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A stability criterion is worked out for the superconducting phase. The validity of a prerequisite,
established previously for persistent currents, is thereby confirmed. Temperature dependence is
given for the specific heat and concentration of superconducting electrons in the vicinity of the
critical temperature Tc. The isotope effect, mediated by electron-phonon interaction and hyperfine
coupling, is analyzed. Several experiments, intended at validating this analysis, are presented,
including one giving access to the specific heat of high-Tc compounds.

PACS numbers: 74.25.Bt

I. INTRODUCTION

In the mainstream view1–3, the thermal properties
of superconductors are discussed within the framework
of the phenomenological equation by Ginzburg and
Landau4 (GL) and the BCS theory5. However, since
this work is aimed at accounting for the stability of
the superconducting state with respect to the normal
one, we shall develope an alternative approach, based on
thermodynamics6, the properties of the Fermi gas7 and
recent results8,9, claimed to be valid for all superconduc-
tors, including low and high Tc materials.
The outline is as follows : the specific heat of the super-

conducting phase is calculated in section 2, which enables
us to assess its binding energy and thereby to confirm
and refine a necessary condition, established previously
for the existence of persistent currents8; section 3 is con-
cerned with the inter-electron coupling, mediated by the
electron-phonon and hyperfine interactions; new experi-
ments, dedicated at validating this analysis, are discussed
in section 4 and the results are summarised in the con-
clusion.

II. BINDING ENERGY

As in our previous work8–13, the present analysis will
proceed within the framework of the two-fluid model, for
which the conduction electrons comprise bound and inde-
pendent electrons, in respective temperature dependent
concentration cs(T ), cn(T ). They are organized, respec-
tively, as a many bound electron9 (MBE) state, charac-
terised by its chemical potential µ(cs), and a Fermi gas7
of Fermi energy EF (T, cn). The Helmholz free energy of
independent electrons per unit volume Fn and EF on the
one hand, and the eigenenergy per unit volume Es(cs) of
bound electrons and µ on the other hand, are related6,7,
respectively, by EF = ∂Fn

∂cn
and µ = ∂Es

∂cs
. At last, ac-

cording to Gibbs and Duhem’s law6, the two-fluid model
fulfils8 at thermal equilibrium

EF (T, cn(T )) = µ(cs(T )), c0 = cs(T ) + cn(T ), (1)

with c0 being the total concentration of conduction elec-
trons. Solutions of Eq.(1) are given for T = 0, Tc in Fig.1.
Besides, Eq.(1) has been shown8,9 to read for T = Tc (see
B in Fig.1)

EF (Tc, c0) = µ(cs = 0) = εc/2 , (2)

with εc being the energy of a bound electron pair9. Note
that Eq.(2) is consistent with the superconducting tran-
sition, occuring at Tc, being of second order6, whereas it
has been shown9 to be of first order at T < Tc, if the
sample is flown through by a finite current. Then the
binding energy of the superconducting state Eb(T < Tc)
has been worked9,14 out as

Eb(T ) =
∫ Tc

T

(Cs(u)− Cn(u)) du , (3)

with Cs(T ), Cn(T ) = (πkB)2

3 ρ(EF )T, being the elec-
tronic specific heat of a superconductor, flown through
by a vanishing current9 and that of a degenerate Fermi
gas7 (kB , ρ(EF ) stand for Boltzmann’s constant and
the one-electron density of states at the Fermi en-
ergy). Due to Eq.(3), a stable superconducting phase
⇔ Eb > 0 requires Cs(T ) > Cn(T ), which is confirmed
experimentally1,7, namely Cs(Tc) ≈ 3Cn(Tc).
The bound and independent electrons contribute, re-

spectively,

Es(cs) =
∫ cs

0 µ(u)du
En(T, cn) =

∫ εu

εb
ερ(ε)f(ε− EF , T )dε ,

to the total electronic energy E = En + Es. The symbols
ε, f(ε−EF , T ) refer to the one-electron energy and Fermi-
Dirac distribution, while εb, εu designate the lower and
upper limits of the conduction band. Then, thanks to
Eq.(1) (⇒ dcn + dcs = dEF − dµ = 0), Cs(T ) = dE

dT is
inferred to read

Cs = ∂En
∂T
−EF

∂cn
∂T

+ dEF
dT

(
∂En
∂EF

− EF
∂cn
∂EF

)
, (4)

with cn = cn(T ), cs = cs(T ), EF = EF (T, cn(T )). Be-
cause the independent electrons make up a degenerate
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FIG. 1. Schematic plots of EF (T = 0, cn), EF (Tc, cn),
EF (T > Tc, cn) and µ(cs) as solid, dashed-dotted, dotted
and dashed lines, respectively; ∂µ

∂cs
has been taken to be con-

stant for simplicity; the origin EF = µ = 0 is set at the
bottom of the conduction band; the crossing points A,B of
EF (0, cn), EF (Tc, cn), respectively, with µ(cs), exemplify sta-
ble solutions of Eq.(1); the tiny differences EF (T, cn)−µ(c0 −
cn) have been hugely magnified for the reader’s convenience.

Fermi gas (⇒ T << TF = EF /kB), the following
expressions can be obtained owing to the Sommerfeld
expansion7 up to T 2

∂En

∂EF
= EF ρ+ (2ρ′ + EF ρ

′′) (πkBT )2

6
∂En

∂T = (ρ+ EF ρ
′) (πkB)2

3 T
∂cn

∂EF
= ρ+ ρ′′ (πkBT )2

6 , ∂cn

∂T = ρ′ (πkB)2

3 T

, (5)

with ρ = ρ(EF ), ρ′ = dρ
dEF

(EF ), ρ′′ = d2ρ
dE2

F

(EF ). Then
Eq.4 is finally recast into

Cs(T ) = (πkB)2

3 ρT

(
1 + dEF

dT

ρ′

ρ
T

)
. (6)

Applying Eq.6 at T = Tc yields

Cs(Tc) = Cn(Tc)
(

1 + dEF
dT

(T−c )ρ
′

ρ
Tc

)
. (7)

Hence it is in order to work out the expressions of
dEF

dT (T > Tc) and dEF

dT (T ≤ Tc).
Due to cn(T > Tc) = c0, dEF

dT is deduced7 to read

dEF
dT

(T > Tc) = −
∂cn

∂T
∂cn

∂EF

= − (πkB)2

3
ρ′

ρ
T , (8)

which is integrated with respect to T to yield

EF (T = 0, c0)− EF (T, c0) = (πkB)2

6
ρ′

ρ
T 2 . (9)

Then consistency with Fig.1 requires ρ′(EF ) > 0 so that
C goes toward B for T ↘ Tc. Assuming ρ(ε) = ρf (ε) ∝√
ε⇒ ρ′f (ε) > 0,∀ε, with ρf (ε) being the density of states

of three-dimensional free electrons, leads to

1− EF (T > Tc)
EF (0, c0) = π2

12

(
T

TF

)2
.

A numerical application with a typical value TF =
3 × 104K yields TF (300K) − TF (0) ≈ 3K << TF ⇒∣∣dTF

dT (T > Tc)
∣∣ << 1.

Taking advantage of Eq.1, the expression of dEF

dT (T ≤
Tc) is obtained to read

dcn = ∂cn

∂EF
dEF + ∂cn

∂T dT

dcs = ∂cs

∂µ dµ = −dcn

}
⇒ dEF

dT
= −

∂cn

∂T

β(T ) , (10)

with β(T ) = ∂cn

∂EF
+ ∂cs

∂µ . The Sommerfeld expansion (see
Eq.(5)) leads to

α = dEF
dT

(T−c )ρ
′

ρ
Tc = − (πkBρ′Tc)2

3ρβ(Tc)
. (11)

Thus, looking back at Eq.7, it is realized that the
observed1,7 relation Cs(Tc) ≈ 3Cn(Tc) requires α > 0⇒
β(Tc) < 0, which had been already identified8 as a nec-
essary condition for the superconducting state to be at
thermal equilibrium. At last, α reads in case of ρ = ρf

α = π2

12

(
T

TF

)2
ρ
∂EF
∂cn

(
1 + ∂EF

∂cn

∂cs
∂µ

)−1
.

Due to T
TF

<< 1 and ρ∂EF

∂cn
≈ 1, getting α ≈ 2 requires

β(Tc) ≈ 0⇒ ∂EF

∂cn
+ ∂µ
∂cs
≈ 0, so that the stability criterion

of the superconducting state reads finally

∂EF
∂cn

(Tc, c0) = − ∂µ
∂cs

(0), ρ′(EF (Tc, c0)) > 0 . (12)

Because of ∂EF

∂cn
(Tc, c0) ≈ 1

ρ > 0, Eq.(12) is seen to be
consistent with ∂µ

∂cs
(cs) < 0, established previously as a

prerequisite for persistent currents8 and the Josephson
effect15. At last, note that there is dTF

dT (T ≤ Tc) >> 1
but inversely 0 < −dTF

dT (T > Tc) << 1.
In order to grasp the significance of the constraint ex-

pressed by Eq.(12), let us elaborate the case for which
Eq.(12) is not fulfilled (⇒ Cs(T < Tc) < Cn(T )). Ac-
cordingly the hatched area in Fig.1 is equal to the dif-
ference in free energy at T = 0 between the supercon-
ducting phase and the normal one, and thence also equal
to Eb(0) > 0 because the entropy of the normal state
vanishes6 at T = 0. However applying Eq.(3) with
Cs(T < Tc) < Cn(T ) yields Eb(0) < 0, which con-
tradicts the above opposite conclusion Eb(0) > 0, and
thereby entails that the MBE state, associated with A
in Fig.1, is not observable at thermal equilibrium in case
of unfulfilled Eq.(12), even though it is definitely a MBE
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eigenstate16–18 of the Hubbard Hamiltonian, accounting
for the motion of correlated electrons, and its energy is
indeed lower than that of the Fermi gas En(T = 0, c0).
Since energy and free energy are equal6 at T = 0, Eb(0)

reads

Eb(0) =
∫ cs(0)

0
(EF (0, c0 − cs)− µ(cs)) dcs .

In order to work out an upper bound for Eb(0),
EF (T, c0− cs)−µ(cs) will be approximated by its Taylor
expansion at first order with respect to cs− cs(T ), which
yields

EF (T, c0 − cs)− µ(cs) ≈
m

e2 γ (cs(T )− cs) , (13)

with γ = ∂EF

∂cn
(cn(T )) + ∂µ

∂cs
(cs(T )). Since it has been

shown9 that EF (T, c0 − cs) − µ(cs) < 10−5eV , Eq.(13)
turns out to be very accurate. Likewise, due to cs(T ) ≥
cs ≥ 0 (see Fig.1) and γ > 0 being a necessary condition8
for A in Fig.1 to correspond to a stable equilibrium,
Eq.(13) entails

EF (T, c0 − cs)− µ(cs) ≤ EF (T, c0)− µ(0) .

Then by taking advantage of Eqs.(2,9), we get

EF (T, c0)−µ(0) ≤ EF (0, c0)−EF (Tc, c0) = (πkBTc)2

6
ρ′

ρ
,

with ρ′ > 0 as required by Eq.(12). At last, assuming
ρ(ε) = ρf (ε), the searched upper bound per electron is
obtained to read

Eb(0)
c0EF (Tc, c0) ≤

π2

12

(
Tc
TF

)2
.

Applying this formula to Al (Tc = 1.2K,TF ≈ 3×104K)
gives Eb(0)

c0EF (Tc,c0) < 10−8. Moreover, that latter result
had enabled us to realize11 that the formula Eb(0) =
µ0Hc(0)2/2, albeit ubiquitous in textbooks1–3 (Hc(T ≤
Tc), µ0 refer to the critical magnetic field and the mag-
netic permeability of vacuum, respectively), underesti-
mates Eb(0) by ten orders of magnitude.

Since fulfilling Eq.(12) is tantamount to β(Tc) = 0,
which entails dEF

dT (T → T−c ) → ∞ and thence Cs(T →
T−c ) → ∞, it must be checked that E(T ) =

∫ T
0 Cs(u)du

remains still finite for T → T−c . To that end, let us work
out the Taylor expansion of µ(cs), EF (T, cn) up to the
second order around T = 0, cs = 0

µ(cs) = µ(0) + ∂µ
∂cs

(0)cs + ∂2µ
∂c2

s
(0) c

2
s

2

EF (T, cn) = EF (Tc, c0)− cs

ρ −
ρ′

ρ3
c2

s

2

+ (πkB)2

6
ρ′

ρ

(
T 2
c − T 2) ,

for which we have used cn = c0 − cs, cs = cs(T ), ∂EF

∂cn
=

1
ρ ⇒

∂2EF

∂c2
n

= − ρ′

ρ3 . Then taking advantage of Eqs.(1,2)

(⇒ EF (T, cn) = µ(cs), EF (Tc, c0) = µ(0)) and Eq.(12)
(⇒ β(Tc) = ∂µ

∂cs
(0) + 1

ρ = 0) results into

cs(T → T−c ) = πkB

√√√√ ρ′ (T 2
c − T 2)

3
(
ρ∂

2µ
∂c2

s
(0) + ρ′

ρ2

) ∝√Tc − T .

It should be noticed that the GL equation predicts3
rather cs(T → T−c ) ∝ Tc − T .
Likewise, let us calculate similarly the Taylor expan-

sion of β(T ) ∝ ∂EF

∂cn
+ ∂µ

∂cs
up to the first order around

T = Tc, cs = 0

β(T → T−c ) ∝
(
∂2µ
∂c2

s
(0)− ∂2EF

∂c2
n

(Tc, c0)
)
cs ⇒

β(T → T−c ) ∝
√
Tc − T ⇒ E(T → T−c ) ∝

√
Tc − T

,

whence E(T → T−c ) is concluded to remain indeed finite.
At last, we shall work out the expression of jM (T →

T−c ), the maximum current density js, conveyed by
bound electrons which was shown9 to read

jM = ecm(T )
√

2
m

(EF (T, c0 − cm(T ))− µ(cm(T ))) ,

with e,m standing for the charge and effective mass of
the electron, while cm(T ) = 2

3cs(T ) designates the corre-
sponding value of cs, i.e. js(cm) = jM . Hence jM reads9
finally

jM (T ) = er√
m

( 2
3cs(T )

)1.5

r =
√

∂EF

∂cn
(cn(T )) + ∂µ

∂cs
(cs(T ))

.

It ensues from β(Tc) = 0 that the leading term of the
Taylor expansion of r around T = Tc, cs = 0 reads

r (T → T−c ) ∝
√
cs(T )⇒ r ∝ (Tc − T )

1
4 ⇒

jM (T → T−c ) ∝ Tc − T
,

which is to be compared with the maximum persistent
current density9 jc (T → T−∗ ) ∝

√
T∗ − T with T∗ < Tc.

III. ISOTOPE EFFECT

Substituting, in a superconducting material, an atomic
species of mass M by an isotope, is well-known1–3
to alter Tc. This isotope effect was ascribed to the
electron-phonon coupling, on the basis of the observed
relation Tc

√
M = constant. The ensueing theoretical

treatment1–3 capitalised19 on Froehlich’s perturbation20
calculation of the self-energy of an independent elec-
tron induced by the electron-phonon coupling. However
since the BCS picture5 has subsequently ascertained the
paramount role of inter-electron coupling, we shall rather
focus hereafter on the effective phonon-mediated interac-
tion between two electrons.
Thus let us consider independent electrons of spin σ =
±1/2, moving in a three-dimensional crystal, containing
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N sites. The dispersion of the one-electron band reads
ε(k) with ε(k), k being the electron, spin-independent (⇒
ε(−k) = ε(k)) energy and a vector of the Brillouin zone,
respectively. Their motion is governed, in momentum
space, by the Hamiltonian Hd

Hd =
∑
k,σ

ε(k)c+
k,σck,σ ,

with the sum over k to be carried out over the whole Bril-
louin zone. Then the c+

k,σ, ck,σ’s are Fermi-like creation
and annihilation operators2 on the Bloch state |k, σ〉

|k, σ〉 = c+
k,σ |0〉 , |0〉 = ck,σ |k, σ〉 ,

with |0〉 being the no electron state. Let us introduce
now the electron-phonon1–3,19 coupling he−φ

he−φ = gq√
N

∑
k,k′,σ

c+
k,σck′,σ

(
a+
q + a−q

)
,

with q = k′ − k and gq ∝ (ωqM)−1/2 being the coupling
constant characterising the electron-phonon interaction.
Likewise, ωq is the phonon frequency, while the a+

q , aq’s
are Bose-like creation and annihilation operators2 on the
nq ∈ N phonon state |nq〉

a+
q |nq〉 =

√
nq + 1 |nq + 1〉 , aq |nq〉 = √nq |nq − 1〉 .

Because of 〈k |he−φ| k′〉 = 0,∀k, k′ with |k〉 =
c+
k,+c

+
−k,− |0〉 , |k′〉 = c+

k′,+c
+
−k′,− |0〉, we shall deal with

he−φ as a perturbation with respect to Hd, in order to
reckon 〈k |k′2 〉 with |k′2〉 denoting |k′〉 perturbed at second
order20. Accordingly, we first introduce the unperturbed
electron-phonon eigenstates∣∣∣k̃〉 = |k〉⊗ |nq〉+ |n−q〉√

2
,
∣∣∣k̃′〉 = |k′〉⊗ |nq〉+ |n−q〉√

2
,

with nq = n−q = n. Their respective energies read
E(k) = 2ε(k) + n~ωq, E(k′) = 2ε(k′) + n~ωq. Then we
reckon

∣∣∣k̃′2〉 and further project it onto
∣∣∣k̃〉, which yields〈

k̃
∣∣∣k̃′2〉 = g2

q

2N

(〈
k̃ |he−φ|ϕ+

〉〈
ϕ+ |he−φ| k̃′

〉
+
〈
k̃ |he−φ|ϕ−

〉〈
ϕ− |he−φ| k̃′

〉)
ϕ+ = c+

k,+c
+
−k′,− |0〉 ⊗

(√
n+1
D+
|nq + 1〉+

√
n

D−
|n−q − 1〉

)
ϕ− = c+

k′,+c
+
−k,− |0〉 ⊗

(√
n+1
D+
|n−q + 1〉+

√
n

D−
|nq − 1〉

) ,

with D± = εk−εk′±~ωq. The searched xk,k′ = N 〈k |k′2 〉
is then inferred to read

xk,k′ =
(2n(T ) + 1) g2

q(
(εk − εk′)2 − (~ωq)2

) ,

with n(T ) =
(
e

~ωq
kB T − 1

)−1
being the thermal average

of n±q. Moreover it can be checked that xk,k′ = xk′,k.

Thus, for q not close to the Brillouin zone center (the
most likely occurence), there is xk,k′ > 0, whereas
xk,k′ < 0 can be found only for q ≈ 0. Likewise, though
the hereabove expression is redolent of one derived by
Froehlich19, their respective significances are unrelated,
since Froehlich interpreted the self-energy of one electron
and one phonon bound together in terms of virtual tran-
sitions between various electron-phonon states, whereas
xk,k′ refers to the dot product of two-electron-states.
Projecting the hermitian BCS Hamiltonian5,16–18 H

onto the basis {|k2〉 , |k′2〉} yields

Hk2,k2 = 2
(
εk + xk,k′U

N2 +
x2

k,k′

N2 εk′

)
Hk2,k′2

= U
N

(
1 +

x2
k,k′

N2

)
+ 2xk,k′

N (εk + εk′)

Hk′2,k
′
2

= 2
(
εk′ + xk,k′U

N2 +
x2

k,k′

N2 εk

) ,

whence it can be concluded within the thermodynamic
limit (N → ∞) that the diagonal matrix elements
Hk,k remains unaltered by the electron-phonon coupling,
whereas U is slightly renormalised to U+2xk,k′ (εk + εk′).
Anyhow, since, as noted above, xk,k′ > 0 is the most
likely case, it is hard to figure out how the phonon-
mediated isotope effect could lessen U , as concluded by
Froehlich19.
Because, in some materials, the observed isotope effect

does not comply with Tc
√
M = constant, it has been as-

cribed tentatively21 to the hyperfine22 interaction, cou-
pling the nuclear and electron spin, provided the electron
wave-function includes some s-like character. We shall
derive the corresponding xk,k′ , by proceeding similarly
as above for the electron-phonon one and keeping the
same notations.
The Hamiltonian reads for nuclear spins = 1/2 in mo-

mentum space

Hh = A√
N

∑
k,k′

c+
k,+c−k′,−I

−
q + c+

−k,−ck′,+I
+
q ,

with A being the hyperfine constant, ± referring to the
two spin directions and q = k + k′. Likewise, the
I± = σx±iσy

2 ’s, with σx, σy being Pauli’s matrices22 char-
acterising the nuclear spin, operate on nuclear spin states
|±〉. Note that the term ∝ σz has been dropped because
it turned out to contribute nothing to xk,k′ . The unper-
turbed eigenstates read∣∣∣k̃〉 = |k〉 ⊗

|+〉q + |−〉q√
2

,
∣∣∣k̃′〉 = |k′〉 ⊗

|+〉q + |−〉q√
2

.

Their respective energies are E(k) = 2ε(k), E(k′) =
2ε(k′). Then xk,k′ , 〈k |k′2 〉 read in this case

xk,k′ = − A2

4(εk′−εk)2

〈k |k′2 〉 = xk,k′

N

〈
k̃ |hh|ϕ

〉〈
ϕ |hh| k̃′

〉
ϕ = c+

k,+c
+
k′,+ |0〉 ⊗ |−〉q + c+

−k,−c
+
−k′,− |0〉 ⊗ |+〉q

.



5

Except for having the opposite sign, xk,k′ has the same
properties as in case of the electron-phonon coupling,
which causes U to be renormalised to a slightly lesser
value.

IV. EXPERIMENTAL OUTLOOK

Three experiments, enabling one to assess the validity
of this analysis, will be discussed below. The first one ad-
dresses the determination of ∂µ

∂cs
, which plays a key role

for the existence of persistent currents8 and the stability
of the superconducting phase (see Eq.(12)). As shown
elsewhere9, the partial pressure p(T ≤ Tc), exerted by
the conduction electrons, and their associated compress-
ibility coefficient23 χ(T ) read

p = cnEF (cn)− Fn(cn) + csµ(cs)− Es(cs)⇒
χ = − dV

V dp =
(
c2
n
∂EF

∂cn
+ c2

s
∂µ
∂cs

)−1 , (14)

with cn = cn(T ), cs = cs(T ) and V being the sam-
ple volume. For T → Tc, there is cs → 0, so that
it might be impossible to measure the contribution of
bound electrons ∝ c2

s
∂µ
∂cs

(0) to χ in Eq.(14). Such a hur-
dle might be dodged by making the kind of differential
measurement to be described now. A square-wave cur-
rent I(t + tp) = I(t),∀t, such that I

(
t ∈
[
− tp2 , 0

])
=

0, I
(
t ∈
[
0, tp2

])
= Ic (Ic stands for the critical current),

is flown through the sample, so that the sample switches
periodically from superconducting to normal. Then us-
ing a lock-in detection procedure for the χ measurement
might enable one to discriminate c2

s
∂µ
∂cs

against c2
n
∂EF

∂cn
,

despite cs (T → Tc) << cn ≈ c0 and thence to check the
validity of Eq.(12).

The validity of Eq.(1) can be assessed by shining UV
light of variable frequency ω onto the sample and mea-
suring the electron work function7 w(T ≤ Tc) by observ-
ing two distinct photoemission thresholds w1 = ~ω1 =
EF (T ), w2 = ~ω2 = 2µ(T ), associated respectively with
single electron and electron pair excitation. Observing
ω2 = 2ω1 would validate Eq.(1). Besides, if cs(T ) is
known from skin-depth measurements10, µ(cs) could be
charted. Note also that, if such an experiment were to
be carried out in a material, exhibiting a superconduct-
ing gap Eg, a large decrease of EF from EF (Tc) down to

EF (0) = µ(c0) = εb − Eg should be expected (εb desig-
nates the bottom of the conduction band).
For T > 10K, the electron specific heat is

overwhelmed7 by the lattice contribution Cφ, so that
there are no accurate experimental data24 for Cs(T ).
Such a difficulty might be overcome by using again the
differential technique, described above. A constant heat
power W is fed into a thermally insulated sample, while
its time-dependent temperature T (t) is monitored. Thus
T (t) can be obtained owing to

W = (Cφ(T ) + Cs(T )) Ṫ
(
t ∈
[
− tp2 , 0

])
W = (Cφ(T ) + Cn(T )) Ṫ

(
t ∈
[
0, tp2

]) ,

with Ṫ = dT
dt . Feeding again the square-wave current,

mentioned above, into the sample, while using the same
lock-in detection technique, could enable one to extract
Cs(T ) − Cn(T ) from the measured signal Ṫ (t), despite
Cφ >> Cs, Cn. Note9 that Cφ, Cn, unlike Cs, do not
depend on the current I and Cn can always be mea-
sured at low T and then extrapolated7 up to Tc thanks
to Cn(T ) = (πkB)2

3 ρ(EF )T .

V. CONCLUSION

A criterion, warranting the stability of the super-
conducting phase, has been worked out and found to
agree with a prerequisite ∂µ

∂cs
< 0, established previ-

ously for persistent currents8, thermal equilibrium9 and
the Josephson effect15. The temperature dependence at
T → Tc has been given for the specific heat, concentra-
tion and maximum current density, conveyed by super-
conducting electrons. At last, an original derivation of
the isotope effect has been given.
Due to the inequality U ∂µ

∂cs
< 0, shown elsewhere9, the

necessary condition ∂µ
∂cs

< 0 entails U > 0, i.e. a repulsive
inter-electron force, such as the Coulomb one, is needed
for superconductivity to occur, if the Hubbard model is
taken to describe the correlated electron motion. Note
that, in the mainstream interpretation25,26 of the prop-
erties of high-Tc materials, such a repulsive force is also
believed to be instrumental above Tc but not below Tc
due to the BCS assumption U < 0, although the na-
ture of the inter-electron coupling remains unaltered at
Tc. Thence, the BCS model is found not to be consis-
tent with persistent currents8, thermal equilibrium9 and
a stable superconducting phase, as shown hereabove, due
to U < 0⇒ ∂µ

∂cs
> 0.
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