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Structures of opposition and comparisons.
Boolean and gradual cases

Didier Dubois, Henri Prade and Agnès Rico

Abstract. This paper first investigates logical characterizations of dif-
ferent structures of opposition that extend the square of opposition in
a way or in another. Blanché’s hexagon of opposition is based on three
disjoint sets. There are at least two meaningful cubes of opposition, pro-
posed respectively by two of the authors and by Moretti, and pioneered
by philosophers such as J. N. Keynes, W. E. Johnson, for the former,
and H. Reichenbach for the latter. These cubes exhibit four and six
squares of opposition respectively. We clarify the differences between
these two cubes, and discuss their gradual extensions, as well as the
one of the hexagon when vertices are no longer two-valued. The second
part of the paper is dedicated to the use of these structures of opposition
(hexagon, cubes) for discussing the comparison of two items. Comparing
two items (objects, images) usually involves a set of relevant attributes
whose values are compared, and may be expressed in terms of different
modalities such as identity, similarity, difference, opposition, analogy.
Recently, J.-Y. Béziau has proposed an “analogical hexagon” that or-
ganizes the relations linking these modalities. Elementary comparisons
may be a matter of degree, attributes may not have the same impor-
tance. The paper studies in which ways the structure of the hexagon
may be preserved in such gradual extensions. As another illustration
of the graded hexagon, we start with the hexagon of equality and in-
equality due to R. Blanché and extend it with fuzzy equality and fuzzy
inequality. Besides, the cube induced by a tetra-partition can account for
the comparison of two items in terms of preference, reversed preference,
indifference and non-comparability even if these notions are a matter
of degree. The other cube, which organizes the relations between the
different weighted qualitative aggregation modes, is more relevant for
the attribute-based comparison of items in terms of similarity.
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1. Introduction

The square of opposition [45] is a logical structure introduced in Ancient
Greek logic, starting with Aristotle, in relation with the study of syllogisms
[45]. It has greatly influenced medieval logic, as for instance, in the trea-
tises by William of Sherwood (c.1200-c.1272) [54] or by Charles de Bovelles
(1479-1566?) [17]. The square is still present in textbooks of the beginning
of the XVIIth century (e.g., [33]), but, one century and half later, in the
Encyclopédie of Diderot and d’Alembert [2], only the logical expressions as-
sociated to the four corners of the square remain, with their traditional names
A,I,E,O, but the square is no longer pictured. It partially fell into oblivion in
XIXth century with the advent of modern logic, although philosophers like
Keynes [39] and Johnson [38] still discussed syllogisms on the basis of the
square and introduced some extensions of it in the form of an octagon.

The square was studied again in philosophical logic in the 1960’s due to
Robert Blanché’s discovery of the hexagon of opposition [15], independently
of some forerunners [37, 53]. The hexagon includes three squares of opposi-
tion, and is a scheme that agrees with the structural organization of many
examples of related concepts. This hexagon is based on three disjoint sets;
see for instance [25].

Nevertheless, the interest in the square and its extensions has been re-
vived at the beginning of the new century [6, 10, 14, 11, 12, 13]. A cube of
opposition relying on a quadri-partition and including six squares of opposi-
tion was proposed by Moretti [42, 43] a decade and half ago. In fact, it had
appeared once in 1952, in a thorough discussion of syllogisms by Reichenbach
[49], but remained largely ignored since then. Another cube of opposition,
originated in the works of Keynes [39] and Johnson [38] has been rediscov-
ered some years ago [25] when trying to relate possibility theory [58, 26] with
the square of opposition. In this cube, two opposite facets are squares of
opposition (and there two other non-planar squares inside the cube), while
the remaining facets exhibit other noticeable structures. A careful analysis of
the differences between these two cubes is yet to be carried out. As it turns
out, Moretti’s cube expresses more constraints than the other one. More-
over, we investigate the link between these structures of opposition and their
associated partitions.

The square, the hexagon, and the two cubes mentioned above are binary-
valued structures. They become gradual when the formal expressions associ-
ated to their vertices are a matter of degree. With the exception of Moretti’s
cube, some gradual extensions of these structures have been already proposed
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and applied to several quantitative settings including possibility theory, be-
lief functions, weighted multiple criteria aggregations, fuzzy rough sets, and
fuzzy relations [28, 18, 19].

In the second part of this paper, we apply the graded hexagon and
the two graded cubes to concepts pertaining to the comparison of two ob-
jects, which may be a matter of degree. In order to compare two objects,
two images, etc. (we shall say items, more generally), it is natural to re-
fer to their descriptions. Descriptions are then understood as plain lists of
supposedly relevant attribute values. The two items are assumed to be de-
scribed by the same set of attributes and the values of these attributes are
supposed to be known. One is then naturally led to state that two items
are identical if their respective values for each relevant attribute coincide.
Béziau [9] recently pointed out that the notion of identity, along with five
other modalities pertaining to comparison (opposition, similarity, difference,
analogy, non-analogy), form a hexagon of opposition. This hexagon-driven
approach yields an organized overview of a family of logically related opera-
tors. The study of the compatibility between fuzzy extensions of comparison
operations and the logical hexagon is thus worth investigating. Besides, the
gradual extension of Johnson-Keynes cube, which fits with weighted aggrega-
tions, is also relevant for the comparison of items when features have unequal
importance. In contrast, Moretti’s cube, based on quadri-partition, applies
to binary preferences [50] since when comparing two items a and b, four at-
titudes are possible: i) one may prefer a to b, ii) one may prefer b to a, iii)
one may be indifferent between a and b, and iv) one may find a and b not
comparable. However the four relations may be a matter of degree [35, 56].

This paper is divided in two main parts. Section 2 provides a unified view
of the hexagon and cubes associated with the square of opposition, includ-
ing their gradual extensions. In particular the gradual extension of Moretti’s
cube is presented. Section 3 is devoted to the application of structures of
opposition to the comparisons of items. It first presents the fuzzy extension
of Blanché’s hexagon for inequality and equality operators, and then pro-
vide two examples of quantitative hexagons for similarity indices based on
cardinalities. The section then focuses on logical expressions agreeing with
Béziau’s analogy hexagon, and then on various possible fuzzy extensions.
This provides a structure relating gradual indices of opposition, similarity,
difference, analogy, and non-analogy. Such gradual extensions take into ac-
count approximate equality, and attribute importance. A preliminary version
of that latter part of the section appeared in [32]. We finally consider the two
cube structures and indicate their relevance for the comparison of items.

2. Structures of opposition and partitions

This section reviews the structures of opposition (square, hexagon, cubes). It
provides their logical characterization and their gradual extensions. We begin
by a presentation of the square of opposition, before considering the hexagon
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of opposition, and then Moretti’s cube, and finally a structure proposed by
Johnson and Keynes and retrieved by Dubois and Prade.

2.1. The square of opposition and its gradual extension

The traditional square of opposition [45] is built with universally and exis-
tentially quantified statements in the following way. Consider a statement
(A) of the form “all P ’s are Q’s”, which is negated by the statement (O)
“at least one P is not a Q”, together with the statement (E) “no P is a Q”,
which is clearly in even stronger opposition (than O) to the first statement
(A). These three statements, together with the negation of the last state-
ment, namely (I) “at least one P is a Q” can be displayed on a square whose
vertices are traditionally denoted by the letters A, I (AffIrmative half: from
Latin “AffIrmo”) and E, O (nEgative half: from Latin “nEgO”), as pictured
in Figure 1 (where Q stands for “not Q”).

contrary
A: all P ’s are Q’s E: all P ’s are Q’s

su
b
altern

subcontrary
I: at least one P is a Q O: at least one P is a Q

su
b
a
lt

er
n contradictoryco

ntra
dict

ory

Figure 1. Square of opposition

As can be checked, noticeable relations hold in the square:

(i) A and O (resp. E and I) are the negation of each other;
(ii) A entails I, and E entails O (it is assumed that there is at least one P

for avoiding existential import problems);
(iii) A and E cannot be true together;
(iv) I and O cannot be false together.

Note that there is no constraint on the falsity of A and E in (iii) (either one
of them, or both, may be false), nor on the truth of I and O in (iv) (either one
of them, or both, may be true). So we can formally state, using the standard
propositional connectives ¬,∨,∧,→,≡:

Definition 1. In a square of opposition AEOI, the following holds:

(a) The diagonal link between A and O, symmetrically relate contradicto-
ries. It expresses that A and O are the negation of each other namely,
A ≡ ¬O holds. Similarly, E ≡ ¬I.

(b) The vertical arrows represent entailment relations corresponding to im-
plications A→ I = ¬A ∨ I and E→ O = ¬E ∨O.
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(c) The link between A and E which represents the symmetrical relation of
contrariety, corresponds to mutual exclusion, namely ¬A ∨ ¬E should
hold.

(d) The link between I and O which represents the symmetrical relation of
subcontrariety, is a disjunction, namely I ∨O holds.

This leaves us with three options for defining a formal square of opposi-
tion with independent conditions [19]: i) either we can regard (a) and (b), or
ii) (a) and (c), or iii) (a) and (d), as the basic requirements. Actually, we can
express the content of a square of opposition in propositional logic using two
propositional atoms (say A and E) and a knowledge base containing only the
axiom ¬A∨¬E, expressing their mutual exclusion (and then defining I ≡ ¬E
and O ≡ ¬A).

2.2. The graded square of opposition

We now recall the construction of the graded square of opposition [27, 19, 31].
We attach four variables α, ε, o, ι, valued on a bounded totally ordered setL, to
vertices A,E,O, I respectively. L has top 1 and bottom 0 and is assumed to
be equipped with an involutive negation n : L→ L. The involutive nature of
the negation is essential in the definition of the square of opposition because
of the expected symmetry between contradictories.

In order to keep the properties of the square in the gradual case, the
negation, the implication, the conjunction and the disjunction must be linked.
More precisely, given that α and o are the negation each other as well as ε and
ι, the properties i(α, ι) = 1 and i(ε, o) = 1 , c(α, ε) = 0 and d(ι, o) = 1 must
be equivalent. This is the case, as shown in [31], if we consider the following
triplet (i, c, d) of binary operations related via the negation:

conjunction. c : L×L→ L coincides with a Boolean conjunction on {0, 1};
it is increasing in both places.

implication. i : L×L→ L coincides with a Boolean implication on {0, 1};
it is is decreasing in the first place and increasing in the second place.

semi-duality. i and c are mutually definable by:

i(x, y) = n(c(x, n(y))) ⇐⇒ c(x, y) = n(i(x, n(y)))

disjunction. d : L× L→ L is associated with c by De-Morgan duality:

d(x, y) = n(c(n(x), n(y))).

We are now in a position to state the definition of a graded square of
opposition:

Definition 2. Given an involutive negation n : L → L, a triplet (i, c, d) of
implication, conjunction and disjunction defined as above, a graded square of
opposition αεoι respects the following constraints:

(a) α and o (resp. ε and ι) are each other’s negation:
o = n(α) and ι = n(ε).
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(b) A subaltern relationship between α and ι (resp. ε and o):
i(α, ι) = 1 and i(ε, o) = 1.

(c) There is mutual exclusion between α and ε, i.e., they cannot be simul-
taneously equal to 1:

c(α, ε) = c(ε, α) = 0.
(d) ι and o must cover all situations:

d(ι, o) = d(o, ι) = 1.

Note that condition (c) does not prevent the situation where α = ε = 0;
and likewise, condition (d) does not prevent the situation where ι = o = 1.

Under these requirements, the 4-tuple αιoε does form a graded square
of opposition. Note that we can also observe a graceful degradation of the
square properties when i(α, ι) < 1, namely, it can be checked that the smaller
i(α, ι) (i.e., α increases while ι decreases), the greater c(α, ε) = n(i(α, n(ι)).

There are two ways of generating squares of from a four-tuple of nega-
tion, implication, conjunction, and disjunction. We can start with a conjunc-
tion and an involutive negation, and derive the implication by semi-duality
and the disjunction by De Morgan duality, or start with an implication and
an involutive negation, and derive the conjunction by semi-duality and the
disjunction by De Morgan duality.

If we start with a conjunction c, the following result holds:

Proposition 1. If the conjunction c has no zero divisors, then the obtained
square of opposition is partially Boolean.

Proof A conjunction c has no zero divisors means that c(x, y) = 0 if
and only if x = 0 or y = 0. So the condition (c) pertaining to contraries, i.e.,
c(α, ε) = c(ε, α) = 0 which implies that α = 0 or ε = 0. If α = 0 then o = 1
too. �

As a consequence if we choose for c a triangular norm [40], that is, a
continuous two-place conjunction on [0, 1] that is commutative, associative,
and such that c(x, 0) = 0, c(x, 1) = x, then Proposition 1 applies if c = min
or c is a strict triangular norm like the product.

Example 1. [27] Take min for conjunction, and the negation 1 − (·) on the
scale [0, 1], one obtains the Kleene system of operations. It leads to a graded
square of opposition with conditions:

(a) α = 1− o, ε = 1− ι
(b) max(1−α, ι) = 1, max(1− ε, o) = 1 (using Kleene-Dienes implication).
(c) min(α, ε) = 0
(d) max(ι, o) = 1

As expected, only half of the square is graded because either one must have
that α = 0 (hence o = 1) or ε = 0 (hence ι = 1). �

In contrast we have the following result:
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Proposition 2. If the conjunction c is such that c(x, y) = 0 if and only if
x ≤ n(y), then the triplet (c, i, d) obtained by semi-duality and De Morgan
duality yields a genuine graded square of opposition.

Proof The required conditions for a graded square of opposition take
the form:

(c) c(α, ε) = 0 which is equivalent to α ≤ n(ε)
(b) as α = n(o), ε = n(ι), we get i(ε, o) = n(c(ε, n(o)) = n(c(ε, α)) = 1 since

ε ≤ n(α). And likewise we get i(α, ι) = 1.
(d) d(ι, o) = 1 is obvious. �

An important class of examples illustrating the last result uses a resid-
uated implication i =→∗ obtained from a symmetric conjunction ∗ by as
x→∗ y = inf{z : x ∗ z ≤ y} (for instance see [34]). It is such that i(x, y) = 1
if and only if x ≤ y, and so for the semi-dual conjunction, it holds that
c(x, y) = n(x→∗ n(y)) with c(x, y) = 0 if and only if x ≤ n(y).

Example 2. [31] Take min for ∗ and the negation n = 1− (·) on [0, 1]. Take

→∗=→G, the Gödel implication, such that x →G y =

{
y, if x > y

1 otherwise
. Let

i =→G, c(x, y) = x ⊗G y = 1 − (x →G (1 − y)) = y if x > 1 − y and 0
otherwise, and d(x, y) = x ⊕G y = 1 − (1 − x) ⊗G (1 − y), then one obtains
the Gödel square of opposition, provided that α+ ε ≤ 1:

(a) α = 1− o, ε = 1− ι
(b) α→G ι = 1, ε→G o = 1 .
(c) α⊗G ε = 0
(d) ι⊕G o = 1

�

Generally, the conjunction c obtained in this way is not symmetric, as
suggested by the above example. In place of i =→∗ we can use its contra-
positive implication in(x, y) = n(y) →∗ n(x). Its semi-dual conjunction is
cn(x, y) = c(y, x) if c is the semi-dual of i [34, 29]. We can symmetrize these
conjunctions considering c′(x, y) = min(c(x, y), c(y, x)) and its semi-dual im-
plication. For instance

Example 3. Take the nilpotent minimum [34]:

min(x, y) = min(x⊗G y, y ⊗G x) =

{
min(x, y) if x+ y > 1,

0 otherwise

for c′ and the negation n = 1− on [0, 1]. Let

d(x, y) = max(x, y) = 1−min(1− x, 1− y) =

{
max(x, y) if x+ y < 1

1 otherwise

and the implication imin(x, y) = max(1−x, y) = max(1−x, y) if x > y, and 1
otherwise. Then one obtains the nilpotent min square of opposition choosing
any pair of numbers (α, ε) such that α+ ε ≤ 1:
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(a) min(α, ε) = 0
(b) o = 1− α, ι = 1− ε
(c) imin(α, 1− ε) = 1, imin(ε, 1− α) = 1.
(d) max(ι, o) = 1

�

The same conditions for the square of opposition are obtained using
 Lukasiewicz connectives.

Example 4. [19] Take the  Lukasiewicz conjunction, i.e., the conjunction cL
defined by

cL(a, b) = max(0, a+ b− 1), (1)

and the negation 1−(·) on the scale [0, 1], one obtains the  Lukasiewicz system
leading to a square of opposition:

(a) α = 1− o, ε = 1− ι
(b) min(1−α+ι, 1) = 1, min(1−ε+o, 1) = 1 (using  Lukasiewicz implication

min(1, 1− x+ y)).
(c) max(0, α+ ε− 1) = 0
(d) min(ι+ o, 1) = 1

This square is fully graded again for any pair of numbers (α, ε) such that
α+ ε ≤ 1 and leads to a graded square of opposition. �

2.3. The hexagon of opposition

This section is a refresher on the work of Blanché [16, 15] that deals with the
structural organization of concepts by means of the hexagon of opposition.
He noticed that adding two vertices U and Y, respectively defined as the
disjunction of A and E, and the conjunction of I and O, to the square, a
hexagon AUEOYI is obtained that contains 3 squares of opposition, AEOI,
YAUO, and YEUI, each obeying the 4 properties enumerated above for the
square.

Blanché [15] emphasized the point that the hexagonal picture can be
found in many conceptual structures, such as for instance arithmetical com-
parators, or deontic modalities. He does not insist on the reason why this
hexagonal structure is often encountered in very different topics. Such a
hexagon is in fact obtained each time a tripartition of mutually exclusive
situations such as A, E, and Y that play the same role is considered [25]. The
tripartition underlying the hexagon was already mentioned by Sauriol [52].

Example 5. Let U be the universe of discourse partitioned into three subsets
A, E, and Y . We have A ∩ E = E ∩ Y = A ∩ Y = ∅, A 6= ∅, E 6= ∅, Y 6= ∅
and A ∪ E ∪ Y = U . Hence we obtain the following hexagon of opposition:

Note that the requirement that the hexagon contains three squares of
opposition implies that A, E, and Y form a partition of U (for instance
already, A and E ∪ Y are set-complements, expressing contradictories). �

When, as in the above example, A, E, and Y form a partition of U ,
Pellissier [46] speaks of a strong hexagon, while if A ∪E ∪ Y ⊂ U , he speaks
of a weak hexagon.
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A

A ∪ E

E

E ∪ Y

Y = (A ∪ Y ) ∩ (E ∪ Y )

A ∪ Y

Figure 2. Hexagon induced by three disjoint sets (A,E, Y )

2.4. The graded hexagon

This subsection deals with a gradual extension of the strong hexagon of oppo-
sition [19, 32]. A graded hexagon of opposition is obtained by first assigning
variables ν = d(α, ε) and γ = c(ι, o) to new vertices U and Y. Then we must
require additional conditions to ensure that YAUO and YEUI are proper
squares of opposition playing the same role asAEOI. Namely, we must have
the following definition [19]:

Definition 3. A graded hexagon of opposition ανεoγι is made of a graded
square of opposition αεoι in the sense of Definition 2 plus the following con-
ditions pertaining to the additional vertices

(e) Y and U are contradictories:
γ = n(ν);

(f) Subaltern relations:
i(α, ν) = i(γ, o) = i(ε, ν) = i(γ, ι) = 1;

(g) Contrariety conditions:
c(α, γ) = c(γ, α) = c(γ, ε) = c(ε, γ) = 0

(h) Subcontrariety conditions:
d(ν, o) = d(o, ν) = d(ι, ν) = d(ν, ι) = 1

(i) Conditions linking vertices of the two squares YAUO and YEUI:
α = c(ι, ν) = c(ν, ι), ε = c(ν, o) = c(o, ν)
ι = d(α, γ) = d(γ, α), o = d(γ, ε) = d(ε, γ).

The above equalities express additional relationships between α, ε, o, ι.
We obtain a graded hexagon if and only if these conditions are not conflicting.
The conditions in the last item ensure that the three fuzzy sets in the tripar-
tition induced by (α, ε, γ) play the same role. As γ and ν are contradictories,
the above additional conditions for having a hexagon are not independent.

Proposition 3. Given an involutive negation n : L → L, a triplet (i, c, d)
of implication, conjunction and disjunction defined as above, where the con-
junction is commutative, and Y and U are contradictories, the conditions of
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Definition 3 reduce to

c(α, γ) = c(γ, ε) = 0; ι = d(α, γ), o = d(γ, ε). (GI)

Proof Conditions (h) are obtained from conditions (g) by De Morgan duality.
The first half of conditions (i) is obtained from the second half by De Morgan
duality; conditions (f) are obtained from conditions (g) by semi-duality. �

If we drop conditions (i) but preserve the contrariety ones, one may
still consider that we have a hexagon of opposition, the gradual counterpart
of what Pellissier calls weak hexagon. However, so-doing we implicitly admit
that (α, ε) are primitive while γ is derivative, and they cannot be exchanged.

|A|
|A∪E∪Y |

|A∪E|
|A∪E∪Y |

|E|
|A∪E∪Y |

|E∪Y |
|A∪E∪Y |

|Y |
|A∪E∪Y |

|A∪Y |
|A∪E∪Y |

Figure 3. Graded hexagon with relative cardinalities

The following result is proved in [19] using the  Lukasiewicz conjunction:

Proposition 4. If n(x) = 1 − x, and cL is the  Lukasiewicz conjunction, and
iL the  Lukasiewicz implication, then the hexagon obtained from the triplet
(iL, cL, dL) is a hexagon of opposition as soon as α+ ε ≤ 1.

In that case we have that γ+α+ε = 1 which ensures a fuzzy tripartition
(in the sense of Ruspini [51]) similar to the Boolean case. A general example of
graded hexagon of opposition based on  Lukasiewicz connectives is obtained
by considering the relative cardinalities of the disjoint sets A,E, Y in the
hexagon of Figure 2. This is pictured on Figure 3

However the Kleene-Dienes setting does not allow for a graded hexagon.

Proposition 5. There is no weak graded hexagon of opposition using Kleene-
Dienes triplet (i(x, y), c(x, y), d(x, y)) = (max(1−x, y),min(x, y),max(x, y)).

Proof Suppose α and ε are given. By definition of the hexagon, using Kleene-
Dienes connectives, u = max(α, ε), ι = 1− ε, o = 1− α, and γ = min(ι, o) =
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min(1 − α, 1 − ε). We must have that min(α, ε) = 0 as A and E are con-
tradictories. Suppose α = 0, without loss of generality. Some of the previous
conditions simplify into u = ε, o = 1, γ = 1−ε. By virtue of the weak hexagon,
Y and E are contradictories, so min(γ, ε) = 0 = min(1− ε, ε). So ε ∈ {0, 1},
and other variables are thus Boolean as well. So there is no weak graded
hexagon of opposition using Kleene-Dienes triplet. �

Assume a commutative conjunction c which yields a hexagon of op-
position and a graded tripartition. Let us consider the additional condi-
tions (GI). First if we assume that c is such that c(x, n(x)) = 0 then the
square condition on contraries c(α, ε) = 0 implies c(α, γ) = c(γ, ε) = 0
since γ = c(ι, o) = c(n(ε), n(α)) ≤ min(n(ε), n(α)). So that it ensures α, γ
and ε, γ to be contraries. Moreover if c is such that c(x, y) = 0 implies
c(n(x), n(c(n(x), n(y)))) = y,1 then it is clear that the other conditions in
(GI) are also satisfied. Indeed, for instance, d(α, γ) = n(c(n(α), n(c(n(ε), n(α))) =
n(ε). In other words,

Proposition 6. If the commutative conjunction c and negation n are such that
c(x, n(x)) = 0, and moreover c(x, y) = 0 implies c(n(x), n(c(n(x), n(y)))) =
y, then ανεoγι forms a hexagon of opposition.

We can choose a continuous triangular norm [40] for c. Suppose its De
Morgan dual d is of the form d(x, y) = s−1(min(1, s(x) + s(y))), where s is
any continuous strictly increasing function from [0, 1] to [0, 1] with s(0) =
0, s(1) = 1. Suppose n is such that s(n(x)) = 1 − s(x). Then c(x, y) =
s−1(max(0, s(x)+s(y)−1)). We have a hexagon of opposition that extends the
 Lukasiewicz case. Namely c(x, n(x)) = 0 since s(c(x, n(x))) = max(0, s(x) +
1− s(x)− 1) = 0 and c(n(x), d(x, y)) = s−1(max(0, 1− s(x) + min(1, s(x) +
s(y)) − 1)) = s−1(min(1 − s(x), s(y)))) = y since c(x, y) = 0 comes down to
s(x) + s(y) ≤ 1. The hexagon uses α, ε, γ with s(α) + s(ε) + s(γ) = 1.

It seems difficult to extend the square of opposition of Example 2 to a
graded hexagon of opposition. The reason is that enforcing the conditions in
Proposition 6 leads to an impossibility. Indeed the condition c(x, 1− x) = 0
is satisfied by c = ⊗G, but the condition c(n(x), n(c(n(x), n(y)))) = y if
c(x, y) = 0 is more problematic. It reads (1−x)⊗G (x⊕G y) = y if x+ y ≤ 1.
In that case (1− x)⊗G (x⊕G y) = (1− x)⊗G y, which is equal to y only if
x < y. So, it means that in conditions (GI), the condition ι = d(α, γ) requires
α < ε and the condition o = d(γ, ε) requires α > ε, which is a contradiction.

A similar problem occurs with Example 3. Assume α + ε ≤ 1 again. If
α+ ε < 1, the U corner is labeled by max(α, ε) = max(α, ε) and the Y corner
is labeled by min(1−α, 1− ε) = min(1−α, 1− ε). To get a hexagon, we need
the following conditions:

• on A and Y: min(α,min(1−α, 1−ε)) = 0; max(α,min(1−α, 1−ε) = 1−ε,
which requires ε ≥ α.

1In the crisp case it means A ∩ (A ∪B) = B if A and B are disjoint.
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• on E and Y: min(ε,min(1−α, 1−ε)) = 0; max(ε,min(1−α, 1−ε) = 1−α,
which requires ε ≤ α.

So we need that α = ε < 0.5 to get a graded hexagon. But, we also need
α = c(ι, ν), i.e., α = c(α, 1 − α) = 0. So, we only recover the Boolean
hexagon.

If α+ ε = 1, then max(α, ε) = 1 for vertex U, and min(1−α, 1− ε) = 0
for vertex Y. In this case, max(α,min(1 − α, 1 − ε)) = 0 6= 1 − ε, except if
ε = 1 and α = 1. So, we only recover the Boolean hexagon in this case too.

2.5. Cubes of opposition

As pointed out by Béziau [8] there is no cube, each facet of which is a square
of opposition. Nevertheless, we encounter in the literature various cubic struc-
tures of oppositions that generalize the square of opposition. Two cubes are
particularly worth of interest, Moretti’s cube [42, 43] and Dubois-Prade’s
cube [25]. They are presented in this subsection, leaving apart the analogical
cube of opposition [4, 5] since it contains no traditional square of opposition.
We begin with the cube proposed by Moretti [43].

a

I e

O

i

A o

E

Figure 4. Moretti’s cube of opposition

2.5.1. The cube of opposition proposed by A. Moretti. Moretti [42, 43] has
introduced a cube of opposition where all edges are entailments, and which
relies on four mutually exclusive situations whose elements are the four ver-
tices from which the entailments start. The structure is pictured in Figure 4,
where the eight vertices A,E,O, I,a, e,o, i are named in a square of opposi-
tion manner. Indeed, this cube can be obtained from two squares of opposition
AEOI and aeoi (the two squares can be seen in Figure 4, where the different
edges and diagonals follow the conventions used in this paper (thick line for
mutual exclusiveness, dotted lines for contradictories, etc.). It ensures that
the vertical edges are entailments. For making sure that the other entailments
hold, we have to impose the following constraint

(A ∨E)→ (i ∧ o),
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which summarizes the four entailments of the top facet; since A ≡ ¬O,
E ≡ ¬I, a ≡ ¬o, e ≡ ¬i, this entails that (a ∨ e)→ (I ∧O) holds as well,
which guarantees the four entailments of the bottom facet. As a consequence,
(A ∨E)→ (¬a ∧ ¬e) also holds, since ¬(a∨e) ≡ i∧o; this expresses that A,
E, a, and e are mutually exclusive (since we also have the square conditions
¬A ∨ ¬E and ¬a ∨ ¬e by construction).

Thus this cube of opposition is based on four mutually exclusive vertices,
corresponding to the four vertices A,E,a, e from which arrows leave, while
the four vertices where the arrows arrive are I,O, i,o. This cube of opposition
contains 6 squares of opposition in the diagonal plans of the cube: AEOI,
AaOo, AeOi, aEoI, eEiI and aeoi, as can be easily checked. Each square
is obtained by taking two vertices among A,E,a, e, together with their two
contradictories, which indeed leaves

(
4
2

)
= 6 possibilities. Obviously each of

these squares of opposition can be completed by a hexagon of opposition.

Not all squares of opposition appear on Figure 4 in order not to overload
it. However we can complete it by expressing contraries (boldface line) on
diagonals Ee,Aa,Ae,aE of facets of the cube, and subcontraries (double
lines) on diagonals Ii,oO,Oi,oI.

Conversely, starting with four pairwise disjoint subsets A,E,A′, E′ that
make a tetrahedron, one can easily obtain Moretti’s cube, by associating the
union of the three other subsets to the vertex diagonally opposed to each of
the vertices A,E,A′, E′, as can be seen on Figure 5. Thus the twelve edges
correspond to entailments that hold. It is worth noticing that is not required
that A,E,A′, E′ make a partition, indeed there is no requirement on the set
A ∪E ∪A′ ∪E′, i.e., T = A ∩E ∩A′ ∩E′ is not necessarily empty. In other
words, there may exist elements such that I ∧O ∧ i ∧ o, i.e., Y ∧ y is true
(where A,E,Y and a, e,y are the tri-partitions we start with on hexagons).
In this sense, Moretti’s cube is closer in spirit to the square of opposition (two
disjoint sets not forming a partition) or the weak hexagon (three disjoint sets
not forming a partition) than to the strong hexagon.

It seems there are fewer natural examples of four disjoint sets not form-
ing a partition than of two disjoint sets as involved in the square. But there
are examples of Moretti’s cube where the four sets form a partition (they
may be considered as degenerated in the sense that they are not based on a
5-set partition). One is obtained when we compare two objects x and y by
means of a reflexive outranking relation for which “x is not comparable to
y” is an option together with “x is preferred to y”, “y is preferred to x”, and
“one is indifferent between x and y” [50], as already pointed out in [25]. We
shall use this remark in the last section of this paper. Another example is
obtained from the partition induced by two propositional variables.

Example 6. A basic example of Moretti’s cube is obtained by starting from
the partition induced by conjunctions of literals formed with two propositional
variables: p ∧ q, p ∧ ¬q, ¬p ∧ q and ¬p ∧ ¬q. In this case, I ∧O ∧ i ∧ o, i.e.,
Y ∧ y is a contradiction: Indeed Y corresponds to ¬p and y to p, as can be
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A′

A ∪ E′ ∪A′ E′

E ∪ E′ ∪A′

A ∪ E ∪A′

A A ∪ E ∪ E′

E

Figure 5. Moretti’s cube of opposition induced by four dis-
joint sets (A,E,A′, E′)

checked on Figure 6. This logical cube is a part of a more general structure
exhibiting the 16 binary Boolean connectives [41, 44, 47, 25]. �

¬p ∧ ¬q

¬p ∨ q ¬p ∧ q

¬p ∨ ¬q

p ∨ ¬q

p ∧ q p ∨ q

p ∧ ¬q

Figure 6. Moretti’s cube of opposition with logical connectives

2.5.2. Gradual extension of Moretti’s cube. Let us assume that α, ε, o, ι,
and α′, ε′, o′ ι′ denote the grades associated to vertices A, E, O I, and a, e,
o i. Considering an involutive negation n, a conjunction c, an implication i
linked by semi-duality and d a disjunction associated by De Morgan duality
we can define a graded Moretti’s cube as follows:

Definition 4. A graded cube of opposition in the sense of Moretti is defined
by attaching L-valued variables α, ε, o, ι α′, ε′, o′ and ι′ to vertices A, E, O,
I, a, e o, i respectively, in such a way that:
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• AEOI and aeoi are two graded squares of opposition in the sense of
Definition 2.
• The following entailments on the top and bottom facets AEoi and aeOI

hold:
(j) i(α, ι′) = 1, i(α, o′) = 1, i(ε, ι′) = 1, i(ε, o′) = 1,
(k) i(α′, ι) = 1, i(α′, o) = 1, i(ε′, ι) = 1, i(ε′, o) = 1.

Property (j) is the counterpart of the condition (A ∨E)→ (i ∧ o) in
the Boolean case since it can be written as i(max(α, ε),min(ι′, o′)) = 1.

Proposition 7. The graded Moretti’s cube of opposition contains 6 squares of
opposition: AEOI, aeoi, AaOo, AeOi, aEoI and eEiI.

Proof: AaOo is a square of opposition: α and o (resp. α′ and o′) are
each other’s negation because AEOI (resp. aeoi) are two graded squares of
opposition.
Subaltern relations between α and o′ (resp. α′ and o) hold: i(α, o′) = 1
and i(α′, o) = 1 because of the entailments condition on the top and bottom
facets. Mutual exclusion conditions between α and α′, c(α, α′) = n(i(α, o′)) =
0, hold because of the entailments condition on the top and bottom facets.
Finally d(o, o′) = n(c(α, α′)) = 1. For AeOi, aEoI and eEiI, the proof is
similar to the previous one. �

An additional property of the implication defining the subaltern condi-
tions enables the number of conditions to make a Moretti cube to be reduced.

Proposition 8. If the implication is such that i(x, y) = 1 if and only if
i(n(y), n(x)) = 1 then a graded Moretti’s cube of opposition is defined by two
graded squares of opposition AEOI and aeoi associated with the entailments
on the top facet or the bottom facet.

Proof: The additional property entails that the subaltern relations on
the top facet imply the ones on the bottom facet and conversely: If this
additional property of implication i holds, the condition (k) in Definition 4
follows from (j).

�

Example 7. Consider four values α + ε + ε′ + α′ ≤ 1 and the  Lukasiewicz
conjunction cL (eq. 1), the implication associated by semi-duality iL(x, y) =
min(1, 1 − x + y), the duality associated by De-Morgan duality dL(x, y) =
min(1, x+ y) where 1− (·) denotes an involutive negation. The graded cube
of opposition defined by the following two graded squares of opposition:

• AEOI with A : α, E : ε, O : 1− α and I : 1− ε,
• aeoi with a : α′, e : ε′, o = 1− α′ and i = 1− ε′

is a graded Moretti’s cube of opposition.
It is easy to check that AEOI and aeoi are squares of opposition. We

have iL(x, y) = iL(n(y), n(x)) hence we just need to check the entailment
conditions on the top facet. We have
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α′

α+ ε′ + α′ ε′

ε+ ε′ + α′

α+ ε+ α′

α α+ ε+ ε′

ε

Figure 7. Graded version of Moretti’s cube of opposition
induced by four numbers (α+ ε+ ε′ + α′ ≤ 1)

• A→ i : iL(α, 1− ε′) = min(1, 1− α+ 1− ε′) = 1
• A→ o : iL(α, 1− α′) = min(1, 1− α+ 1− α′) = 1
• E→ i : iL(ε, 1− ε′) = min(1, 1− ε+ 1− ε′) = 1
• E→ o : iL(ε, 1− α′) = min(1, 1− ε+ 1− α′) = 1

This is a graded version of the set-based cube of Figure 5. �

In the above example, the condition α+ ε+ ε′+α′ ≤ 1 is too strong. It
is enough to have 6 conditions of the form x+ y ≤ 1 for x 6= y ∈ {α, α′, ε, ε′},
(which means α + ε ≤ 1, α′ + ε′ ≤ 1 and max(ε′, α′) ≤ min(1− α, 1− ε)) to
get the 6 graded squares of opposition in Moretti’s cube. This result remains
true, if instead of  Lukasiewicz system, we use a more general triplet (c, i, d)
with conjunction such that c(x, y) = 0 if and only if x ≤ n(y) (for instance,
the nilpotent minimum), or with implication i such that i(x, y) = 1 if and
only if x ≤ y (as per Proposition 2).

The above graded Moretti cube with  Lukasiewicz connectives can be
examplified using cardinalities of sets of objects X and Y satisfying two
Boolean properties p and q respectively, making the cube of Fig. 6 gradual.
We assume X 6= ∅, X 6= ∅, Y 6= ∅, Y 6= ∅. Thus X ∩ Y,X ∩ Y , X ∩ Y , X ∩ Y
form a quadri-partition of the set U of objects (as none of them are empty),
and we obtain the cube of Figure 8, which is a graded counterpart of the one
of Figure 6.

In contrast, if we use a conjunction c without zero divisors, such as min
and product, the graded Moretti cube almost degenerates into a Boolean one.
Indeed, the implication i is then such that i(x, y) = 1 if and only if x = 0
or y = 1. Then the 6 above conditions read α = 0 or ε = 0, α′ = 0 or
ε′ = 0 and max(ε′, α′) = 0 or min(n(α), n(ε)) = 1. Suppose 1 > α > 0. It
implies ε = 0 and 0 < min(n(α), n(ε)) < 1 so ε′ = α′ = 0. By symmetry,
the case where 0 < ε < 1 entails ε′ = α′ = α = 0. In other words, graded
Moretti’s cubes with such conjunctions are degenerated ones with only two
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|X∩Y |
|U |

|X∪Y |
|U |

|X∩Y |
|U |

|X∪Y |
|U |

|X∪Y |
|U |

|X∩Y |
|U |

|X∪Y |
|U |

|X∩Y |
|U |

Figure 8. Moretti’s cube of opposition with similarity indices

opposite non-Boolean vertices (e.g., A valued with α and O valued with n(α)
on Figure 4). For instance this is what happens with Kleene-Dienes Moretti’s
cube, using c = min (extending Example 1).

2.5.3. Graded Moretti logical cubes. Finally we can also generalize both
cubes of Figures 6 and 7 using two many-valued propositional variables say
x and y on [0, 1], replacing the Boolean p and q. Define conjunction of x and
y by product xy, and negation by 1 − ·. Note that the product is the only
t-norm � such that x � y + x � (1 − y) = x [3]. Then we can define the
parameters on the cube of Figure 7 as follows:

α = xy; ε = x(1− y);α′ = (1− x)(1− y); ε′ = (1− x)y

And we can check that all vertices of the  Lukasiewicz cube of Figure 7 can
be expressed as a gradual version of the logical cube of Figure 6:

• α+ε+ε′ = 1− (1−x)(1−y) = x+y−xy (corresponding to the conorm
x⊕ y dual to the product, expressing gradual disjunction)
• α+ ε+ α′ = x⊕ (1− y)
• α′ + ε+ ε′ = (1− x)⊕ (1− y)
• α+ ε′ + α′ = (1− x)⊕ y
• Moreover α+ α′ + ε+ ε′ = 1

This case can even be generalized if we assume that x�y+x�′(1−y) = x
for distinct t-norms � and �′, and we still assume that the De Morgan dual
⊕ of � satisfies x ⊕ y = 1 − (1 − x) � (1 − y) = x + y − x � y (a gradual
counterpart of the cardinality property |A ∪B|+ |A ∩B| = |A|+ |B|). This
implies that x+ y− x� y should be associative, which imposes the existence
of a real-valued parameter s > 0 characterizing operation � = �s as follows:

x�s y = logs
(
1 +

(sx − 1)(sy − 1)

s− 1

)
.



18 Didier Dubois, Henri Prade and Agnès Rico

This is a result due to Frank [36], and �s is called Frank t-norm. We have
that lims→0 x�s y = max(0, x+ y − 1), lims→+∞ x�s y = min(x, y) and �1

is the product. In this case, we can check [21] that �′ = �1/s, i.e., x�s y +
x�1/s (1− y) = x. The De Morgan dual of �s is the co-norm [40]:

x⊕s y = 1− logs
(
1 +

(s1−x − 1)(s1−y − 1)

s− 1

)
.

Proposition 9. Choosing parameters on the  Lukasiewicz cube of Figure 7 as
follows:

α = x�s y; ε = x�1/s (1− y);α′ = (1− x)�s (1− y); ε′ = (1− x)�1/s y

we can check that all vertices of the  Lukasiewicz cube of Figure 7 can be
expressed as:

• α+ ε+ ε′ = 1− (1− x)�s (1− y) = x⊕s y
• α+ ε+ α′ = 1− (1− x)�1/s y = x⊕1/s (1− y)
• α′ + ε+ ε′ = 1− x�s y = (1− x)⊕s (1− y)
• α+ ε′ + α′ = 1− x�1/s (1− y) = (1− x)⊕1/s y
• Moreover α+ α′ + ε+ ε′ = 1

Proof: Consider the first identity:
α + ε+ ε′ = x�s y + x�1/s (1− y) + (1− x)�1/s y = x+ (1− x)�1/s y =
x+ y − x�s y = x⊕s y. The other identities are proved in the same way. �

Another interpretation of x and y on vertices could be probabilities
x = P (p) and y = P (q) of logically independent Boolean propositions p and
q. Then the property P (p∧q) = P (p)�sP (q) expresses a parameterized form
of probabilistic dependence, the case s = 1 corresponding to the stochastic
independence, and the additivity property of probability being ensured by
the fact that P (p)�s P (q) + P (p)�1/s P (¬q) = P (p) [21].

2.5.4. The cube of opposition proposed by Dubois and Prade. The cube of
opposition rediscovered in [25, 31] apparently appears for the first time in
books by two XIXth century logicians, i.e. W. E Johnson [38] and J. N.
Keynes [39], discussing syllogisms involving sentences of the form “all P ’s
are Q’s” and their related forms using negation. In such a cube (actually
represented by these authors in the shape of an octagon), the front facet and
the back facet are squares of opposition, and the style of edges follows the
conventions of Figure 1 for contraries, subcontraries, subalterns and contra-
dictories. As a summary, such a cube of opposition, we call JK-cube in the
following, obeys the following requirements.2

Definition 5. Let A, I, E, O, a, i, e, o be propositional variables. In a JK-cube
of opposition AEOIaieo, the following relations are supposed to hold:

2In previous papers [18, 19, 31], we wrongly credited Reichenbach [49] for inventing this
cube in the setting of syllogisms, because we omitted to consider additional constraints of

non-equality of involved predicates introduced by him. This point is discussed later on in
the next subsection.
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• Front and back facets: AEOI and aeoi are two squares of opposition in
the sense of Definition 1.
• Side facets: subaltern relations (entailments):

(l) ¬A ∨ i; ¬a ∨ I; ¬e ∨O; ¬E ∨ o.
• Top and bottom facets:

(m) a and E are contraries, i.e., ¬a ∨ ¬E; the same for A and e, i.e.,
¬A ∨ ¬e;

(n) i and O are sub-contraries, i.e., i ∨ O; the same for I and o, i.e.,
I ∨ o.

i

I O

o

a

A E

e

Figure 9. JK cube of opposition

Due to the conditions in Definition 5, it is clear that there are two more
squares of opposition in the JK cube: AeOi, aEoI. Note they are twisted,
non-planar squares.

What we call here “JK cube” was in fact presented as an octagon by
Johnson [38] and Keynes [39]. The octagon counterpart of the cube of Figure
9 is shown in Figure 10, using visual conventions for lines as in the former
figure. The same relations as in the cube can be found between the 8 vertices.3

In particular, the 4 squares of opposition are easy to identify.
The conditions that define the cube are redundant [19, 31]. For a JK

cube of opposition, the following properties hold:

• the properties on the front and back facets associated with the properties
on the side facets entail the properties on the top and bottom facets.

3The actual octagon of Johnson and Keynes does not materialize the bold lines expressing

mutual exclusiveness, while other lines relating A to a and E to e appear and are labeled
“complementaries”; likewise, lines relating I to i and O to o appear and are labeled “sub-
complementaries”. For instance, A= all P ’s are Q and a = all Q’s are P complement

each other in the sense that if they both hold, P and Q are identical. Interestingly, in
the Reichenbach cube, both A and a, and E and e, are mutually exclusive (and called
“opposite”), since P is supposed not to be equal to Q. Moreover yet other lines relating
A to o, E to i, O to a and I to e are labeled “contra-complementaries”. Observe that these

different forms of complementarity do not appear in the traditional square.



20 Didier Dubois, Henri Prade and Agnès Rico

i

I O

o

a

A E

e

Figure 10. Johnson-Keynes octagon

• the properties on the front and back facets associated with the properties
on the top (resp. bottom) facet entail the properties on the side facets
and of the bottom (resp. top) facet.

A stronger result has been shown in [31]:

Proposition 10. The JK cube A,E, I,O,a, e, i,o is characterized by the con-
dition

(A ∨ a)→ (¬E ∧ ¬e).

where vertices I,O, i,o are then defined as contradictories: I ≡ ¬E,O ≡ ¬A, i ≡ ¬e,
o ≡ ¬a.

The above condition indeed expresses that the pairs (A,E), (A, e), (a,E), (a, e)
are mutually exclusive. Interestingly, the condition in Proposition 10 that
characterizes the JK cube has a structure that is similar to the one that de-
fines Moretti’s cube, but this condition does not involve the same vertices.
However we can show the following result.

Proposition 11. The JK cube is more general, i.e. less constrained, than
Moretti’s cube.

Proof: In Moretti’s cube the condition (A ∨E)→ (i ∧ o) holds. Since
i ≡ ¬e, o ≡ ¬a, it also reads (A ∨E)→ (¬e ∧ ¬a). Thus A→ ¬e and E→ ¬a.
But we also have A→ ¬E and a→ ¬e in Moretti’s cube (mutual exclusive-
ness conditions). Thus, we get (A ∨ a)→ (¬E ∧ ¬e), which is the character-
istic condition of the JK cube. In Moretti’s cube, two additional constraints
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hold: A→ ¬a and E→ ¬e. �

To get Moretti’s cube from the JK-cube, it is enough to add bold-faced
lines Aa and Ee (expressing contraries) to the JK cube, and double lines Oo
and Ii (expressing subcontraries), and reposition the vertices of the latter
accordingly. It corresponds to add the squares of opposition AaOo and eEiI.

The JK cubes of opposition may be found in many settings including 1st
order classical logic [39], modal logics under relational semantics [19], formal
concept analysis [25], rough set theory [18] and abstract argumentation [1].

2.5.5. Reichenbach’s cube. In a paper from the mid-XXth century redis-
cussing syllogisms, Reichenbach [49] proposes yet another cube which turns
out to be isomorphic to Moretti’s. Namely, starting from the JK-cube, we
first exchange the vertices a and e, and i and o, respectively, as in Figure 11.

i

I O

o

a

A E

e

Figure 11. Reichenbach cube of opposition

Reichenbach puts additional constraints on this cube, namely that a and
A, as well as E and e should be mutually exclusive (he calls them “opposite”),
adding two diagonals in bold lines on the top square of the cube in Fig. 11,
and the consequent double, dotted and directed lines, we omit to visualize for
preserving legibility. These additional requirements come down to adding the
constraint (A ∨E)→ (¬a ∧ ¬e), which makes it clear that Reichenbach’s
cube is isomorphic to Moretti’s cube up to a repositoning of the vertices.
Note that the induced additional squares of opposition AaOo, and eEiI are
not situated on a plane in Reichenbach’s cube.

In terms of syllogisms, node A expresses that “all P ’s are Q”, and the
node a expresses that “all Q’s are P”. The additional condition demands that
these conditions are not true together, which enforces that P is not equal to Q
(indeed, a and A express the same statement only if P = Q). Likewise, node
e expresses that “ all not-P ’s are Q”, and node E expresses that “all P ’s are
not-Q”. The additional requirements demand that these conditions be not
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true together, which enforces that P is not equal to not-Q. In set-theoretic
terms, the sets P , Q, P , Q should be non-empty (as in the JK-cube), and
not equal.

2.5.6. Gradual extension of the JK cube. Like for the square of opposition
and Moretti’s cube of opposition, gradual extensions can be proposed for the
JK cube. Let us suppose that the front and back of the cube are square of
opposition and α, ε, o, ι, and α′, ε′, o′, ι′, be the grades associated to vertices
A, E, O I, and a, e, o, i. Then, we can define a graded JK cube of opposition
in the following way.

Given an involutive negation n, a symmetrical conjunction c, using the
implication associated i and the disjunction, the constraints associated to the
cube are given in the following definition (see also Figure 12).

Definition 6. A graded cube of opposition in the sense of Reichenbach is
defined by attaching L-valued variables α, ε, o, ι α′, ε′, o′ and ι′ to each
vertex A, E, O, I, a, e o, i respectively, in such a way that:

• Front and back facets: αιεo and α′ι′ε′o′ are squares of opposition in the
sense of Definition 2,
• Side facets: subalterns (entailments):

(o) i(α, ι′) = 1; i(α′, ι) = 1; i(ε′, o) = 1 ; i(ε, o′) = 1.
• Top and bottom facets:

(p) Contraries: c(α′, ε) = 0; c(α, ε′) = 0;
(q) Sub-contraries: d(ι′, o) = 1; d(ι, o′) = 1.

ι′

ι o

o′

α′

α ε

ε′

Figure 12. Graded cube of opposition in the sense of Re-
ichenbach

The following counterpart of Proposition 10 can be established [31]:

Proposition 12. Let α, ι, o, ε, α′, ι′, o′, ε′ be eight L-valued variables. Let n be
an involutive negation, and i, c, d be many-valued implication, conjunction
and disjunction respectively, such that i and c are semi-dual to each other
and d(x, y) = n(c(n(a), n(b)).

Then αιoεα′ι′o′ε′ is a cube of opposition in the sense of Reichenbach as
soon as we have the following properties:



Structures of opposition and comparisons 23

A : >

U : 6=

E : <

O : ≤

Y : =

I : ≥

Figure 13. Blanché’s complete preorder hexagon

• Contradictories: α = n(o), ε = n(ι) α′ = n(o′), ε′ = n(ι′);
• i(max(α, α′),min(n(ε), n(ε′)) = 1.

The last condition, which is the gradual counterpart of (A ∨ a)→ (¬E ∧ ¬e),
ensures the four subaltern conditions relating the front and back facets of the
cube of Figure 12.

The examples of connectives ensuring a graded Reichenbach square are
the same as for the graded Moretti cube, since the former differs from the
latter by deleting the conditions c(α, α′) = 0 and c(ε, ε′) = 0. If we choose
a residuated implication and its semi-dual implication, it is enough to use
α, α′, ε, ε′ such that max(α, α′) ≤ min(n(ε), n(ε′)). It we choose a triangular
norm without zero divisors, one must use α, α′, ε, ε′ such that max(α, α′) = 0
or min(n(ε), n(ε′)) = 1, that is, if 0 < α < 1 or 0 < α′ < 1, we must enforce
ε = ε′ = 0, and if 0 < ε < 1 or 0 < ε′ < 1, we must enforce α = α′ = 0.

Gradual versions of the JK cubes of opposition may be found in many
settings including possibility theory [19, 31], Shafer’s belief function theory
[27], qualitative weighted multiple criteria aggregation [27], Sugeno integrals
[27, 30], and Choquet integrals [30].

3. Structures of opposition and comparison indices

This section considers different settings for comparing objects where graded
hexagons or cubes of opposition are present. Several results in this section
were already proposed in [32].

3.1. Fuzzy comparison operations and their hexagon of opposition

Figure 13 represents Blanché’s hexagon induced by a complete preorder ≥
over a set U based on the tri-partition A = {(x, y) ∈ U2 : x > y}, E =
{(x, y) ∈ U2 : x < y} (strict parts of the pre-ordering) and Y = {(x, x) ∈ U2}
(equality). This subsection presents a graded hexagon of opposition for fuzzy
comparators on the real line, which extends Blanché’s complete preorder
hexagon.

It is well-known [57] that a fuzzy set F on a universe U is a mapping
µF : U → [0, 1] where µF (x) represents the degree of membership of x to
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F . We denote by core(F ) = {x|µF (x) = 1} the core of F and supp(F ) =
{x|µF (u) > 0} its support. The complement of F is F such that µF (x) =
1− µF (x). Here, we consider fuzzy intervals on the real line [23].

Consider for simplicity trapezoidal fuzzy intervals. Such a fuzzy set F
of the real line has a piecewise linear membership function parameterized by
the 4-tuple of reals (a, b, α, β) with α ≥ 0, β ≥ 0, as pictured on Figure 14,
where core(F ) = [a, b] and supp(F ) =]a− α, b+ β[.

U
a− α a b b+ β

µF (x)

1

Figure 14. Trapezoidal fuzzy interval

A translation operation consists of adding a constant c to the 4-tuple-
based fuzzy set F = (a, b, α, β), which yields the trapezoidal fuzzy interval:

F + c = (a+ c, b+ c, α, β).

The arithmetic negation of F is −F defined by µ−F (x) = µF (−x).
We define three fuzzy relations that express notions of approximately

equal to, much greater than, much smaller than as the ones used in the paper
[22] for generalizing interval-based temporal reasoning:

• E is a fuzzy approximate equality relation defined by µE(x, y) = µL(x−
y) where L is a symmetrical fuzzy interval with respect to 0, namely,
L = (−δ, δ, ρ, ρ), with δ ≥ 0, ρ > 0. We have −L = L.
• G is a fuzzy relation, representing the concept of much greater than, of

the form µG(x, y) = µK(x− y), where µK is an increasing membership
function whose support is in the positive real line.
• The fuzzy relation S defined by µS(x, y) = µ−K(x − y) captures the

idea of much smaller than. S is the antonym of G.

Assume moreover that the three fuzzy sets −K,L,K form a fuzzy parti-
tion, namely µK(r) + µ−K(r) + µL(r) = 1,∀r ∈ R, as per Figure 15 for the
trapezoidal case.

Using negation 1 − (·), and  Lukasiewicz conjunction one obtains the
hexagon of opposition of Figure 16, where:

• The fuzzy version of ≥, i.e., approximately greater or equal, is G t
E, where t is defined by  Lukasiewicz disjunction, i.e., µ[GtE](x, y) =
µ[KtL](x− y) = µK(x− y) + µL(x− y). It is easy to see that K t L =

K − 2δ − ρ = −K (the overbar denotes fuzzy set complementation:
µF (x) = 1− µF (x)).
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x− y

1

−K

−δ − ρ δ + ρ

L

−δ δ

K

Figure 15. The fuzzy partition of the fuzzy comparison relations

G

G t S

S

S t E

E

G t E

Figure 16. Fuzzy comparator hexagon

• The fuzzy version of ≤, i.e., approximately less or equal, is StE induced
from (−K) t L = K = (−K) + 2δ + ρ.
• The fuzzy version of 6=, i.e., not approximately equal, is GtS induced by
L = Kt−K = K∪−K: µ[GtS](x, y) = 1−µL(x−y) (with µKt−K(x−
y) = µK(x−y)+µK(y−x) = max(µK(x−y), µK(y−x)) = µK∪−K(x−
y)).

It is clear that this is an example of graded hexagon based on  Lukasiewicz
connectives (n, cL, iL, dL) where n(x) = 1− x.

3.2. Hexagons for similarity and related concepts

This part presents several hexagons of opposition involving quantitative sim-
ilarity indices. Let two items be described by their vectors of Boolean fea-
tures x = (x1, . . . , xq) and y = (y1, . . . , yq) for a set of attributes F =
{1, · · · , i, · · · , q}.

3.2.1. Cardinality-based hexagons. A tripartition of the set of attributes F
is formed by the three sets Ag+, Ag−, Dif defined below:

• Positive identity: Ag+(x, y) = {i | xi = yi = 1}
• Negative identity: Ag−(x, y) = {i | xi = yi = 0}
• Opposition: Dif(x, y) = {i | yi 6= xi}

This tripartition defines a graded hexagon of opposition based on  Lukasiewicz
connectives, pictured on Figure 17, an instance of the one on Figure 3, where
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|Ag+|
|F |

|Ag−|
|F |

|Dif |
|F |

|Ag+|
|F |

|Ag−|
|F |

|Ag|
|F |

Figure 17.
Hexagon of posi-
tive and negative
identity

|X∩Y |
|X∪Y |

|X|
|X∪Y |

|X∩Y |
|X∪Y |

|X4Y |
|X∪Y |

|X∩Y |
|X∪Y |

|Y |
|X∪Y |

Figure 18.
Jaccard index
hexagon

A stands for Ag+(x, y), E for Dif(x, y), Y for Ag−(x, y), and Ag(x, y) =
{i | xi = yi} = Ag+(x, y) ∪ Ag−(x, y), using relative cardinalities of these
sets.

Another similar partition is obtained as follows. Consider X = {i | xi =
1}, Y = {i | yi = 1}. A tripartition of X∪Y ⊂ F (excluding objects for which
xi = yi = 0,∀i) can be formed by defining A as X ∩ Y = Ag+(x, y), Y as
X ∩Y and E as X ∩Y . It again yields a graded hexagon of opposition based
on  Lukasiewicz connectives, pictured on Figure 18, that is again a special
case of Figure 3.

We have |X∩Y ||X∪Y | = 1 if and only if X = Y if and only if Ag(x, y) = F .

Index |X∩Y ||X∪Y | corresponding to vertex A is clearly Jaccard index, i.e., a well-

known approximate equality measure, while |X4Y ||X∪Y | appearing on vertex O is

a difference index (where X4Y is the symmetric difference). However, |Y |
|X∪Y |

is not really a similarity index as it is not symmetrical; |X∩Y ||X∪Y | is an opposition

index “inside X”, with respect to Y . Note also that while X∩Y = Ag+(x, y),
X ∩ Y = X ∪ Y = Ag−(x, y). A graded cube involving X ∩ Y together with
X ∩Y , X ∩Y and X ∩Y , in terms of cardinalities, is presented in subsection
3.3.2.

The hexagons of opposition presented in this paragraph could be gener-
alized, replacing relative cardinalities by weighted averages, or even Choquet
integrals following a suggestion in [20].

3.2.2. A binary version of Béziau’s analogical hexagon. Béziau’s informal
analogical hexagon [7] organizes the comparison modalities between items
x and y described as above by their respective Boolean attribute values xi
and yi. Six comparison modalities between x and y can be defined in this
framework and can be the vertices of a hexagon represented in Figure 19.



Structures of opposition and comparisons 27

Namely the following pairs of contradictories, expressed in the terminology
of the previous subsection:

• Opposition and Similarity, respectively Ag(x, y) = ∅ and Ag(x, y) 6= ∅
• Identity and Difference, respectively Ag(x, y) = F and Ag(x, y) 6= F
• Analogy and Non-Analogy, respectively ∅ 6= Ag(x, y) 6= F , andAg(x, y) =
F or Ag(x, y) = ∅

Opposition ∀i, xi 6= yi

Non-analogy (∀i, xi = yi) ∨ (∀i, xi 6= yi)

Identity ∀i, xi = yi

Similarity ∃i, xi = yi

Analogy (∃i, xi 6= yi) ∧ (∃i, xi = yi)

Difference ∃i, xi 6= yi

Figure 19. A binary version of Béziau’s analogical hexagon

Note that Analogy, viewed here as a conjunction between Difference and
Similarity (expressed in a weak form), is both a matter of dissimilarity and
resemblance, an idea already present in the logical rendering of an analogical
proportion proposed in [48], although modeled differently.

3.2.3. A graded version of Béziau’s analogical hexagon. Suppose from now
on that item attributes map to a totally ordered value scale L with least
and greatest elements respectively denoted by 0 and 1. The scale L is sup-
posed to be equipped with an involutive negation n, such as 1 − (·), i.e.,
order-reversing on L. On each attribute, equality and difference are evalu-
ated by means of similarity measures µSi

: L × L → L and dissimilarity
measures µDi

: L× L→ L. It is natural to assume that µSi
= n(µDi

) for an
involutive negation n. The vector of similarities between x and y is µS(x, y) =
(µS1(x1, y1), · · · , µSq (xq, yq)), while it is µD(x, y) = (µD1(x1, y1), · · · , µDq (xq, yq))
for dissimilarity. For any two items x and y, it is also supposed that separa-
bility holds, namely: µSi

(xi, yi) = 1 (resp. µDi
(xi, yi) = 1) if and only if xi

and yi are perfectly similar: xi = yi.
If we consider  Lukasiewicz triplet (iL, cL, dL) then a hexagon of opposi-

tion is obtained since mini µDi(xi, yi) ≤ maxi µDi(xi, yi) (see Figure 20), in
agreement with Proposition 4.

In this case, two items are perfectly analogical if they are perfectly
similar and perfectly different. They are non-analogical if mini µDi

(xi, yi) +
mini µSi

(xi, yi) ≥ 1, i.e., mini µDi
(xi, yi) ≥ maxi µDi

(xi, yi). In this case,
similarity and dissimilarity measures are constant and equal to 1 or 0. Then,
the two items are either perfectly identical or perfectly opposite on a given
attribute.
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Opposition mini µDi(xi, yi)

Non analogy d(mini µSi(xi, yi),mini µDi(xi, yi))

Identity mini µSi(xi, yi)

Similarity maxi µSi(xi, yi)

Analogy c(maxi µDi(xi, yi),maxi µSi(xi, yi))

Difference maxi µDi(xi, yi)

Figure 20. Graded analogical hexagon

3.2.4. Weighted attributes in the graded analogical hexagon. Borrowing from
possibility theory for fuzzy events [58, 31], the previous hexagon can be ex-
tended to gradual modalities using weighted min and max operators on ver-
tices. Operations min and max are qualitative elementary operators that can
be extended by means of importance weights or priorities πi assigned to
attributes. The closer πi to 1, the more important the attribute. Such im-
portance weights may alter local evaluations in various ways [29], leading to
operators of the form (here applied to a vector t)

MIN→π (t) =
q

min
i=1

πi → ti, MAX⊗π (t) =
q

max
i=1

πi ⊗ ti,

where (→,⊗) is a pair of semi-dual implication and conjunction.
We build a hexagon presented in Figure 21 where we use shorthand Id.,

Op., Dif., Sim., An. and NonAn. for the vertices of the analogical hexagon.
Under mild conditions already pointed out for possibility and necessity of

Op. MIN→π (µD(x, y))

NonAn. d(MIN→π (µS(x, y)),MIN→π (µD(x, y)))

Id. MIN→π (µS(x, y))

Sim. MAX⊗π (µS(x, y))

An. c(MAX⊗π (µD(x, y)),MAX⊗π (µS(x, y)))

Dif. MAX⊗π (µD(x, y)),

Figure 21. Fuzzy weighted analogical hexagon

fuzzy events ([31], Proposition 17), we can build a hexagon of opposition
based on  Lukasiewicz connectives:
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Proposition 13. If n is an involutive negation, and cL is the  Lukasiewicz
triangular norm, then the fuzzy weighted analogical hexagon of Figure 21,
obtained from the  Lukasiewicz triplet (iL, cL, dL), is a hexagon of opposition
as soon as there is an attribute such that πi = 1, and implication → is such
that n(a)→ 0 ≤ n(a→ 0).

Proof Let j be an index such that πj = 1. Then minqi=1 πi → ti ≤
1 → tj ≤ 1 ⊗ tj ≤ maxqi=1 πi ⊗ ti provided that 1 → tj ≤ n(1 → n(tj)),
which is the same as the assumption n(1 → tj) ≥ 1 → n(tj). So we get
MIN→π (µD(x, y)) ≤MAX⊗π µD(x, y), that is α ≤ ι in the hexagon. The rest
follows by Proposition 4 �.

We give three examples of semi-dual pairs (→,⊗) where this proposition
applies:

1. Kleene-Dienes.MIN→KD
π (t) = minqi=1 max(1−πi, ti) ≤MAX⊗KD

π (t) =
maxqi=1 min(πi, ti) is well-known: they are the standard versions of the
weighted min and weighted max operations [24]. Then two items will be
perfectly opposite (resp. identical) if for each attribute either its impor-
tance is zero, or dissimilarity (resp. similarity) between items is perfect.
They will be perfectly different (resp. similar) if there exists at least
one attribute with importance 1 for which there is perfect dissimilarity
(resp. similarity) between items.

2. Gödel implication: Since (1−a)→G 0 = 0, it follows thatMIN→G
π (µD(x, y)) ≤

MAX⊗G
π µD(x, y) if πi = 1 for some i. The weights πi only play the role

of thresholds. Then two items will be perfectly opposite (resp. identical)
if all local dissimilarities (resp. similarities) are above their thresholds.
They will be perfectly different (resp. similar) if there exists at least one
attribute with non-zero importance πi and perfect dissimilarity (resp.
similarity) between items.

3. Contrapositive Gödel implication: We can check that (1 − a) →GC

0 = 1 − a = 1 − (a →GC 0). It follows that MIN→GC
π (µD(x, y)) ≤

MAX⊗GC
π µD(x, y), i.e., mini|πi>µDi

(xi,yi) 1−πi ≤ maxi|µDi
(xi,yi)>1−πi

πi.

Then two items will be perfectly opposite (resp. identical) if all local dis-
similarities (resp. similarities) are above their thresholds. They will be
different (resp. similar) if there exists at least one attribute with πi = 1
and non-zero dissimilarity (resp. similarity) between items.

A further extension of the analogical hexagon involving statements with
weakened quantifiers, such as “x and y are (highly) similar on at least k
over q attributes” has been outlined and discussed in [32]. Since the treat-
ment of such quantifiers is a topic in itself, and would be relevant as well for
the other structures of opposition (square, cubes), we leave it aside in this
paper.

3.3. Cubes of opposition in the comparison of items

It seems that cubes of opposition, in spite of their noticeable applications in
various settings as already mentioned in the previous section, do not bring
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much to the discussion of the various points of view for comparing items.
However, some comments are worth making for each of the two cubes studied
in this paper.

We use the notations of subsection 3.2. We consider two items x and
y described by vectors of Boolean features, namely x = (x1, . . . , xq) and
y = (y1, . . . , yq), for a set of attributes F = {1, · · · , i, · · · , q}.

3.3.1. The JK cube in the comparison of items. The hexagons of subsections
3.2.2, 3.2.3 and 3.2.4, or more precisely the square part corresponding to
Identity, Opposition, Difference and Similarity can be extended in a JK cube
of opposition, as presented in Figure 22. The eight different evaluations are
based on the vector of similarities and the vector of dissimilarities between
x and y: µS(x, y) and µD(x, y) = 1 − µS(x, y), and πi ∈ L denotes the level
of importance of attribute i (the larger πi the more important i). A double
normalization is assumed ∃i, πi = 1 and ∃j, πj = 0. This cube is nothing
be the one of possibility theory for fuzzy events [28, 31], where the fuzzy
events pertain here to the similarity / dissimilarity of items, and where the
possibility distribution refers to the importance of the attributes. The front
facet of the cube is the original square present in the hexagons of the above-
mentioned subsections.

As can be seen, the back facet appears to be a copy of the front facet
where the weights of importance are reversed. Let us consider the vertex a to
see what kind of new evaluations is brought by the cube. Let us assume that
the implication, like, e.g.,  Lukasiewicz’ implication, is equal to its contrapos-
itive, namely a → b = n(b) → n(a) with n(a) = 1 − a. Then the expression
in vertex a evaluates to what extent all the attributes on which x and y are
(highly) similar are important (since µSi

(xi, yi) = 1− µDi
(xi, yi)), while the

expression in vertex A evaluates to what extent all important attributes are
attributes on which x and y are (highly) similar. The former expression (ver-
tex a) leaves room to the possibility of not being similar on some important
attributes, but when similarity takes place it is only on important attributes,
while the latter expression (vertex A) allows to be similar also on some non
important attributes.

3.3.2. Moretti’s cube and comparisons. We have already mentioned two ex-
amples of quadri-partitions giving birth to a cube of opposition in the sense
of Moretti. The first one pertains to binary preference attitudes (x preferred
to y, y preferred to x, indifference between x and y, x and y not comparable).
This can be extended to gradual relations [35] in agreement with the gradual
extension of Moretti’s cube. The disjunctions of three of the four relations
are not always easy to understand (even if some are: x preferred to y or y pre-
ferred to x or x and y are indifferent clearly means x and y are comparable);
they can however be understood as negations of the 4 original relations.

The second example of Moretti’s cube for comparison indices relies on
conjunctions of pairs of propositions that are negated or not and proportions
of objects satisfying these propositions. This is an example of the graded
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i:
∨q
i=1(1− πi)⊗ µDi

(xi, yi)

I:
∨q
i=1 πi ⊗ µSi

(xi, yi) O:
∨q
i=1 πi ⊗ µDi

(xi, yi)

o:
∨q
i=1(1− πi)⊗µSi

(xi, yi)

a:
∧q
i=1(1− πi)→ µDi(xi, yi)

A:
∧q
i=1 πi → µSi(xi, yi) E:

∧q
i=1 πi → µDi(xi, yi)

e:
∧q
i=1(1− πi)→µSi(xi, yi)

Figure 22. The JK cube for comparison

cube of Figure 8. Recall X = {i | xi = 1}, Y = {i | yi = 1} and their
complements X = {i | xi = 0}, Y = {i | yi = 0}. We assume there are no
objects for which xi = 0,∀i, xi = 1,∀i, etc). So X 6= ∅, X 6= ∅, Y 6= ∅,
Y 6= ∅. Moreover X 6= Y must be assumed. Clearly, we have F = U =
(X ∩ Y ) ∪ (X ∩ Y ) ∪ (X ∩ Y ) ∪ (X ∩ Y ). Thus X ∩ Y,X ∩ Y , X ∩ Y , X ∩ Y
form a quadri-partition of F (if none of them are empty and X 6= Y ), and
we obtain the cube of Figure 8, which is a gradual counterpart of the one of
Figure 6. This completes the hexagon of Figure 17 which only involves X∩Y ,
X ∩ Y , and X ∩ Y , but not X ∩ Y .

4. Conclusion

In the first part of this paper, we have systematically studied the logical con-
straints underlying important structures of opposition, namely the traditional
square, Blanché’s hexagon, Johnson and Keynes octagon and the related cube
proposed by Dubois and Prade, Reichenbach’s cube and Moretti’s cube. We
have also provided their gradual extensions in order to accommodate the
situation when the satisfaction of statements associated to the vertices is a
matter of degree. In the second part, we have illustrated these structures on
statements pertaining to the comparison of items. As in other cases, these
structures of opposition organize the relationships between various modali-
ties and can survive under various gradual extensions thereof. Besides, the
compatibility of weakened universal quantifiers (“most” instead of “all”) and
strengthened existential quantifiers (“a few” instead of “at least one”) with
these structures is a matter of further investigation.
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[10] J. Y. Béziau, G. Payette (eds.): The Square of Opposition. A General Frame-
work for Cognition. Peter Lang, 2012.
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