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Abstract

This paper deals with the nonlinear finite element computation of the pre-

stressed state of structures partially filled with an incompressible inviscid liquid.

The fluid is modeled by hydrostatic follower forces such that no volumetric fluid

mesh is needed. Large deformations are taken into account and lead to the fluid

height variation of the wetted surface to satisfy the fluid volume conservation.

The main originality of this work lies on the use of a level-set approach to handle

numerical integration on the fluid-structure interface. The method is developed

on 3D problems considering a finite element quadratic mesh. Various numeri-

cal examples are computed using a Newton-Raphson algorithm and a quadratic

convergence rate is reached by using consistent tangent stiffness operators.
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1. Introduction

This paper deals with the finite element computation of the nonlinear equi-

librium of elastic structures partially filled with liquid. The objective is to

evaluate the prestressed state of flexible tanks in finite deformation. Those

computational results could be useful to estimate the influence of geometrical5

nonlinearties on the linearized vibrations of such coupled systems, inducing for

example a shift of the hydroelatsic natural circular frequencies [1, 2, 3]. In this

study, since the liquid is supposed inviscid, incompressible and at rest, without

considering surface tension effects, its mechanical action on the structure is as-

sumed to be an hydrostatic follower force. The major contribution of the paper10

lies on the use of the level-set approach [4] for the numerical integration of finite

element operators used in the nonlinear solution algorithm (e.g. the external

nodal forces and the load stiffness matrix [5]).

The literature on the computation of finite deformation of elastic structures

partially filled with liquid and gas, through a finite element approach, have been15

already treated in [6] for volume-dependent pressure, in [7] for hydrostatic de-

pendent pressure and in [8] for gas and fluid supported membrane. The stability

of thin-walled shell is examined in [9] and the influence of modifications of the

shape of multi-chamber systems filled with gas and liquid is analysed in [10].

The key points of all these approaches are the computation of the displacement-20

dependent external forces and the symmetric load stiffness matrix used inside

an increment of the nonlinear algorithms (e.g. Newton-Raphson or arc-length

continuation approaches). Due to the incompressibility assumption, the pres-

sure can be expressed as a function of structural displacement at the wetted

interface and consequently, no volumetric fluid mesh is needed. This kind of ap-25
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proaches have been used in recent years for the analysis of unstable hyperelastic

membranes [11], possibly with non-uniform thickness [12], and for parametric

and multiparametric stability analyses [13, 14]. The nonlinear equilibrium of

flexible floating structures subjected to external hydrostatic pressure is also pre-

sented in [15]. Finally, note that a large collection of shell and plate theories,30

containing many examples with follower forces, has been published recently in

[16].

The level-set approach, which constitutes the main originality of the paper,

is used to handle the numerical integration on current loaded surface elements,

which are no more coincident with the contact line. In the case of linear par-35

tially wetted surface elements, a particular numerical treatment based on cutted

elements has been proposed in [11, 15]. Here, since the structure is meshed with

an hexahedral quadratic mesh, we propose an original implementation of the

level-set, on height nodes curved quadratic surface elements, which necessitates

the development of multiples cases exposed in the paper. This method allows40

the user to obtain (i) an accurate position of Gauss points for the numerical

integration and (ii) a curvilinear mesh discretization of the current contact line.

The outline of the paper is the following. In Section 2, we recall the nonlinear

finite element equations of a structure submitted to hydrostatic follower forces,

considering an hyperelastic constitutive law. A variational formulation based on45

the classic three-dimensional Lagrangian approach is presented and a finite ele-

ment discretization is performed using a quadratic hexaedral mesh. In Section

3, we detail the operators obtained by linearization of the virtual external work

for a Newton-Raphson algorithm. Then, Section 4 presents the definition of a

continuation method based on arc-length constraint to pass through instabili-50

ties. In Section 5, we explain how to evaluate the wetted surface by a level-set

approach. Finally, in Section 6, numerical applications are analyzed to show

the effectiveness of the proposed approach.
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2. Nonlinear finite element equations

2.1. Problem description55

We consider a fluid-structure interaction problem in which the fluid is sup-

posed to be inviscid, incompressible, irrotational, without surface tension and

at rest. The fluid loading on the structure corresponds to a hydrostatic pressure

p(z, t) supported by the solid external normal n at the current fluid-structure

interface, also called the wetted surface Σ. The hydrostatic pressure field is60

defined by (see Fig. 1)

p(x, t) = 0 if z > h

p(x, t) = −ρg(z − h) if z < h

(1)

Figure 1: Structure in its reference configuration Ωs and its current configuration ωs loaded

by hydrostatic follower forces (only the internal face of the tank with the follower forces are

presented).

where ρ is the fluid density, h the free-surface height and x = xex+yey+zez

the coordinate vector field in the current configuration at time t. Also, we

note X the coordinate vector in the reference configuration and F = ∂x
∂X the

deformation gradient. A constraint must be taken into account in the model:65
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the internal fluid volume contained below the free-surface eight is constant due

to the incompressibility assumption.

2.2. Solid hypotheses and constitutive relations

We consider an isotropic, homogeneous, elastic and nearly-incompressible

material for the structure such as rubber or organic tissue subject to large de-70

formation, so the use of a hyperelastic constitutive law is relevant. This law

implies the existence of a strain-energy Ψ per unit volume [17]. A classical ap-

proach is to separate this potential Ψ in two parts [18]: the volumetric potential

Ψvol and the isochoric potential Ψiso. Thus, it is convenient to introduce the

modified Cauchy-Green tensor C = J
2
3 C where J = det(F) and C = FTF such75

that the potential is defined by

Ψ = Ψvol (J) + Ψiso

(
CI , CII

)
(2)

where CI = CIC
− 1

3

III , CII = CIIC
− 2

3

III are the first two modified invariant of C

with CI = tr(C), CII = 1
2 [tr2(C)− tr(C2)] and CIII = det(C). For the isochoric

potential, we consider a Mooney-Rivlin model described by

Ψiso = c10

(
CI − 3

)
+ c01

(
CII − 3

)
(3)

where c10 and c01 are material coefficients obtained by fitting experimental data.80

Note that c01 = 0 corresponds to a Neo-Hookean model. Then, the volumetric

potential energy is given by

Ψvol =
k0

2
(J − 1)

2
(4)

where k0 is the bulk modulus. Multiple derivations of Ψ lead to the second

Piola-Kirchhoff tensor and the fourth-order elasticity tensor such that

S = 2
∂Ψ

∂C
and D = 4

∂2Ψ

∂C2
(5)

To express all operators, which depend on the hyperelastic potentials, we invite85

the reader to refer to [19, 20]. In those references, operators are given for various

constitutive laws relating the Green-Lagrange strain tensor E = 1
2 (C − I) and

the second Piola-Kirchhoff stress tensor S.
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2.3. Nonlinear equations and discretized problem

Local equations in the current configuration ωs and on its boundary ∂ωs are

obtained under the hypotheses described previously, and in particular without

volumic forces, as

divσ = 0 in ωs (6)

σ n = −p(x, t) n on ∂tωs (7)

u = 0 on ∂uωs (8)

where σ is the Cauchy stress tensor. From Eqs. (6), (7) and (8), the weak90

formulation in the current configuration is given by∫
ωs

σ : δε dv = −
∫
∂tωs

δu · p(x, t) n ds, ∀ δu ∈ Cu (9)

where δε = 1
2 (grad δu + gradTδu) is the virtual eulerian strain tensor (sym-

metric part of the virtual displacement gradient with respect to the current con-

figuration, i.e. grad • = ∂•
∂x and Cu is the kinematic admissible space of smooth

enough functions. This formulation is written in the reference configuration Ωs95

and on its boundary ∂Ωs by∫
Ωs

S : δE dV = −
∫
∂tΩs

δu · p0(x, t)n0 dS, ∀ u ∈ Cu (10)

where δE = 1
2 (δFT F+FT δF) is the virtual Green-Lagrange strain tensor with

δF = Grad δu and Grad • = ∂•
∂X . For the discretization of the structure, we

consider 3D finite elements with quadratic shape functions (e.g. hexaedric 20

nodes elements as seen in Fig. 2). For details about the nonlinear finite-element100

procedures and numerical implementation, the readers can refer to [21, 22].

Considering a three-dimensional discretization, all the nonlinear terms of the

3D potential energy are taken into account in the model. We shall recall that

other approaches exist in which shell and plate theories have been developed

[16], possibly taking into account the thickness of thick shell structures [23]105

6



Figure 2: FE discretization

The finite element discretization of this classical weak formulation on the

reference configuration leads to the nonlinear equilibrium equation

Fint(q)− Fext(q) = 0 (11)

where Fext and Fint are respectively the external and internal nodal forces.

110

2.4. Tangent stiffness matrices

A classical resolution method based on a Newton-Raphson algorithm is used

in this paper. At each iterations, we have to solve a linear system

Ktan∆q = R (12)

where R = Fext − Fint is the out of balance vector and Ktan is the tangent

stiffness matrix given by115

Ktan = Kmat + Kgeo −Kfol (13)

with Kmat the material tangent stiffness matrix [17, 19], Kgeo the geometri-

cal tangent stiffness matrix [24] and Kfol the follower tangent stiffness matrix

[5, 7, 25]. In the following, only Kfol is detailed since the other terms are widely

explained in the literature.

120
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2.5. Nodal hydrostatic external forces

To express Fext, we consider the discretized virtual external work associated

with the right hand side of Eq. (9) and the hydrostatic pressure field given by

Eq. (1) such that

δW h
ext = −

∫
Σh

δuh · pn ds (14)

= ρg

∫
Σh

0

δuh ·
(
zh − h

)
(xh
,ξ × xh

,η) dS (15)

= δqTFext (16)

where the indice •h is associated to a finite element discretization, Σh is the

discretized wetted surface in the current configuration, Σh0 is defined by two

parameters (ξ, η), dS is the reference surface element such that dS = dξdη and

δq is the nodal virtual displacement vector. As seen in Eq. (15), the follower125

forces depend on the current configuration coordinates x and the fluid height h.

3. Linearization of the virtual external work

3.1. Linearized virtual external work

In a continuous framework, the linearization of the virtual external energy

is written as

∆δWext = −
∫

Σ

δu · (∆pn + p∆n) ds (17)

where ∆p and ∆n are respectively the pressure and the normal variations related

to a small displacement variation ∆u. According to Eq. (1), the expression of130

the hydrostatic pressure variation is given by

∆p = −ρfg(∆z −∆h) (18)
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where ∆h is the variation of the fluid height to respect the incompressibility of

the fluid. We can thus rewrite Eq. (17) as follow

∆δWext = −
∫

Σ

δu · p∆n ds+ ρfg

∫
Σ

δu ·∆z n ds︸ ︷︷ ︸
∆δWΣ(∆u, δu)

−ρfg

∫
Σ

δu ·∆hn ds︸ ︷︷ ︸
∆δWV (∆u, δu)

(19)

where the form ∆δWΣ is due to the normal variation and the displacement of

the wetted surface on the pressure field contributions, and ∆δWV is due to the135

fluid height elevation contribution coming from the fluid volume conservation.

As explained below, those two bilinear forms are symmetric.

3.2. Symmetry of the bilinear forms

Symmetry of ∆δWΣ: A proof of the symmetry of ∆δWΣ has been given in140

[5] for constant pressure, in [1, 7, 8, 9] for hydrostatic pressure using surface

operators and in [26] using volumetric ones. Let us precise that, inside each

increment, due to the following identity:

∆δWΣ(∆u, δu)−∆δWΣ(δu,∆u) = −
∮
∂Σ

p (δu×∆u) · dl (20)

the Eq. (20) is null when (i) p = 0 on ∂Σ or (ii) δu = 0 on ∂Σ, where ∂Σ

is the boundary of the wetted surface. Even if other cases can exist (see e.g.145

[7]), all the examples presented in Section 6 satisfies a combination of those two

conditions.

Symmetry of ∆δWV : The proof of the symmetry of ∆δWV is based on ge-

ometric considerations due to the fluid volume conservation during a Newton-150

Raphson iteration [1, 7] (illustrated by Fig. 3). The relation between ∆h and

∆u is given by

∆h =
1

| Af |

∫
Σ

∆u · n ds with Af =

∫
Σ

n · ez ds (21)

The expression of ∆δWV is thus given by

∆δWV (∆u, δu) = − ρfg

| Af |

∫
Σ

δu · n ds
∫

Σ

∆u · n ds (22)

9



where the symmetry is directly proven due to the following relation

∆δWV (∆u, δu) = ∆δWV (δu,∆u) (23)

Figure 3: (a) Linearized displacement (blue arrows) of the internal face between a given

configuration (dashed line) to the next configuration (black line) and the initial free surface

area (red hatched surface); (b) In the sectional view, the red volume generated by the linearized

displacement through the wetted surface is supposed equal to the red volume generated by

the free surface base cylinder of height ∆h.

3.3. Discretized tangent stiffness matrices155

The tangent stiffness matrices are detailed in this sub-section. Firstly, we

briefly recall the calculus of the symmetric part of ∆δWΣ. Let’s focus on the

two terms of the ∆δWΣ form

∆δWΣ(∆u, δu) = −
∫

Σ

δu · p∆n ds︸ ︷︷ ︸
∆δW

(a)
Σ

+ ρfg

∫
Σ

δu ·∆z n ds︸ ︷︷ ︸
∆δW

(b)
Σ

(24)

In practice, the computation of the tangent stiffness matrix depends on the

surface parametrization such that

∆δW
(a)
Σ = −

∫
Σ0

δu · p (∆u,ξ × x,η + xξ ×∆u,η) dS (25)

∆δW
(b)
Σ = ρfg

∫
Σ0

δu · (∆u · ez)(x,ξ × x,η) dS (26)

Due to the proofs recalled previously, we only keep the symmetric parts of Eqs.

(25) and (26) in the following. After integration by parts and some mathematical
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manipulations, we obtain

∆δWΣ =
1

2

∫
Σ0

p [δu · (x,η ×∆u,ξ)− δu,ξ · (x,η ×∆u)] dS

+
1

2

∫
Σ0

p [δu,η · (x,ξ ×∆u)− δu · (x,ξ ×∆u,η)] dS

+
ρfg

2

∫
Σ0

[(∆u · ez)δu + (δu · ez)∆u] · (x,ξ × x,η) dS (27)

Then, by considering Eq. (27), the discretized form of ∆δWΣ is given by

∆δWΣ(∆uh, δuh) = δqT 1

2

∫
Σh

0

p (NTΩηN,ξ −NT
,ξΩηN) dS∆q

+ δqT 1

2

∫
Σh

0

p (NT
,ηΩξN−NTΩξN,η) dS∆q

+ δqT ρfg

2

∫
Σh

0

NT((xh
,ξ × xh

,η)eT
z + ez(xh

,ξ × xh
,η)T)NdS∆q

= δqT KΣ ∆q (28)

where KΣ is the tangent stiffness matrix due to the contribution of the

normal variation and the small ∆z variation of the wetted surface, Ωξ and160

Ωη are the screw matrices respectively associated to the cross product of the

derivatives of the coordinate vectors xh
,ξ and xh

,η.

Then, according to Eq. (22), the discretized form of ∆δWV can be directly

written as

∆δWV (∆uh, δuh) = − δqT ρfh

∫
Σh

0

NT(xh
,ξ × xh

,η)dS

∫
Σh

0

(xh
,ξ × xh

,η)TN dS∆q

= δq KV ∆q (29)

where KV is the tangent stiffness due to the fluid height variation contribution.

Finally, the tangent stiffness matrix Kfol is the sum of KΣ and KV .

165

In this section, we detailed the discretized follower tangent stiffness matrix

Kfol, when the loading is parameterized by the fluid height h for clamped struc-

tures (uu = 0 on ∂dω). The same operators can be used for the computation of

the equilibrium of partially filled tanks, without fluid volumetric mesh, in the

following cases:170
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• for non-zero prescribed displacement (ud 6= 0 on ∂uω);

• for a given prescribed amount of fluid volume Vf;

• for unstable problems (e.g. buckling or wrinkling issues).

Those three cases are formulated in Section 4 to give some details about the nu-

merical implementation, and analyzed in Section 6 through numerical examples175

.

4. Specific aspects of the numerical resolution method

4.1. Prescribed displacement with Lagrange multiplier

The numerical examples on Section 6 are subjected to a prescribed displace-

ment such that180

u = ud on ∂uΩs (30)

We briefly describe here our approach to handle prescribed displacement with

Lagrange multiplier. The discretized problem is given byFint(q)− Fext(q) + BTλ = 0

Bq = qd

(31)

where λ are the unknown Lagrange multipliers of the problem and B is a

rectangular matrix satisfying the Dirichlet boundary conditions. The linearized

problem consists in solving the following linear system
Ktan BT

B O




∆q

∆λ

 =


Fext(q)− Fint(q)−Bλ

qd −Bq

 (32)

The residual criterion used to stop our Newton-Raphson algorithm is given

by the L2-norm of the out of balance vector which is the right hand side of Eq.185

(32). In Section 6, this method is used either to compute the pres-stretched

states of elastic membranes with large deformations or to impose large rotation

of a partially filled tank with a fluid volume constraint.
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4.2. Fluid volume computation without volumetric mesh

If the fluid volume Vf have to be constant during a simulation, the fluid height

is reevaluated by using a bisection method at each Newton-Raphson iteration.

We consider in Fig. 4 a fluid domain Ωf bounded by the wetted surface Σ and the

free surface Γ, under the assumption of an horizontal free-surface (because no

surface tension is taken into account in this study). Considering an appropriate

Figure 4: (a) The wetted surface Σ used for the computation of the fluid volume Vf; (b)

Volumetric fluid domain Ωf and its plane free-surface Γ.

vector field Z such that div(Z) = 1 (e.g. Z = (z − h)ez), the internal fluid

volume is given by

Vf =

∫
Ωf

dV (33)

=

∫
Ωf

div [(z − h)ez] dV (34)

=

∫
Σ

(z − h)ez · n ds+

∫
Γ

(z − h)ez · n ds (35)

The term on the free surface vanish because the free surface is horizontal (i.e.190

z = h), so we obtain

Vf =

∫
Σ

(z − h)ez · n ds (36)

The previous equation is then used to check the fluid volume at each N-R

iteration to evaluate the fluid height with a bisection method. This will be used

in some examples of Section 6 to satisfy the incompressibility condition of the

fluid by only using the wetted surface mesh.195
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4.3. Arc-length continuation method

Taking into account geometrical nonlinearities and follower forces may lead

to instabilities as buckling or wrinkling [6, 13]. A classical Newton-Raphson

algorithm is no longer appropriate to find the quasi-static equilibrium state, so

a continuation method have been implemented to pass through the instabilities.200

One possibility is to define the nonlinear equilibrium such that λ is an unknown

parameter controlling the fluid level

G (q, λ) = Fint (q)− Fext (q, λ) = 0 (37)

The virtual external work is given by

δqTFext = −
∫

Σ

δuh · p(z, λ) n ds

=

∫
Σ

δuh · ρgzhn ds− λ
∫

Σ

δuh · hn ds (38)

= δqTF1 (q) + δqTλF2 (q) (39)

To solve the nonlinear problem with instabilities, we may use a constraint,

known as the arc-length, that takes into account the control parameter λ as an

additional unknown. The arc length, noted dl, depends on the displacement qP205

of a set of points P and the fluid level parameter λ. Its expression is given by

dl =
√
dqTP dqP + ψ2dλ2h2 (40)

where ψ is a scale parameter such that dqTP dqP and ψ2dλ2 have the same order

of magnitude. A large value of ψ leads to a classical load control problem. On

the contrary, if the ψ value is small, we are in the framework of a displacement

control problem.210

4.4. Remark on the numerical integration

A numerical issue comes from the fact that some finite elements are partially

wetted for a given fluid height, inducing specific numerical integration of Fext,
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Kfol or Vf. The numerical integrations of those operators have to be addressed.215

This is the purpose of Section 5 which presents an original level-set approach

on quadratic meshes.

5. A level-set approach for numerical integration

5.1. Partially wetted elements

The tangent stiffness matrix and the nodal external forces are computed220

by numerical integration. However, because of the fluid volume conservation

(incompressibility) and the slip condition of the fluid at the fluid-structure in-

terface (inviscidity), some elements at the interface are partially wetted as seen

in Fig. 5. Thereby, the initial discretization is no more appropriate at each

Newton-Raphson iteration.225

Figure 5: Surface elements partially wetted by the fluid with no coincident mesh between the

wetted surface and the structural mesh after one Newton-Raphson iteration.

A simple classical approach consists in (i) finding the Gauss points on the

wetted surface and the others ones on the dry surface and (ii) fixing the Gauss

weight value to zero for all Gauss points on the dry surface. But we don’t

know the lack of accuracy due to the partially wetted elements integration of

this approach. We propose in the following an other method to handle this230

integration by a level-set approach [4].
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5.2. Level-set definition

By hypothesis, we neglect the effect of the surface tension. Thus, the level-

set function can be defined by the equation of a plane of normal ez at the height

h such that235

φ(x) = z − h (41)

In this case, the internal face of the tank is separated by a line between a dry

surface φ(x > 0) and a wetted surface φ(x < 0) as seen in Fig. 6.

Figure 6: Definition of the level-set scalar function as a plane and its intersections with the

internal face geometry (blue dashed line) and a surface finite element (in red line).

Finding the intersection line between the structural geometry and the plane

could be difficult. In practice a finite element approximation of the level-set is

done, so that we have to find the line equation expressed as240

φh(x) =

N∑
i=1

φiNi = 0 (42)

where N is the number of nodes. By splitting a partially wetted element, the

integration based on a Gaussian quadrature is performed by evaluating new

positions and weights of Gauss points, as see in Fig. 7.

This method is particularly useful for numerical integration computation of

operators which depend on the free surface height. In our case, it concerns the245

external nodal forces vector Fext,the follower tangent stiffness matrix Kfol the

fluid volume Vf of the free-surface area Af.
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Figure 7: (a) Example of an element cutted by the level-set in the current configuration ; (b)

New Gauss points postions in the isoparametric space.

5.3. Difficulties to split the quadratic elements

Approaches based on the computation of new positions and weights of Gauss

points have been proposed for three nodes triangle elements in [11] and four250

nodes quadrilateral elements in [15]. In this paper, a major difficulty is due to

the use of a quadratic surface element with height nodes. The main issue con-

cerns the high number of possible intersections between a quadratical element

and a plane. As seen in Fig. 8, an element could be cutted by two or more parts

depending on the current configuration. Significant efforts have been made up255

to render the splitting-step algorithm flexible by taking into account all cases.

Figure 8: Non exhaustive set of intersections of the free-surface plane with a quadratic surface

element in its current configuration. Over 255 cases could be encountered in theory.

5.4. Splitting method for a partially wetted element

To split one of the partilly wetted elements, i.e. to compute the curve of the

contact line, our approach is the following:
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(i) First, we evaluate the number of intersection points on the four boundaries

of the reference surface element by computing the roots values of four

quadratic equations:

8∑
i=1

φiNi(1, η) = 0 with η ∈ [−1, 1] (43)

8∑
i=1

φiNi(−1, η) = 0 with η ∈ [−1, 1] (44)

8∑
i=1

φiNi(ξ, 1) = 0 with ξ ∈ [−1, 1] (45)

8∑
i=1

φiNi(ξ,−1) = 0 with ξ ∈ [−1, 1] (46)

(ii) Then, if there are only two intersection points, a large number of cases260

can be deduced from those illustrated in Fig. 9. Note that an internal

point have to be computed to describe the curve inside the element. Also,

wisely chosen rotations on the isoparametric subspace can be performed

to minimize the number of implemented cases.

265

Figure 9: The two cases of cutted elements widely encountered in practice (a) the intersec-

tion points are in two adjacent boundaries; (b) the intersection points are in two opposit

boundaries. Note that various alternatives are possible to split the elements.

(iii) When there are more than two intersection points, without extra informa-

tions, the curve of the contact line is not unique (as seen in Fig. 10). To

overcome this problem, we proceed to a regular splitting of the element

until the sub-elements have only two intersection points (see Fig. 11).
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Figure 10: (a) Example of a case with four intersection nodes; (b) Two possibilities of cutted

elements without extra informations than the number of intersection points.

Figure 11: (a) Example of an element with four intersection points; (b) Regular spliting of

the elements until all of the sub-elements have two intersection points.

Note that some particular cases cannot be treated with the previous method,270

as those illustrated in Fig. 12). So they have to be implemented one by one.

Nevertheless, they are extremely rare when the structure is deformed. Indeed,

they are generally encountered at the first step when we use structured meshes.

Figure 12: Non exhaustive set of specific cases that can’t be treated with the splitting method-

ology, i.e. when (a) the intersection is a nodes; (b) the intersection is a boundary; (c) the

intersection is two nodes.

Another issue concerns the size and the quality of the sub-elements. Since
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the method is only used for integration, the size of the element does not influence275

the matrix conditioning nor the quality of the finite element solution. However,

if the method is extended to an XFEM procedure [27], the sub-elements quality

have to be taken into account.

5.5. Level-set example

In the following, we compute the free-surface area Af, the wetted surface area280

AΣ, and the fluid volume Vf of a filled hollow hexaedron illustrated in Figure

13 in function of the fluid height using a level-set approach. Only the surface

mesh of the hexaedron is used in the simulation. This surface is defined by six

quadratic 8-nodes quadrilateral elements. The goal is to compare (i) a classical

integration method and (ii) the level-set approach described previously.285

Figure 13: (a) Filling of rotated hexaedron with a = 2 m and visualization of (b) the free

surface area Af, (c) the wetted surface area AΣ and (d) the fluid volume computation Vf.
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Figure 14: Evolution of the quantities which depend on the fluid height h: (a) the free

surface area; (b) the wetted surface area; (c) the fluid volume above the free surface; For each

quantities, the analytical solutions (blue line), the numerical computations with level-set (red

dash line) or without level-set and nGP = 9 (green line) are given.
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We can see the evolution of Af, AΣ and Vf in function of the fluid height

in Figure 14. The level-set method shows very good agreements with the an-

alytical solution for the three quantities. Then, the classical approach shows

discontinuities on the free-surface area and the wetted surface but also very

good agreements with the fluid volume computation as the three curves are290

superposed. Obviously, a fine mesh could minimize the error for the classical

approach.

5.6. Conclusions about the level-set approach

We have proposed in Section 5 an original level-set approach to handle the

numerical integration of the nodal external forces Fext and the follower forces295

tangent stiffness matrix Kfol. Indeed, the integration of those operators are done

on partially wetted surface elements which depend on a varying free-surface

height. The complexity of the method relies on the numerical implementation

due to the large number of cases. Once this difficulty overcame, it is flexible

and adapted to any curved surfaces meshed with quadratic elements with eight300

nodes. This development is the second major contribution to the paper. In

Section 6, we propose three numerical examples showing the use of the level-

set approach on complex geometries to compute the nonlinear equilibrium of

structures submitted to hydrostatic follower forces.

6. Numerical examples305

A 3D finite element code with the level-set approach has been developed

to solve the nonlinear hydrostatic problem. In this section, three numerical

examples are presented and analyzed: (i) the traction-torsion of a box with

an initial fluid volume [7] and [10], (ii) the stretching and filling of a cylinder

subjected to instabilities [13] and (iii) the filling and rotation of a hemispherical310

tank covered by a membrane. The objectives of those three examples are the

validation of our algorithm by comparison to existing results from the literature
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to show the effectiveness of the tangent stiffness operators in the convergence

rate of our non-linear algorithms.

6.1. Box under traction/torsion315

The first example, based on [7], concerns a box with an initial fluid height

as seen in Fig. 15. The box is subjected to traction and torsion by prescribing

displacements at the top and the bottom. The fluid volume Vf has to be equal

to an initial fluid volume Vinit during the simulation.

Figure 15: (a) Geometry parameters of the hollow box initially filled with water submitted

to traction and torsion; (b) Sectional view of the mesh and its parameters; (c) Geomety and

mesh parameters values.

No over-pressure is taken into account in the dry part of the box. A Saint-320

Venant Kirchhoff constitutive law is used with E1 = 0.75 GPa for the structural

body and E2 = 1 GPa for the top and the bottom parts (ν = 0.3 for both).

This configuration avoid a snap-through behavior according to [7].

We plot in in Fig. 16 the evolution of the fluid height h, which satisfies the325

fluid volume constraint, in function of a load parameter λ ∈ [0, 1]. We obtain

very good agreements between our results and those of [7]. We can see the

deformed shape and the fluid free surface fluid in Fig. 17 at different time steps.
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Figure 16: Response of the free surface height in term of a dimensionless parameter λ such

that u1d = −u2d = λ umax ez where umax = 0.0125 m, and θ1d = −θ2d = λπ/4 rad .

Figure 17: (a) Displacement magnitude of the structure between 0 (in blue) and 0.176 mm

(in red) due to the hydrostatic pressure at λ = 0; (b) Deformed shape at λ = 0, λ = 0.5 and

λ = 1. The free surface in red is represented just for the illustration because no free-surface

mesh is needed for the computation.

Finally, the evolution of the out of balance norm || Fint − Fext || is shown in

the Fig. 18 for various Newton-Raphson loops. A quadratic convergence rate330

is observed at each load step. To verify the fluid volume conservation, Fig. 18

show the fluid volume ratio at each bisection iteration when the fluid height is

reevaluated during a Newton-Raphson loop (λ = 0.5 for example).
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Figure 18: (a) Evolution of the out of balance norm at step 1 (λ = 0.1), step 5 (λ = 0.5)

and step 10 (λ = 1); (b) Convergence of the bissection algorithm to ensure the fluid volume

conservation at the first Newton-Raphson iteration for λ = 0.5.

6.2. Filling of a stretched cylinder

The second example, based on [13], concerns a cylinder stretched and filled335

with water (seen Fig. 19). Our objective is to evaluate the results of our code

in comparison to [13]. The Mooney-Rivlin constitutive law (see Section 2) is

chosen considering the following material parameters: k = 1
7 and µ = 0.4225

MPa with the relations c10 + c01 = µ
2 and k = c01

c10
. The bulk modulus k0 is

evaluated considering that k0 = E
3(1−2ν) and E = 6(c10 + c01) [20]. Note that340

E is the linearized Young modulus with no stretching and ν the Poisson ratio

coefficient such that ν = 0.499 to ensure the quasi-incompressibility of the

structural material. A membrane element with no bending effect is used in

[13]. In our case, quadratic hexaedron are choosen even if the structure is very

thin : the ratio between the smallest side and the biggest side of an element345

may reach a maximum of 100 (whithout stretching). Moreover, because of large

deformation, some elements may be distorded. Nevertheless, according to [28],

the use of second order hexaerdral element minimize the effect of the mesh

quality on the solution and our results are in good agreement with the reference

solution.350
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Figure 19: Stretching and filling of the rubber cylinder and its geometrical parameters.

In Fig. 20, we plot the evolution of the radial expansion in function of the

fluid height. At first, considering only the stretching solution with no fluid,

the converged radial expansion of three points (A, B and C) are in very good

aggreement with [13]. As in the present example, the mesh quality does not

affect our solution in this case. The filling process could be split in two parts:355

(i) a stable part where the fluid height increases during the filling process and

(ii) an unstable part where the fluid height decrease as seen in Fig. 20. Fig. 21

shows the evolution of the fluid volume in function of the radial expansions of

points A, B and C. These results are in very good agreements with those in

[13].360
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Figure 20: Evolution of the fluid height in function of the radial expansion of three points (A,

B and C) after the stretching.
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Figure 21: Evolution of the fluid volume in function of the radial expansion of three points

(A, B and C) after the stretching.

In Fig. 22, we illustrate the current configuration of the structure at given

fluid heights and the associated fluid volumes. We recall that the wetted surface

does not depend on the structural fluid mesh since we use the level-set approach.

Figure 22: (a) Undeformed mesh of the structure; Current configurations at (b) h1 = 46.3

mm and V1 = 0.02× 106 mm3; (c) h2 = 205.5 mm and V2 = 0.401× 106 mm3; (d) h3 = 219.1

mm and V3 = 260× 106 mm3. Note that the free surface in red is plotted only for illustration

purpose.
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The unstable solution is reached thanks to our continuation algorithm based

on the arc-length method. The quadratic convergence rate of the iterative prob-365

lem (see Fig. 23) is ensured by the tangent stiffness matrix. In fact, without

the tangent stiffness matrix, our algorithm does not converge near unstable

configurations. However, with the tangent stiffness matrix and the arc-length

algorithm, a few Newton-Raphson iterations are needed to reach the nonlinear

equilibrium state of the partially filled flexible tanks.370
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Figure 23: Evolution of the out of balance norm for three configurations illustrated in Fig. 22

with h1 = 46.3 mm and V1 = 0.02× 106 mm3, h2 = 205.5 mm and V2 = 0.401× 106 mm3,

h3 = 219.1 mm and V3 = 260× 106 mm3.
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6.3. Filling and rotation of a hemispherical tank covered by a stretched mem-

brane

We propose an original last example which consists in finding the nonlinear

equilibrium of a stretched membrane covering a rigid hemispherical tank of

radius r partially filled with fluid. The simulation is illustrated in Figure 24375

and is separated in three phases:

• Phase 1: stretching of a membrane with an initial radius R0 ;

• Phase 2: filling of the tank ;

• Phase 3: rotation of the rigid part of the tank for a given prescribed fluid

volume.380

Figure 24: (a) Phase 1: Stretching of the membrane of initial radius R0 which cover the

rigid hemispherical tank of radius r; (b) Phase 2: Filling of the tank parameterized by the

fluid height h form h = 0 to h = hmax; (c) Phase 3: Rotation of the whole fluid-structure

system constrained by an initial fluid volume conservation.

No dynamical effects are taken into account because the transformations are

supposed to be quasi-static. The objectives of this example are to illustrate

the two types of loading enable by our algorithms: (i) the fluid loading directly

parameterized by the fluid height h and (ii) the fluid loading parameterized by

a fluid height for a given fluid volume during a transformation with large dis-385

placement (i.e. a large rotation θ of the rigid tank).
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Phase 1: The stretching

The initial geometrical parameters of the membrane are the initial radius390

R0 = 0.10 m and the initial thickness T = 0.4 mm. The Mooney-Rivlin consti-

tutive law is chosen considering the following material parameters: k = 1
10 and

µ = 0.4225 MPa with the relations c10 + c01 = µ
2 and k = c01

c10
(see sub-section

6.2). The mesh of the elastic membrane is a volumetric 20 nodes hexaedron

mesh and only the internal surface of the rigid tank is meshed using 8 nodes395

quadrilateral elements. The rigid tank mesh is mandatory to compute the fluid

volume Vf, the free-surface area Af and all operators which depend on those

two terms. The mesh parameters on the reference configuration of the elastic

structure and the rigid tank are described in Figure 25.

400

Figure 25: (a) Visualization of the membrane and the tank meshes; (b) mesh parametrization

of the elastic structure with 20 nodes hexadron with the number of elements in the circum-

ference quadrant nθ, the thickness nt and the radius part nr, the number of elements in the

thickness is fixed with nt = 1 and the value a is needed to construct the quadrilateral mesh

with a = 0.3Ri; (c) Mesh of the rigid tank needed to compute the fluid volume and the free

surface area.

In phase 1, we solve the nonlinear problem to find the displacement of the

stretched membrane ustr such that x = X + ustr, considering a prescribed dis-

placement as seen in Figure 26.
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Figure 26: Solutions of a nonlinear problem with prescribed displacement from a reference

membrane of radius R0 = 0.1 m to a stretched membrane of radius r = 0.2 m. λ is a

load parameter such that λ = 0 (no stretch) and λ = 1 (fully stretched). The points A′

corresponds to the current position of a point A such that XA = (0,−0.3Ri, 0) in the reference

configuration and XA + ustr(XA) in the current configuration.

Phase 2: The filling

405

In phase 2, we want to evaluate the displacement ufil when the tank is

filled such that x = X + ustr + ufil(h). In the following, our quantity of interest

(QOI) is the norm of the displacement q =|| ufil(XA) || illustrated in Figure 30.

In order to validate our mesh, we want to ensure that the QOI do not depend

on the mesh discretization when the tank is fully filled. The Table 1 gives the410

values of q for various mesh parameters nθ and nr. As seen in Figure 27, the

(QOI) for ndof = 1188 corresponding to (nθ = 5, nr = 5) has less than 0.5 % of

error compared to the reference solution qref. An illustration of the fully filled

state for various mesh and the selected one are given in Figure 28.

(nθ,nr) (1, 1) (2, 2) (5, 5) (10, 10) (20, 20) (40, 40)

nelem 5 20 125 500 1200 8000

ndof 144 489 1188 4623 18243 169209

q (mm) 11.03 11.77 11.81 11.83 11.85 qref = 11.86

Table 1: Number of elements and degrees of freedom (dof) with the mesh parametrization

On the selected mesh, we perform a filling simulation from h = 0 mm to415

h = 180 mm with a length step dh = 20 mm. Some snapshots are illustrated in

30



10
2

10
4

10
6

0.94

0.95

0.96

0.97

0.98

0.99

1

Figure 27: Converged displacement due to the fluid pressure q for various meshes divided

by a reference qref for a very fine mesh (nθ = 40, nr = 40) at h = 2r mm; (a) Prescribed

displacement from step 1; (b) Fully filled tank with hydrostatic pressure and the (QOI).

Figure 28: Displacement field ufil of the membrane when the tank is fully filled for various

mesh parameters (nθ,nr): (a) (1, 1); (b) (2, 2); (c) (5, 5); (d) (10, 10); (e) (20, 20); (f) (40, 40).

Figure 29 where the wetted surface is not coincident with the mesh discretization

due to the level-set approach. The evolution of q is given in Figure 30 and show

a nonlinear response due to the fluid pressure parameterized by the fluid height.

Figure 29: (a) Initial mesh befors streching; Displacement magnitude ufil of the membrane

between 0 mm (in blue) and 10.6 mm (in red) due to the hydrostatic pressure for various

prescribed fluid height:(a) h = 50 mm; (b) h = 100 mm; (c) h = 120 mm; (d) h = 160 mm.

Note that the free surface in red is plotted only for illustration purpose.
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Figure 30: Evolution of q in function the fluid height; (a) Displacement of the point A =

(0, 0,−0.3Ri) to A′ due to the stretching; (b) Displacement due to the fluid pressure minus

the displacement due to the stretching at point A′.

In order to show the influence of Kfol on the convergence rate of the Newton-420

Raphson algorithm, we performed two simulations. One simulation is done with

Kfol and the other one without. In Fig. 31, we can visualize the decrease of

the out of balance error norm ε =|| Fint − Fext || in function of the number of

Newton-Raphson iterations.

425

The curves in Fig. 31 shows an important contribution of the tangent stiff-

ness matrix Kfol on the convergence rate. Indeed, the number of iterations

needed to reach a given ε with Kfol (between 3 or 4 iterations) is lower than

the ones need without Kfol (between 6 or 9). The stagnation is due to the

numerical errors when no criterion is given. This example, in which the fluid430

height is the control parameter, is particularly relevant to show the contribution

of the two key points developed in the paper: (i) the influence of the follower

tangent stiffness matrix, and (ii) the use of an original level-set approach with

a quadratic surface mesh.

435

Phase 2: The rotation

The last phase consists in prescribing a displacement, precisely a rotation

around (O, ex), on the boundary of the membrane with a fluid volume conser-

vation constrained ensured by a dichotomy algorithm at each Newton-Raphon440
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Figure 31: Influence of the follower forces tangent stiffness matrix on the Newton-Raphson

algorithm convergence for various fluid heights (i.e. h = 40 mm, h = 80 mm, h = 120 mm

and 160 mm).

iterations. The displacement associated is noted urot such that x = X + ustr +

urot(Vf). In Figure 32 we plot two configurations of the deformed tank, one in

the current configuration and the other on a reference coordinate system fixed

at the rigid part. The prescribed angle is given from θ ∈ [0, 360] degrees with a

step dθ = 1.8 degrees. The initial fluid volume is such that Vf = 1.0e−3 m3.445

As we can see in Figure 33, the fluid height is varying during the simulation

to conserve the fluid volume. We also plot the (QOI) in function of the angle.

Note that between θ = 230 degrees to 270 degrees, the membrane is not sub-

jected to a fluid pressure, so the (QOI) is null.450

33



Figure 32: Snapshots of the magnitude of || urot || due to the fluid pressure for various

prescribed rotation θ around (O, ex) and a given initial fluid volume Vf = 1.0e−3 m3 in the

current configuration and a fixed reference coordinate system (in blue || urot ||= 0 and in red

|| urot ||= 4.55 mm). Note that the free surface in red is plotted only for illustration purpose.
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Figure 33: Evolution of the fluid height and the (QOI) in function of θ between θ = 0 degrees

to θ = 360 degrees.

Finally, we plot the evolution of the out of balance vector for various θ angles

and the convergence is still very efficient on Figure 34. A slight decrease of the
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convergence is observed for the second Newton-Raphson iteration but not the

others. Indeed a few Newton-Raphson iterations are needed (around 3 or 4) to455

reach a satisfying error with our approach.
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Figure 34: Evolution of out of balance vector during the Newton-Raphson loops for: (a)

θ = 45 degrees; (b) θ = 90 degrees; (c) θ = 135 degrees; (d) θ = 180 degrees.

6.4. Conclusion and remarks on the numerical examples

The three numerical examples detailed previously concern the nonlinear equi-

librium of 3D elastic structures submitted to hydrostatic follower forces by using

a level-set method for the numerical integration. The first example illustrates460

the use of our method when a structure containing a initial amount of fluid vol-

ume is submitted to prescribed displacements. The fluid height is reevaluated by

bisection to conserve the fluid volume. Our results are in very good agreements

with literature [7]. The second one concerns a problem solved by an arc-length

method to pass through instability of a very flexible structure. The results are465

35



here also in good agreement with the reference literature [11]. Then the last

original example shows the beneficial influence of the follower forces tangent

stiffness matrix to reach a quadratic convergence rate of the Newton-Raphson

algorithm when the fluid height is the controlled parameter. This example also

shows the flexibility of the level-set approach when the fluid volume is pre-470

scribed. In a nutshell, those examples have been implemented to illustrate and

validate our two main contributions of the paper which are:

• the influence of the tangent stiffness matrix, in particular the follower

force contribution, to solve a nonlinear problem of structures submitted

by hydrostatic forces;475

• the use of an original level-set approach to compute the numerical inte-

gration of the external force Fext and the follower forces tangent stiffness

matrix Kfol on the quadratic partially wetted surface elements.

7. General conclusion and outlooks

In this paper, the nonlinear equilibrium of flexible tanks partially filled with480

liquid submitted to hydrostatic follower forces has been investigated. A Newton-

Raphson algorithm, based on the finite element method in 3D combined with an

original level-set approach, has been implemented. The nonlinear formulation

with prescribed displacement has also been recalled for stable and unstable sys-

tems. The main contributions of this work are the use of a level-set approach to485

perform the numerical integration of partially wetted quadratic surface elements.

This last aspect is used to compute accurately the external force Fext and the

follower tangent stiffness matrix Kfol when the wetted surface is not coincident

with the structural mesh. This contribution have been used for the resolution of

numerical examples by using a volumetric hexaedron quadratic mesh. The ob-490

tained results are in very good agreement with the literature [7, 13] and validate

our algorithm. Then, an original example showing the significant contribution

of the follower forces is presented, either if the fluid height is the controlled pa-
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rameter or for prescribed displacement with a given fluid volume. In extension

to this work, the prestressed state due to geometrical nonlinearities can be used495

for the dynamic computation of elastic tanks containing an internal free-surface

liquid around its current configuration. The proposed level-set developments

could also be an interesting way to explore the computation of the nonlinear

elastic deformations of structures filled with a liquid, considering surface ten-

sions effects, which is still an open problem (actual softwares as Evolver [29]500

only compute the liquid free-surface equilibrium in rigid tanks).
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