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Abstract. This paper is a plea for revisiting various existing approaches to the

handling of data, for classification purposes, based on a set-theoretic view, such as

version space learning, formal concept analysis, or analogical proportion-based

inference, which rely on different paradigms and motivations and have been de-

veloped separately. The paper also exploits the notion of conditional object as

a proper tool for modeling if-then rules. It also advocates possibility theory for

handling uncertainty in such settings. It is a first, and preliminary, step towards a

unified view of what these approaches contribute to machine learning.
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1 Introduction

It is an understatement to say that the current dominant paradigms in machine learning

rely on neural nets and statistics; see, e.g., [1, 7]. Yet, there have been quite a num-

ber of set theoretic- or logic-based views that have considered data sets from different

perspectives: we can thus (at least) mention concept learning [21, 22], formal concept

analysis [17], rough sets [25], logical analysis of data [3], test theory [6], and GUHA

method [19]. Still some other works, mentioned later, may be also relevant. These vari-

ous paradigms can be related to logic, but have been developed independently. Strangely

enough, little has been done to move towards a unified view of them.

This research note aims to be a first step in this direction. However, the result

will remain modest, since we shall only outline connections between some settings,

while other ones will be left aside for the moment. Moreover we shall mainly focus

on Boolean data, even if some of what is said could be extended to nominal, or even

numerical data. Still, we believe that it is of scientific interest to better understand the

relationships between these different theoretical settings developed with various mo-

tivations and distinct paradigms, while all are starting from the same object: a set of

data. In the long range, such a better understanding may contribute to some cooperation

between these set theory-based views and currently popular ones, such as neural nets

or statistical approaches, perhaps providing tools for explanation capabilities; see, e.g.,

[5] for references and a tentative survey.
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The paper is organized as follows. Section 2 states and discusses the problem of

assessing a class to an item, given examples and counter-examples. Section 3 presents

a simple propositional logic reading of the problem. Section 4 puts the discussion in

a more appropriate setting using the notion of conditional object [10], which captures

the idea of a rule, better than material implication. Moreover, a rule-based reading of

analogical proportion-based classification [23] is also discussed in Section 5. Section 6

briefly recalls the version space characterization of the set of possible descriptions of

a class, emphasizing its bipolar nature. Section 7 advocates the interest of possibilis-

tic logic [14] for handling uncertainty and coping with noisy data, which is a known

drawback of set-theoretic approaches to data handling. Section 8 briefly surveys formal

concept analysis and suggests its connection and potential relevance to classification.

Section 9 mentions some other related matters and issues, pointing out lines for further

research.

2 Classification problem - A general view

Let us consider m pieces of data that describe items in terms of n attributes Aj . Namely

an item is represented by a vector ai = (ai
1
, ai

2
, · · · , ain), with i = 1,m, together with

their class cl(ai), where aij denotes the value of the j-th attribute Aj for item a
i, namely

Aj(a
i) = aij ∈ dom(Aj) (dom(Aj) denotes the domain of attribute Aj). Each domain

dom(Aj) can be described using a set of propositional variables Vj specific to Aj , by

means of logical formulas. If |dom(Aj)| = 2, we can let Vj = {vj ,¬vj} = dom(Aj).
Let C = {cl(ai)|i = 1,m} be a set of classes, where each object is supposed to

belong to one and only one class. The classification problem amounts to predicting the

class cl(a∗) ∈ C of a new item a
∗ described in terms of the same attributes, on the

basis of the m examples (ai, cl(ai)) consisting of classified objects.

There are other problems that are akin to the classification problem, with different

terminology. Let us at least mention case-based decision, and diagnosis. In the first situ-

ation, we face a multiple criteria decision problem where one wants to predict the value

of a new item on the basis of a collection of valued items (assuming that possible values

belong to a finite scale), while in the second situation attribute values play the role of

symptoms (present or not) and classes are replaced by diseases. In both situations, the

m examples constitute a repertory of reference cases already experienced. This is also

true in case-based reasoning, where a solution is to be found for a new encountered

problem on the basis of a collection of previously solved problems for which the so-

lution is known; however, case-based reasoning usually includes an adaptation step of

the past solution selected, for a better adequacy with the new problem. Thus, ideas and

methods developed in these different fields may be also of interest in a classification

perspective.

Two further comments are in order here. First, for each class C, one may partition

the whole set of m data in two parts : the set E of examples associated with this class,

and the set E ′ of examples of other classes, which can be viewed as counter-examples

for this class. The situation is pictured in Table 1 below. It highlights the fact that the

whole set of items in class C is bracketed between E and E ′ (where the overbar means

complementation). If the table is contradiction-free, there is no item that is both in E and
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in E ′. Second, the classification problem can be envisaged in two different manners: i)

as an induction problem, where one wants to build a plausible description of each class;

in terms of if-then rules associating sets of attribute values with a class, and then using

these rules for prediction purposes ; ii) as a transduction problem, where the prediction

is made without the help of such descriptions, but by means of direct comparisons of

the new item with the set of the m examples.

A1 A2 · · · An cl

e
1

a
1

1 a
1

2 · · · a
1

n
C

· · · · · · · · · · · · · · · C E

e
r

a
r

1 a
r

2 · · · a
1r

n
C

e
′1

a
′1

1 a
′1

2 · · · a
′1

n
C

· · · · · · · · · · · · · · · C E
′

e
′s

a
′s

1 a
′s

2 · · · a
′s

n
C

· · · · · · · · · · · · · · · ?

e
⋆

a
⋆

1 a
⋆

2 · · · a
⋆

n
?

· · · · · · · · · · · · · · · ?

Tableau 1. Contradiction-free data table

3 A simple logical reading

An elementary idea for characterizing a class C is to look for an attribute such that the

subset of values taken for this attribute by the available examples of class C is disjoint

from the subset of values taken by the examples of the other classes. If there exists at

least one such attribute Aj∗ , then one may inductively assume that belonging or not

to class C, for any new item, can be predicted on the basis of its value for Aj∗ . More

generally, if a particular combination of attribute values can be encountered only for

items of a class C, then a new item with this particular combination should also be put

plausibly in class C. Let us now have a more systematic logical analysis of the data.

Let us consider a particular class C ∈ C. Then the m items a
i can be partitioned

into two subsets, the items a
i such that cl(ai) = C, and those such that cl(ai) 6= C

(we assume that |C| ≥ 2). Thus we have a set E of examples for C, namely e
i =

(ai
1
, ai

2
, · · · , ain, 1) = (ai, 1), where ‘1’ means that cl(ai) = C, and a set E ′ of counter-

examples e′j = (a′j
1
, a

′j
2
, · · · , a′jn , 0) where ‘0’ means that cl(a′j) 6= C.

Let us assume that the domains dom(Aj) for j = 1, n are finite and denote by vC
the propositional variable associated to class C (vC has truth-value 1 for elements of C

and 0 otherwise). Using the attribute values as propositional logic symbols, an example

e
i expresses the truth of the logical statement

ai
1
∧ ai

2
∧ · · · ∧ ain → vC
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meaning that if it is an example, then it belongs to the class, while counter-examples

e
′j are encoded by stating that the formula a

′j
1
∧ a

′j
2
∧ · · · ∧ a′jn → ¬vC is true, or

equivalently

|= vC → ¬a′j
1
∨ ¬a′j

2
∨ · · · ∨ ¬a′jn .

Then any class (or concept) C that agrees with the m pieces of data is such that

∨

i:ei∈E

(ai
1
∧ ai

2
∧ · · · ∧ ain) |= vC |=

∧

j:e′j∈E′

(¬a′j
1
∨ ¬a′j

2
∨ · · · ∨ ¬a′jn ). (1)

Letting E be the set of models of
∨

i a
i (the examples) and E ′ be the set of models

of
∨

j a
′

j (the counter-examples), (1) simply reads E ⊆ C ⊆ E ′ where the overbar de-

notes complementation. Note that the larger the number of counter-examples, the more

specific the upper bound of C; the larger the number of examples, the more general the

lower bound of C.

This logical expression states that if an item is identical to an example on all at-

tributes then it is in the class, and that if an item is in the class then it should be different

from all counter-examples on at least one attribute.

Let us assume Boolean attributes for simplicity, and let us suppose that ai
1
= v1 is

true for all the examples of class C and false for all the examples of other classes. Then

it can be seen that (1) can be put under the form v1 ∧ L |= vC |= v1 ∨ L′ where L

and L′ are logical expressions that do not involve any propositional variable pertaining

to attribute A1. This provides a reasonable support for inducing that an item belongs

to C as soon as v1 is true for it. Such a remark can be generalized to a combination of

attribute values and to nominal attributes.

Let us consider a small toy example, still sufficient for an illustration of (1) and

starting the discussion.

Example 1. It is an example with two Boolean attributes, two classes (C and C), two

examples and a counter-example. Namely, we have e
1 = (a1

1
, a1

2
, 1) = (1, 0, 1) =

(v1,¬v2, vC); e
2 = (a2

1
, a2

2
, 1) = (0, 1, 1) = (¬v1, v2, vC); e

′1 = (a′1
1
, a′1

2
, 0) =

(0, 0, 0) = (¬v1,¬v2,¬vC).
We can easily see that (v1 ∧ ¬v2) ∨ (¬v1 ∧ v2) |= vC |= v1 ∨ v2, i.e., we have

v1∨̇v2 |= vC |= v1 ∨ v2, where ∨̇ stands for exclusive or. Indeed depending on whether

(1, 1) is an example or a counter-example, the class C will be described by v1 ∨ v2, or

by v1∨̇v2 respectively.

Note that in the absence of any further information or principle, the two options for

assessing a class to (1, 1) on the basis of e1, e2 and e
′1, are equally possible here. �

Observe that if the bracketing of C in (1) is consistent, the conjunction of the lower

bound expression and the upper bound expression yields the lower bound. But in case of

an item which would appear both as an example and as a counter-example for C (noisy

data), this conjunction would not be a contradiction, as we might expect, in general, as

shown by the example below.

Example 2. Assume we have e1 = (1, 0, 1); e2 = (1, 1, 1); e′1 = (1, 1, 0). The classes

E and E ′ overlap since e
2 and e

′1 are the same item, classified differently. As a conse-

quence we do not have that E ⊆ E ′. So equation (1) is not valid : we do not have that
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(v1 ∧¬v2)∨ (v1 ∧ v2) |= C |= ¬v1 ∨¬v2, i.e., v1 |= C |= ¬v1 ∨¬v2 is wrong even if

v1 ∧ (¬v1 ∨ ¬v2) = v1 ∧ ¬v2 6= ⊥. �

A more appropriate treatment of inconsistency will be proposed in the next section.

The two expressions bracketing C in (1) have a graded counterpart, proposed in

[15], for assessing how satisfactory an item is, given a set of examples and a set of

counter-examples supposed to describe what we are looking for. Then an item is all

the better ranked as it is similar to at least one example on all important attributes, and

that it is dissimilar to all counter-examples on at least one important attribute (where

similarity, dissimilarity, and importance are matters of degrees). However, this ranking

problem is somewhat different from the classification problem where each item should

be assigned to a class. Here if an item is both close to an example and to a counter-

example, it has a poor evaluation, just as it would be if it is close to a counter-example

only.

Note that if one considers examples only, the graded counterpart amounts to search-

ing for items that are similar to examples. In terms of classification, it means to look

for the pieces of data that are as much similar (on all attributes) as possible to the item

for which one wants to predict the class, and to assess the class shared by the majority

of these similar data. This is the k-nearest neighbor method. This is also very close to

fuzzy case-based reasoning and instance-based learning [20, 9].

4 Conditional objects and rules

A conditional object b|a, where a, b are propositions, is a three-valued entity, which is

true if a ∧ b is true; false if a ∧ ¬b is true; inapplicable if a is false; see, e.g., [10]. It

can be thought as the rule ‘if a then b’. Indeed, the rule can be fired only if a is true; the

examples of this rule are such that a∧ b is true, while its counter-examples are such that

a∧¬b is true. This view of conditionals dates back to De Finetti ’s works in the 1930’s.

An (associative) quasi-conjunction & can be defined for conditional objects:

b|a & d|c = (a → b) ∧ (c → d)|(a ∨ c)

where → denotes the material implication. It fits with the intuition that a set of rules can

be fired as soon as at least one rule can be fired, and when a rule is fired, the rule behaves

like material implication. Moreover, entailment between conditional objects is defined

by b|a � d|c iff a ∧ b � c ∧ d and c ∧ ¬d � a ∧ ¬b, which expresses that the examples

of rule ‘if a then b’ are examples of rule ‘if c then d’, and the counter-examples of

rule ‘if c then d’ are counter-examples of rule ‘if a then b’. It can be checked that b|a =
(a∧b)|a = (a → b)|a since these three conditional objects have the same examples and

the same counter-examples. It can be also shown that a ∧ b|⊤ � b|a � a → b|⊤ (where

⊤ denotes tautology), thus highlighting the fact that b|a is bracketed by the conjunction

a ∧ b and the material implication a → b.

Let us revisit expression (1) in this setting. For an example e = (a, 1), and a

counter-example e
′ = (a′, 0) with respect to a class C, it leads to consider the con-

ditional objects vC |a and ¬vC |a
′ respectively (if it is an example we are in the class,

otherwise not).
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For a collection of examples we have

(vC |a
1) & · · · & (vC |a

r) = ((a1 ∨ · · · ∨ a
r) → vC)|(a

1 ∨ · · · ∨ a
r)

= vC |(a
1 ∨ · · · ∨ a

r)

Similarly, we have

(¬vC |a
′1) & · · · & (¬vC |a

′s) = ((a′1 ∨ · · · ∨ a
′s) → ¬vC)|(a

′1 ∨ · · · ∨ a
′s)

= ¬vC |(a
′1 ∨ · · · ∨ a

′s)

Letting φE =
∨r

i=1
a
i and φE′ =

∨s
j=1

a
′j , we can join the two conditional

expressions:

(vC |φE) & (¬vC |φE′) = (φE → vC) ∧ (φE′ → ¬vC)|(φE ∨ φE′)

where

(φE∧vC)∨(φE′∧¬vC)|⊤ � (vC |φE) & (¬vC |φE′) � (φE → vC)∧(φE′ → ¬vC)|⊤

A set of conditional objects K is said to be consistent if and only if for no sub-

set S ⊆ K does the quasi-conjunction Q(S) of the conditional objects in S entail a

conditional contradiction [10]. Contrary to material implication, the use of three-valued

conditionals reveals the presence of contradictions in the data.

Example 3. (Example 2 continued) The data are e
1 = (1, 0, 1); e2 = (1, 1, 1); e′1 =

(1, 1, 0). In terms of conditional objects, considering the subset {e2, e′1}, we have

vC |(v1 ∧ v2) & ¬vC |(v1 ∧ v2) = (v1 ∧ v2) → (vC ∧ ¬vC)|(v1 ∧ v2)

= (vC ∧ ¬vC)|(v1 ∧ v2) = ⊥|v1 ∧ v2,

which is a conditional contradiction. �

5 Analogical proportion-based transduction

Apart from the k-nearest neighbor method, there is another transduction approach to the

classification problem which applies to Boolean, nominal and numerical attribute values

[4]. For simplicity here, we only consider Boolean attributes. It relies on the notion of

analogical proportion [23]. Analogical proportions are statements of the form “a is to b

as c is to d”, often denoted by a : b :: c : d, which express that “a differs from b as c

differs from d and b differs from a as d differs from c”. This statement can be encoded

into a Boolean logical expression which is true only for the 6 following assignments

(0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 0, 0), and (0, 0, 1, 1) for (a, b, c, d).
Boolean Analogical proportions straightforwardly extend to vectors of attributes values

such as a = (a1, ..., an), by stating a : b :: c : d iff ∀i∈ [1, n], ai : bi :: ci : di. The

basic analogical inference pattern, is then

∀i ∈ {1, ..., p}, ai : bi :: ci : di holds

∀j ∈ {p+ 1, ..., n}, aj : bj :: cj : dj holds
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Thus analogical reasoning amounts to finding completely informed triples (a, b, c)
appropriate for inferring the missing value(s) in d. When there exist several suitable

triples, possibly leading to distinct conclusions, one may use a majority vote for con-

cluding. This inference method is an extrapolation, which applies to classification (then

the class cl(x) is the unique solution, when it exists, such as cl(a) : cl(b) :: cl(c) :
cl(x) holds).

Let us examine more carefully how it works. The inference in fact takes items pair

by pair, and then puts two pairs in parallel. Let us first consider the case where three

items belong to the same class ; the fourth item is the one, the class of which one

wants to predict (denoted by 1 in the following). Considering a pair of items a
i and

a
j. There are attributes for which the two items are equal and attributes for which

they differ. For simplicity, we assume that they differ only on the first attribute (the

method easily extend to more attributes). So we have e
i = (ai

1
, ai

2
, · · · , ain, 1) and

(ej = a
j
1
, a

j
2
, · · · , ajn, 1) with a

j
1
= ¬ai

1
and a

j
t = ait = vt for t = 2, n. This means

that the change from ai
1

to a
j
1

in context (v2, · · · , vn) does not change the class. Assume

we have now another pair ek = (v1, a
k
2
, · · · , akn, 1) and e

⋆ = (¬v1, a
⋆
2
, · · · , a⋆n, ?) in-

volving the item for we which we have to predict the class and exhibiting the same

change on attribute A1 and being equal elsewhere, i.e., we have akt = a⋆t = v
♯
t for

t = 2, n). Putting the two pairs in parallel, we obtain the following pattern

(v1, v2, · · · , vn, 1)

(¬v1, v2, · · · , vn, 1)

(v1, v
♯
2
, · · · , v♯n, 1)

(¬v1, v
♯
2
, · · · , v♯n, ?)

It is not difficult to check that ai, aj, ak and a
⋆ are in analogical proportion for each

attribute. So a
i : aj :: ak : a⋆ holds. The solution of 1 : 1 :: 1 :? is obviously ? = 1,

so the prediction is cl(a⋆) = 1. This conclusion is thus based on the idea that since the

change from ai
1

to a
j
1

in context (v2, · · · , vn) does not change the class, it is the same

in the other context (v♯
2
, · · · , v♯n).

The case where e
i and e

k belong to class C while e
j is in ¬C leads to another

analogical pattern, where the change from ai
1

to a
j
1

now changes the class in context

(v2, · · · , vn). The pattern is

(v1, v2, · · · , vn, 1)

(¬v1, v2, · · · , vn, 0)

(v1, v
♯
2
, · · · , v♯n, 1)

(¬v1, v
♯
2
, · · · , v♯n, ?)

The conclusion is now ? = 0, i.e., a⋆ is not in C. This thus implements the idea that

the change from ai
1

to a
j
1

that changes the class in context (v2, · · · , vn), leads also to

the same change in context (v♯
2
, · · · , v♯n).

It has been theoretically established that analogical classifiers always yield exact

prediction for Boolean affine functions describing the class (which includes x-or func-

tions), and only for them [8]. Still a majority vote among the predicting triples often

yields the right prediction in other situations [4].

Let us see how it works on Example 1 and variants.
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Example 4. In Example 1 we have: e1 = (1, 0, 1); e2 = (0, 1, 1); e′1 = (0, 0, 0).
We can check that there is no analogical prediction in this case for (1, 1, ?). Indeed,

whatever the way we order the three vectors, either we get the 4-tuple (1, 0, 0, 1) on one

component, which is not a pattern making true an analogical proportion, or the equation

0 : 1 :: 1 :? which has no solution. So analogy remains neutral in this case.

However, in the situation where would have e
1 = (1, 0, 1); e2 = (1, 1, 1); e′1 =

(0, 1, 0). Taking the triple (e2, e1, e′1), we can check that (1, 1) : (1, 0) :: (0, 1) : (0, 0)
holds on each of the two vector components. The solution of the equation 1 : 1 :: 0 :?
is ? = 0, which is the analogical prediction for (0, 0, ?).

Similarly, in the case e
1 = (1, 0, 1), e2 = (1, 1, 1) and e

3 = (0, 1, 1), we would

obtain ? = 1 for (0, 0, ?) as expected, using triple (e2, e1, e3).
�

It is clear that the role of analogical reasoning here is to complete the data set with new

examples or counter-examples obtained by transduction, assuming analogical inference

patterns are valid in the case under study. It may be a first step prior to the induction of

a classification model.

6 Concept learning, version space and logic

The version space setting, as proposed by Mitchell [21, 22], offers an elegant elimina-

tion procedure, exploiting examples and counter-examples of a class, then called “con-

cept”, for restricting the hypotheses space and providing an approach to rule learning.

Let us recall the approach using a simple example, with 3 attributes: A1 = Sky (with

possible values Sunny, Cloudy, and Rainy), A2 = Air Temp (with values Warm and

Cold), and A3 = Humidity (with values Normal and High). The problem is to learn

the concept of C = Nice Day on the basis of examples and counter-examples. This

means finding all hypotheses h, such that the implication h → vC is compatible with

the examples and the counter-examples.

Each hypothesis is described by a conjunction of constraints on the attributes, here

Sky, Air Temp, and Humidity. Constraints may be ? (any value is acceptable), ∅ (no

value is acceptable), a specific value, or a disjunction thereof. The target concept C,

here Nice Day, is supposed to be represented by a disjunction of hypotheses (there may

exist different h and h′ such that h → vC and h′ → vC). Descriptions of examples

or counter-examples can be ordered according to their generality / specificity. Thus,

the following descriptions are ordered according to decreasing generality: <?, ?, ? >,

<Sunny ∨ Cloudy, ?, ? >, <Sunny, ?, ? >, <Sunny, ?, Normal>, < ∅, ∅, ∅ >.

The version space is represented by its most general and least general members. The

so-called general boundary G is the set of maximally general members of the hypothesis

space that are consistent with the data. The specific boundary S is the set of maximally

specific members of the hypothesis space that are consistent with the data. G and S are

initialized as G =<?, ?, ? > and S =< ∅, ∅, ∅ > (for 3 attributes as in the example).

The procedure amounts to finding a maximally specific hypothesis which covers the

positive examples. Suppose we have two examples of Nice Day:

Ex1. <Sunny, Warm, Normal> , Ex2. <Sunny, Warm, High>.
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Then, taking into account Ex1, S is updated to S1 =<Sunny, Warm, Normal>.

Adding Ex2, S is improved into S2 =<Sunny, Warm, ? >, which corresponds to

the disjunction of Ex1 and Ex2. The positive training examples force the S boundary of

the version space to become increasingly general (S2 is more general than S1).

Although the version space approach was not cast in a logical setting, it is perfectly

compatible with the logical encoding (1). Indeed here we have two examples of the form

(v1, v2, v3) and (v1, v2,¬v3) (with v1 = Sunny; v2 = Warm; v3 = Normal,¬v3 =
High). A tuple of values such that <v, v′, v′′> is to be understood as the conjunction

v∧v′∧v”. So we obtain (v1∧v2∧v3)∨(v1∧v2∧¬v3) → vC . It corresponds to the left

part of Equation (1) for n = 3 and |E| = 2, which yields (v1 ∧ v2)∧ (v3 ∨¬v3) → vC ,

i.e., (v1∧v2) → vC . So the more positive examples we have, the more general the lower

bound of C in (1) (the set of models of a disjunction is larger than the set of models

of each of its components). This lower bound, here v1 ∧ v2, is a maximally specific

hypothesis h.

Negative examples play a complementary role. They force the G boundary to be-

come increasingly specific. Consider we have the following counter-example for Nice

Day: cEx3. <Rainy, Cold, High>

The hypothesis in the G boundary must be specialized until it correctly classi-

fies the new negative example. There are several alternative minimally more specific

hypotheses. Indeed, the 3 attributes can be specialized for avoiding to cover cEx3

by being ¬Rainy, or being ¬Cold, or being ¬High. This exactly corresponds to

Equation (1), which here gives vC → ¬Rainy ∨ ¬Cold ∨ ¬High, i.e., vC →
Sunny ∨ Cloudy ∨ Warm ∨ Normal.

The elements of this disjunction correspond to maximally general potential hy-

potheses. But in fact we have only two new hypotheses in G: <Sunny, ?, ? > and

<?, Warm, ? >, as explained now. Indeed, the hypothesis h = (?, ?, Normal) is not

included in G, although it is a minimal specialization of G that correctly labels cEx3 as

a negative example. This is because example Ex2 whose attribute value for A3 is High,

disagrees with the implication Normal → vC . So, hypothesis <?, ?, Normal> is

excluded. Similarly, examples Ex1 and Ex2 (for which the attribute value for A1 is

Sunny) disagree with implication Cloudy → vC . This kind of elimination applies in

Equation (1) as well. Indeed the expression v ∧ L � ¬v ∨ L′ can be simplified into

v ∧ L � L′.

We thus obtain upper and lower bounds from Ex1, Ex2, and cEx3

S3: <Sunny, Warm, ? > G3: {<Sunny, ?, ? > , <?, Warm, ? >}.

where {< v1, v
′
1
, v′′

1
>,< v2, v

′
2
, v′′

2
>} logically reads (v1 ∧ v′

1
∧ v′′

1
)∨ (v2 ∧ v′

2
∧ v′′

2
)

(? stands for ⊤). The S boundary of the version space thus summarizes the previously

encountered positive examples. Any hypothesis more general than S will, by definition,

cover any example that S covers and thus will cover any past positive example. In a

dual fashion, the G boundary summarizes the information from previously encountered

negative examples. Any hypothesis more specific than G is assured to be consistent

with past negative examples. The set of all the hypotheses between S and G has a lattice

structure. This in full agreement with Equation (1). The approach provides an iterative

procedure that takes advantage of the examples and counter-examples progressively.
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Thus, the general procedure for obtaining the bounds of the version space are as

follows. If e is a positive example, i) remove from G any hypothesis inconsistent with

e ; ii) substitute in S any minimal generalization h consistent with e. If e is a negative

example, i) remove from S any hypothesis inconsistent with e ; ii) substitute in G any

minimal specialization h consistent with e.

7 Towards a possibilistic variant of the version space

The main drawback of the version space approach is its sensitivity to noise. Indeed each

example and each counter-example influence the result. In [16], the authors use rough

set approximations to cope with this problem.

Here we make another suggestion using possibility theory. The idea is to associate

each example and each counter-example with a certainty level, as in possibilistic logic

(see, e.g., [14]) in order to express to what extent we consider it is certain that the

corresponding piece of information is true (rather than false). This certainty level ex-

presses our confidence in the piece of data as being exact. It can reflect the confidence

we have in the source that provided it, or be the result of an analysis or filtering of the

data that disqualifies outliers. In that respect we should remember that one semantics of

possibility theory is in terms of (dis)similarity [26].

In other words, we have a multi-tiered set of examples and a multi-tiered set of

counter-examples. So, given some certainty level α, considering all examples and all

counter-examples whose certainty is above or equal to α yields a regular version space

with classical bounds. Thus, for each α, it gives birth to a bounded set of hypotheses to

which α can be associated. We have thus a natural basis for rank-ordering hypotheses.

The smaller α, the larger the numbers of examples and counter-examples taken into

account, and the tighter the bounds.

This can be illustrated on the example of the previous section.

Example 5. Examples and counter-examples now come with certainty weights. Assume

we have Ex1: (<Sunny, Warm, Normal>, 1); cEx3: (<Rainy, Cold, High>,α);

Ex2: (<Sunny, Warm, High>, β), with 1 > α > β.

So, we obtain a layered version of the upper and lower bounds of the version space:

– at level 1, we have G1 =<?, ?, ? > and S1 =<Sunny, Warm, Normal>.

– at level α, we have Gα = {<Sunny, ?, ? >,<Cloudy, ?, ? >,<?, Warm, ? >}
and Sα =<Sunny, Warm, Normal>.

– at level β, we have Gβ={<Sunny, ?,?>, <?, Warm,?>}

and Sβ =<Sunny, Warm, ? >.

�

The above syntactic view is simpler than the semantic one presented in [24] where

the paper starts with a pair of possibility distributions over hypotheses, respectively

induced by the examples and by the counter-examples.
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8 Formal concept analysis

Formal concept analysis [17] is another setting where association rules between at-

tributes can be extracted from a formal context R ⊆ X × Y , which is nothing but a

relation linking items in X with properties in Y . It provides a theoretical basis for data

mining. Tableau 1 can be viewed as a context, restricting to rows E ∪E ′ and considering

the class of examples as just another attribute.

Let Rx and R−1y respectively denote the set of properties possessed by item x and

the set of items having property y. Let E ⊆ X and A ⊆ Y . The set of items having all

properties in A is given by A↓ = {x | A ⊆ Rx} and the set of properties possessed by

all items in E is given by E↑ = {y | E ⊆ R−1y}. A formal concept is then defined as

a pair (E,A) such that A↓ = E and E↑ = A where E and A provides the extent and

the intent of the formal concept respectively. Then, it can be shown that E × A ⊆ R,

and is maximal with respect to set inclusion, i.e., (E,A) defines a maximal rectangle in

the formal context.

Let A and B be two subsets of Y . Then R satisfies the attribute implication A ⇒ B

if for every x ∈ X , such that x ∈ A↓, then x ∈ B↓. Formal concept analysis is not

primarily oriented towards concept learning, but towards mining attribute implications

(i.e., association rules). However, it might be interesting to consider formal contexts

where Y also contains the names of classes, i.e., C ⊆ Y . Then being able to find attribute

implications of the form A ⇒ C where A∩ C = ∅ and C ⊆ C, would be of a particular

interest, especially if C is a singleton.

The rectangular nature of formal concepts expresses a form of convexity, which fits

well with the ideas of Gärdenfors about conceptual spaces [18]. Moreover, using also

operators other than ↓ and ↑ (see [12]) help characterizing independent sub-contexts

and other noticeable structures. Formal concept analysis can be also related to the idea

of clustering [13], where clusters are unions of overlapping concepts in independent

sub-contexts. The idea of approximate concepts, i.e., rectangles with “holes”, suggests

a convexity-based completion principle, which might be useful in a classification per-

spective.

9 Concluding remarks

This paper is clearly a preliminary step toward a unified, logical, study of set theory-

based approaches in data management. It is preliminary in at least two respects: several

of these approaches have been only cited in the introduction, while the others have

been only briefly discussed. All these theoretical settings start with a Boolean table

in the simplest case, and many of them extend to nominal, and possibly to numerical

data. Still they have been motivated by different concerns such as describing a concept,

predicting a class, or mining rules. Due to their set theory-based nature, they can be

considered from a logical point of view, and a number of issues are common, such

that handling incomplete information, missing values, inconsistent information, or non

applicable attributes.

In a logical setting, the handling of uncertainty can be conveniently handled us-

ing possibility theory and possibilistic logic [14]. We have suggested above how it can
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be applied to concept learning and how it may take into account uncertain pieces of

data. Possibilistic logic can also handle default rules that can be obtained from Boolean

data by looking for suitable probability distributions [2]; such rules provide useful sum-

maries of data. The possible uses of possibilistic logic in data management is a general

topic for further investigation.
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