Didier Dubois
email: dubois@irit.fr

Henri Prade
email: prade@irit.fr

Towards a logic-based view of some approaches to classification tasks

Keywords: data, classification, version space, conditional object, if-then rule, analogical proportion, formal concept analysis, possibility theory, possibilistic logic, bipolarity, uncertainty

This paper is a plea for revisiting various existing approaches to the handling of data, for classification purposes, based on a set-theoretic view, such as version space learning, formal concept analysis, or analogical proportion-based inference, which rely on different paradigms and motivations and have been developed separately. The paper also exploits the notion of conditional object as a proper tool for modeling if-then rules. It also advocates possibility theory for handling uncertainty in such settings. It is a first, and preliminary, step towards a unified view of what these approaches contribute to machine learning.

Introduction

It is an understatement to say that the current dominant paradigms in machine learning rely on neural nets and statistics; see, e.g., [START_REF] Abu-Mostafa | Learning from data. A short course[END_REF][START_REF] Cornuejols | Statistical computational learning[END_REF]. Yet, there have been quite a number of set theoretic-or logic-based views that have considered data sets from different perspectives: we can thus (at least) mention concept learning [START_REF] Mitchell | Version spaces: A candidate elimination approach to rule learning[END_REF][START_REF] Mitchell | Version spaces: An approach to concept learning[END_REF], formal concept analysis [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF], rough sets [START_REF] Pawlak | Rough Sets. Theoretical Aspects of. Reasoning about Data[END_REF], logical analysis of data [START_REF] Boros | Logical analysis of data: classification with justification[END_REF], test theory [START_REF] Chikalov | Three Approaches to Data Analysis -Test Theory, Rough Sets and Logical Analysis of Data[END_REF], and GUHA method [START_REF] Hájek | Mechanising Hypothesis Formation -Mathematical Foundations for a General Theory[END_REF]. Still some other works, mentioned later, may be also relevant. These various paradigms can be related to logic, but have been developed independently. Strangely enough, little has been done to move towards a unified view of them.

This research note aims to be a first step in this direction. However, the result will remain modest, since we shall only outline connections between some settings, while other ones will be left aside for the moment. Moreover we shall mainly focus on Boolean data, even if some of what is said could be extended to nominal, or even numerical data. Still, we believe that it is of scientific interest to better understand the relationships between these different theoretical settings developed with various motivations and distinct paradigms, while all are starting from the same object: a set of data. In the long range, such a better understanding may contribute to some cooperation between these set theory-based views and currently popular ones, such as neural nets or statistical approaches, perhaps providing tools for explanation capabilities; see, e.g., [START_REF] Bouraoui | From shallow to deep interactions between knowledge representation, reasoning and machine learning[END_REF] for references and a tentative survey.

The paper is organized as follows. Section 2 states and discusses the problem of assessing a class to an item, given examples and counter-examples. Section 3 presents a simple propositional logic reading of the problem. Section 4 puts the discussion in a more appropriate setting using the notion of conditional object [START_REF] Dubois | Conditional objects as nonmonotonic consequence relationships[END_REF], which captures the idea of a rule, better than material implication. Moreover, a rule-based reading of analogical proportion-based classification [START_REF] Prade | Analogical proportions and analogical reasoning -An introduction[END_REF] is also discussed in Section 5. Section 6 briefly recalls the version space characterization of the set of possible descriptions of a class, emphasizing its bipolar nature. Section 7 advocates the interest of possibilistic logic [START_REF] Dubois | Possibilistic logic: From certainty-qualified statements to two-tiered logics -A prospective survey[END_REF] for handling uncertainty and coping with noisy data, which is a known drawback of set-theoretic approaches to data handling. Section 8 briefly surveys formal concept analysis and suggests its connection and potential relevance to classification. Section 9 mentions some other related matters and issues, pointing out lines for further research.

Classification problem -A general view

Let us consider m pieces of data that describe items in terms of n attributes A j . Namely an item is represented by a vector

a i = (a i 1 , a i 2 , • • • , a i n), with i = 1
, m, together with their class cl(a i), where a i j denotes the value of the j-th attribute A j for item a i , namely A j (a i) = a i j ∈ dom(A j) (dom(A j) denotes the domain of attribute A j). Each domain dom(A j) can be described using a set of propositional variables V j specific to A j , by means of logical formulas. If |dom(A j)| = 2, we can let V j = {v j , ¬v j } = dom(A j).

Let C = {cl(a i)|i = 1, m} be a set of classes, where each object is supposed to belong to one and only one class. The classification problem amounts to predicting the class cl(a *) ∈ C of a new item a * described in terms of the same attributes, on the basis of the m examples (a i , cl(a i)) consisting of classified objects.

There are other problems that are akin to the classification problem, with different terminology. Let us at least mention case-based decision, and diagnosis. In the first situation, we face a multiple criteria decision problem where one wants to predict the value of a new item on the basis of a collection of valued items (assuming that possible values belong to a finite scale), while in the second situation attribute values play the role of symptoms (present or not) and classes are replaced by diseases. In both situations, the m examples constitute a repertory of reference cases already experienced. This is also true in case-based reasoning, where a solution is to be found for a new encountered problem on the basis of a collection of previously solved problems for which the solution is known; however, case-based reasoning usually includes an adaptation step of the past solution selected, for a better adequacy with the new problem. Thus, ideas and methods developed in these different fields may be also of interest in a classification perspective.

Two further comments are in order here. First, for each class C, one may partition the whole set of m data in two parts : the set E of examples associated with this class, and the set E ′ of examples of other classes, which can be viewed as counter-examples for this class. The situation is pictured in Table 1 below. It highlights the fact that the whole set of items in class C is bracketed between E and E ′ (where the overbar means complementation). If the table is contradiction-free, there is no item that is both in E and in E ′ . Second, the classification problem can be envisaged in two different manners: i) as an induction problem, where one wants to build a plausible description of each class; in terms of if-then rules associating sets of attribute values with a class, and then using these rules for prediction purposes ; ii) as a transduction problem, where the prediction is made without the help of such descriptions, but by means of direct comparisons of the new item with the set of the m examples.

A1 A2 • • • An cl e 1 a 1 1 a 1 2 • • • a 1 n C • • • • • • • • • • • • • • • C E e r a r 1 a r 2 • • • a 1r n C e ′1 a ′1 1 a ′1 2 • • • a ′1 n C • • • • • • • • • • • • • • • C E ′ e ′s a ′s 1 a ′s 2 • • • a ′s n C • • • • • • • • • • • • • • • ? e ⋆ a ⋆ 1 a ⋆ 2 • • • a ⋆ n ? • • • • • • • • • • • • • • • ? Tableau 1. Contradiction-free data table

A simple logical reading

An elementary idea for characterizing a class C is to look for an attribute such that the subset of values taken for this attribute by the available examples of class C is disjoint from the subset of values taken by the examples of the other classes. If there exists at least one such attribute A j * , then one may inductively assume that belonging or not to class C, for any new item, can be predicted on the basis of its value for A j * . More generally, if a particular combination of attribute values can be encountered only for items of a class C, then a new item with this particular combination should also be put plausibly in class C. Let us now have a more systematic logical analysis of the data.

Let us consider a particular class C ∈ C. Then the m items a i can be partitioned into two subsets, the items a i such that cl(a i) = C, and those such that cl(a i) = C (we assume that |C| ≥ 2). Thus we have a set E of examples for C, namely

e i = (a i 1 , a i 2 , • • • , a i n , 1) = (a i , 1)
, where '1' means that cl(a i) = C, and a set E ′ of counterexamples e ′j = (a ′j 1 , a ′j 2 , • • • , a ′j n , 0) where '0' means that cl(a ′j) = C. Let us assume that the domains dom(A j) for j = 1, n are finite and denote by v C the propositional variable associated to class C (v C has truth-value 1 for elements of C and 0 otherwise). Using the attribute values as propositional logic symbols, an example e i expresses the truth of the logical statement

a i 1 ∧ a i 2 ∧ • • • ∧ a i n → v C
meaning that if it is an example, then it belongs to the class, while counter-examples e ′j are encoded by stating that the formula

a ′j 1 ∧ a ′j 2 ∧ • • • ∧ a ′j n → ¬v C is true, or equivalently |= v C → ¬a ′j 1 ∨ ¬a ′j 2 ∨ • • • ∨ ¬a ′j n .
Then any class (or concept) C that agrees with the m pieces of data is such that

i:e i ∈E (a i 1 ∧ a i 2 ∧ • • • ∧ a i n) |= v C |= j:e ′j ∈E ′ (¬a ′j 1 ∨ ¬a ′j 2 ∨ • • • ∨ ¬a ′j n). (1)
Letting E be the set of models of i a i (the examples) and E ′ be the set of models of j a ′ j (the counter-examples), [START_REF] Abu-Mostafa | Learning from data. A short course[END_REF] simply reads E ⊆ C ⊆ E ′ where the overbar denotes complementation. Note that the larger the number of counter-examples, the more specific the upper bound of C; the larger the number of examples, the more general the lower bound of C.

This logical expression states that if an item is identical to an example on all attributes then it is in the class, and that if an item is in the class then it should be different from all counter-examples on at least one attribute.

Let us assume Boolean attributes for simplicity, and let us suppose that a i 1 = v 1 is true for all the examples of class C and false for all the examples of other classes. Then it can be seen that (1) can be put under the form

v 1 ∧ L |= v C |= v 1 ∨ L ′
where L and L ′ are logical expressions that do not involve any propositional variable pertaining to attribute A 1 . This provides a reasonable support for inducing that an item belongs to C as soon as v 1 is true for it. Such a remark can be generalized to a combination of attribute values and to nominal attributes.

Let us consider a small toy example, still sufficient for an illustration of (1) and starting the discussion.

= (a 1 1 , a 1 2 , 1) = (1, 0, 1) = (v 1 , ¬v 2 , v C); e 2 = (a 2 1 , a 2 2 , 1) = (0, 1, 1) = (¬v 1 , v 2 , v C); e ′1 = (a ′1 1 , a ′1 2 , 0) = (0, 0, 0) = (¬v 1 , ¬v 2 , ¬v C).
We can easily see that

(v 1 ∧ ¬v 2) ∨ (¬v 1 ∧ v 2) |= v C |= v 1 ∨ v 2 , i.e., we have v 1 ∨v 2 |= v C |= v 1 ∨ v 2 ,
where ∨ stands for exclusive or. Indeed depending on whether (1, 1) is an example or a counter-example, the class C will be described by v 1 ∨ v 2 , or by v 1 ∨v 2 respectively.

Note that in the absence of any further information or principle, the two options for assessing a class to (1, 1) on the basis of e 1 , e 2 and e ′1 , are equally possible here.

Observe that if the bracketing of C in (1) is consistent, the conjunction of the lower bound expression and the upper bound expression yields the lower bound. But in case of an item which would appear both as an example and as a counter-example for C (noisy data), this conjunction would not be a contradiction, as we might expect, in general, as shown by the example below.

Example 2. Assume we have e 1 = (1, 0, 1); e 2 = (1, 1, 1); e ′1 = (1, 1, 0). The classes E and E ′ overlap since e 2 and e ′1 are the same item, classified differently. As a consequence we do not have that E ⊆ E ′ . So equation (1) is not valid : we do not have that

(v 1 ∧ ¬v 2) ∨ (v 1 ∧ v 2) |= C |= ¬v 1 ∨ ¬v 2 , i.e., v 1 |= C |= ¬v 1 ∨ ¬v 2 is wrong even if v 1 ∧ (¬v 1 ∨ ¬v 2) = v 1 ∧ ¬v 2 = ⊥.
A more appropriate treatment of inconsistency will be proposed in the next section.

The two expressions bracketing C in (1) have a graded counterpart, proposed in [START_REF] Dubois | Fuzzy logic techniques in multimedia database queyring: a preliminary investigation of the potentials[END_REF], for assessing how satisfactory an item is, given a set of examples and a set of counter-examples supposed to describe what we are looking for. Then an item is all the better ranked as it is similar to at least one example on all important attributes, and that it is dissimilar to all counter-examples on at least one important attribute (where similarity, dissimilarity, and importance are matters of degrees). However, this ranking problem is somewhat different from the classification problem where each item should be assigned to a class. Here if an item is both close to an example and to a counterexample, it has a poor evaluation, just as it would be if it is close to a counter-example only.

Note that if one considers examples only, the graded counterpart amounts to searching for items that are similar to examples. In terms of classification, it means to look for the pieces of data that are as much similar (on all attributes) as possible to the item for which one wants to predict the class, and to assess the class shared by the majority of these similar data. This is the k-nearest neighbor method. This is also very close to fuzzy case-based reasoning and instance-based learning [START_REF] Hüllermeier | Model adaptation in possibilistic instance-based reasoning[END_REF][START_REF] Dubois | Fuzzy methods for case-based recommendation and decision support[END_REF].

Conditional objects and rules

A conditional object b|a, where a, b are propositions, is a three-valued entity, which is true if a ∧ b is true; false if a ∧ ¬b is true; inapplicable if a is false; see, e.g., [START_REF] Dubois | Conditional objects as nonmonotonic consequence relationships[END_REF]. It can be thought as the rule 'if a then b'. Indeed, the rule can be fired only if a is true; the examples of this rule are such that a ∧ b is true, while its counter-examples are such that a ∧ ¬b is true. This view of conditionals dates back to De Finetti 's works in the 1930's.

An (associative) quasi-conjunction & can be defined for conditional objects:

b|a & d|c = (a → b) ∧ (c → d)|(a ∨ c)
where → denotes the material implication. It fits with the intuition that a set of rules can be fired as soon as at least one rule can be fired, and when a rule is fired, the rule behaves like material implication. Moreover, entailment between conditional objects is defined Let us revisit expression (1) in this setting. For an example e = (a, 1), and a counter-example e ′ = (a ′ , 0) with respect to a class C, it leads to consider the conditional objects v C |a and ¬v C |a ′ respectively (if it is an example we are in the class, otherwise not).

For a collection of examples we have

(v C |a 1) & • • • & (v C |a r) = ((a 1 ∨ • • • ∨ a r) → v C)|(a 1 ∨ • • • ∨ a r) = v C |(a 1 ∨ • • • ∨ a r)
Similarly, we have

(¬v C |a ′1) & • • • & (¬v C |a ′s) = ((a ′1 ∨ • • • ∨ a ′s) → ¬v C)|(a ′1 ∨ • • • ∨ a ′s) = ¬v C |(a ′1 ∨ • • • ∨ a ′s)
Letting φ E = r i=1 a i and φ E ′ = s j=1 a ′j , we can join the two conditional expressions:

(v C |φ E) & (¬v C |φ E ′) = (φ E → v C) ∧ (φ E ′ → ¬v C)|(φ E ∨ φ E ′)
where

(φ E ∧v C)∨(φ E ′ ∧¬v C)|⊤ (v C |φ E) & (¬v C |φ E ′) (φ E → v C)∧(φ E ′ → ¬v C)|⊤
A set of conditional objects K is said to be consistent if and only if for no subset S ⊆ K does the quasi-conjunction Q(S) of the conditional objects in S entail a conditional contradiction [START_REF] Dubois | Conditional objects as nonmonotonic consequence relationships[END_REF]. Contrary to material implication, the use of three-valued conditionals reveals the presence of contradictions in the data.

v C |(v 1 ∧ v 2) & ¬v C |(v 1 ∧ v 2) = (v 1 ∧ v 2) → (v C ∧ ¬v C)|(v 1 ∧ v 2) = (v C ∧ ¬v C)|(v 1 ∧ v 2) = ⊥|v 1 ∧ v 2 ,
which is a conditional contradiction.

Analogical proportion-based transduction

Apart from the k-nearest neighbor method, there is another transduction approach to the classification problem which applies to Boolean, nominal and numerical attribute values [START_REF] Bounhas | Analogy-based classifiers for nominal or numerical data[END_REF]. For simplicity here, we only consider Boolean attributes. It relies on the notion of analogical proportion [START_REF] Prade | Analogical proportions and analogical reasoning -An introduction[END_REF]. Analogical proportions are statements of the form "a is to b as c is to d", often denoted by a : b :: c : d, which express that "a differs from b as c differs from d and b differs from a as d differs from c". This statement can be encoded into a Boolean logical expression which is true only for the 6 following assignments (0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 0, 0), and (0, 0, 1, 1) for (a, b, c, d).

Boolean Analogical proportions straightforwardly extend to vectors of attributes values such as a = (a 1 , ..., a n), by stating a : b ::

c : d iff ∀i ∈ [1, n], a i : b i :: c i : d i .
The basic analogical inference pattern, is then ∀i ∈ {1, ..., p}, a i : b i :: c i : d i holds ∀j ∈ {p + 1, ..., n}, a j : b j :: c j : d j holds Thus analogical reasoning amounts to finding completely informed triples (a, b, c) appropriate for inferring the missing value(s) in d. When there exist several suitable triples, possibly leading to distinct conclusions, one may use a majority vote for concluding. This inference method is an extrapolation, which applies to classification (then the class cl(x) is the unique solution, when it exists, such as cl(a) : cl(b) :: cl(c) : cl(x) holds).

Let us examine more carefully how it works. The inference in fact takes items pair by pair, and then puts two pairs in parallel. Let us first consider the case where three items belong to the same class ; the fourth item is the one, the class of which one wants to predict (denoted by 1 in the following). Considering a pair of items a i and a j . There are attributes for which the two items are equal and attributes for which they differ. For simplicity, we assume that they differ only on the first attribute (the method easily extend to more attributes). So we have

e i = (a i 1 , a i 2 , • • • , a i n , 1)
and (e j = a j 1 , a j 2 , • • • , a j n , 1) with a j 1 = ¬a i 1 and a j t = a i t = v t for t = 2, n. This means that the change from a i

1 to a j 1 in context (v 2 , • • • , v n) does not change the class. Assume we have now another pair e k = (v 1 , a k 2 , • • • , a k n , 1) and e ⋆ = (¬v 1 , a ⋆ 2 , • • • , a ⋆ n , ?
) involving the item for we which we have to predict the class and exhibiting the same change on attribute A 1 and being equal elsewhere, i.e., we have a k t = a ⋆ t = v ♯ t for t = 2, n). Putting the two pairs in parallel, we obtain the following pattern

(v 1 , v 2 , • • • , v n , 1) (¬v 1 , v 2 , • • • , v n , 1) (v 1 , v ♯ 2 , • • • , v ♯ n , 1) (¬v 1 , v ♯ 2 , • • • , v ♯ n , ?
) It is not difficult to check that a i , a j , a k and a ⋆ are in analogical proportion for each attribute. So a i : a j :: a k : a ⋆ holds. The solution of 1 : 1 :: 1 :? is obviously ? = 1, so the prediction is cl(a ⋆) = 1. This conclusion is thus based on the idea that since the change from a i

1 to a j 1 in context (v 2 , • • • , v n) does not change the class, it is the same in the other context (v ♯ 2 , • • • , v ♯ n).
The case where e i and e k belong to class C while e j is in ¬C leads to another analogical pattern, where the change from a i 1 to a j 1 now changes the class in context

(v 2 , • • • , v n). The pattern is (v 1 , v 2 , • • • , v n , 1) (¬v 1 , v 2 , • • • , v n , 0) (v 1 , v ♯ 2 , • • • , v ♯ n , 1) (¬v 1 , v ♯ 2 , • • • , v ♯ n , ?)
The conclusion is now ? = 0, i.e., a ⋆ is not in C. This thus implements the idea that the change from a i 1 to a j 1 that changes the class in context

(v 2 , • • • , v n), leads also to the same change in context (v ♯ 2 , • • • , v ♯ n).
It has been theoretically established that analogical classifiers always yield exact prediction for Boolean affine functions describing the class (which includes x-or functions), and only for them [START_REF] Couceiro | Analogy-preserving functions: A way to extend Boolean samples[END_REF]. Still a majority vote among the predicting triples often yields the right prediction in other situations [START_REF] Bounhas | Analogy-based classifiers for nominal or numerical data[END_REF].

Let us see how it works on Example 1 and variants.

Example 4. In Example 1 we have: e 1 = (1, 0, 1); e 2 = (0, 1, 1); e ′1 = (0, 0, 0). We can check that there is no analogical prediction in this case for (1, 1, ?). Indeed, whatever the way we order the three vectors, either we get the 4-tuple (1, 0, 0, 1) on one component, which is not a pattern making true an analogical proportion, or the equation 0 : 1 :: 1 :? which has no solution. So analogy remains neutral in this case. However, in the situation where would have e 1 = (1, 0, 1); e 2 = (1, 1, 1); e ′1 = (0, 1, 0). Taking the triple (e 2 , e 1 , e ′1), we can check that (1, 1) : (1, 0) :: (0, 1) : (0, 0) holds on each of the two vector components. The solution of the equation 1 : 1 :: 0 :? is ? = 0, which is the analogical prediction for (0, 0, ?).

Similarly, in the case e 1 = (1, 0, 1), e 2 = (1, 1, 1) and e 3 = (0, 1, 1), we would obtain ? = 1 for (0, 0, ?) as expected, using triple (e 2 , e 1 , e 3).

It is clear that the role of analogical reasoning here is to complete the data set with new examples or counter-examples obtained by transduction, assuming analogical inference patterns are valid in the case under study. It may be a first step prior to the induction of a classification model.

Concept learning, version space and logic

The version space setting, as proposed by Mitchell [START_REF] Mitchell | Version spaces: A candidate elimination approach to rule learning[END_REF][START_REF] Mitchell | Version spaces: An approach to concept learning[END_REF], offers an elegant elimination procedure, exploiting examples and counter-examples of a class, then called "concept", for restricting the hypotheses space and providing an approach to rule learning.

Let us recall the approach using a simple example, with 3 attributes: Each hypothesis is described by a conjunction of constraints on the attributes, here Sky, Air Temp, and Humidity. Constraints may be ? (any value is acceptable), ∅ (no value is acceptable), a specific value, or a disjunction thereof. The target concept C, here Nice Day, is supposed to be represented by a disjunction of hypotheses (there may exist different h and h ′ such that h → v C and h ′ → v C). Descriptions of examples or counter-examples can be ordered according to their generality / specificity. Thus, the following descriptions are ordered according to decreasing generality: <?, ?, ? >, <Sunny ∨ Cloudy, ?, ? >, <Sunny, ?, ? >, <Sunny, ?, Normal>, < ∅, ∅, ∅ >.

The version space is represented by its most general and least general members. The so-called general boundary G is the set of maximally general members of the hypothesis space that are consistent with the data. The specific boundary S is the set of maximally specific members of the hypothesis space that are consistent with the data. G and S are initialized as G =<?, ?, ? > and S =< ∅, ∅, ∅ > (for 3 attributes as in the example).

The procedure amounts to finding a maximally specific hypothesis which covers the positive examples. Suppose we have two examples of Nice Day: Ex1. <Sunny, Warm, Normal> , Ex2. <Sunny, Warm, High>.

Then, taking into account Ex1, S is updated to S 1 =<Sunny, Warm, Normal>.

Adding Ex2, S is improved into S 2 =<Sunny, Warm, ? >, which corresponds to the disjunction of Ex1 and Ex2. The positive training examples force the S boundary of the version space to become increasingly general (S 2 is more general than S 1).

Although the version space approach was not cast in a logical setting, it is perfectly compatible with the logical encoding [START_REF] Abu-Mostafa | Learning from data. A short course[END_REF]. Indeed here we have two examples of the form

(v 1 , v 2 , v 3) and (v 1 , v 2 , ¬v 3) (with v 1 = Sunny; v 2 = Warm; v 3 = Normal, ¬v 3 = High). A tuple of values such that < v, v ′ , v ′′ > is to be understood as the conjunction v ∧v ′ ∧v". So we obtain (v 1 ∧v 2 ∧v 3)∨(v 1 ∧v 2 ∧¬v 3) → v C . It corresponds to the left part of Equation (1) for n = 3 and |E| = 2, which yields (v 1 ∧ v 2) ∧ (v 3 ∨ ¬v 3) → v C , i.e., (v 1 ∧v 2) → v C .
So the more positive examples we have, the more general the lower bound of C in (1) (the set of models of a disjunction is larger than the set of models of each of its components). This lower bound, here

v 1 ∧ v 2 , is a maximally specific hypothesis h.
Negative examples play a complementary role. They force the G boundary to become increasingly specific. Consider we have the following counter-example for Nice Day: cEx3. <Rainy, Cold, High>

The hypothesis in the G boundary must be specialized until it correctly classifies the new negative example. There are several alternative minimally more specific hypotheses. Indeed, the 3 attributes can be specialized for avoiding to cover cEx3 by being ¬Rainy, or being ¬Cold, or being ¬High. This exactly corresponds to Equation [START_REF] Abu-Mostafa | Learning from data. A short course[END_REF], which here gives v C → ¬Rainy ∨ ¬Cold ∨ ¬High, i.e., v C → Sunny ∨ Cloudy ∨ Warm ∨ Normal.

The elements of this disjunction correspond to maximally general potential hypotheses. But in fact we have only two new hypotheses in G: <Sunny, ?, ? > and <?, Warm, ? >, as explained now. Indeed, the hypothesis h = (?, ?, Normal) is not included in G, although it is a minimal specialization of G that correctly labels cEx3 as a negative example. This is because example Ex2 whose attribute value for A 3 is High, disagrees with the implication Normal → v C . So, hypothesis <?, ?, Normal> is excluded. Similarly, examples Ex1 and Ex2 (for which the attribute value for A 1 is Sunny) disagree with implication Cloudy → v C . This kind of elimination applies in Equation (1) as well. Indeed the expression v ∧ L ¬v ∨ L ′ can be simplified into v ∧ L L ′ .

We thus obtain upper and lower bounds from Ex1, Ex2, and cEx3 S 3 : <Sunny, Warm, ? > G 3 : {<Sunny, ?, ? > , <?, Warm, ? >}.

where

{< v 1 , v ′ 1 , v ′′ 1 >, < v 2 , v ′ 2 , v ′′ 2 >} logically reads (v 1 ∧ v ′ 1 ∧ v ′′ 1) ∨ (v 2 ∧ v ′ 2 ∧ v ′′
2) (? stands for ⊤). The S boundary of the version space thus summarizes the previously encountered positive examples. Any hypothesis more general than S will, by definition, cover any example that S covers and thus will cover any past positive example. In a dual fashion, the G boundary summarizes the information from previously encountered negative examples. Any hypothesis more specific than G is assured to be consistent with past negative examples. The set of all the hypotheses between S and G has a lattice structure. This in full agreement with Equation [START_REF] Abu-Mostafa | Learning from data. A short course[END_REF]. The approach provides an iterative procedure that takes advantage of the examples and counter-examples progressively.

Thus, the general procedure for obtaining the bounds of the version space are as follows. If e is a positive example, i) remove from G any hypothesis inconsistent with e ; ii) substitute in S any minimal generalization h consistent with e. If e is a negative example, i) remove from S any hypothesis inconsistent with e ; ii) substitute in G any minimal specialization h consistent with e.

Towards a possibilistic variant of the version space

The main drawback of the version space approach is its sensitivity to noise. Indeed each example and each counter-example influence the result. In [START_REF] Dubois | Concept learning with approximation: Rough version spaces[END_REF], the authors use rough set approximations to cope with this problem.

Here we make another suggestion using possibility theory. The idea is to associate each example and each counter-example with a certainty level, as in possibilistic logic (see, e.g., [START_REF] Dubois | Possibilistic logic: From certainty-qualified statements to two-tiered logics -A prospective survey[END_REF]) in order to express to what extent we consider it is certain that the corresponding piece of information is true (rather than false). This certainty level expresses our confidence in the piece of data as being exact. It can reflect the confidence we have in the source that provided it, or be the result of an analysis or filtering of the data that disqualifies outliers. In that respect we should remember that one semantics of possibility theory is in terms of (dis)similarity [START_REF] Sudkamp | Similarity and the measurement of possibility[END_REF].

In other words, we have a multi-tiered set of examples and a multi-tiered set of counter-examples. So, given some certainty level α, considering all examples and all counter-examples whose certainty is above or equal to α yields a regular version space with classical bounds. Thus, for each α, it gives birth to a bounded set of hypotheses to which α can be associated. We have thus a natural basis for rank-ordering hypotheses. The smaller α, the larger the numbers of examples and counter-examples taken into account, and the tighter the bounds.

This can be illustrated on the example of the previous section. at level 1, we have G 1 =<?, ?, ? > and S 1 =<Sunny, Warm, Normal>.

at level α, we have G α = {<Sunny, ?, ? >, <Cloudy, ?, ? >, <?, Warm, ? >} and S α =<Sunny, Warm, Normal>. at level β, we have G β = {<Sunny, ?,? >, <?, Warm,? >} and S β =<Sunny, Warm, ? >.

The above syntactic view is simpler than the semantic one presented in [START_REF] Prade | Bipolar version space learning[END_REF] where the paper starts with a pair of possibility distributions over hypotheses, respectively induced by the examples and by the counter-examples.

Formal concept analysis

Formal concept analysis [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF] is another setting where association rules between attributes can be extracted from a formal context R ⊆ X × Y , which is nothing but a relation linking items in X with properties in Y . It provides a theoretical basis for data mining. Tableau 1 can be viewed as a context, restricting to rows E ∪ E ′ and considering the class of examples as just another attribute.

Let Rx and R -1 y respectively denote the set of properties possessed by item x and the set of items having property y. Let E ⊆ X and A ⊆ Y . The set of items having all properties in A is given by A ↓ = {x | A ⊆ Rx} and the set of properties possessed by all items in E is given by E ↑ = {y | E ⊆ R -1 y}. A formal concept is then defined as a pair (E, A) such that A ↓ = E and E ↑ = A where E and A provides the extent and the intent of the formal concept respectively. Then, it can be shown that E × A ⊆ R, and is maximal with respect to set inclusion, i.e., (E, A) defines a maximal rectangle in the formal context.

Let A and B be two subsets of Y . Then R satisfies the attribute implication A ⇒ B if for every x ∈ X, such that x ∈ A ↓ , then x ∈ B ↓ . Formal concept analysis is not primarily oriented towards concept learning, but towards mining attribute implications (i.e., association rules). However, it might be interesting to consider formal contexts where Y also contains the names of classes, i.e., C ⊆ Y . Then being able to find attribute implications of the form A ⇒ C where A ∩ C = ∅ and C ⊆ C, would be of a particular interest, especially if C is a singleton.

The rectangular nature of formal concepts expresses a form of convexity, which fits well with the ideas of Gärdenfors about conceptual spaces [START_REF] Gärdenfors | Conceptual Spaces. The Geometry of Thought[END_REF]. Moreover, using also operators other than ↓ and ↑ (see [START_REF] Dubois | Possibility theory and formal concept analysis: Characterizing independent sub-contexts[END_REF]) help characterizing independent sub-contexts and other noticeable structures. Formal concept analysis can be also related to the idea of clustering [START_REF] Dubois | Bridging gaps between several forms of granular computing[END_REF], where clusters are unions of overlapping concepts in independent sub-contexts. The idea of approximate concepts, i.e., rectangles with "holes", suggests a convexity-based completion principle, which might be useful in a classification perspective.

Concluding remarks

This paper is clearly a preliminary step toward a unified, logical, study of set theorybased approaches in data management. It is preliminary in at least two respects: several of these approaches have been only cited in the introduction, while the others have been only briefly discussed. All these theoretical settings start with a Boolean table in the simplest case, and many of them extend to nominal, and possibly to numerical data. Still they have been motivated by different concerns such as describing a concept, predicting a class, or mining rules. Due to their set theory-based nature, they can be considered from a logical point of view, and a number of issues are common, such that handling incomplete information, missing values, inconsistent information, or non applicable attributes.

In a logical setting, the handling of uncertainty can be conveniently handled using possibility theory and possibilistic logic [START_REF] Dubois | Possibilistic logic: From certainty-qualified statements to two-tiered logics -A prospective survey[END_REF]. We have suggested above how it can be applied to concept learning and how it may take into account uncertain pieces of data. Possibilistic logic can also handle default rules that can be obtained from Boolean data by looking for suitable probability distributions [START_REF] Benferhat | A big-stepped probability approach for discovering default rules[END_REF]; such rules provide useful summaries of data. The possible uses of possibilistic logic in data management is a general topic for further investigation.

Example 1 .

 1 It is an example with two Boolean attributes, two classes (C and C), two examples and a counter-example. Namely, we have e 1

 by b|a d|c iff a ∧ b c ∧ d and c ∧ ¬d a ∧ ¬b, which expresses that the examples of rule 'if a then b' are examples of rule 'if c then d', and the counter-examples of rule 'if c then d' are counter-examples of rule 'if a then b'. It can be checked that b|a = (a∧b)|a = (a → b)|a since these three conditional objects have the same examples and the same counter-examples. It can be also shown that a ∧ b|⊤ b|a a → b|⊤ (where ⊤ denotes tautology), thus highlighting the fact that b|a is bracketed by the conjunction a ∧ b and the material implication a → b.

Example 3 .

 3 (Example 2 continued) The data are e 1 = (1, 0, 1); e 2 = (1, 1, 1); e ′1 = (1, 1, 0). In terms of conditional objects, considering the subset {e 2 , e ′1 }, we have

A 1 =

 1 Sky (with possible values Sunny, Cloudy, and Rainy), A 2 = Air Temp (with values Warm and Cold), and A 3 = Humidity (with values Normal and High). The problem is to learn the concept of C = Nice Day on the basis of examples and counter-examples. This means finding all hypotheses h, such that the implication h → v C is compatible with the examples and the counter-examples.

Example 5 .

 5 Examples and counter-examples now come with certainty weights. Assume we have Ex1: (<Sunny, Warm, Normal>, 1); cEx3: (<Rainy, Cold, High>, α); Ex2: (<Sunny, Warm, High>, β), with 1 > α > β.So, we obtain a layered version of the upper and lower bounds of the version space:

Acknowledgements

The authors acknowledge a partial support of ANR-11-LABX-0040-CIMI (Centre International de Mathématiques et d'Informatique) within the program ANR-11-IDEX-0002-02, project ISIPA ("Intégrales de Sugeno, Interpolation, Proportions Analogiques").