BPA m affects and
may delete all focal sets EI ⊂ EJ as well, namely all combinations between the
merging of information EJ from sources indexed in J , with information from
other sources.

Proof: Suppose J ⊂ I, so that EI ⊂ EJ then we have seen that

m′(EI) = zm(EI) + (1− z)(
∑

I\J⊆K⊆I

m(EK))

= z
∏
i∈I

(1− δi)
∏
i/∈I

δi + (1− z)
∑

I\J⊆K⊆I

∏
i∈K

(1− δi)
∏
i6∈K

δi

=
∏
i/∈I

δi
∏
i∈I\J

(1− δi)(z
∏
i∈J

(1− δi) + (1− z)Z)

where Z =
∑
I\J⊆K⊆I

∏
i∈K\J(1 − δi)

∏
i∈J\K δi. Letting K = (I \ J) ∪ L

with ∅ ⊆ L ⊆ J , it reads Z =
∑
L⊆J

∏
i∈L(1 − δi)

∏
i∈J\L δi = 1 again. So,

m′(EI) = (
∏
i 6∈I δi)

∏
i∈I\J(1 − δi)(1 − z + z

∏
i∈J(1 − δi)) = 0 if and only if

z = 1/(1−
∏
i∈J(1−δi)) again. In other words, when EI ⊂ EJ , m′(EI) vanishes

along with m′(EJ). �

This result highlights the resemblance between the retraction operation and
the contraction operation in the logical theory of belief change after Alchourron,
Gärdenfors and Makinson (see the book written by the second author [19]).
Given a set of closed set K of propositional formulas interpreted as a belief
set, the contraction of K by a formula φ (whose set of models is a proposition)
consists in forgetting φ ∈ K, constructing a closed set K 	 φ that no longer
contains φ. It is not enough to delete φ because due to the closed nature of
K 	 φ, if K contains ψ that implies φ then the closure of K \ {φ} still contains
φ. So, the contraction by φ requires the deletion from K of all formulas that
imply φ as well, just like the retraction of EJ from the focal sets also deletes
focal subsets EI ⊂ EJ of it.

Proposition 9. When retracting a focal set EJ from a separable BPA m, the
focal sets EI 6⊂ EJ retain a positive mass m′(EI) ≤ 1.

Proof: When J 6⊂ I, m′(EI) = zm(EI), where 1 < z ≤ 1/(1−
∏
i∈J(1− δi)).

Since
∑
E⊆Ωm

′(E) = 1, we can write it as
∑
E⊆Ωm

′(E) =
∑
EI⊆EJ m

′(EI) +∑
EI 6⊆EJ

zm(EI) = 1. Clearly, 0 ≤ m′(EI) ≤ 1 in the first term due to the
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preceding propositions, and since z > 1, we must have zm(EI) < 1 for EI 6⊆ EJ
to respect the normalisation condition. Hence 0 ≤ m′(EI) ≤ 1 when EI 6⊆ EJ .
�

Note that while fully retracting Ai leads to retracting its subsets made of
conjunctions as well, it does not lead to retracting any set Ak ∈ T even when
Ak ⊂ Ai. The idea is that questioning a piece of information Ai received from
a source i does not affect information coming from other sources, even if they
are fully coherent with Ai.

Example 5. Consider again the case in Example 4 with three testimonies Ei, i =
1, 2, 3. Suppose E2 ⊂ E1,and we again retract E1. The results in terms of dif-
fidence values can be grouped noticing that E1 ∩ E2 = E2 and E1 ∩ E2 ∩ E3 =
E2 ∩ E3. It yields

• m′(E1) = (1− zd1)d2d3;m′(E3) = zd1d2(1− d3)

• m′(E2) = zd1(1− d2)d3 + (1− d2)d3(1− zd1) = (1− d2)d3

• m′(Ω) = zd1d2d3

• m′(E1 ∩ E3) = (1− zd1)d2(1− d3)

• m′(E2∩E3) = (1−d2)(1−d3)(1−zd1)+zd1(1−d2)(1−d3) = (1−d2)(1−d3)

It is clear that when z = 1/d1, the focal sets E1 and E1 ∩ E3 are deleted and
m′ = Ed2

2 ∩©Ed3
3 is obtained, namely E2 remains as a full-fledged source even if

it is a more precise information than E1.

4.3. Toward the prejudiced merging of non-dogmatic belief functions

The intuition behind retraction is that the agent possessing a reason of
strength y < 1 not to believe E (modeled by E1/y) is ready to doubt about
the truth of E whenever receiving a testimony Ed, d < 1 claiming that E is
true. More precisely, the degree of belief 1 − d in E based on evaluating the
reliability of the source will be attenuated by this prior information, understood
as a prejudice, to an extent that depends on the diffidence value y < 1. The
lesser y, the stronger the reason not to believe in the truth of E. The condition
y = d is enough to fully erase E.

Example 6. Consider a formal model of an informal example due to Smets
[40, 16]. A newspaper reports that the economic situation in a region called
Ukalvia is pretty good. You had never heard of Ukalvia and have no idea which
newspaper is involved. So you have some reason (support 1 − d), to think that
the information is correct. It is an SSF denoted by Gd (G for good). Later
on a friend you trust lets you know that Ukalvia lies in a totalitarian country
and the newspaper is handled by the government of this country. You now have
a prejudice against the truth of news published in this journal, and then you
start to doubt about the good economic situation in Ukalvia. So you are led to
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downgrade the strength in your previous belief in G from d to d/y by retracting
Gy, if d ≤ y < 1. If d > y, the result Gd/y is not a belief function, and can be
interpreted, as Smets [40, 16] suggests, as a debt of belief that will attenuate the
strength of further testimonies of the form Gd.

In this paper, when y > 1, we call Ey a prejudice against E. It means a
resistance to believing input information asserting ω∗ ∈ E. A prejudice may be
due to the fact that we have a reason to believe the complementary statement
ω∗ ∈ E (which would mean believing the complement E to extent 1/d < 1).
Indeed, if an agent possesses the prior entrenched belief (i.e. not based on
recent testimonies) that E is false, it may be used as a prejudice against an
input information claiming that E is true. Alternatively, a prejudice against E
can be due to the fact that we have a reason to distrust the source of information
claiming that E is true (which, in that case, does not presuppose any reason to
believe its negation).

In view of the above results, Smets’ decomposition of a BPA m as a con-
junction of GSSF’s comes down to considering that any non-dogmatic belief
function comes from merging unreliable elementary pieces of information T =
{A1, . . . , An} (forming the separable BPA m+), followed by a retraction of state-
ments in P (collected in the separable BPA m−). Note that B ∈ P is of the form
∩j∈JAj where |J | > 1. It results in weakening the support pertaining to the
conjunction of information items coming from sources, thus eroding the strength
of these fusion results. Following our intuition, the decomposition suggests that
there are prejudices against conjunctions of statements ω∗ ∈ Aj , j ∈ J . The set
of prejudices in such a decomposition is exactly

P ⊆ {∩j∈JAj : J ⊆ [n], |J | > 1} \ T

since P ∩ T = ∅ and some ∩j∈JAj may be equal to some Ak. Indeed, T is
made of focal sets of m that are not retracted in the decomposition; only other
focal sets of m+, i.e. the non-trivial intersections of the A′is are more or less
retracted to form m. The idea is that when receiving information from outside
sources, the merging operation performed by the receiver may also involve prior
information that questions the validity of received uncertain testimonies. Such
prior information is viewed as prejudice and does not play the same role as the
input information.

It is indeed natural to consider that information we receive from the outside
may be challenged by our prior beliefs. These prior beliefs may take the form of
stereotypes, or prejudices that one is often unaware of. The receiver is for some
reason reluctant to consider as credible the result of the conjunction of some
reported propositions. For instance, consider a variant of the Linda problem
[44].8

8In the original example, the bank teller Linda, depicted as a philanthropist, is found by
participants to a psychological experiment, more likely to be a philanthropist bank teller than
a bank teller, because the former looks more “representative” or typical of persons who might
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Example 7. We receive two testimonies, namely one (B with diffidence value
y < 1) claiming that Linda is a banker and another one (A with diffidence value
x < 1) that she is a philanthropist. The fusion process leads us to allocate a
belief degree (1 − x)(1 − y) to the fact that she is a philanthropist bank teller.
However, a prejudiced individual would hardly believe that a bank teller can be
philanthropist. In other words, we have prior information of the form (A∪B)u.
On this basis, we would like to erode, possibly delete, the focal set A ∩ B from
the merged inputs by retracting the SSF (A ∩ B)u from the result of the fusion
of Ax with By. Thus we compute m = (Ax ∩©By) 6∩©(A ∩ B)u which leads to a

mass on A ∩ B equal to 1 − (x+y−xy)
u , that is all the lesser as the prejudice is

strong. When u > x+ y − xy, the result is still a belief function. The focal set
A ∩ B is deleted when u = x + y − xy. Note that if u < x + y − xy, the result
is no longer a belief function. It is a “debt of belief”, as Smets says, that will
oppose any future new input of the form A ∩B with an attenuated strength.

Comb. with negation Revision [27] Retraction

Ax ∩©By (Ax ∩©By) ∩©(A ∩B)
u

(Ax ∩©By) ? (A ∩B)
u

(Ax ∩©By) 6∩©(A ∩B)u

∅ 0 (1−x)(1−y)(1−u) 0 0
A (1−x)y (1−x)yu (1−x)yu (1− x)y/u
B x(1−y) x(1−y)u x(1−y)u x(1− y)/u

AB 0 xy(1−u) (1−x−y+2xy)(1−u) 0

AB 0 (1−x)y(1−u) (1−x)y(1−u) 0

AB 0 x(1−y)(1−u) x(1−y)(1−u) 0

AB (1−x)(1−y) (1−x)(1−y)(u) (1−x)(1−y)u 1− (x+y−xy)
u

Ω xy xyu xyu xy/u

Table 3: Comparison of change rules in the Linda case of Example 7.

One might be tempted to consider that the retraction operation is redundant
and that retracting a focal set could be simulated by combining the belief func-
tion with the negation of this focal set. This conjecture is not valid, as shown in
Table 3 on the Linda case of Example 7. Namely, instead of retracting (A ∩B)

u

from (Ax ∩©By) (4th column in Table 3) suppose we symmetrically combine the

latter with the prior information (A ∩B)
u

(2d column in Table 3). We can see
the result of combining with the negation of the retracted proposition is rather
confusing since A ∩ B remains a focal set along with its complement, and the
contradiction receives a positive weight. In contrast, retraction just deletes (or
decreases the weight of) A∩B without adding any new focal set. Instead of this
combination with the opposite proposition, we may revise (Ax ∩©By) by means

of (A ∩B)
u

using an asymmetric revision rule (denoted by ?) proposed in [27].
Revising m by m′ consists, in the conjunctive rule, of replacing the intersection
of any focal set E of m and any focal set F of m′, by the revision rule E?F = F
if E∩F = ∅, and E∩F otherwise. In the Linda case, it comes down to replacing
the positive mass of ∅ in column 2 by 0 and transferring it to (A ∩B) in line
4 (see the result of this change in column 3). Up to this change, the result of

fit the description of Linda. It illustrates the so-called representativeness heuristic [44] which
consists in basing one’s judgement on personalized rather than statistical information.
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revision is similar to the one of combination; in particular, some mass remains
attached to the same non-empty focal sets in both columns.9

More generally we can consider the retraction of a non-dogmatic belief func-
tion from another one. Consider two non-dogmatic belief functions m1 and m2.
The general retraction operation is of the form m1 6∩©m2. Using the decomposi-
tion of m1 and m2 into latent belief structures (m+

i ,m
−
i ), it is easy to express

this retraction operation in terms of prejudiced fusion of SSF’s, namely m1 6∩©m2

takes the form:

(( ∩©A∈T1
Aδ

+
1 (A)) ∩©( ∩©B∈P1

B
1

δ
−
1 (B) )) 6∩©(( ∩©A∈T2

Aδ
+
2 (A)) ∩©( ∩©B∈P2

B
1

δ
−
2 (B) ))

=(( ∩©A∈T1
Aδ

+
1 (A)) ∩©( ∩©B∈P2

Bδ
−
2 (B))) 6∩©(( ∩©B∈P1

Bδ
−
1 (B)) ∩©( ∩©A∈T2

Aδ
+
2 (A)))

=m+
12 6∩©m

−
12

where m+
12 and m−12 are separable belief functions with respective testimony sets

T1∪P2 and T2∪P1. Due to commutativity and associativity of ∩©, the retraction
of m−12 from m+

12 can proceed step by step by retracting SSFs focused on each
element of T2 ∪ P1 one by one in any order. The result will be a non-dogmatic
belief function only if the conditions pointed out in Propositions 4, 5 and 6 are
satisfied.

4.4. Additional comments

We conclude this section by some remarks concerning the Dempster rule of
combination and the discounting method, in the light of the retraction operation.
Moreover we briefly discuss the possibility of setting the mass of one focal set
to a prescribed value using conjunctive combination with a generalised SSF.

The orthogonal combination rule as a retraction process. In [5], Denœux
noticed that normalizing a subnormal BPA m using (2) amounts to combining
it with a GSSF of the form ∅d.

Proposition 10. Consider a belief function m ∩© obtained as the conjunctive
combination of two non-dogmatic belief functions m1 and m2 such that m ∩©(∅) >
0. Then their orthogonal sum m⊕ = m1 ⊕m2 is of the form m ∩© 6∩© ∅d where
d = 1−m ∩©(∅).

Proof: Let us compute m′ = m ∩© ∩©∅x. It is clear that for any focal set
A different from ∅, m′(A) = xm ∩©(A), and m′(∅) = m ∩©(∅)x + 1 − x since ∅
has mass 1− x in ∅x. The full retraction of ∅ from m ∩© comes down to enforc-
ing m ∩©(∅)x+1−x = 0 that is, x = 1/(1−m ∩©(∅)). So m′ =

m ∩©
1−m ∩©(∅) = m⊕. �

9An alternative combination would be to consider the disjunctive rule between Ax ∩©By

and (A ∩B)
u

[11]. However, the only focal set obtained is Ω, whatever the values of x, y, u,
so that the result is always vacuous.
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As the orthogonal rule of combination is a building block of evidence theory,
this result shows that the retraction operation is already present from the start in
the approach. It is a conjunctive fusion, with a prejudice against contradiction,
leading to retract the latter and restore internal consistency of the resulting
BPA. The renormalisation step in Dempster’s rule of combination is a retraction
operation.

Retraction versus Discounting. In the belief function framework, additional
doubt about the reliability of a source of information is taken into account
through the discounting operation [34], which transforms, in its simpler form,
each belief function provided by a source into a weaker, less informative one.
Namely, discounting a belief function m by a factor α ∈ [0, 1] reduces the mass
m(A) bearing on A and reassigns the remaining mass to Ω. It yields a BPA mα

such that:

mα(A) =

{
α ·m(A), if A 6= Ω,

(1− α) + α ·m(Ω), otherwise.

In particular, an SSF Ad can be viewed as discounting a sure piece of in-
formation (m(A) = 1) by a factor 1 − d. Discounting Ad by a factor α yields
mα(A) = A(1−α)+α.d. It is similar to retracting A from Ad as Ad ∩©Ax with x >
1, which yields Adx. It is equal to A(1−α)+α.d provided that dx = (1−α) +α.d.
Namely retracting A with strength 1 < x ≤ 1/d comes down to discounting Ad

with a factor α = 1−dx
1−d . However, this result does not extend to more general

belief functions: while discounting affects all focal sets to the same extent, we
can retract a focal set B from a separable BPA m, such that m(B) > 0, and
delete it from the focal sets, while maintaining other focal sets and increas-
ing their masses, as seen above. A comparison of retraction with contextual
discounting [21, 28] could also be carried out.

Mass change via retraction. Consider a BPA m and suppose for some reason
one must change m(A) into m′(A) = αm(A) for some focal set A and some fixed
factor 0 < α < 1. It is not clear how this change can be propagated to other
masses m(B), B 6= A in order to keep the normalization condition for m′. One
way of proceeding is to assume the result m′ of the change to be of the form
m ∩©Az with z > 1. As we have seen earlier, there is a risk for m ∩©Az to have
negative masses and this risk is mitigated if we assume that the focal sets of
m are closed under intersection. In that case, ∀E ∈ F(m), A ∩ E ∈ F(m).
We can compute the value of z such that m ∩©Az = αm(A). Using results in
subsection 4.1, we must ensure the equality zm(A) + (1 − z)Q(A) = αm(A),

which yields z = Q(A)−αm(A)
Q(A)−m(A) , where we can see that z > 1 if and only if α < 1

(which corresponds to entering a prejudice against A). We can update the other
masses for E 6= A as follows, using (10):

∀E ∈ F ,m′(E) =

{
m(E)− (1−α)m(A)

Q(A)−m(A)

∑
∅6=D⊆Am(E ∪D) if E ⊂ A,

Q(A)−αm(A)
Q(A)−m(A) m(E) otherwise.
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But these formulas can be used only if the updated masses remain positive and
less than 1. In fact, it is not true that ∀α ∈ [0, 1/m(A)],∃z > 0 such that
m′ = m ∩©Az. In other words, modifying the value of a mass cannot always be
expressed as the retraction of a focal set nor by the combination with an SSF.

The iterability of retraction. If we notice that retraction can be performed
by a simple division of commonalities, it is obvious to conclude that retraction
can be iterated. The only delicate point is to ensure that the result of retracting
a belief function from another one remains a belief function. In subsection 4.2,
we have devised conditions for ensuring this behavior in the case of retracting
an SSB from a separable belief function. The generalization of these results to
the retraction of any non-dogmatic belief function from another one is a matter
of further research.

5. Informational orderings in agreement with diffidence functions

An important issue in the various uncertainty theories is how to compare un-
certain pieces of information from the point of view of their informative content.
In each framework a “more-informative-than” relation is at work, as shown for
instance in [9]. This relation makes it possible to adopt a cautious attitude
when representing information, namely, apply a least commitment principle
which states that one should never presuppose more beliefs than justified.

In the case of belief functions there have been several proposals for such
a notion of relative informativeness [45, 11, 5]. This fact is partly due to the
existence of several interpretive settings for belief functions. In this paper, we
shall focus on the relative informativeness that is in agreement with the inter-
pretation of belief functions as the result of merging testimonies and prejudices.
We consider relations of the form m1 vx m2 that intend to mean “m1 is at least
as informed as m2”. We can also read it as a form of entailment of m2 from
m1 as, in most cases, it reduces to set-inclusion A1 ⊆ A2 when mi(Ai) = 1 for
i = 1, 2.

5.1. Various informational orderings

Formally, no less than seven definitions can be found in the literature:

1. cf-ordering [17]: m1 vcf m2 iff cf1({ω}) ≤ cf2({ω}),∀ω ∈ Ω where
cfi({ω}) = Pli({ω}) are contour functions of mi.

2. pl-ordering [11]: m1 vpl m2 iff Pl1(A) ≤ Pl2(A),∀A ⊆ Ω,

3. q-ordering [11]: m1 vq m2 iff Q1(A) ≤ Q2(A),∀A ⊆ Ω,

4. s-ordering [45]: m1 vs m2 iff there exists a stochastic matrix S(A,B)
where A is focal for m1 and B is focal for m2 such that

∑
A:A⊆B S(A,B) =

1 (so S(A,B) = 0 if A 6⊆ B), and m1 = S · m2 (short for m1(A) =
ΣB:A⊆BS(A,B)m2(B)). Then, m1 is called a specialization of m2.

5. d-ordering [24]: m1 vd m2 iff there exists a BPA m such that m1 =
m ∩©m2. Then, m1 is said to be a Dempsterian specialization of m2
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6. dif-ordering [5]: m1 vw m2 iff δ1(A) ≤ δ2(A),∀A ⊆ Ω. We call diffidence
ordering.10

7. l-ordering [32]: m2 vl m1 (l stands for latent) iff m+
1 vw m+

2 and
m−1 vw m

−
2 , considering latent belief structures obtained by Smets canon-

ical decomposition of m1 as L1 = (m+
1 ,m

−
1 ) and m2 as L2 = (m+

2 ,m
−
2 ).

These information orderings are more or less stringent. It is known that
[11, 7, 5]:

m1 vw m2 ⇒ m1 vd m2 ⇒ m1 vs m2 ⇒

{
m1 vpl m2 ⇒ m1 vcf m2,

m1 vq m2 ⇒ m1 vcf m2

where all implications are strict. They make sense in some frameworks, not in
other ones. For instance, the cf-ordering is a minimal generalisation of rela-
tive specificity in possibility theory [12], since the contour functions reduce to
possibility distributions if the belief functions are consonant.

In the pl-ordering we may use belief functions by duality: m1 vpl m2 if
and only if Bel1(A) ≥ Bel2(A),∀A ⊆ Ω. The pl-ordering actually compares the
credal sets induced by the BPAs. Namely, a BPAmi can be viewed as encoding a
convex set of probability functions Pi = {P : P (A) ≤ Pli(A),∀A ⊆ Ω} provided
that mi(∅) = 0. Then we also have the equivalence m1 vpl m2 if and only if
P1 ⊆ P2. This view requires to see belief functions as encoding for instance,
frequencies of ill-observed data, that would have given standard probability
distributions had the observations been precise. It corresponds to Dempster
upper and lower probabilities induced by a set-valued random variable [4], where
the sets observed have an epistemic flavor (incomplete pieces of information).

These five information orderings reduce to standard set-inclusion when the
belief functions have each a single focal set with mass 1. The cf-ordering corre-
sponds to fuzzy set inclusion. The specialization ordering is a direct extension
of set inclusion to random sets [11], where the stochastic matrix induces a joint
BPA m(A,B) = S(A,B)m1(A) bearing on Cartesian products of focal sets of
m1 and m2, and whose marginals are m1 and m2. This information ordering,
like the pl-ordering, is completely independent of the orthogonal or conjunctive
rules of combination. In contrast, the d-ordering add constraints on the joint
mass function, forcing m1 to be the result of merging m2 with another belief
function. In the case of comparing categorical belief functions focused on A and
B, the d-ordering becomes ∃C : A ∩ C = B to express the inclusion B ⊆ A.

5.2. Informational orderings and the conjunctive rule of combination

There are four informational orderings that have connections with the or-
thogonal and conjunctive rules of combination: the q-ordering, the d-ordering,
the dif-ordering and the l-ordering. In the case of the q-ordering, the relation

10We keep the original notation vw of Denœux who denotes diffidence functions by w. It
should be called diffidence ordering, though.

25



with the conjunctive rule is because Q1(A) ≤ Q2(A),∀A ⊆ Ω if and only if there
exists a function Q : 2Ω → [0, 1] such that Q1(A) = Q(A) ·Q2(A)∀A ⊆ Ω. How-
ever, Q is generally not a commonality function. When it is, then it corresponds
to a BPA m such that m1 = m ∩©m2, that is, we recover the Dempsterian spe-
cialisation m1 vd m2 and the fact that the latter is stronger than the q-ordering
[24].

Likewise in the case of the dif-ordering, the relation with the conjunctive
rule is because δ1(A) ≤ δ2(A),∀A ⊆ Ω if and only if there exists a function
w : 2Ω → [0, 1] such that δ1(A) = δ(A) · δ2(A)∀A ⊆ Ω. However, as by construc-
tion, δ(A) ≤ 1,∀A ⊆ Ω, δ is the diffidence function of a separable BPA m and
δ1 = δ · δ2 is the same as m1 = m ∩©m2. Then the dif-ordering corresponds to a
special case of d-ordering where the BPA m is separable, that is, we recover the
implication m1 vw m2 ⇒ m1 vd m2 [5]. These two orderings collapse on sep-
arable belief functions. Indeed, if m2 ∩©m = m1 and m1,m2 are separable, then
m should be separable as well; for if not, we would have m2 ∩©m not separable.

In order to be meaningful in the setting of belief functions resulting from
the merging of testimonies and prejudices, the information ordering must be
compatible with the conjunctive rule of combination. We can define this com-
patibility as follows.

Definition 1. An information ordering @x is compatible with a combination
rule � if and only if m1 vx m2 and m3 vx m4 imply m1 �m3 vx m2 �m4.

Proposition 11. The information orderings @x, x = cf, q, s, d, w are compati-
ble with the conjunctive rule ∩©.

Proof: Suppose m1 vq m2 and m3 vq m4. It means Q1 ≤ Q2 and Q3 ≤ Q4,
and by the conjunctive rule Qm1 ∩©m3 = Q1Q3 ≤ Qm2 ∩©m4 = Q2Q4. The same
holds for the cf-ordering as the contour function of m is cf(ω) = Q({ω}).

Suppose m1 vd m2 and m3 vd m4. It means m1 = m2 ∩©m′2 and m3 =
m4 ∩©m′4, so (by associativity)m1 ∩©m3 = m2 ∩©m4 ∩©(m′2 ∩©m

′
4). Hencem1 ∩©m3 vd

m2 ∩©m4. For the dif-ordering the proof is similar.
For specialization entailment, suppose m1 = S ·m2 and m3 = S′ ·m4. Let

Ai, Bi, . . . denote the focal sets of mi. Consider the coefficient S(A1, A2) of
S. It is the portion of mass m(A2) allocated to A1 where A1 ⊆ A2. Ac-
cording to the conjunctive rule, the mass m1(A1)m3(A3) is allocated to set
A1 ∩ A3, and the mass m2(A2)m4(A4) is allocated to set A2 ∩ A4. Since
A1 ∩ A3 ⊆ A2 ∩ A4 we can define another stochastic matrix S ∩© such that
S ∩©(A1 ∩ A3, A2 ∩ A4) = S(A1, A2)S′(A3, A4). Since by assumption m1(A1) =∑
A2:A1⊆A2

S(A1, A2)m2(A2) and m3(A3) =
∑
A4:A3⊆A4

S′(A3, A4)m4(A4), it
follows that

m1(A1)m3(A3) =
∑

A1⊆A2,A3⊆A4

S(A1, A2)S′(A3, A4)m2(A2)m4(A4).

As
∑
A1:A1⊆A2

S(A1, A2) = 1 and
∑
A3:A3⊆A4

S(A3, A4) = 1, it implies that∑
A1,A3:A1⊆A2;A3⊆A4

S(A1, A2)S′(A3, A4) = 1 as well. Note that the fact that
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there may be sets A1, A2, B1, B2 such that A1 ∩ A3 = B1 ∩ B3 is innocuous as
we can add the coefficients S ∩©(A1 ∩A3, A2 ∩A4) and S ∩©(B1 ∩B3, A2 ∩A4), if
we consider the focal set C13 = A1 ∩A3 = B1 ∩B3 of m1 ∩©m3. In other words,
by adding lines of the matrix S ∩© pertaining to the same focal set of m1 ∩©m3,
and then adding columns of terms pertaining to the same focal set of m2 ∩©m4,
we get a reduced stochastic matrix S

′′
such that m1 ∩©m3 = S

′′·m2 ∩©m4. �

However, it is not clear whether the plausibility ordering vpl is compatible
with the conjunctive rule or not.

Another form of compatibility between the conjunctive combination rule
and an information ordering can be defined by requiring that the result of the
conjunctive combination m1 ∩©m2 is more informed than any of m1 and m2. It
is easy to see that m1 ∩©m2 vd mi, i = 1, 2, by construction. As a consequence,
m1 ∩©m2 vx mi, i = 1, 2 for x = cf, pl, q, s, as well.

5.3. Notes on the diffidence ordering

Note that only the d-ordering and the dif-ordering explicitly involve the
conjunctive combination rule: m1 vx m2, x = d,w means that m1 results from
combining m1 with another source. Recall that these two orderings collapse on
separable belief functions.

Consider two SSF’s Aδ11 and Aδ22 . It is natural to consider that Aδ11 is at
least as informed as Aδ22 whenever A1 ⊂ A2 and δ1 < δ2: the statement A1 is
more precise and has less diffidence. And indeed we have that Aδ11 @cf A

δ2
2 , and

also for x = pl, q, s, since SSFs induce possibility measures and these orderings
collapse in the consonant case [11].

Yet, we do not have that Aδ11 vx A
δ2
2 , for x = d,w, even if A1 ⊂ A2 and

δ1 < δ2. This is because the result of combining two SSF’s with different focal
sets yields a belief function that has at least two focal sets different from Ω (i.e.,
finding Bδ such that Aδ11 = Bδ ∩©Aδ22 is impossible as the result of the merging
will have more than one focal set different from Ω). However Aδ1 @w Aδ2 is
true if A1 = A2 = A. However, it implies that SSF’s can seldom be compared
by these ordering relations. These remarks lead to highlight the meaning of
relation @w.

Consider the case of separable belief functions mi = ∩©Ai∈TiA
δi(A)
i where

δi(A) < 1 if A ∈ Ti, i.e., the prejudice sets Pi are empty. It is then clear that
m1 vw m2 is equivalent to T2 ⊆ T1 and δ1(A) ≤ δ2(A),∀A ∈ T1. In words,
the BPA m2 results from merging a subset of the pieces of information whose
merging yields m1, and the former grants less confidence in these pieces of
information than m1. For instance, if A1 6= A2, we never have that Aδ11 @w A

δ2
2

even if A1 ⊂ A2 and δ1 < δ2, because T1 = {A1} and T2 = {A2} so, T1∩T2 = ∅.
One can figure out how stringent the relation m1 vw m2 is: it means that

m1 is based on the same pieces of information as m2 (the former with more
confidence), plus other ones. In particular, if m2 is obtained from m1 by en-
larging the focal sets of the latter, we shall not have m1 vw m2 because then
T1∩T2 = ∅ again, while obviously m1 vs m2. Since Aδ 6vw Bδ when A ⊂ B, let-
ting δ vanish yields categorical belief functions focusing on A and B but at the
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limit we do not have that A vw B: since their (extended) diffidence functions
are δA(A) = 0, δA(E) = 1 otherwise for E 6= A ⊂ Ω and δB(B) = 0, δB(E) = 1
otherwise for E 6= B ⊂ Ω, we do not have that δA ≤ δB at the limit. It may
be seen as anomalous that the diffidence ordering does not generalize set inclu-
sion. But this is because this ordering insists on having the inclusion of sets of
propositions (T1 = {A} 6⊂ T2 = {B}), even in the categorical case.

However, there is a tiny difference between vw and vd on separable belief
functions: the former is only defined in the non-dogmatic case (so the above
anomaly of the diffidence ordering is only obtained as a limit process, assuming
continuity at the limit), while the latter still makes full sense for dogmatic (in
particular categorical) belief functions. Since A ⊆ B is equivalent to A = B∩C
for some set C, and the conjunctive rule extends set-intersection and applies to
dogmatic belief functions, A vd B holds.

Consider now the canonical decomposition of a non dogmatic BPA mi into
its latent belief structure Li = (m+

i ,m
−
i ). The diffidence function of mi is of

the form:

δi(A) =


δ+
i (A) < 1 if A ∈ Ti

1/δ−i (A) > 1 if A ∈ Pi
1 otherwise.

In this general case, m1 vw m2 expresses that not only T2 ⊆ T1 and δ+
1 (A) ≤

δ+
2 (A),∀A ∈ T2, but also P1 ⊆ P2 and δ−1 (A) ≥ δ−2 (A),∀A ∈ P1. Namely,
m1 results from more testimonies and less prejudices than m2, and prejudices
common to m1 and m2 are less strong for m1. In m2 some sources of information
may be missing and some focal sets resulting from combining the remaining ones
may be deleted by prejudices.

In the same vein, it is easy to see that generally, m1 ∩©m2 6vw mi, i = 1, 2
except if m1 and m2 are separable. This is because in the general case of non-
dogmatic belief functions, the diffidence function δ12 = δ1 · δ2 of m1 ∩©m2 does
not satisfy the inequality ∀A ⊂ Ω, δ12(A) ≤ δ1(A) if m2 is not separable. This
inequality holds only for sets A such that δ2(A) ≤ 1. These results highlight the
limited compatibility between the diffidence ordering and the conjunctive rule
of combination for non-separable belief functions.

5.4. Notes on the latent ordering

Finally, the l-ordering [32] explicitly relies on latent belief structures of m1

and m2 namely, L1 = (m+
1 ,m

−
1 ) and L2 = (m+

2 ,m
−
2 ). m1 vl m2 means that the

positive part of m1 is more informed than the positive part of m2 and likewise
for the prejudice parts.

Notice that we do not have that m1 vl m2 implies m1 vd m2. Indeed,
suppose that m+

1 vw m
+
2 and m−1 vw m

−
2 . As m+

1 ,m
−
1 ,m

+
2 ,m

−
2 are separable,

this is equivalent to m+
1 vd m

+
2 and m−1 vd m

−
2 . More explicitly, ∃m+,m−

separable, such that m+
1 = m+ ∩©m+

2 and m−1 = m− ∩©m−2 . Hence

m1 = m+
1 6∩©m−1 = (m+ ∩©m+

2 ) 6∩©(m− ∩©m−2 ) = (m+ 6∩©m−) ∩©(m+
2 6∩©m−2 ).
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So m1 = m ∩©m2, but there is no reason why m should be a regular BPA, since
m+ and m− are unrelated.

Of course, for separable belief functions the latent, diffidence and Dempste-
rian specialisation orderings coincide trivially. But generally, the two informa-
tion orderings vl and vw are at odds for non-separable functions. Indeed, when
comparing m1 and m2, the inequalities for the negative parts of the latent belief
structures have opposite directions for vl and vw, respectively δ−1 ≤ δ−2 and
1/δ−1 ≤ 1/δ−2 .

At the interpretation level, m1 @l m2 means that m1 results from more tes-
timonies (like the diffidence ordering) and more prejudices (unlike the diffidence
ordering) than m2, and prejudices common to m1 and m2 are stronger for m1.
In particular, when m+

1 = m+
2 we can have that m1 @l m2 while m2 @w m1.

Example 8. Consider the belief function of the form AδA ∩©BδB ∩©(A ∩B)x.

• When x = 1, it is a decomposable belief function m1 such that m1(A) =
(1− δA)δB ,m1(B) = (1− δB)δA,m1(A∩B) = (1− δA)(1− δB),m1(Ω) =
δAδB.

• When x = 1/(δA + δB − δAδB) > 1, it is a non-dogmatic belief function

m2 such that m2(A) = (1−δA)δB
δA+δB−δAδB ,m2(B) = (1−δB)δA

δA+δB−δAδB ,m2(A ∩ B) =

0,m2(Ω) = δAδB
δA+δB−δAδB

It is easy to see that δ1 < δ2, since δ1(E) = δ2(E), except that δ1(A ∩ B) =
1 > δ2(A ∩B) = 1/(δA + δB − δAδB), so m1 @w m2. However m2 @l m1 since
m+

1 = m+
2 but m−2 = m−1 , i.e., 1/x = δA + δB − δAδB < 1. It is clear that m1 is

more informative than m2 (in the sense of the six information orderings other
than vl).

In fact, the stronger (i.e. informative) are the prejudices the less informative
the resulting belief function after retraction of these prejudices, which is not the
intuition that rules the relation vl.

Example 9. 11 Consider L1 = (m+
1 ,m

−
1 ) and L2 = (m+

2 ,m
−
2 ) such that m+

1 =
m−1 = mΩ and m+

2 = m−2 = Aw ∩©Bv. Hence, L2 vl L1 but the BPA’s mi =
m+
i 6∩©m

−
i , i = 1, 2 are indistinguishable with respect to any of the x-orderings,

since we have m1 = m2 = mΩ.
Furthermore, consider L3 = (A0.4, A0.5) and L4 = (A0.2, A0.2). Here, L4 @l

L3, however m3 @x m4 as A0.8 @x mΩ.

As a conclusion, the l-ordering compares the informative contents of latent
belief structures, but not the informative contents of resulting belief functions.
Consequently, the l-ordering vl conveys a specific meaning distinct from the
one captured by the other six x-orderings vx.

11Suggested by a reviewer.
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5.5. Diffidence-based combinations in evidence theory

In the framework of fusion, the conjunctive rule is justified when the sources
of information are independent. However this hypothesis is often unrealistic
and combination rules dealing with non-independent information sources are
necessary. In general, idempotent rules can be used as a cautious approach
when dependencies between sources are ill-known. But it is not easy to find
simple idempotent combination rules in evidence theory (see the discussion in
[7]). In the context of belief functions described by diffidence functions, Denœux
[5] suggests an idempotent combination rule relying on the diffidence ordering.
The result of combining m1 and m2 is the least informative BPA m such that
m vw m1 and m vw m2. The result, we denote by m1 ∧©m2, is obviously the
BPA m with diffidence function δ = min(δ1, δ2). In contrast, the conjunctive
rule of combination performs the product instead of the minimum. Note that
since δ1 and δ2 are diffidence functions issued from standard BPA’s, so is δ =
min(δ1, δ2), since there exist separable belief functions m′1 and m′2 such that
m1 ∧©m2 = m′1 ∩©m1 and m1 ∧©m2 = m′2 ∩©m2.

Note that it is difficult to define a combination rule using the same approach
based on other information comparisons, i.e., there is not often one least infor-
mative belief function such that m vx m1 and m vx m2, for x = s, pl, q, cf.
In [7], the case of x = cf is studied in detail, as it comes down to finding an
idempotent combination rule in agreement with the minimum rule of possibility
theory. It is shown that in the non-consonant case, the question has sometimes
several answers, sometimes no answer. In the following we compare the idem-
potent combination of diffidence functions and the conjunctive rule rule as well
as the minimum rule of possibility theory.

First we can show that there are cases when the two combinations ∧© and ∩©
coincide:

Proposition 12. Consider two separable BPA’s m1 and m2 with respective
testimony sets Ti, i = 1, 2. Then m1 ∧©m2 = m1 ∩©m2 if and only if T1 ∩ T2 = ∅

Proof: First, ∀A ⊂ Ω, δi(A) ≤ 1, i = 1, 2 due to separability. If T1 ∩ T2 = ∅, it
means that ∀A ⊂ Ω, δ1(A) = 1 or δ2(A) = 1; it implies that min(δ1, δ2) = δ1 ·δ2.
The converse is obvious since min(x, y) = xy on the positive real line only if
max(x, y) = 1. �

This proposition sheds light on the meaning of the idempotent diffidence
merging rule on separable belief functions. It assumes that sources delivering
the same information are dependent, while sources delivering distinct pieces
of information are independent.12 It explains that m1 ∧©m1 = m1, while the
conjunctive rule is recovered with disjoint testimony sets.

On the contrary, if T1 = T2 while δ1 6= δ2, the two BPA’s stem from the
same testimonies with varying strengths, and then m1 ∧©m2 6= m1 ∩©m2. In the

12Note that, in the particular case of simple support functions this result was highlighted
by Pichon in [31, Remark 4]).
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general case when T1 ∩ T2 6= ∅, under the separability assumption, let m1\2 =

∩©A∈T1\T2
Aδ1(A), m2\1 = ∩©A∈T2\T1

Aδ2(A) and m12 = ∩©A∈T1∩T2
Amin(δ1(A),δ2(A))

(the idempotent part of the combination), we have that

m1 ∧©m2 = m1\2 ∩©m12 ∩©m2\1. (12)

These results does not extend to non-dogmatic belief functions that have
non-empty sets of prejudices Pi, i = 1, 2 for which δi(A) > 1. However we have
the following result:

Proposition 13. Consider two non-dogmatic BPA’s m1 and m2 with respective
prejudice sets Pi, i = 1, 2. Then if P1 ∩ P2 = ∅, the resulting BPA m1 ∧©m2 is
separable.

Proof: As P1∩P2 = ∅, it means that ∀A ∈ P1∪P2, δ1(A) ≤ 1 or δ2(A) ≤ 1. As
δi(A) > 1,∀A ∈ Pi, i = 1, 2 it means that min(δ1(A), δ2(A)) ≤ 1,∀A ∈ P1 ∪ P2.
And obviously, ∀A 6∈ P1 ∪ P2, δi(A) ≤ 1, so min(δ1(A) ≤ 1, δ2(A)) ≤ 1 as well.
Hence m1 ∧©m2 is separable and its set of testimonies is T1 ∪ T2. �

Combining the two propositions is then clear that if both T1 ∩ T2 = ∅ and
P1 ∩ P2 = ∅, then m1 ∧©m2 = m+

1 ∩©m
+
2 . And in the non-separable case we still

have that
m1 ∧©m2 = m1\2 ∩©m12 ∩©m2\1.

wherem1\2 andm1\2 are still defined as above and are separable, and nowm12 =

∩©A∈(T1∩T2)∪(P1∩P2)A
min(δ1(A),δ2(A)) (the idempotent part) is not separable.

6. Possibility theory as the merging of consonant information

In the consonant (non-dogmatic) case, the set of focal sets are nested, and
the plausibility measure is a possibility measure. Then, it is possible to directly
express the plausibility of singletons in terms of the diffidence function. We try
to interpret diffidence ordering in the case of possibility theory, and compare the
idempotent rule of combination of possibility theory with the diffidence-based
idempotent combination rule.

6.1. Possibilistic BPA’s

A possibilistic BPA has nested focal sets of the form {E1 ⊂ E2 ⊂ · · · ⊂ Ek},
plus Ek+1 = Ω. Its contour function, called possibility distribution, denoted by
π, is of the form

π(ω) =
∑
ω∈Ei

m(Ei) =

k+1∑
i=j

m(Ei) if ω ∈ Ej \ Ej−1, i = 2, . . . k + 1

and π(ω) = 1 if ω ∈ E1. Moreover Pl(A) = maxω∈A π(ω) (called a possibility
measure) so that it is maxitive [34, 12], i.e.,

Pl(A ∪B) = max(Pl(A), P l(B)) and Bel(A ∩B) = min(Bel(A), Bel(B)).
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In the consonant case, the BPA can be recovered from the contour function.
Let πi = π(ω) if ω ∈ Ej \ Ej−1 where π1 ≥ π2 ≥ . . . πk > πk+1 > 0. Then we
have that [12]:

m(Ei) = πi − πi+1, i = 1, . . . , k

and m(Ω) = πk+1. In other words all the information contained in the BPA is
contained in the contour function. In particular the α−cuts of π, say Eα = {ω ∈
Ω : π(ω) ≥ α} for 0 < α ≤ 1 coincide with the focal sets of the corresponding
BPA.

In terms of information ordering, it holds that for consonant belief functions,
we have that m1 vs m2 if and only if m1 vcf m2, i.e. π1 ≤ π2 (specificity
ordering): the four loosest information orderings coincide. As we show in the
sequel this is not the case for the diffidence ordering.

6.2. From possibility distributions to diffidence functions and back

A consonant belief function is separable, and comes down to the merging of
consonant pieces of information of the form Eδii with E1 ⊂ E2 ⊂ · · · ⊂ Ek and
δi ≤ 1. Due to consonance, it is easy to see [5] that:

Proposition 14. The BPA mk induced by merging consonant sets of the form
Eδii , i = 1 . . . k is such that mk(E1) = 1 − δ1,mk(Ei) = (1 − δi)

∏i−1
j=1 δj for

i = 2, . . . k, and mk(Ω) =
∏k
i=1 δi. Moreover the contour function of mk is the

possibility distribution such that if ω ∈ Ei \ Ei−1, i > 1, πk(ω) =
∏i−1
j=1 δj.

Proof: Suppose k = 2, it is easy to see that Eδ11 ∩©Eδ22 has a BPA such
that m2(E1) = 1 − δ1,m2(E2) = δ1(1 − δ2),m(Ω) = δ1δ2. Now suppose
the result holds till k − 1, and compute ( ∩©k−1

i=1 E
δi
i ) ∩©Eδkk where Ek is a su-

perset of all Ei’s, i < k. As Ei ⊂ Ek,∀i < k the resulting mass of Ei is
mk(Ei) = mk−1(Ei)(1−δk)+mk−1(Ei)δk (corresponding to Ei∩Ek and Ei∩Ω

respectively), that is mk(Ei) = (1 − δi)
∏i−1
j=1 δj = mk−1(Ei) (it remains the

same for i < k). Besides mk(Ek) = mk−1(Ω)(1 − δk) = (1 − δk)
∏k−1
j=1 δj , and

mk(Ω) = mk−1(Ω)δk =
∏k
i=1 δi. Besides it is clear that if ω ∈ Ω \ Ek, π(ω) =

mk(Ω) =
∏k
i=1 δi. If ω ∈ Ek \ Ek−1, πk(ω) = mk(Ω) + mk(Ek) =

∏k−1
i=1 δi, and

more generally it is obvious that πik = δiπ
i−1
k . �

Conversely given the possibility degrees πi, i = 1, . . . k + 1 where π1 = 1 >
π2 > . . . πk+1 > 0 defined as above, the diffidence function of the corresponding
necessity measure can be immediately recomputed as

δ(A) =


πi+1

πi
if A = Ei, i = 1, . . . , k

0 otherwise.

This result is already hinted in Shafer’s book [34] using weights of evidence.
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6.3. Diffidence ordering between possibility distributions

At this point it is interesting to express the diffidence ordering between two
possibility distributions π1 and π2. Suppose π1 and π2 have nested focal sets
F1, and F2. It is clear that

π1 vw π2 if and only if F2 ⊆ F1 and
πi+1

1

πi1
≤ πi+1

2

πi2
,∀Ei ∈ F2.

In the above definition, note that if Ei is focal for π1 but not for π2, it is clear
that if ω ∈ Ei \ Ei−1 and ω′ ∈ Ei+1 \ Ei, we have that π2(ω) = π2(ω′) so that
πi+1

2 = πi2 in the above equivalence. So not only the cuts of π2 must be among
the cuts of π1, but there should be some inequalities between possibility ratios.

These inequalities are equivalent to
πi1
πj1
≤ πi2

πj2
for all j ≤ i.

This information comparison may seem counter-intuitive in the usual con-
texts of possibility theory. For instance, if we consider possibility measures as
upper probability bounds [14, 3] it is clear that the usual specificity relation
(π1 ≤ π2 pointwise), i.e. the cf-ordering, is the most natural one, as it corre-
sponds to an inclusion of the corresponding convex probability sets. However
the diffidence ordering seems to make sense for likelihood functions.

It has been known for a long time that possibility distributions can be viewed
as likelihood functions. This is first explained in the book [34], chapter 11,
where Shafer assumes that likelihood functions can be viewed as proportional
to contour functions of consonant belief functions, obtained by renormalizing
the likelihood function so that its maximal value is 1. The same message was
emphasized by Smets [39]. Later on, it was explained in [10] that the function
λ(ω) = P (D|ω), where D is a data set, and P is a probabilistic model based on
parameter ω for the data set, behaves like a possibility distribution because (i)
for any subset A ⊂ Ω, λ(A) = P (D|A) is a weighted average of P (D|ω), ω ∈ A if
prior probabilities are known, hence upper bounded by max{λ(ω) : ω ∈ A} (ii)
λ(A) should be monotonic with inclusion (it represents the likelihood of ω ∈ A).
Hence λ(A) = max{λ(ω) : ω ∈ A}. Other authors proposed justifications of this
proposal such as Coletti and Scozzafava [2], and more recently Denœux [6].

It is tempting (and it has been done indeed) to compare likelihood functions
pointwisely using the cf-ordering. However, likelihood theory (Edwards [18])
specifies that we can only compare likelihood ratios relative to results of distinct

data sets D1 and D2, namely compare P (D1|ω)
P (D1|ω′) and P (D2|ω)

P (D2|ω′) . Letting πi(ω) =

ciP (D1|ω) where ci is a value such that maxω∈Ω πi(ω) = 1, it is obvious that

P (D1|ω)

P (D1|ω′)
≤ P (D2|ω)

P (D2|ω′)
⇐⇒ π1 vw π2

provided that P (D1|ω) and P (D2|ω) induce the same orderings. These consid-
erations seem to indicate that the approach of possibility distributions as like-
lihood functions follows different principles from those of the usual approach,
and the specificity ordering between them is questionable.
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6.4. The diffidence-based idempotent combination rule for possibility distribu-
tions

Lastly let us focus on combination rules in possibility theory. Given two
possibility distributions the usual idempotent conjunctive rule is the minimum:
π1∧2 = min(π1, π2) (see for instance [13]). This combination rule is in agreement
with the q-ordering of belief functions as the consonant belief function based
on π1∧2 is the least q-informative belief function that is more informative than
both π1 and π2 [41]. There is also a pointwise conjunctive combination rule
using product : π1 ∩©2 = π1 · π2. It is the contour function of the (generally
not consonant) result of combining the two consonant belief functions using
the conjunctive rule. The diffidence approach brings us another idempotent
conjunction in possibility theory, using ∧©, namely π1∧©2.

In the consonant case, the set of focal sets is exactly the set of testimonies
used for building the BPA (plus Ω). Suppose π1, π2 have nested focal sets F1,
and F2. The diffidence-based idempotent combination rule ∧© has interesting
special cases:

• If F1 ∩ F2 = {Ω}, then π1∧©2 = π1 ∩©2, i.e., we get the product rule.
However the result is generally not consonant since ∧© coincides with the
conjunctive rule. It is consonant only if F1 ∪ F2 is a nested sequence.

• If F1 = F2, then the result is consonant, but π1∧©2 6= π1∧2, generally, i.e.,
we do not recover the minimum rule of possibility theory.

In the latter case the resulting possibility distribution can be derived from

the consonant belief function ∩©ki=1E
δk
k where δi = min(

πi+1
1

πi1
,
πi+1

2

πi2
). We can see

that

• if ω ∈ E1 then π1∧©2(ω) = 1

• if ω ∈ E2 \ E1 then π1∧©2(ω) = min(π1
1 , π

1
2)

• if ω ∈ Ei+1 \ Ei then π1∧©2(ω) = min(π1
1 , π

1
2) ·

∏i−1
j=1 min(

πj+1
1

πj1
,
πj+1

2

πj2
).

It is clear that π1∧©2 = π1∧2 is the minimum rule when combining SSF focused
on the same subset E. However it is no longer the case for combining possibility
distributions having, say, two cuts E1 ⊂ E2 6= Ω. For ω 6∈ E2 we get π1∧©2(ω) =

min(π2
1 , π

2
2) ·min(

π3
1

π2
1
,
π3

2

π2
2
).

In the general case, where F1 and F2 have sets other than Ω in common,
the diffidence-based combination can take the following form induced by (12):
π1∧©2 = π1\2 ∩©π12 ∩©π2\1, where π1\2 is the contour function of the consonant
belief function based on F1 \F2 using the diffidence weights from π1, π2\1 is the
same, exchanging 1 and 2, and π12 is the result of combining by ∧© the consonant
belief functions obtained by restricting the focal sets of π1 and π2 to F1 ∩ F2.
All partial results are consonant belief functions but the final result may not
be so if F1 ∪ F2 is not nested. As a consequence we of course do not have
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that if π1 ≤ π2 then π1∧©2 = min(π1, π2). Likewise, we do have that obviously
π1 ∩©π2 @w π1∧©2 by construction. But we do not have that π1 ∩©π2 < π1∧©2.

Example 10. We illustrate on some instances the above mentioned difference
between the minimum rule, the conjunctive rule and the idempotent diffidence-
based rule of combination. Consider a five-element set Ω = a, b, c, d, e. Possibil-
ity distributions are denoted by 5-component vectors (π(a), π(b), π(c), π(d), π(e)).
Subsets are denoted ab, abc etc.

1. Consider π1 = (1, 0.9, 0.7, 0.5, 0.2) and π2 = (1, 0.7, 0.6, 0.4, 0.1). Here,
π1 > π2 and they have the same focal sets. In terms of diffidence, they
are: (a)0.9(ab)7/9(abc)5/7(abcd)2/5 and (a)0.7(ab)6/7(abc)4/6(abcd)1/4 re-
spectively. The minimum of diffidence weights is (a)0.7(ab)7/9(abc)2/3(abcd)1/4

hence π1∧©2 = (1, 0.7, 49/90, 98/270, 98/1080) = (1, 0.7, 0.544, 0.363, 0.09),
which is more specific than π1∧2 = π2.

2. Consider π1 = (1, 0.9, 0.9, 0.5, 0.5) and π2 = (1, 1, 0.8, 0.8, 0.2). They have
different focal sets, but F1 ∪ F2 is a nested sequence. In terms of diffi-
dence, they can be written as (a)0.9(abc)5/9 and (ab)0.8(abcd)1/4 respec-
tively. Then π1∧©2 has decomposition (a)0.9(ab)0.8(abc)5/9(abcd)1/4, using
conjunctive fusion of the elementary testimonies. It is clearly consonant.
So, π1∧©2 = (1, 0.9, 0.72, (72× 5)/9, (72× 5)/36) = (1, 0.9, 0.72, 0.4, 0.1) =
π1 · π2 We recover the conjunctive rule on possibility distributions.

3. Consider π1 = (1, 0.9, 0.7, 0.5, 0.5) and π2 = (1, 0.8, 0.6, 0.6, 0.4). They
have some focal sets in common. Decomposition: (a)0.9(ab)7/9(abc)5/7

and (a)0.8(ab)3/4(abcd)2/3.
π1∧©2 has decomposition (a)min(0.9,0.8)(ab)min(7/9,3/4)(abc)5/7(abcd)2/3 where
π12 = (a)0.8(ab)3/4, π1\2 = (abc)5/7 and π2\1 = (abcd)2/3. We ob-
tain π1∧©2 = (1, 0.8, 0.6, 30/70, 20/70). And clearly π1 ∩©π2 6< π1∧©2 <
min(π1, π2) here.

4. Consider π1 = (1, 0.9, 0.7, 0.5, 0.2) and π2 = (1, 0.5, 0.7, 0.9, 0.2). They
have some focal sets in common, but F1∪F2 is not nested. The decomposi-
tions are (a)0.9(ab)7/9(abc)5/7(abcd)2/5 and (a)0.9(ad)7/9(acd)5/7(abcd)2/5.
Then π1∧©2 corresponds to (a)0.9(ab)7/9(abc)5/7(ad)7/9(acd)5/7(abcd)2/5,
and the result is not a consonant belief function.

The above examples confirm that the diffidence-based idempotent rule of com-
bination differs from the minimum rule of possibility theory, and yields more
specific results than the latter. Moreover, just like for the conjunctive rule,
the result of combining two consonant belief functions by the diffidence-based
idempotent rule may fail to be consonant.

7. Conclusion

This paper revisits the decomposition of a non-dogmatic belief function into
a combination of generalized simple support functions proposed by Smets [40]
based on the diffidence function, showing that it can be viewed as the merging
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of uncertain testimonies and of reasons not to believe the result of their partial
conjunctions, which we have called prejudices. In other words, starting from the
intuition of Shafer, who considered belief functions resulting from the merging
of simple uncertain pieces of information, our paper tries to provide an extensive
presentation of non-dogmatic belief functions that articulate more recent find-
ings of Smets and Denœux into an intuitively coherent picture of the theory.
Our paper is an attempt to explain generalized SSFs with diffidence weights
larger than 1, showing they accurately model the idea of prejudice whose role
is to resist to the input of some new pieces of information. We also show that
the operation of retraction avoids the explicit use of deviant belief functions
such as GSSFs. We suggest that prejudices are due to some prior knowledge
that is more entrenched than incoming new pieces of uncertain evidence. In this
sense, the question of elicitation of the strength of prejudices comes down to the
elicitation of prior knowledge of an agent in the form of belief functions.

A contribution of this paper is a detailed investigation of how such prior in-
formation can affect a belief function, considering retraction as a special asym-
metric belief change operation that avoids the explicit use of negative mass
functions. Besides, we have studied properties of information orderings and
the idempotent combination rule based on the diffidence function. Our results
strengthen the approach to belief functions based on the merging of pieces of
evidence, as opposed to the approach based on upper and lower probability and
imprecise statistics.

It is important to notice that prejudices, as we conceive them, differ from
prior probabilities. In the Bayesian approach prior probabilities are merged
with likelihood functions pertaining to sure pieces of evidence, and Shafer has
shown that this process is a special case of the orthogonal rule of combination,
where prior information and incoming information play the same role. This is
problematic if the prior information severely conflicts with the new evidence, as
the results of the combination may become questionable due to contradiction.
On the contrary, while in the Bayesian setting, acquiring evidence can never
increase ignorance, retraction, akin to contraction in belief revision theory, may
lead from knowledge to ignorance: a prejudice conflicting with a piece of evi-
dence or with the result of merging such independent pieces tends to weaken or
even erase it in such a way that a state of ignorance results. It seems that this
mathematical model of resistance in front of new information could be useful in
the area of information fusion.

In the future it would be of interest to check the cognitive plausibility of
latent belief structures and the role of prejudices in the way humans process
new information, in line with previous studies highlighting the bipolar nature
of human knowledge (see Dubois and Prade [15] for a bibliography).
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