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Abstract

Capillary bubbles burst at a free surface following a rapid sequence of events occurring at different

length- and timescales: hole nucleation, fast retraction of the micron-thick liquid film in a few

microseconds preluding the much slower overall collapse of the millimeter-sized bubble in a matter

of milliseconds. Each of these steps is associated with unsteady fluid forces and accelerations,

and therefore with sound radiation. In this experimental study we focus on the airborne sound

generated during bubble bursting. Investigating the physical mechanism at the root of sound

emission with the help of synchronized fast imaging and sound recordings, we quantitatively link the

film retraction dynamics with the frequency content of the acoustic signal. We demonstrate that,

contrary to a Minnaert resonance scenario, the frequency here drifts and increases, consistently

with a Helmholtz-type resonance of the cavity being more and more opened as the thin film retracts.

We propose as an extension a simple model based on a collection of drifting Helmholtz resonators

capturing the main features of the fizzing sound of an effervescing beverage.

∗ juliette.pierre@sorbonne-universite.fr
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I. INTRODUCTION

The crackling and fizzing sound of a freshly served glass of champagne is a matter of

common experience (see Fig. 1(a)). While there is little doubt that the sound originates

from the bursting of capillary bubbles, the physical mechanism and overall picture of sound

emission remains still somewhat unclear. In this work we propose to combine high-speed

imaging with synchronous acoustic signal recordings in order to decipher the link between

the fluid dynamics of bubble bursting and acoustic emission, and to pinpoint the physical

mechanism responsible for the sound of effervescing beverages.

A typical acoustic signal emitted in the air during 1 s by an effervescent glass of cham-

pagne is shown in Figure 1(c) and a 5 ms duration part of it are shown in Figure 1(d). It

displays a succession of sine-like short emissions (tone bursts). Processing the images of the

liquid surface synchronised with the acoustic signal shown in Figure 1(e-h) reveals that a

tone burst is emitted concomitantly with a collapsing bubble event occurring at the liquid

surface. Further, the Fourier spectrum of the overall fizzing sound presents a striking simil-

itude with that of a single bursting event (Fig. 1(i)), thereby strongly suggesting that the

crackling sound of a glass of champagne merely results from a superposition of tone bursts

emitted by single bubble bursts.

Champagne bubbles have been intensively studied [1–4]. Champagne and more generally

sparkling beverages are saturated with CO2 and their effervescence usually originates from

the nucleation of bubbles on the glass wall. After detaching from their nucleation sites whose

size can be as small as 1 µm, bubbles grow in size due to gas diffusion during their rise to

the liquid surface. At the surface where they ultimately collapse, their equivalent radius R,

defined as

R =

(
3V

4π

)1/3

, (1)

where V is the bubble volume, ranges between 100 µm and 500 µm, as shown in Fig. 1(b) [5].

In contrast with the extensive knowledge on the physics and chemistry of effervescence [1, 2],

only one study dedicated to the acoustic emission of champagne could be identified, in which

the sound was related to the bubble size distribution [6].

The Bond number is the dimensionless quantity measuring the relative contribution of

gravity and capillarity to the bubble shape: Bo = (R/`c)
2, where `c = (σ/ρlg)1/2 is the

capillary length (ρl is the liquid density, σ the liquid surface tension and g the gravity
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acceleration). For champagne bubbles, `c = 2.2 mm (see Table I), which results in Bo �

1 (for our experiments Bo falls in the range [2; 50] × 10−3) and thus in nearly spherical

bubbles. Besides, we also note that champagne usually contains surfactant molecules [4]
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FIG. 1. Simultaneous acquisition of the airborne sound emitted by champagne in a glass and of

a movie of the liquid surface viewed from the top. (a) Picture of a glass of champagne showing

the microphone placed a few centimetres above the glass edge. (b) Histogram of the bubble radii

extracted from a picture of the liquid surface at time t = 960 ms average radius < R >= 327µm).(c)

1 s-duration time history of the acoustic pressure high-pass filtered with a 50 Hz cut-off frequency

and a sampling frequency of 500 kHz. (d) 5 ms-duration part of the signal centred on a single

emission event occurring at t = 961 ms. (e-h) Top view pictures of the liquid surface acquired

at 200 fps using a high-speed camera synchronised with the acoustic signal acquisition. Pictures

(e, f) and the enlargement of their framed part (g, h) evidence the disappearance of one bubble

inside the red frame between t = 960 ms and t = 965 ms. (i) Acoustic spectra of the 1 s-duration

acoustic recording (c) (black curve) and of its 5 ms duration enlargement (d) (green curve). The

blue horizontal dashed line indicates the noise level and the vertical dashed line indicates the limit

between the audible domain and the ultrasound domain.
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at low concentrations. In this paper we therefore study the sound radiated in the air by

single capillary bubbles collapsing at the surface of both a pool of tap water and of water-

surfactant solution (whose properties are given in Table I), the latter being used as a proxy

for champagne to build an understanding of champagne sound emission.

Floating capillary bubbles are almost entirely submerged and are separated from the

atmosphere by a thin liquid film. Mechanical equilibrium implies that the bubbles are over-

pressurised by the Laplace pressure ∆P ∼ 2σ/R. Due to gravity drainage and capillarity

suction, the film becomes thinner and thinner and finally bursts, as sketched in Fig. 2 (a,

b) and shown in Fig. 2 (c). The film bursting leads to the sudden release of the internal

pressure, which triggers the bubble collapse, see Fig. 2 (d). High-speed side views of capillary

air bubbles collapsing at the surface of a water pool reveal that this event lasts a few

milliseconds and involves several steps. First, the liquid film breaks and retracts over a

typical 100 µs duration, as shown in Fig. 2 (c). The cavity collapse occurs over a larger

timescale, typically a couple of milliseconds, as shown in Fig. 2 (d). Eventually the cavity

reverses and a liquid jet is ejected, possibly rupturing into droplets and/or aerosols. These

hydrodynamic processes are still the subject of a recent and active research, see e.g. [8–11].

Here we acquire a high-speed chronophotography of this bubble collapse simultaneously

with its emitted acoustic signal. As shown in Fig. 2 (e), the bubble emits sound during

the first 200 µs after the onset of film retraction. The acoustic emission of capillary bub-

bles collapsing at a free water surface was studied in Spiel [12] and Deane [13]. Their

Liquid solution density

ρl (kg m−3)

viscosity

µ (mPa s)

equilibrium

surface

tension

σ (mN m−1)

capillary

length

`c (mm)

Gas density

ρg (kg m−3)

celerity

c (m s−1)

Tap water 103 1 72 2.7 air 1.2 345

SDS at 2g L−1 +

distilled water

103 1 35 1.9 air 1.2 345

Champagne

(from [4])

992 1.6 48 2.2 CO2

(from [7])

1.8 267

TABLE I. Properties of the liquids and gases used in this work at 22◦C.
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acoustic emission was interpreted as the transient acoustic emission associated to the free,

damped oscillations of a Helmholtz resonator following the instantaneous release of its initial

over-pressure. The central frequency of the oscillations of the acoustic signal was found to

quantitatively agree with the Helmholtz resonator model [12]. Besides, it was observed that

the signal emitted by the smallest bubbles (R < 1 mm) was chirped [12]. The origin of this

phenomenon is still unclear to date, even if film retraction was speculated to play a role in

Spiel [12] and Deane [13] – yet without providing any experimental analysis or data on film

retraction. More precisely, Spiel [12] conducted the analysis of the frequency modulation
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FIG. 2. Sketch of a floating bubble at the initial stage of its collapse corresponding to the retraction

of the liquid film: (a) profile view, (b) top view. (c) Sequence of pictures of a floating air bubble

with R = 1.9 mm equivalent radius viewed from the side above the free water surface, showing

the retraction of the water film separating the bubble from the atmosphere. The black arrow

indicates the position on the rim of the retracting film. (d) Sequence of pairs of pictures of a

R = 1.1 mm collapsing air bubble viewed from the side above and below the free water surface using

two synchronised high-speed cameras. (e) Synchronised airborne acoustic pressure signal emitted

during the collapse and detected using a microphone located 20 mm right above the bubble. (f)

Fourier spectrum of pressure signal (dashed line: noise level) (Normalised by the maximum of the

spectrum).
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after the end of the film retraction, while Deane [13] indirectly determined the film thickness,

key in retraction, from its draining dynamics. Time-resolved imaging of the bubble collapse

therefore appears as a mandatory complement to acoustic monitoring to definitively clarify

the origin of bubble bursting sound emission.

II. EXPERIMENT

Air bubbles are generated in a parallelipedal glass tank (20 cm length, 14 cm width, 9.5 cm

depth) filled with either tap water or an aqueous solution of SDS (Sodium Dodecyl sulfate

- purchased from Sigma Aldrich) surfactant with 2g/L mass concentration, i.e. 0.9 × ccmc,

where ccmc is the critical micellar concentration (see Tab. I). Bubbles are released from

submerged needles connected to a syringe pump filled with air. The needle internal diameters

range from 0.08 mm to 1.5 mm. The bubbles rise to the water surface and briefly float before

bursting.

Two digital high speed cameras (Photron SA-5 and Phantom V2511 types) are used to

image the collapsing bubble from the side, one below the free surface, one above it, see

Fig. 2 (d). The airborne acoustic signature of the bubble collapse is recorded using a Brüel

& Kjær 4939-A-011-type microphone with [4 Hz - 100 kHz] frequency range at least at

500 kHz sampling frequency. The microphone is positioned at a distance d = 20 mm above

the free liquid surface, right above the floating bubble and is oriented vertically downward.

The audio and video recordings are synchronised. The acoustic signals are then time-shifted

by the time-of-flight of sound between the surface and the microphone, 58 µs. Finally, the

acoustic signals are high-pass filtered at 50 Hz cut-off frequency in order to remove most of

the ambient noise principally due to air-stream from cameras, electronic devices and room

ventilation. Note that we measured no influence of the tank size on the acoustic signals.

Noticeably, each bubble collapse event is thoroughly analyzed so that all the quantities

reported in the following figures are extracted from each event.

III. DESCRIPTION OF THE FLOATING BUBBLE

To evaluate the volume V of the floating bubble, we follow the procedure implemented

in the work of Ghabache et al [9]. First, we image the floating bubble from the side below
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the surface using a high-speed camera just before the collapse onset. A typical picture of a

bubble is shown in Fig. 3(a). The bubble lower hemisphere being regarded as an ellipsoid

with vertical symmetry axis, we determine the best fit of its profile by an ellipse with semi-

minor axis a and semi-major axis b. The bubble volume is assumed to be equal to the volume

of the corresponding ellipsoid V = 4
3
πab2 and the bubble equivalent radius is R = (ab2)1/3.

The radii of the studied bubbles range from 0.3 mm to 3 mm.

Since Bo . 1, floating bubbles are not spherical. Assuming the floating bubbles to be

at hydrostatic equilibrium, their shape and altitude are determined by the balance between

surface tension and buoyancy. Floating bubbles display the following features sketched in

Fig. 2 (a): (i) an ellipsoid-like liquid-gas interface below the free surface, called Σ2, (ii) a

spherical shaped liquid film between the gas bubble and the atmosphere at the bubble top,

called Σ1 and having the radius of curvature Rf .

The liquid film being considered as infinitely thin, Rf satisfies the Young-Laplace equation

∆P =
4σ

Rf

, (2)

where ∆P is the air over-pressure inside the bubble, considered as homogeneous. z being

the altitude and the film highest point being at altitude z = 0 (see Fig. 2 (a)), the curvature

κ2(z) of the submerged liquid-air interface Σ2 satisfies

∆P = σκ2(z)− ρlgz (3)

and the curvature κ3(z) of the free surface surrounding the bubble satisfies

σκ3(z)− ρlgz = 0. (4)

The set of equations (2), (3) and (4) constrained by the conditions of fixed air volume V

and flat free surface far away from the bubble fully determines ∆P ; it is called hereafter the

Young-Laplace problem.

In the Bo � 1 limit, capillary effects are predominant over gravity effects. Thus, the

pressure in water can be considered as homogeneous across the bubble and both the upper

liquid film and the liquid-gas interface below the free surface can be considered as spherical.

Thus, ∆P satisfies two simplified Young-Laplace equations ∆P = 4σ/Rf and ∆P = 2σ/R,

which result in Rf = 2R.

The numerical resolution of the Young-Laplace problem following the method described

in the work of Toba [14] using V as input allows us to determine ∆P and the bubble shape, in
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particular Rf and the radius rc of the circular edge of the liquid film (Σ2) viewed from above,

see Fig. 3(a). The solution of the Young-Laplace problem, shown in Fig. 3(a), is found to

coincide with the bubble profile along Σ1, Σ2 and Σ3. This demonstrates the accuracy of the

determination of V using an elliptic fit of the bubble profile. The corresponding variation

of rc versus R for capillary bubbles is shown in the inset of Fig. 3(b). The law proposed in

Lhuissier and Villermaux [15] in the Bo→ 0 limit

rc =
2√
3

R2

`c
(5)

quantitatively fits this curve in the Bo� 1 range, as shown in the inset of Fig. 3(b).

To check the validity of this law, we measure rc by exploiting the pictures of the film

opening. Since the rim of the retracting film is clearly visible in these pictures, as shown in

Fig. 2 (c), its disappearance indicates that it has reached the film edge, whose distance to

the bubble axis is equal to rc. The variations over more than a decade of the experimental

values of rc are compared to their theoretical prediction in Fig. 3(b). Given experimental

scatter, a good agreement is observed, which confirms the validity of the model of bubble

shape presented in this section.

IV. DYNAMICS OF THE FILM OPENING

In the case of pure water, i.e. surfactant-free films, the lifetime of floating bubbles is very

short, usually shorter than 1 s, and the films always break at the bubble foot and not at

the apex, as reported in Lhuissier [15] and Champougny [16]. In the case of SDS solutions,

the lifetime of floating bubbles is much longer, usually of the order of 1 min, and the film

breaking takes place at or close to the bubble top.

We define the film opening duration tb as the time interval between the picture on which

the rim appears at a point located at the bubble foot and the picture on which the rim

reaches the diametrically opposed point and disappears, see Fig. 2 (c). The variation of

tb versus R for water and SDS solutions is shown in log-log scales in Fig. 4 (a). tb ranges

between 10 µs and 500 µs in the investigated range of values of R.

In the case of pure water, since the film breaks at the bubble foot, (i) the hole opening

dynamics results from the retraction of a single rim, as sketched in Fig. 2 (a, b) and (ii)

the film rim travels a total distance equal to 2Rf arcsin rc/Rf ' 2rc, neglecting the film
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FIG. 3. (a) Pair of pictures from the side below (left) and above (right) the surface of a R = 1.9 mm

air bubble floating at a water free surface. Σ1: liquid film separating the inner air from the

atmosphere. Σ2: water-air interface below the free surface. Σ3: free liquid surface. a (respectively

b): semiminor (respectively semimajor) axis of the elliptic best fit of the bottom of the bubble

profile. Red (respectively blue, green) dashed curve: shape of Σ1 (respectively Σ2, Σ3) solution of

the Young-Laplace problem (see text). (b) Measured rc versus their theoretical prediction. The

solid line corresponds to the perfect agreement between experiment and theory. Inset: theoretically

predicted variation of rc versus R for pure water (black solid curve) and SDS solution (green solid

curve) together with Eq. (5) for pure water (black dashed curve) and SDS solution (green dashed

curve).

curvature, as shown in Fig. 2 (a, b). The distance x travelled by the rim at time t since

film breaking, sketched in Fig. 2 (a) is represented in Fig. 4(b) for several values of R. In

a first stage, x varies linearly with time, which indicates that the rim retraction velocity is

constant and of the order of 10 m s−1. Liquid films with thickness h are known to retract at
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velocity vf such that

vf =

√
2σ

ρlh
(6)

as the result of the balance between the inertia of the growing rim and the capillary forces

exerted by the liquid film on the rim [17, 18]. Since this linear behaviour of x(t) is always

observed, i.e. x(t) = vf t, we conclude that the thickness h of the spontaneously opening

films is always homogeneous. Consequently, h can be deduced from vf by inverting Eq. (6).

The variation of h versus R is shown in the inset of Fig. 4(b). h(R) displays no trend

but rather a scatter characterised by a 1.6 µm standard deviation around an average value

〈h〉 = 2.7 µm for water bubbles.

Given that vf is constant during each film opening, tb satisfies

tb '
2rc
vf

(7)

Since vf does not depend on R, in the following we use its average value 〈vf〉. By combining

Eqs. (5), (6) and (7), we can express tb as :

tb =
4√
6

√
g〈h〉ρlR2

σ
. (8)

This law is represented in Fig. 4(a) for water and SDS solutions (Eq. (6) has been shown to

remain valid for retracting films made of SDS solutions as long as h ≥ 0.1 µm [19]). Given

the experimental scatter, a good agreement is observed, which confirms the validity of the

model of the film opening dynamics presented in this section.

As shown in Fig. 4(b), as soon as x > 2rc, x still varies linearly with time but with a

much smaller velocity (of the order of 1 m s−1). This corresponds to the receding motion of

the upper edge of the cavity, i.e. to the junction between surfaces Σ2 and Σ3.

In the case of SDS solution, since the film breaks at or close to the bubble top, the hole

is circular during most of the opening duration and consequently the hole diameter, also

called x here for simplificity, satisfies x(t) = 2vf t. Thus, tb = rc/vf .

These results on the hydrodynamic evolution of a collapsing bubble constitute the back-

ground for analysing its acoustic emission.
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V. ACOUSTIC EMISSION

A. Characteristic features of the acoustic emission

A typical airborne acoustic pressure signal emitted during the collapse of an air bubble

floating at the water free surface is shown in Fig. 5 (a). The spectrogram of the signal

shown in Fig. 5 (a) is plotted in Fig. 5 (b). We observe that the instantaneous spectra

are peak-shaped at all times and that the spectrogram displays two regimes: a first regime

during which the corresponding peak frequency f0 increases with time, i.e. during which the

signal is chirped, and a second regime during which f0 appears as approximately constant.

The variations of f0 with time for several values of R are represented in log-log scales

in Fig. 6 (a). In the first regime, f0 is observed to approximately agree with a t1/2 scaling

law, while in the second regime, f0 increases much more slowly. We define τb as the time at

which the transition between the two regimes occurs, see Fig. 6 (a). τb is called the chirp
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FIG. 4. (a) Measured film opening duration tb and measured duration τb of the frequency chirp

of the acoustic emission versus R. Black line: theoretical prediction Eq. (8) for tb corresponding

to the average value 〈h〉 = 2.7 µm of the retracting liquid films. Inset: measured duration τb of

the frequency chirp of the acoustic emission versus measured film opening duration tb. (b) Time-

dependent distance x travelled since film breaking by the rim (up to tb), then by the Σ2 − Σ3

junction (from tb) for three different values of R. Lines are best linear fits. Inset: thickness h

of the retracting liquid films for the water bubbles deduced from Eq. (6) versus R. Dashed line:

average value of h for water bubbles.
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duration hereafter. The variation of τb with R is represented in Fig. 4 (a). In the inset we

also compare τb with the film opening duration tb. tb is observed to coincide with τb for

bubbles larger than 0.5 mm given the experimental scatter. This demonstrates that the

chirp is correlated with the film opening. Moreover, the influence of the bubble geometry

on its acoustic emission has to be questioned.

B. Helmholtz’s resonator model

In the works of Spiel [12] and Deane [13], the acoustic emission of collapsing bubbles

was modelled using Helmholtz’s model of airborne radiation of an open cavity [20]. Ac-

cording to this lumped-element model of open acoustic resonator, a cavity with volume V

communicating with the atmosphere through an bottleneck-like aperture with area S and

length L behaves as a mass-spring harmonic oscillator whose inertia is associated to the
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FIG. 5. (a) Airborne acoustic pressure signal emitted during the collapse of a R = 1.1 mm air

bubble floating at a water free surface. Red curve: absolute value of the Hilbert transform of

the signal. (b) Sketch of the opening bubble. (c) Spectrogram of the signal shown in (a). Dots:

maxima of the instantaneous spectra. The vertical dashed line indicates the time tb defined by

Eq. (8) at which the film retraction is completed. Black solid curve: prediction of fH based on

Eqs. (11), (13), (12), (8).
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FIG. 6. (a) Time-dependent peak frequency f0(t) of the instantaneous spectra of the airborne

acoustic emission of collapsing bubbles for three different values of the bubble equivalent radius

R. (b) Measured duration δt of the acoustic signal and duration of the bubble collapse ∆t. Solid

line: scaling law for ∆t from [9]. (c) Prefactor of the scaling law fH = βexpt
1/2 as a function of its

theoretical prediction βtheo using by Eq. (12). The solid line corresponds to the perfect agreement

between experiment and theory. Inset: Variation of the section S′, defined in eq. 10, over the

variation of area S defined for a circular hole. (d) Variation versus R of the peak frequency f0(tb)

of the instantaneous spectra of the airborne acoustic emission of collapsing bubbles at the instant

tb at which the liquid film opening is ending. Black line (respectively dashed line): theoretical

prediction Eq. (13) with ε = 8/(3π) (respectively ε = 16/(3π)). Inset: acoustic wavelength λ

versus R. Solid line: law λ = 10R.
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mass of the air column oscillating in the cavity aperture and whose stiffness is associated to

the compressibility of the air enclosed in the cavity. The corresponding oscillator resonant

frequency fH is such that

fH =
c

2π

√
S

L′V
(9)

where c is the speed of sound in the gas, L
′
= L+ εr the length of the air column oscillating

in the cavity aperture, r the radius of the aperture regarded as circular and ε a dimension-

less parameter reflecting the nonlinear air flow inside and outside the aperture, typically

ε = 8/(3π) in the case of a non-baffled resonator and 16/(3π) in the case of a baffled res-

onator [20]. This model can in principle be applied to a collapsing bubble by considering

that the cavity corresponds to the bubble volume and the aperture to the hole in the liquid

film, both varying during the collapse.

Since the cavity starts collapsing during its acoustic emission, we might wonder if the

bubble volume can be assumed as constant during the bubble acoustic emission. To answer

this question, we compare the duration of the acoustic emission δt to the collapse duration

∆t. ∆t is defined as the time elapsed between the hole nucleation and the cavity reversal (i.e.

when the depth of the immersed cavity starts to increase - close to 1.5 ms in Fig.2 (d)). The

variation of ∆t versus R is plotted in Fig. 6 (b). We observe that ∆t scales approximately as

R3/2, in agreement with the scaling law ∆t ∼
√
ρR3/σ describing the inertial collapse of the

cavity driven by surface tension [9]. ∆t increases when SDS-surfactant is used because ∆t

scales as σ−1/2 and σ is lower in presence of surfactant. On the other hand, δt is defined as

the time elapsed during which the amplitude of the Hilbert transform of the pressure signal

is larger than pmax/10, where pmax is the maximum of the Hilbert transform, see Fig. 5 (a).

The variation of δt versus R is plotted in Fig. 6 (b). We observe that δt < ∆t in the whole

range of the investigated values of R (interestingly, δt exhibits a large dispersion but the

upper boundary of the data exhibits the same scaling as ∆t). We conclude that the acoustic

emission proceeds and ends at the very beginning of the bubble collapse. Consequently, we

can safely assume the bubble volume to be constant and equal to its initial volume V during

its acoustic emission.

Due to the geometry of the opening bubble sketched in Fig. 5 (a), the length L of the

resonator aperture can be taken equal to zero. In the case of surfactant-free water, since

the liquid film breaks at the bubble foot, the hole is not circular, as sketched in Fig. 5 (b).
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Therefore, we cannot straightforwardly define an equivalent aperture radius r. But the area

S
′

of a hole with width x,

S
′
= 2

(
x2

2
arccos

(
x

2rc

)
+ r2c arcsin

(
x

2rc

))
− x
√
r2c −

(x
2

)2
(10)

is not very different from the area S = π(x/2)2 of a circular hole with radius x/2, as shown in

the inset of Fig. 6 (c). Consequently, in the following we approximate S
′
by S and we assume

the equivalent aperture radius r associated to the film hole to equal x/2 and L
′ ' εx/2.

With these approximations, the resonant frequency fH of the acoustic emission of the

collapsing bubble satisfies:

fH(t) = βtheo t
1/2 for t ≤ tb (11)

with

βtheo =
c

4π

√
3vf

2εR3
. (12)

Noticeably, at t = tb,

fH(tb) = βtheo t
1/2
b =

c

4π

√
2
√

3

ε`cR
. (13)

According to Eq. (11), fH ∝ t1/2, which is in agreement with the experimental observation

that f0 ∝ t1/2. To quantitatively test the validity of Eq. (11), we determine the best fit of

f0(t) by the function βexp t
1/2 with βexp as free parameter, see Fig. 6 (a). The variation of

βexp as function βtheo computed using ε = 8/(3π) and ε = 16/(3π) are plotted in Fig. 6 (c).

Given the experimental scatter, a satisfactory correlation between βexp and βtheo is observed

whatever the value of ε, which demonstrates the validity of Eq. (11).

To conclude this study of the first regime, we point out that combining high-speed imag-

ing and time-frequency analysis, we have demonstrated that Helmholtz’s model applied to

the bubble assumed as preserving its initial volume quantitatively describes the measured

frequency chirp provided that the film opening dynamics is taken into account. As an il-

lustration of the accuracy of this theoretical description of the bubble acoustic emission, we

have superimposed on the spectrogram shown in Fig. 5(c) the prediction of fH based on

Eqs. (11), (13), (8), which involves no free parameter.

As a final remark, we note that in the second regime (after τb) f0 actually still increases

but much more slowly than in the first regime, as shown in Fig. 6 (a). Following Spiel [12],

we attribute this slower chirp to the recession of the upper edge of the cavity, which is much

slower (an order of magnitude less) than the film opening, as shown in Fig. 4 (b).
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Next, we test the quantitative validity of Eq. (11) by plotting the variation versus R of

f0 measured at the end of the chirp (i.e. at t = τb, see Fig. 6 (a)) versus fH(tb) defined by

Eq. (13) and computed using ε = 8/(3π) and ε = 16/(3π). Given the experimental scatter,

an good agreement between f0(τb) and fH(tb) is observed. For R < 1 mm, ε = 8/(3π) results

in a quantitative agreement with the measurements. These results are consistent with the

results of the work of Spiel [12] (see Fig. 7 in [12]). Interestingly, Eqs. (1), (13) constitute a

closed-form, valid expression for the fH-V relationship that can be applied to any liquid-gas

system.

Finally, reminding that a lumped-element model of acoustic resonator is valid only for

sub-wavelength resonators, i.e. for R/λ� 1, we aim to test the consistency of Helmholtz’s

model of open resonator applied to the collapsing bubble. The variation of λ versus R is

plotted in the inset of Fig. 6 (d). We observe that λ� R in the entire range of investigated

values of R, which a posteriori justifies the use of Helmholtz’s model.

C. Quality factor

The acoustic signal can also be characterised by its duration and its amplitude. Here we

focus on the second regime of the acoustic emission and in particular on the characteristic

timescale of decrease of the signal amplitude. Assuming a linear relaxation of the free

pressure oscillations in the acoustic resonator, we expect the pressure signal to satisfy p(t) =

pmax exp (−t/τ) cos(ω0t+ φ), where ω0 = 2πf0. τ can be experimentally evaluated as being

equal to the laps δte between the instant tmax at which p reaches its maximum pmax and

the instant at which its envelope reaches pmax/e, see Fig. 5 (b). The quality factor Q of the

resonator can be deduced from τ through:

Q =
1

2
ω0τ (14)

The variation of Q deduced from Eq. (14) versus R is plotted in Fig. 7 (a). Interestingly,

the upper boundary of the data is horizontal, corresponding to Q ' 10. According to [20],

under the assumption of negligible thermo-viscous dissipation, the quality factor Q of the

resonator is predicted to satisfy:

Q = 2π

√
L′3V

S3
(15)
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Using the same assumptions as above for adapting Helmholtz’s model to the opening bubble,

Q has the following expression:

Q = 2π

√
ε3
√

3

2π

`3c
R3

(16)

The smaller Q, the shorter the acoustic emission. Fig. 6b shows δt is smaller when SDS-

surfactant is used. To qualitatively explain this, we note that Q increases with `c as `
3/2
c (see

Eq. (16)) and that `c increases with σ as σ1/2. Thus, the lower the surface tension, the smaller

Q. Eq. 16 computed using ε = 8/(3π) and ε = 16/(3π) is plotted in Fig. 7 (a). We observe

that the experimental data do not agree the theoretical prediction, particularly for small

values of R, except as regards the order of magnitude. We believe that the thermo-viscous

dissipation occurring in the vicinity of the neck may explain the observed discrepancy. A

shown in the inset of Fig. 7 (a), the characteristic thermal length / thermal boundary layer

thickness δth =
√

2Dth/ω (Dth = 2 · 10−5 m2.s−1 is the thermal diffusivity of air) is indeed

close to rc in the experimentally investigated range of values of R, particularly for small

values of R. The same considerations hold for the characteristic viscous length / viscous

boundary layer thickness δv =
√

2ν/ω (ν = 1.5 · 10−5 m2.s−1 is the kinematic viscosity in

air at ambient temperature).
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FIG. 7. (a) Measured quality factor Q versus R. Solid line (respectively dashed line): theoretical

prediction Eq. (16) computed using δ = 8/(3π) (respectively δ = 16/(3π). Inset: theoretical ratio

of the characteristic thermal length to hole radius as function of bubble radius. (b) Dimensionless

radiated acoustic energy E/(σR2) versus R.
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D. Radiated acoustic energy

Since a collapsing bubble radiates sound that is characterised by a wavelength much

larger than the bubble aperture, diffraction tends to scatter sound in all directions, and

the microphone lies in the far-field of the bubble (d � z, where z ≈ r2c/2λ is the Rayleigh

distance). Thus, following the work of Divoux [21], we can assume an acoustic radiation

with spherical symmetry and the total acoustic energy E can be computed from the pressure

signal p(t) using :

E =
2πd2

ρgc

∫ ∞
0

p2(t) dt (17)

Noting that the acoustic radiation originates from the sudden release of Laplace overpressure

∆P ' 2σ/R, we assume that E is bounded by the energy stored in the floating bubble which

scales as σR2. The variation of E/(σR2) versus R is plotted in Fig. 7 (b). We observe that(i)

E/(σR2) strongly decreases with R.

VI. CONCLUSION

Let us summarise our results. Once a rising gas bubble has arrived at a free liquid

surface, the liquid film separating the inner gas from the atmosphere drains and finally

breaks when its thickness reaches a few micrometers, in absence or in presence of surfactants.

The airborne acoustic emission associated with the release of the Laplace overpressure and

the film opening start simultaneously. The frequency content of the resulting signal can be

quantitatively explained using Helmholtz’s model of an open resonator exhibiting a sequence

of two regimes, (i) a first episode during which the liquid film opens and the resonator

eigenfrequency drifts correspondingly (frequency chirp), (ii) a second regime characterised

by a nearly constant oscillation eigenfrequency and a decreasing amplitude. At the end of

the bubble acoustic emission, the liquid cavity has barely initiated its collapse. Interestingly,

the acoustic emission of bubbles with radius smaller than 1.5 mm in water is audible in the

first regime and is ultrasonic in the second regime.

Let us now come back to the champagne effervescence. Neglecting the first regime charac-

terised by a frequency chirp, we can compute the central frequency of the acoustic emission of

a collapsing champagne bubble with radius R using Helmholtz’s model of an open resonator

Eq.(13) and the values of density and surface tension of champagne and of sound speed
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in CO2 given in Table I. From the histogram of the radii of floating champagne bubbles

shown in Fig. 1 (b), we can compute the histogram of the corresponding acoustic resonant

frequency, which is shown in Fig. 8. We note that this histogram quantitatively fits the

acoustic peak-shaped spectrum of airborne acoustic emission of champagne except along its

low-frequency tail. Moreover, both the average frequency of the histogram 〈fH〉 = 53 kHz

and the frequency of its maximum coincide with the spectrum average frequency. Since

the the first regime of acoustic emission is characterised by frequencies smaller than those

predicted using Eq. (13), we expect the low-frequency tail of the spectrum to correspond to

the first regime that is precisely not modelled here. We stress that in the case of champagne

most of the acoustic energy is in the ultrasonic regime.

We conclude that we have modelled the frequency content of the airborne acoustic emis-

sion of gas bubbles collapsing at a free liquid surface and in particular of champagne and

sparkling liquids. When the film is completely retracted, we highlighted a closed-form expres-

sion of the resonance frequency at this time involving only one single geometric parameter,

the gas volume. We believe that this quantitative description could be used to synthesise

artificial acoustic signals of digital animation films as in the work of Langlois et al. [22].
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FIG. 8. Black solid curve: acoustic spectrum of the 1 s-duration airborne acoustic recording above

a glass of champagne. Green bars: histogram of the resonant frequency of acoustic emission of the

floating bubbles whose histogram of radii is shown in Fig. Fig. 1 (b) predicted using Helmholtz’s

model of open resonator Eq.(13). Grey bars: histogram of the resonant frequency of acoustic

emission of the floating bubbles predicted using Minnaert’s model of open resonator Eq. (18).
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According to Minnaert [23], subsurface gas bubbles undergoing volume oscillations are

known to emit sound. The resonant frequency fM of their small amplitude, harmonic volume

oscillations satisfies:

fM =
1

2πR

√
3γP0

ρ`
(18)

where γ is the gas adiabatic index (γ = 1.3 for CO2) and P0 the atmospheric pressure. This

equation is used to determine the radius distribution of submerged oscillating bubbles from

the acoustic spectrum in studies of sparkling liquids [6], of the breaking of waves [24, 25],

or of the sound emission of rain impact [26].

Actually, the process of airborne acoustic emission accompanying the bubble collapse

markedly differs from Minnaert’s model of acoustic emission of subsurface bubbles undergo-

ing volume oscillations [23]. Consequently, fM markedly differs from fH . To illustrate this,

we have computed the histogram of the acoustic resonant frequency using Eq. (18) from the

histogram of the radii of floating champagne bubbles shown in Fig. 1 (b). It is plotted in

Fig. 8. We note that this histogram, whose average frequency is 〈fM〉 = 11 kHz, corresponds

to a trough in the spectrum of airborne acoustic emission of champagne. We conclude that

this mechanism of sound radiation does not contribute to the airborne acoustic emission of

champagne.

More generally, this work is a new step in understanding the acoustic signature of violent

hydrodynamic events, which adds to previous studies on volcano eruptions [21, 27, 28],

impacts on liquid surfaces by droplets [26] or solid spheres [29], breaking waves [24, 25] or

bursting soap bubbles [30]. We believe that the analysis of the acoustic signature of such

fast and violent hydrodynamic events should provide information, complementary to high-

speed imaging, on the main flow features, on the forces at play and on the relying physical

processes.
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