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ARTICLE

Cerebral small vessel disease genomics and its
implications across the lifespan
Muralidharan Sargurupremraj et al.#

White matter hyperintensities (WMH) are the most common brain-imaging feature of cer-

ebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we

identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals,

accounting for modification/confounding by hypertension. Aggregated WMH risk variants

were associated with altered white matter integrity (p= 2.5×10-7) in brain images from 1,738

young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Men-

delian randomization suggested causal association of increasing WMH-volume with stroke,

Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume,

notably also in persons without clinical hypertension. Transcriptome-wide colocalization

analyses showed association of WMH-volume with expression of 39 genes, of which four

encode known drug targets. Finally, we provide insight into BP-independent biological

pathways underlying SVD and suggest potential for genetic stratification of high-risk indivi-

duals and for genetically-informed prioritization of drug targets for prevention trials.

https://doi.org/10.1038/s41467-020-19111-2 OPEN

#A list of authors and their affiliations appears at the end of the paper.
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As a leading cause of stroke, cognitive decline, and
dementia, cerebral small vessel disease (SVD) represents a
major source of morbidity and mortality in aging

populations1–3. Exploring the mechanisms of SVD and their
contribution to dementia risk has recently been identified as a
priority research area4,5, based on its more frequent recognition
with magnetic resonance imaging (MRI), its high prevalence in
older community persons3,6 and the demonstration that intensive
management of vascular risk factors, especially hypertension, may
slow down its progression7,8. The biological underpinnings of
SVD are poorly understood and no mechanism-based treatments
currently are available. White matter hyperintensities of pre-
sumed vascular origin (WMH), the most common MRI-marker
of SVD, can be measured quantitatively using automated soft-
ware. They are highly heritable9, and confer an increased risk of
stroke and dementia3, thus making them well-suited to identify
potential genetic determinants of SVD and its contribution to
stroke and dementia risk. WMH are most often covert, i.e., not
associated with a history of clinical stroke. They are highly pre-
valent in the general population, and much more frequently
observed than clinical stroke caused by SVD (which can be both
ischemic [small vessel stroke] and hemorrhagic [deep intracer-
ebral hemorrhage]) (Supplementary Fig. 1).

Studying the genomics of SVD also provides a powerful
approach to discovery of underlying molecular mechanisms and
targets in order to accelerate the development of future therapies,
or identify drug repositioning opportunities10–12. Although
genomic studies of WMH have been most fruitful for deciphering
SVD risk variants compared with other MRI-features of SVD
(lacunes, cerebral microbleeds, dilated perivascular spaces)13 or
small vessel stroke14, or deep intracerebral hemorrhage15, few risk
loci have been identified to date16–18. This is likely due to limited
sample size of populations studied and possibly also the failure to
take into account the role of hypertension (HTN), the strongest
known risk factor for WMH, in confounding or modifying
genetic associations. There is also mounting evidence suggesting
that early-life factors play a crucial role in the occurrence of late-
life vascular and neurological conditions, including SVD19, likely
due to both genetic and environmental factors that may intrin-
sically influence the vascular substrate of SVD or modulate the
brain’s resilience to SVD20–22. Identifying these early predictors
could have major implications for our understanding of disease
mechanisms across the lifespan and for devising effective pre-
vention strategies.

Here, we conduct a large multiancestry meta-analysis of
WMH-volume genome-wide association studies (GWAS),
accounting for HTN as a potential confounder and effect modi-
fier. We explore association of WMH risk loci with early changes
in white matter microstructure on MRI using diffusion tensor
imaging (DTI) in young adults in their early twenties. Last, we
explore biological pathways underlying the observed genetic
associations with SVD and their clinical significance through
shared genetic variation and Mendelian randomization (MR)
experiments with vascular risk factors and neurological traits,
linking them with multiple epigenomic, transcriptomic, and
drug-target databases.

Results
Genetic discovery from association analyses. Figure 1 sum-
marizes the overall workflow of our study that included data from
50,970 participants (N= 48,454 Europeans and 2516 African-
Americans) from population-based studies taking part in the
Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE)23 consortium and from the UK Biobank (Supple-
mentary Data 1). The mean age of participants was 66.0 ± 7.5

years, 53% were women and 52% hypertensive (Methods, Sup-
plementary Methods 1, and Supplementary Data 1 for cohort-
specific characteristics). There was no evidence for systematic
inflation of SNP-WMH association statistics at the individual
cohort or meta-analysis level (Supplementary Data 3 and Sup-
plementary Fig. 2) for the three types of analyses performed
(Methods).

In the European-only SNP-main-effects analysis, 22 indepen-
dent loci harbored common variants associated with WMH
volume at genome-wide significance (P < 5 × 10−8, Table 1,
Fig. 2), lead SNPs for each independent locus were confirmed
by both LD clumping and GCTA-COJO24. Additionally, the
NID2 locus reached genome-wide significance by the joint effect
of multiple SNPs (P= 4.87 × 10−8, Supplementary Data 4), with
P= 5.45 × 10−8 for lead SNP rs72680374, using GCTA-COJO
(Methods, Supplementary Fig. 3). The African–American-only
analysis identified a genome-wide significant locus at ECHDC3
(Supplementary Data 4). For loci showing heterogeneity in allelic
effects across ancestry groups (PHet < 0.01), using MR-MEGA25

the ECHDC3 locus and another locus near KCNK2 reached
genome-wide significance (Table 1, Supplementary Data 5). In
the HTN-adjusted model two additional loci were associated with
WMH volume at P < 5 × 10−8 (PKN2 and XKR6), while three loci
were no longer genome-wide significant (Table 1). The 2-df
genome-wide gene-HTN interaction joint meta-analysis (JMA)
did not identify any additional locus (Table 1, Supplementary
Data 6). Five loci reached genome-wide significance in the small
African–American-only JMA, but these were not maintained in
the fixed-effects multiancestry JMA (Supplementary Data 7).

In total, 27 loci reached genome-wide significance in association
with WMH volume in at least one of the aforementioned analyses,
of which 18 have not previously been reported (Table 1, Fig. 2).
Associations with WMH volume at these loci were similar in
participants with and without HTN and when stratifying on
quartiles of genetically predicted SBP and DBP levels (Methods,
Supplementary Data 8-10). In aggregate, however, a weighted
genetic risk score of independent WMH risk loci (WMH wGRS,
Methods) showed significant 1-df interaction with HTN in
association with WMH volume (βGRSxHTN= 0.15, PGRSxHTN=
0.009, Supplementary Fig. 4). One previously described risk locus
for WMH burden did not reach genome-wide significance in the
current analysis (near PMF1, P= 3.9 × 10−4). Of note one genome-
wide significant locus (COL4A2) and one suggestive locus (HTRA1,
P < 5 × 10−6, Supplementary Data 11), involve genes implicated in
monogenic forms of SVD26,27.

Additional, gene-based tests using MAGMA28 yielded 49 gene-
wide significant associations (P < 2.8 × 10−6), of which 13 were
outside GWAS loci, including the APOE gene (Methods,
Supplementary Data 12). Using the Heritability Estimator from
Summary Statistics (HESS)29 we found that 29 ± 2% of WMH-
volume variance is explained by common and low frequency
variants across the genome, the amount of heritability attributable
to loci containing GWAS index SNPs being 2.4 ± 0.1%.

Implications of WMH genes across the lifespan. To examine the
lifetime impact of WMH risk variants on brain structure, we
explored the association of the WMH wGRS with MRI-markers
of white matter microstructure in 1738 young healthy adults
participating in the i-Share cohort (mean age 22.1 ± 2.3 years,
72% women). Integrity of the white matter microstructure was
measured on diffusion tensor imaging (DTI) using the following
metrics: fractional anisotropy (FA), mean diffusivity (MD), radial
diffusivity (RD), axial diffusivity (AxD), and the recently descri-
bed peak width of skeletonized mean diffusivity (PSMD)30. These
MRI-markers are associated with the maturation and aging
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process of white matter microstructure31,32, and alterations in
DTI metrics were shown to precede the occurrence of WMH
lesions in older patients with SVD30,33. The WMH wGRS showed
significant associations with higher MD, RD, and PSMD and
lower FA values in i-Share; four WMH risk loci individually
showed significant associations with at least one of the DTI
parameters (SH3PXD2A, NMT1, KLHL24, and VCAN, Table 2).
Increasing values of PSMD (but not other DTI markers) shows a
trend towards association with slower information processing
speed on the Stroop test in i-Share participants (N= 1,401, effect
estimate ± SE: 0.085 ± 0.040, P= 0.031), which did not survive
correction for multiple testing (for three independent DTI mar-
kers). The WMH wGRS was not associated with the Stroop test in
i-Share but showed a trend towards an association with poorer
episodic memory performance in older community persons
(N= 24,597, effect estimate ± SE: -0.19 ± 0.11, P= 0.08)34.

We also examined whether genetically predicted larger WMH
volume was associated with increased risk of stroke and Alzheimer-
type dementia, the most common age-related neurological diseases,
and with lower cognitive performance in older age, using previously
reported GWAS data (Supplementary Table 2). Several genome-
wide significant WMH risk loci showed significant association with
ischemic stroke (three loci), all stroke and small vessel stroke (two
loci each), cardioembolic stroke, deep intracerebral hemorrhage,

and Alzheimer-type dementia (one locus each) (Supplementary
Data 13). Using linkage disequilibrium score regression (LDSR)35,
we observed significant genetic correlation of WMH volume with
all stroke, ischemic stroke, small vessel stroke, and lower general
cognitive function, after Bonferroni correction for multiple testing
(P < 3.6 × 10−3, Methods, Fig. 3, Supplementary Data 14). Using the
Bayesian pairwise GWAS (GWAS-PW) approach36, significant
regional overlap (posterior probability of association for model 3,
PPA3 ≥ 0.90, Methods) was observed between WMH volume and
general cognitive function and between WMH volume and stroke,
especially ischemic and small vessel stroke (Supplementary Data 15).
This included regions previously implicated in complex and
monogenic forms of stroke (FOXF2/FOXQ137,38, HTRA127,37)
and cardiovascular disease (NOS3)39.

Using two-sample MR, which implements the inverse-variance
weighting (IVW) method, we observed evidence for significant
causal associations after Bonferroni correction for multiple testing
(P < 3.6 × 10−3) between WMH volume and increased risk of
Alzheimer-type dementia, with no statistical evidence of hor-
izontal pleiotropy using Cochran’s Q statistic (Q-PHet≥0.01,
Fig. 4, Supplementary Data 16). We also observed evidence for
significant causal association of WMH volume with risk of any
stroke, ischemic stroke, small vessel stroke, and deep intracerebral
hemorrhage. There was some evidence for horizontal pleiotropy

CHARGE (23 population-basedcohorts)

EUR(N  = 21,666); AFR(N  = 2516)

Lifetime
approach

UK Biobank

EUR(N  = 26,788)

Total

N  = 50,970

50,970 individuals, 9.9 million WMH-SNP association statistics
27 independent GW risk signals (18 novel, 2 trans-ethnic) | 13 gene-based loci

Custom R script
(wGRS)

Mendelian
randomization

Biological
inference

LD clumping(PLINK),
GCT-ACOJO, MAGMA

Shared genetic
architecture

GEC, LDSR
GWAS-PW, ρ-HESS

Radial-MR
MR-Egger

EPIGWAS
MAGMA-celltyping

Association of WMH GWS SNPs and wGRS with DTI metrics (FA, MD, RD, AxD, PSMD) 
i-Share cohort, mean age: 22.1 years

Genetic overlap of WMH with vascular and neurological traits at:
Variant level   | Genome-wide level  |  Locus level

Mendelian randomization (MR) and sensitivity analysis with,
Vascular risk factor exposures   |  Neurological outcomes

Cell/tissue type enrichment analysis using,
Histone marks (RoadMAP)  | Transcriptome (Mouse brain single-cell)

Functional
prioritization

Transcriptome-wide association analysis with
gene expression from  GTEx , ROSMAP, CMC 

TWAS-fusion, COLOC
HaploReg, GREP

Brain MRI/
Genotype data

Meta-GWAS
Models

Risk loci
discovery

Drug-target enrichment analysis
of WMH eQTL-eGenepairs

EUR(23  ) AFR(1  ) EUR(22  ) AFR(1   ) EUR(16   ) AFR(5   )

Metal
Metal-JMA
MR-MEGA
(Trans-ethnic)

E(WMH|SNP,HTN)
(N  = 48,524)
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(N  = 50,970)

Fig. 1 Study workflow and rationale. Ϯ number of GW hits. MRI magnetic resonance imaging, CHARGE cohorts for heart and aging research in genomic
epidemiology, EUR European, AFR African–american, GWAS genome-wide association study, WMH White matter hyperintensities, SNP single nucleotide
polymorphism, HTN hypertension, JMA joint meta-analysis, MR-MEGA meta-regression of multi-ethnic genetic association, GW genome-wide, LD linkage
disequilibrium, GCTA-COJO genome-wide complex trait analysis- conditional and joint analysis, MAGMA multi-marker analysis of genomic annotation,
DTI diffusion tensor imaging, iSHARE internet based student health research enterprise, FA fractional anisotropy, MD mean diffusivity, RD radial diffusivity,
AxD axial diffusivity, PSMD peak width of skeletonised mean diffusivity, wGRS weighted genetic risk score, GEC genetic type I error calculator, LDSR LD-
score regression, GWAS-PW GWAS-pairwise analysis, HESS heritability estimator from summary statistics, EPIGWAS epigenome wide association study,
TWAS transcriptome-wide association study, GTEx genotype-tissue expression, ROSMAP religious orders study and the RUSH memory and aging project,
CMC common mind consortium, eQTL expression quantitative trait loci, eGene expression-associated genes, COLOC colocalisation, GREP genome for
repositioning drugs.
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(Q-PHet<0.01) for associations with stroke. However, after
removing influential outlier variants associations remained
significant and the MR-Egger intercept (indicating average
pleiotropic effects) did not significantly differ from zero with
QR values close to 1, indicating goodness of fit of the IVW
method (Methods, Supplementary Data 16)40.

Shared genetic risk with vascular traits. To assess whether
genetic associations with WMH reflect known vascular
mechanisms we systematically explored the shared genetic var-
iation between WMH burden and related vascular traits, com-
prising established risk factors for vascular disease (systolic blood
pressure [SBP], diastolic blood pressure [DBP], pulse pressure
[PP], type 2 diabetes [T2D], low-density lipoprotein [LDL] cho-
lesterol, high-density lipoprotein [HDL] cholesterol, triglycerides
[TG], body mass index [BMI], glycated hemoglobin levels

[HbA1c], and lifetime smoking index—a composite measure
capturing smoking heaviness and duration as well as smoking
initiation [SMKindex]), as well as putative risk factors for other
disorders including venous thromboembolism (VTE) and
migraine, using summary statistics from the most recent GWAS.
Some of the latter were made available through collaborations
with the relevant research consortia when the data were not
publicly available (Supplementary Table 2).

First, we looked up associations of the 27 WMH risk loci with
related vascular traits, including the lead WMH risk variants and
nearby variants (±250 kb) in moderate to high LD (r2 > 0.5). After
correcting for the number of independent loci and traits tested (P
< 1.3 × 10−4, Methods), 20 of the 27 WMH risk loci (74%)
showed significant association with at least one other trait and/or
vascular risk factors. For 13 of these, associations were found at a
genome-wide significant level (Fig. 2, Supplementary Data 13).
Blood pressure (BP) traits showed by far the largest number of
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significant associations with WMH risk variants, 16 loci (59.3%)
being associated with SBP, DBP, and/or PP. Further significant
associations with WMH risk variants were observed for BMI (8
loci), T2D (5 loci), SMKindex (3 loci), and lipid traits (3 loci), one
locus (at XKR6) being notably shared with all these risk factors.
Seven loci (C16orf95, ECHDC3, MN1, NID2, SALL1, VCAN,
KCNK2), none of which were reported previously as WMH risk
loci, appear not to be associated with any of the vascular traits
explored, suggesting other underlying biological pathways.

Second, we explored the genome-wide and regional genetic
overlap between WMH volume and related vascular traits. Mean
X2 ranged between 1.06 and 3.99 suggesting strong polygenicity
for all investigated traits. The impact of possible sample overlap
was estimated to be negligible using LDSR35 (Supplementary
Data 14). We observed significant (P < 3.6 × 10−3) genetic
correlation of larger WMH volume with higher SBP, DBP,
SMKindex, BMI and increased risk of VTE. Using GWAS-PW36

and HESS41 (Methods), we identified 16 genomic regions
harboring shared genetic risk variants with at least one other
vascular trait, predominantly BP traits, but also BMI, lipid levels
and SMKindex (PPA3 ≥ 0.90, Fig. 3, Supplementary Data 15).

Third, we explored the causal relations between the aforemen-
tioned vascular traits and WMH volume using two-sample MR42

(RadialMR40, Methods), implementing the IVW method. We
observed significant (P < 3.6 × 10−3) association of genetically
predicted SBP, DBP, PP, SMKindex and T2D with larger WMH
volume and of genetically predicted migraine with smaller WMH
volume (Fig. 4, Supplementary Data 17). After removal of
potentially pleiotropic outlier variants; for SBP, DBP, PP and
SMKindex the MR-Egger intercept was nonsignificant, indicating
no residual pleiotropy and suggesting causal association with
WMH volume (Methods). For migraine and T2D in contrast
there was evidence of residual pleiotropic effects (significant MR-
Egger intercept, Supplementary Data 17) after removal of
potentially pleiotropic outlier variants, and the association
became only nominally significant for migraine. Importantly,
associations of genetically predicted SBP and DBP with WMH
volume remained significant after adjustment for HTN, and in
participants with and without HTN (Supplementary Data 17),
highlighting that higher levels of BP are likely causally associated
with larger WMH volume even below BP thresholds typically
used for the definition of hypertension (SBP ≥ 140 mmHg or
DBP ≥ 90 mmHg or antihypertensive drug intake)43.

Biological interpretation of association signals. We used
EPIGWAS44 to test for cell-type enrichment of WMH association
signals using chromatin marks previously shown to be cell-type
specific and associated with active gene-regulation (Methods).
WMH risk loci were significantly enriched in enhancer
(H3K4me1) and promoter sites (H3K4me3) in cell-types derived
from the brain, neurosphere (developing brain), vascular tissue,
digestive, epithelial and muscle tissues, as well as human
embryonic stem cells after removing WMH risk loci associated
with BP (Supplementary Data 19). Analysis of brain-specific
single-cell expression data in mice using MAGMA.celltyping45

(Methods) revealed significant enrichment of highly cell-type-
specific genes in endothelial mural cells and nominally significant
enrichment for vascular leptomeningeal cells, oligodendrocytes,
oligodendrocyte precursors, and ependymal astrocytes; results
were substantially unchanged after removing WMH risk loci
associated with BP (Supplementary Data 20).

To functionally characterize and prioritize individual WMH
genomic risk loci we performed transcriptome-wide association
studies (TWAS) using TWAS-Fusion46, WMH-SNP association
statistics from the main effects (EUR-only) and weights from 23T
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gene-expression reference panels from blood, arterial, and brain
tissues (Supplementary Methods 2). We also included non-
publicly available gene-expression weights from the dorsolateral
prefrontal cortex (DLPFC) of 494 older community-dwelling
participants (Methods)47,48. TWAS-Fusion identified 201
transcriptome-wide significant associations with WMH, condi-
tionally significant on the predicted expression of a TWAS-
associated gene, including 21 with splicing quantitative trait loci
(sQTLs) regulating highly tissue-specific gene isoforms in DLPFC
(Fig. 5, Supplementary Data 21). To rule out that observed
associations reflect the random overlap between expression
(eQTLs) and noncausal WMH risk variants, a colocalization
analysis (COLOC)49 was performed at each significant locus, to
estimate the posterior probability of a shared causal variant
(PP4 ≥ 75%) between the gene expression and trait association
(Methods). Colocalization was observed for 96 TWAS significant
eQTLs (48%, Fig. 5): of these, 54 mapped to 8 WMH genome-

wide risk loci and 16 expression-associated genes (eGenes), while
42 mapped to 12 distinct loci that were not genome-wide
significant in the WMH GWAS and 23 eGenes. These additional
putative WMH risk loci require confirmation in follow-up
studies. Leveraging histone regulatory mark information from
blood, arterial, and brain tissues (Methods, Supplementary
Data 21), we observed that the majority (89%) of TWAS signals
overlapped with enhancer and/or promoter elements, including
eQTLs exhibiting weaker colocalization probability (PP4 < 75%).
Larger WMH volume was associated with either upregulated or
downregulated gene expression, the directionality being mostly
consistent across broad tissue categories (Fig. 5). We found
evidence for colocalization of WMH risk variants with eQTLs in
brain tissues (28 eGenes), vascular tissues (15 eGenes), and blood
(6 eGenes). Some eGenes (KLHL24, NMT1, DCAKD, KANSL1,
AMZ2P1) showed evidence for colocalization in multiple
tissues, and for some WMH risk loci (chr2q33.2, chr17q25.1,
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chr17q21.31) colocalized variants associated with multiple eGenes
with distinct tissue specificities (Fig. 5, Supplementary Data 21).
WMH risk variants at the chr2q33 locus for instance showed
evidence for colocalization with eQTLs for NBEAL1 in nerve and
arterial tissues, for ICA1L and KRT8P15 in brain tissues, and for
CARF1 in right atrial appendage.

Among the 39 WMH eGenes with high colocalization
probability (Fig. 5, Supplementary Data 21), 4 (MAPT, CRHR1,
CALCRL, NOTCH4) are registered as targets of approved drugs in
the DrugBank database and the Therapeutic Target Database
(Supplementary Data 22).

Discussion
This largest genetic study to date on complex SVD13,14,16–18,
leveraging genetic and brain-imaging information from 50,970
older community persons, triples the number of genetic loci
associated with cerebral SVD and shows that this genetic risk
results in detectable brain changes among asymptomatic young
adults in their twenties. We further demonstrate the importance
of higher BP as a risk factor for WMH even below clinical
thresholds for HTN. MR analysis provides strong evidence for
causal links of genetically determined WMH volume with risk of
ischemic stroke, intracerebral haemorrhage, and Alzheimer-type
dementia in later life. Importantly, we also provide insight into
molecular pathways underlying SVD, highlighting relevant tissue
and cell types, and suggest potential for genetic stratification of
high-risk individuals and for genetically informed prioritization
of drug targets for prevention trials.

Our approach focusing on the most common brain-imaging
feature of SVD appears to be more powerful than GWAS of the
small vessel stroke subtype to identify risk loci for SVD. Indeed,
no new small vessel stroke risk locus was identified in MEGA-
STROKE, the largest stroke GWAS meta-analysis to date14. We
show a strong association between genetically determined WMH
burden and risk of stroke in the general population, notably both
risk of ischemic stroke and of intracerebral hemorrhage. While
corroborating epidemiological observations3,50, this has never
been demonstrated using genetic instrumental variables, provid-
ing evidence for causality. This prompts greater caution with the
common empirical prescription of antiplatelet therapy in persons
with extensive WMH in the absence of clinical stroke3, given the
potential detrimental effects on intracerebral hemorrhage risk,
and suggests the need for randomized clinical trials to determine
the risk/benefit ratio of antiplatelet therapy in this setting.

The significant association we describe between genetically
determined WMH burden and Alzheimer-type dementia also has
potential important implications for prevention. It strengthens
recent epidemiological evidence that WMH is associated not only
with an increased risk of all and vascular dementia, but also of
neurodegenerative Alzheimer-type dementia3,51, providing for
the first time evidence for causality using the WMH wGRS as an
instrumental variable. Because of the proven ability to treat vas-
cular risk factors, understanding and targeting the biological
mechanisms of the vascular contribution to cognitive impairment
and dementia, and specifically how cerebral SVD contributes to
the molecular pathology of Alzheimer disease, are areas of intense
research and clinical interest52, especially given the current
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Fig. 4 Mendelian randomization results of vascular risk factors with WMH burden (box A) and WMH burden with neurological traits (box B). Point
estimates and confidence intervals (blue) from the inverse-variance weighted (IVW) method are shown along with the point estimates and 95%
confidence interval (black) from sensitivity analyses after filtering out potentially pleiotropic outlier variants. The intercept and p-value from the MR-Egger
method is displayed on the far right (an intercept term significantly differing from zero at the conservative threshold of P < 0.05 suggests the presence of
directional pleiotropy). SBP systolic blood pressure, DBP diastolic blood pressure, PP pulse pressure, HTN hypertensive, NT normotensive, Str. stratum, AS
all stroke, IS ischemic stroke, SVS small vessel stroke, ICH intracerebral hemorrhage, AD Alzheimer’s disease, T2D type II diabetes, SMKindex lifetime
smoking index, WMH white matter hyperintensity, Model 1 Main effects adjusted for age, sex, principal components for population stratification,
intracranial volume; Model 2 Model 1 + hypertension status.
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absence of other efficient therapies. Our results suggest that
WMH should be considered a major target for preventative
interventions, to mitigate not only the risk of stroke and vascular
cognitive impairment but also of Alzheimer-type dementia, and
support the rationale of innovative trials using WMH progression
as a surrogate or intermediate endpoint for cognitive decline and
dementia.

Over half of identified WMH risk loci are associated with
higher BP levels. Moreover, using MR we provide evidence for a
causal association between higher BP and larger WMH volume,
notably even in participants without clinically defined HTN at the
time of the MRI. Indeed, associations of genetically predicted SBP
and DBP with WMH volume remained significant in participants
without HTN, highlighting that higher levels of BP are likely
causally associated with larger WMH volume even below BP
thresholds typically used for the definition of HTN43. Consider-
ing the recent conclusions from the SPRINT-MIND trial sug-
gesting that more drastic lowering of BP in persons with HTN is
associated with slower progression of WMH volume and a lower
risk of developing the combined outcome of mild cognitive
impairment or dementia53,54, our results suggest that trials to test
a similar impact of intensive BP lowering in high-risk individuals
who do not meet the current clinical thresholds for HTN could be
warranted. We additionally show strong causal association
between increased exposure to cigarette smoking over the lifetime
(lifetime smoking index) and increased WMH burden, as has
recently been described in relation with stroke risk55, providing
some additional evidence for the relevance of smoking cessation
to prevent vascular brain injury and specifically SVD.

Importantly, a quarter of the identified WMH risk loci reflect
molecular mechanisms that are not mediated by BP or other
known vascular risk factors, two of these (NID2, VCAN), along
with the COL4A2 and EFEMP1 locus, implicate genes encoding

matrisome proteins56, involved in cell membrane structure and
representing core components of the extracellular matrix (ECM).
Converging evidence from experimental models for monogenic
SVD suggest that perturbations of the matrisome play a central
role in disease pathophysiology57. Our findings suggest that these
could also be relevant for sporadic forms of SVD. NID2 encodes
nidogen, an ECM glycoprotein and a major component of
basement membranes and is recognized as having a role in post-
stroke angiogenesis58,59. Mutations in COL4A1/2, encoding col-
lagen another basement membrane component already are
known causing monogenic SVD26. VCAN, which we also found
to be associated with white matter microstructure in young
adults, encodes versican, a proteoglycan involved in cell adhesion
and ECM assembly60. In CARASIL, a monogenic SVD caused by
HTRA1 mutations, accumulation of versican in the thickened
arterial wall was observed27. Versican also can form complexes
that inhibit oligodendrocyte maturation and remyelination61.
EFEMP1 encodes fibulin 3, an ECM glycoprotein localised in the
basement membrane, and a proteolytic target of serine protease
HTRA162. Other previously unreported WMH risk loci that we
have identified include KCNK2 that encodes Twik-related K+
channel (TREK1), a 2-pore-domain background ATP-sensitive
potassium channel expressed throughout the central nervous
system, more prominently in fetal than in adult brain. ECHDC3,
near a distinct locus (r2 < 0.01) previously implicated in Alzhei-
mer disease63.MN1, which previously has been causally related to
familial meningiomas64, and XKR6, which has been associated
with risk of systemic lupus erythematosus65.

Our results provide important insight into the lifetime impact
of genetic risk for SVD. Indeed, WMH risk variants observed in
older adults were already associated with changes in DTI markers
of white matter integrity in young adults in their early twenties.
Of these, PSMD, a DTI metric recently described to be more
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strongly correlated with cognitive performance in older persons
(patients with sporadic or monogenic SVD and older community
persons) than any other MRI-marker of SVD30, was already
showing nominal association with lower cognitive performance in
young adults. This finding requires confirmation in future inde-
pendent samples. The association of the WMH wGRS with subtle
changes in white matter microstructure in young adults, if con-
firmed in independent samples, has potential important impli-
cations for the timing and paradigm of prediction and prevention
of SVD progression and complications. It could reflect that bio-
logical pathways contributing to WMH at an older age already
have a significant impact on brain microstructure in young adults,
possibly reflecting a very early stage of SVD (typically char-
acterized by reduced FA and increased MD and PSMD33). DTI
changes and WMH have been suggested to be dependent phy-
siological processes occurring within consecutive temporal win-
dows in older patients with SVD30,33,66. Alternatively, observed
associations might also reflect pleiotropy between SVD genes and
genes influencing brain maturation, as the mean age of i-Share
participants corresponds to the peak of white matter matura-
tion67. On average FA tends to increase during childhood, ado-
lescence, and early adulthood and then decline in middle-age,
while the reverse is observed for MD32,68. Hence the association
of the WMH wGRS with lower FA and higher MD could also
reflect an impaired or delayed maturation or a premature aging
process. The significant association of the WMH wGRS with RD
but not AxD could potentially suggest that this is predominantly
reflecting an impact on myelination of fiber tracts69, in line with
involvement of oligodendroglial dysfunction in early SVD
pathology70. Future follow-up studies in a longitudinal setting are
warranted to better understand the impact of genetically pre-
dicted WMH burden on the progression of white matter micro-
structural changes observed already in young adults and on their
link with SVD and its complications.

Functional characterization revealed enrichment of WMH risk
variants in regulatory marks in brain and neurosphere and in
single-cell gene-expression levels in endothelial mural cells (as for
clinical stroke)71. Gene prioritization using TWAS revealed that
several WMH risk loci colocalized with eQTL for multiple genes
with distinct tissue specificities. This pattern could potentially
partly explain why association of such loci with WMH volume
remained unchanged after controlling for the presence of HTN,
although they were associated at genome-wide significant level
with both BP and WMH. Of the 39 eGenes identified by TWAS
four encode known drug targets. MAPT is a drug target under
investigation for neurodegenerative disorders: the eQTL coloca-
lizing with the WMH risk variant is an sQTL for the MAPT
isoform in DLPFC and TWAS suggest that larger WMH volume
is associated with upregulated MAPT expression. CALCRL
encodes a component of the Calcitonin Gene Related Peptide
receptor. TWAS suggest that lower abundance of the CALCRL
transcript in arterial and nerve tissue and higher abundance in
blood are associated with larger WMH volume. Monoclonal
antibodies against CALCRL have recently been developed for the
treatment of migraine72.

We acknowledge limitations. We were underpowered for
detecting additional risk variants for WMH after accounting for
presence of HTN in the 2-df JMA gene-HTN interaction model.
Recognizing that blood pressure is also highly variable and that a
one-time blood pressure measurement may not reflect the long-
term exposure of participants to high blood pressure levels, we
conducted secondary analyses stratifying on quartiles of geneti-
cally predicted SBP and DBP levels, yielding similar results. In
aggregate, a weighted genetic risk score of independent genome-
wide significant WMH risk loci showed a significant 1-df inter-
action with HTN status in association with WMH volume,

suggesting that effect modification of genetic associations by
HTN may exist, but that to discover them at the level of indivi-
dual loci likely will require much larger samples. While we were
able to use gene-expression data from many tissues for TWAS,
such data are lacking for certain tissues that may be relevant for
WMH (e.g., small brain vessels, microglia). Finally, our study
population is predominantly of European ancestry (95%) limiting
our ability to extrapolate our conclusions to other ancestry
groups.

In conclusion we have identified 27 genetic risk loci for WMH
volume, of which two thirds are not previously reported, and
provided additional insight into their association with structural
brain changes in very young adults, their clinical significance and
the importance of high BP as a risk factor below clinical
thresholds. Our results also point to molecular pathways under-
lying SVD that are not mediated by vascular risk factors and
suggest potential for genetic stratification of high-risk individuals
and genetically informed prioritization of drug targets for pre-
vention trials.

Methods
Study population. The study population comprised 23 population-based studies
from the CHARGE consortium comprising a total of 24,182 individuals of Eur-
opean (N= 21,666) and African–American (N= 2516) ancestry, along with 26,788
community participants of European origin from the UK Biobank. In total, 50,970
participants were available for testing main genetic effects and 48,524 participants
for the gene-hypertension interaction analysis (information on HTN status was
missing in 2446 participants). Individuals with a history of stroke (or MRI-defined
brain infarcts involving the cortical gray matter), or other pathologies that may
influence the measurement of WMH (e.g., brain tumor, head trauma, etc.), at the
time of MRI were excluded from analyses. Study participants in all participating
cohorts gave written informed consent for phenotype quantification and use of
genetic material (Supplementary Methods 1, Supplementary Table 1).

Phenotypes. MRI scans were obtained from scanners with field strengths ranging
mostly from 1.5 to 3.0 Tesla and interpreted using a standardized protocol blinded
to clinical or demographic features. In addition to T1 and T2 weighted scans along
the axial plane, some cohorts included fluid-attenuated inversion recovery (FLAIR)
and/or proton density (PD) sequences for better differentiation of WMH from
cerebrospinal fluid. The vast majority of participating cohorts (>92% of all parti-
cipants) used fully automated software to quantify WMH volume, with two cohorts
using validated, visually guided semi-quantitative scales in older study subsets
(Supplementary Table 1). WMH volume measures were inverse normal trans-
formed to correct for skewness and account for differences in WMH quantification
methods. Blood pressure measurements that are closest to the MRI scan were used
to define HTN status. Participants with a SBP ≥ 140 mmHg, a DBP ≥ 90 mmHg, or
taking antihypertensive medication were classified as having HTN.

Genotyping and imputation. Genome-wide genotyping platforms are described in
Supplementary Data 2. Prior to imputation, sample-specific quality control (QC)
on heterozygosity, missingness, gender mismatch, cryptic relatedness, and analysis
of principal components (PC) for population stratification, as well as SNP-level QC
on genotyping call rate and Hardy–Weinberg equilibrium were applied (Supple-
mentary Data 2). Samples and SNPs passing the cohort-specific QC measures were
then imputed to the 1000 genomes cosmopolitan panel phase 1 version 3 (1000 G
p1v3) for CHARGE cohorts, while for the UK Biobank the dataset version 3 was
imputed to the combined UK10K and Haplotype Reference Consortium (HRC)
reference panels.

Genome-wide association analyses. Each participating study conducted
ancestry-specific analyses using linear regression and assuming additive genetic
effects under three models: (1) marginal genetic association test of WMH volume
(SNP-main effect); (2) SNP-main effect adjusted for HTN status; (3) and joint
association test of both SNP-main and SNP-by-HTN interaction effects in relation
with WMH volume:

Y ¼ β0 þ βGSNPþ βCCov þ ε ð1Þ

Y ¼ β0 þ βGSNPþ βCCov þ βEnvHTN þ ε ð2Þ

Y ¼ β0 þ βGSNPþ βCCov þ βGEnvSNP ´HTNþ βEnvHTNþ ε ð3Þ
where SNP corresponds to the dosage of a given genetic (G) variant, Env is the
dichotomous variable for HTN status, Cov is the vector of covariates, GEnv is the
SNP-by-HTN interaction effect and β values are the corresponding regression
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coefficients and error covariance (ε) of β. The joint model (Model 3) provides effect
estimates of G and GEnv, their robust standard errors (SE) and robust covariance
matrices, and a joint P value from a 2 degree-of-freedom (df) Wald test. Robust
estimates of SEs and covariance matrices were used.

All analyses were adjusted for age, sex, PCs of population stratification and
intracranial volume (ICV). Adjustment for ICV was not performed for studies
using visual grading of WMH burden, as visual grades are inherently normalized
for brain size17 (Supplementary Data 1, Supplementary Methods 1).

Genome-wide association meta-analyses. A custom harmonization script along
with the R package EasyQC73 was used to perform the QC of cohort-specific
GWAS results. SNPs with minor allele frequency (MAF) lower than 1%, poor
imputation quality (R2 < 0.80), or a product of MAF, R2 and sample size less than
10, or 15 for the 2-df interaction analysis were excluded.

Inverse-variance weighted meta-analysis was conducted using METAL74, first
within each ancestry group followed by a meta-analysis of the ancestry-specific
results. A patch implemented in the METAL75 software was used to perform a 2-df
joint meta-analysis (JMA) with inverse-variance weighting. For cohort-specific
GWAS results with genomic inflation factors (λ) exceeding 1, genomic control
(GC) correction was applied to correct for any residual population stratification.
After meta-analysis only SNPs represented in more than half of participating
studies and/or more than half of sample size and with no evidence of between-
study heterogeneity (PHet > 1 × 10−4) were considered. Quantile-Quantile (QQ)
plots of the P-values (observed versus expected) in the GWAS for the different
models tested are presented along with the genomic inflation factor (λ)
(Supplementary Fig. 2, Supplementary Data 3). Since heterogeneity in allelic effects
that is specifically due to ancestry differences is not addressed by the traditional
fixed-effects meta-analysis, a multiancestry meta-regression was carried out. For
each variant, SNP-main allelic effects on WMH volume across GWAS were
estimated in a linear regression framework weighting on the inverse of the variance
of effect estimates and on the axes of genetic variation derived from pairwise allele
frequency differences, as implemented in MR-MEGA25. It provides two
heterogeneity estimates, one that is correlated with ancestry (PHet-ANC) and
accounted for in the meta-regression and the residual heterogeneity that is not due
to population genetic differences (PHet-RES).

In addition, association of the genome-wide significant WMH risk variants with
WMH volume was tested after (i) stratification on hypertension status (all cohorts),
and (ii) stratification on quartiles of SBP and DBP polygenic risk score distribution
in the UK biobank, as described in the supplementary information (Supplementary
Methods 2).

Across all association models, the power to reject the null hypothesis of no
association at the genome-wide (GW) level was set at P < 5 × 10−8. Independent
SNPs within genome-wide risk loci were determined by performing linkage
disequilibrium (LD) based clumping implemented in PLINK using both a physical
distance of ±1 megabase (Mb) and an LD threshold of r2 > 0.10 from the index SNP
of a given locus76. For constructing the LD matrix, ancestry-specific (European
[EUR], African–American ancestry in South-West USA [ASW]) 1000 G p1v3
reference panels were used for ancestry-specific results and the merged (EUR
+ASW) reference for multiancestry results. Stepwise conditional regression and
joint analysis (cojo) implemented in GCTA24 was performed to further validate the
independent signals (based on the main-effects GWAS in Europeans only). GCTA-
COJO additionally identifies signals with GW (P < 5 × 10−8) association level due
to the LD adjusted joint effect of several neighbouring SNPs, selected based on an
association priori of P < 1 × 10−7. Genotypes of 6489 unrelated European
individuals from the Three City (3 C) study77 were used to generate the LD matrix.
Finally, gene-based association tests were conducted using MAGMA28, with P <
2.8 × 10−6 as a gene-wide significance threshold. Gene regions with SNPs not
reaching GW significance for WMH and/or not in LD (r2 < 0.10) with the lead
WMH SNP were considered as novel.

WMH heritability estimates. LD-score regression (LDSR) was used to distinguish
polygenicity from confounding due to population stratification or cryptic relat-
edness35 and to estimate the GW heritability by regressing the LD-score (measure
of linked SNPs) against the chi-square association statistics of WMH volume from
the European-only analysis. To address the infinitesimal-model assumption used
by variance-component methods such as LDSR, we applied the heritability esti-
mator from summary statistics (HESS)29 to estimate local SNP-level heritability.
HESS does not assume any effect size distribution and by weighted summation of
the variant effect sizes and eigenvectors of the LD matrix provides variance
explained by all SNPs at a given locus. Since the current GWAS sample size for the
European-only analysis is smaller than the required size (>50,000) by HESS, GW
heritability for WMH (h2= 0.54 ± 0.24) from the 3C-Dijon study9 was used to
partition into each locus as suggested29. GWAS effects sizes were reinflated with
the genomic inflation factor obtained from the GWAS summary statistics
(λ= 1.09) to reduce potential downward bias of local SNP-level heritability and
GW heritability estimates.

Analysis of the lifetime impact of WMH risk variants. We explored the asso-
ciation of the WMH wGRS (Supplementary Data 4) with MRI-markers of white

matter integrity in unrelated young adults participating in the i-Share cohort, the
largest ongoing cohort study on student health (www.i-share.fr), using DTI mar-
kers. A WMH wGRS was constructed from 25 GW significant SNPs identified in
European-only samples. High-quality MRI images and genome-wide genotypes
were available in 1738 participants (Supplementary Methods 1, Supplementary
Data 1). Briefly, white matter tracts were skeletonized with Tract-Based Spatial
Statistics (TBSS) and a diffusion histogram analysis was performed, as described in
the supplementary information (Supplementary Table 1), to derive DTI metrics
measuring the integrity of the white matter microstructure, including fractional
anisotropy (FA) and mean, radial and axial diffusivity (MD, RD, AxD), as well as
peak width of skeletonized mean diffusivity (PSMD). PSMD was calculated using a
fully automated method via a shell script (www.psmd-marker.com) (Supplemen-
tary Table 1). A mixed linear model (MLM) was used to test the association of
individual SNPs with each DTI trait, accounting for any sample substructure
(admixture) and possible relatedness in the sample by using a genetic relationship
matrix (GRM) as a random effect. The GRM was computed by implementing the
MLMA-LOCO scheme in GCTA, where the SNP marker tested for association
with a given outcome was excluded at each instance. MLMA-LOCO has been
shown to better control false-positives over the standard mixed models especially in
the presence of geographic population structure and cryptic relatedness78. The
model was additionally adjusted for age, sex, ICV and the first four PCs of
population stratification. The effect allele for each risk variant was defined as the
allele associated with larger WMH volume. For associations with individual SNPs
the significance threshold was set at P < 2 × 10−3 (0.05/25). The aggregate effect of
25 WMH risk variants with DTI metrics was estimated by using the GTX package
in R79.

The association of FA, MD, RD, AxD, and PSMD with reaction time on the
Stroop test, reflecting information processing speed, was examined using linear
regression in i-Share participants who underwent both MRI and cognitive testing
(N= 1401). Analyses were adjusted for age, sex, ICV, study-curriculum and ethnic
origin. The association p value was adjusted for the number of independent
comparisons made (n= 3), estimated based on the correlation matrix between the
DTI traits from i-Share and by applying the Matrix Spectral Decomposition
(matSpDlite) method (http://neurogenetics.qimrberghofer.edu.au/matSpDlite/).

Shared genetic architecture of WMH with related traits. We systematically
explored the genetic overlap of WMH SNP-main-effects (in the European-only
analysis) with (i) neurological traits (any stroke, ischemic stroke, small vessel
stroke, large artery stroke, cardioembolic stroke; any, deep, and lobar intracerebral
hemorrhage; general cognitive function and Alzheimer-type dementia); and (ii)
vascular risk factors and traits (SBP, DBP, PP, HDL-cholesterol, LDL-cholesterol,
TG, BMI, T2D, HbA1c, SMKindex, VTE, and migraine). We acquired summary
statistics of European-only analyses for these traits, using the latest largest GWAS,
seeking collaboration with the relevant consortia when the data were not publicly
available (Supplementary Table 2).

We first explored the association of lead WMH risk variants (n= 27) with
related vascular and neurological traits. For each of the related traits, association
statistics of SNPs falling in a window of ±250 kb around each of the lead WMH
SNP were retrieved and SNPs satisfying the multiple testing threshold defined by
correcting for the effective number of LD independent markers per locus, as
implemented in Genetic Type 1 error calculator (GEC)80, were retained. Only
SNPs showing an association with a related vascular or neurological trait at P <
1.3 × 10−4 (accounting for 14 independent traits and 27 independent loci) and in
moderate to high LD with the lead WMH SNP (r2 > 0.50) are reported. The
correlation matrix estimated between the traits using individual-level data from the
3 C study77 was used to estimate the number of independent traits by applying the
Matrix Spectral Decomposition (matSpDlite) method (http://neurogenetics.
qimrberghofer.edu.au/matSpDlite/).

Using LDSR81, genetic correlation estimates between WMH and the
aforementioned neurological and vascular traits were obtained. A p value < 3.6 × 10−3

correcting for 14 independent phenotypes was considered significant. As genome-
wide correlation estimates may miss significant correlations at the regional level
(balancing-effect)41, the Bayesian pairwise GWAS approach (GWAS-PW) was
applied36. GWAS-PW identifies trait pairs with high posterior probability of
association (PPA) with a shared genetic variant (model 3, PPA3≥ 0.90). To ensure
that PPA3 is unbiased by sample overlap, fgwas v.0.3.6 was run on each pair of traits
and the correlation estimated from regions with null association evidence (PPA <
0.20) was used as a correction factor36. Additionally, to estimate the directionality of
associations with trait pairs in regions with PPA3≥ 0.90, HESS was used to estimate
local genetic correlation41.

Mendelian randomization (MR). For each vascular trait genetic variant (instru-
ment) details were retrieved from the latest largest GWAS (Supplementary
Table 2). Only independent SNPs (r2 < 0.10, based on 1000 G EUR panel) reaching
genome-wide significance were included as recommended82. Similarly, 25 inde-
pendent WMH risk variants from the SNP-main effects were used as instruments
to test the association of genetically predicted WMH volume with neurological
traits. The putative causal effect (βIVW) of an exposure on the outcome was esti-
mated, using the inverse-variance weighting (IVW) method, by the weighted sum
of the ratios of beta-coefficients from the SNP-outcome associations for each
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variant (j) over corresponding beta-coefficients from the SNP-exposure associa-
tions (βj). The ratio estimates from each genetic variant were averaged after
weighting on the inverse variance (Wj) of βj across L uncorrelated SNPs, imple-
mented as an R package RadialMR (available through CRAN repositories)40.

βIVW ¼
PL

j¼1 Wjβj
PL

j¼1 Wj

Effect alleles for each risk variant were defined as the allele associated with
increase in the corresponding trait values. A p value < 3.6 × 10−3 correcting for 14
independent traits was considered significant. Cochran’s Q statistic was used to test
for the presence of heterogeneity (PHet < 0.01) due to horizontal pleiotropy that
occurs when instruments exert an effect on the outcome and exposure through
independent pathways40. Influential outlier SNPs that have the largest contribution
to the global Cochran’s Q statistic are identified by regressing the predicted causal
estimate against the inverse-variance weights. After excluding the influential outlier
SNPs, the IVW test was repeated along with MR-Egger regression83. Relative
goodness of fit of the MR-Egger over the IVW approach was quantified using the
QR statistics, which is the ratio of the statistical heterogeneity around the MR-Egger
fitted slope divided by the statistical heterogeneity around the IVW slope. A QR

close to 1 indicates that MR-Egger is not a better fit to the data and therefore offers
no benefit over IVW40. Nonsignificant MR-Egger intercept was used as an
indicator to formally rule out horizontal pleiotropy.

Cell and tissue type enrichment analysis. Association statistics from the WMH
SNP-main effects (European-only) were used to test cell/tissue-specific enrichment.
First we used the EPIGWAS software44 and histone marks for promoters
(H3K4me3) and enhancers (H3K4me1) from publicly available information on
tissue-specific histone regulatory marks (Supplementary Methods 2). EPIGWAS
calculates specificity scores for the lead WMH risk variant and its proxies (r2 ≥
0.80, 1000 G EUR) based on the distance to the strongest ChIP-seq peak signal, and
estimates enrichment significance by comparing the relative proximity and speci-
ficity of the test set with 10,000 sets of matched background (using permutation).
Bonferroni correction for the number of histone marks tested was applied (P <
2.5 × 10−2). Second, we used MAGMA28 (gene-property analysis) and differentially
expressed gene sets from the single-cell transcriptomic (scRNA) data in mouse
brain from the Karolinska Institute. MAGMA generates gene-level association
statistics by combining SNP p-values in a specified window (10 kb upstream and
1.5 kb downstream of each gene) accounting for LD (1000 G EUR) and under a
linear regression framework performs a one-sided test between the association of
genes with WMH volume and cell specificity. Using the MAGMA.celltyping R
package45, scRNA expression values were obtained from five different mouse brain
regions (neocortex, hippocampus, hypothalamus, striatum, and midbrain)84. A
gene-expression specificity metric for each cell-type was calculated by dividing the
expression level in a given cell type by the sum of the expression levels from all cell
types (i.e., genes with high expression levels in two or more cell types will get a
lower specificity measure than genes with high expression levels in a single-cell
type), followed by binning the metric value to 40 equally sized bins. The MAGMA
one-sided test was then used to test for enrichment between the top 10 percentile
bins (bins with higher cell-specificity) in each cell type. Bonferroni correction for
the number of cell types tested was applied (P < 2.1 × 10−3).

Transcriptome-wide association study and colocalization. We performed
transcriptome-wide association studies (TWAS) using the association statistics
from the WMH SNP-main effects (European-only) and weights from 22 publicly
available gene-expression reference panels (Supplementary Methods 2) from blood
(Netherlands Twin Registry, NTR; Young Finns Study, YFS), arterial (Genotype-
Tissue Expression, GTEx), brain (GTEx, CommonMind Consortium, CMC) and
peripheral nerve tissues (GTEx). For each gene in the reference panel, precomputed
SNP-expression weights in the 1-Mb window were obtained (Supplementary
Methods 2), including the highly tissue-specific splicing QTL (sQTL) information
on gene isoforms in the dorsolateral prefrontal cortex (DLPFC) derived from the
CMC. Additionally, non-publicly available gene-expression weights from the
DLPFC of 494 older individuals from two large community-based studies (the
Religious Order Study [ROS]48 and the Rush Memory Aging Project [MAP]47 were
obtained. TWAS-Fusion46 was used to estimate the TWAS Z score (association
statistic between predicted expression and WMH), derived from the SNP-
expression weights, SNP-WMH effect estimates and the SNP correlation matrix.
Transcriptome-wide (TW) significant genes (eGenes) and the corresponding QTLs
(eQTLs) were determined using Bonferroni correction in each reference panel,
based on the average number of features (4360 genes) tested across all the reference
panels46. eGene regions with eQTLs not reaching genome-wide significance in
association with WMH, and not in LD (r2 < 0.01) with the lead SNP for genome-
wide significant WMH risk loci, were considered as novel. Finally, a colocalization
analysis (COLOC)49 was carried out at each locus to estimate the posterior
probability of a shared causal variant (PP4 ≥ 0.75) between the gene expression and
trait association, using a prior probability of 1.1 × 10−5 for the WMH association.
Furthermore, functional validation of the eGenes was performed by testing for
positional overlap of the best eQTLs from TWAS with enhancer (H3K4me1) and/
or promoter (H3K4me3) elements across a broad category of relevant tissue types

(blood, brain/neurological, heart/arterial) using Haploreg V4.185. A value of 1 was
assigned to eQTLs with regulatory epigenome overlap in at least one tissue.

Drug-target enrichment. The Genome for REPositioning drugs (GREP) tool86

was used to quantify the enrichment of eGenes emerging from the TWAS with
high probability of colocalization (PP4 ≥ 0.75) in the curated drug-target list
classified based on the International Classification of Diseases 10 (ICD10). GREP
provides as an output the names of the drug(s) targeting a given gene set along with
the disease category. Moreover, by performing a series of Fisher’s exact tests GREP
formally tests whether the gene set is enriched in genes targeted by drugs in a
specific clinical indication category to treat a certain disease or condition.

Reporting summary. Further information on research design is available in the Nature
Research Life Sciences Reporting Summary linked to this article.

Data availability
Summary statistics for the GWAS meta-analysis of the CHARGE cohorts and the UK
Biobank on WMH burden main-effects generated and analyzed in the downstream
analyses are deposited in a public repository (dbGAP: https://www.ncbi.nlm.nih.gov/gap/)
under the accession number: phs002227.v1.p1. All other data supporting the findings of
this study are available either within the article, the supplementary information and
supplementary data files, or from the authors upon reasonable request. Publicly available
resources used for this study were the UK Biobank [http://www.ukbiobank.ac.uk/]; Gene-
expression weights for TWAS [http://gusevlab.org/projects/fusion/]; Magma.Celltyping
[https://github.com/NathanSkene/MAGMA_Celltyping]; Histone regulatory marks
[http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/].
Genome-wide summary statistics for other complex disorders were downloaded from
public repositories [Supplementary Methods 2 for URL links].

Received: 26 January 2020; Accepted: 10 September 2020;

References
1. Debette, S. & Markus, H. S. The clinical importance of white matter

hyperintensities on brain magnetic resonance imaging: systematic review and
meta-analysis. BMJ 341, c3666 (2010).

2. Shi, Y. et al. Cerebral blood flow in small vessel disease: a systematic review
and meta-analysis. J. Cereb. Blood Flow. Metab. 36, 1653–1667 (2016).

3. Debette, S., Schilling, S., Duperron, M. G., Larsson, S. C. & Markus, H. S.
Clinical significance of magnetic resonance imaging markers of vascular brain
injury: a systematic review and meta-analysis. JAMA Neurol. 76, 81–94 (2019).

4. Corriveau, R. A. et al. Alzheimer’s disease-related Dementias Summit 2016:
National research priorities. Neurology 89, 2381–2391 (2017).

5. The Lancet, N. Vascular disease and neurodegeneration: advancing together.
Lancet Neurol. 16, 333 (2017).

6. Alber, J. et al. White matter hyperintensities in vascular contributions to
cognitive impairment and dementia (VCID): Knowledge gaps and
opportunities. Alzheimers Dement (N. Y) 5, 107–117 (2019).

7. Dufouil, C. et al. Effects of blood pressure lowering on cerebral white matter
hyperintensities in patients with stroke: the PROGRESS (Perindopril
Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging
Substudy. Circulation 112, 1644–1650 (2005).

8. Nasrallah, I. M. et al. Association of intensive vs standard blood pressure
control with cerebral white matter lesions. JAMA 322, 524–534 (2019).

9. Duperron, M. G. et al. Burden of dilated perivascular spaces, an emerging
marker of cerebral small vessel disease, is highly heritable. Stroke 49, 282–287
(2018).

10. Nelson, M. R. et al. The support of human genetic evidence for approved drug
indications. Nat. Genet. 47, 856–860 (2015).

11. Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of
cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153 (2016).

12. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and
drug discovery. Nature 506, 376–381 (2014).

13. Chauhan, G. et al. Genetic and lifestyle risk factors for MRI-defined brain
infarcts in a population-based setting. Neurology 92, 486–503 (2019).

14. Malik, R. et al. Multiancestry genome-wide association study of
520,000 subjects identifies 32 loci associated with stroke and stroke subtypes.
Nat. Genet. 50, 524–537 (2018).

15. Woo, D. et al. Meta-analysis of genome-wide association studies identifies
1q22 as a susceptibility locus for intracerebral hemorrhage. Am. J. Hum.
Genet. 94, 511–521 (2014).

16. Traylor, M. et al. Genome-wide meta-analysis of cerebral white matter
hyperintensities in patients with stroke. Neurology 86, 146–153 (2016).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19111-2

12 NATURE COMMUNICATIONS |         (2020) 11:6285 | https://doi.org/10.1038/s41467-020-19111-2 | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/gap/
http://www.ukbiobank.ac.uk/
http://gusevlab.org/projects/fusion/
https://github.com/NathanSkene/MAGMA_Celltyping
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/
www.nature.com/naturecommunications


17. Fornage, M. et al. Genome-wide association studies of cerebral white matter
lesion burden: the CHARGE consortium. Ann. Neurol. 69, 928–939 (2011).

18. Verhaaren, B. F. et al. Multiethnic genome-wide association study of cerebral
white matter hyperintensities on MRI. Circ. Cardiovasc. Genet. 8, 398–409
(2015).

19. Backhouse, E. V., McHutchison, C. A., Cvoro, V., Shenkin, S. D. & Wardlaw, J.
M. Early life risk factors for cerebrovascular disease: a systematic review and
meta-analysis. Neurology 88, 976–984 (2017).

20. Maillard, P. et al. Effects of systolic blood pressure on white-matter integrity in
young adults in the Framingham Heart Study: a cross-sectional study. Lancet
Neurol. 11, 1039–1047 (2012).

21. Cox, S. et al. Associations between vascular risk factors and brain MRI indices
in UK Biobank. Eur. Heart J. 40, 2290–2300 (2019).

22. Glahn, D. C. et al. Genetic basis of neurocognitive decline and reduced white-
matter integrity in normal human brain aging. Proc. Natl Acad. Sci. USA 110,
19006–19011 (2013).

23. Psaty, B. M. et al. Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of
genome-wide association studies from 5 cohorts. Circ. Cardiovasc. Genet. 2,
73–80 (2009).

24. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary
statistics identifies additional variants influencing complex traits. Nat. Genet.
44, 369–375 (2012).

25. Magi, R. et al. Trans-ethnic meta-regression of genome-wide association
studies accounting for ancestry increases power for discovery and improves
fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

26. Gould, D. B. et al. Role of COL4A1 in small-vessel disease and hemorrhagic
stroke. N. Engl. J. Med. 354, 1489–1496 (2006).

27. Hara, K. et al. Association of HTRA1 mutations and familial ischemic cerebral
small-vessel disease. N. Engl. J. Med. 360, 1729–1739 (2009).

28. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA:
generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219
(2015).

29. Shi, H., Kichaev, G. & Pasaniuc, B. Contrasting the genetic architecture of 30
complex traits from summary association data. Am. J. Hum. Genet. 99,
139–153 (2016).

30. Baykara, E. et al. A novel imaging marker for small vessel disease based on
skeletonization of white matter tracts and diffusion histograms. Ann. Neurol.
80, 581–592 (2016).

31. Tamnes, C. K. et al. Brain maturation in adolescence and young adulthood:
regional age-related changes in cortical thickness and white matter volume
and microstructure. Cereb. Cortex (N. Y., N. Y.: 1991) 20, 534–548 (2010).

32. Martensson, J. et al. Diffusion tensor imaging and tractography of the white
matter in normal aging: the rate-of-change differs between segments within
tracts. Magn. Reson. imaging 45, 113–119 (2018).

33. Tuladhar, A. M. et al. White matter integrity in small vessel disease is related
to cognition. Neuroimage Clin. 7, 518–524 (2015).

34. Debette, S. et al. Genome-wide studies of verbal declarative memory in
nondemented older people: the Cohorts for Heart and Aging Research in
Genomic Epidemiology consortium. Biol. Psychiatry 77, 749–763 (2015).

35. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding
from polygenicity in genome-wide association studies. Nat. Genet. 47,
291–295 (2015).

36. Pickrell, J. K. et al. Detection and interpretation of shared genetic influences
on 42 human traits. Nat. Genet. 48, 709–717 (2016).

37. Chauhan, G. & Debette, S. Genetic risk factors for ischemic and hemorrhagic
stroke. Curr. Cardiol. Rep. 18, 124 (2016).

38. Neurology Working Group of the Cohorts for, H., Aging Research in
Genomic Epidemiology Consortium, t. S. G. N. & the International Stroke
Genetics, C. Identification of additional risk loci for stroke and small vessel
disease: a meta-analysis of genome-wide association studies. Lancet Neurol.
15, 695–707 (2016).

39. Nikpay, M. et al. A comprehensive 1,000 Genomes-based genome-wide
association meta-analysis of coronary artery disease. Nat. Genet. 47,
1121–1130 (2015).

40. Bowden, J. et al. Improving the visualization, interpretation and analysis of
two-sample summary data Mendelian randomization via the Radial plot and
Radial regression. Int. J. Epidemiol. 47, 1264–1278 (2018).

41. Shi, H., Mancuso, N., Spendlove, S. & Pasaniuc, B. Local genetic correlation
gives insights into the shared genetic architecture of complex traits. Am. J.
Hum. Genet. 101, 737–751 (2017).

42. Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N. & Davey Smith, G.
Mendelian randomization: using genes as instruments for making causal
inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).

43. Williams, B. et al. 2018 ESC/ESH Guidelines for the management of arterial
hypertension. Eur. Heart J. 39, 3021–3104 (2018).

44. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping
complex trait variants. Nat. Genet. 45, 124–130 (2013).

45. Skene, N. G. et al. Genetic identification of brain cell types underlying
schizophrenia. Nat. Genet. 50, 825–833 (2018).

46. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide
association studies. Nat. Genet. 48, 245–252 (2016).

47. Bennett, D. A. et al. Overview and findings from the rush Memory and Aging
Project. Curr. Alzheimer Res. 9, 646–663 (2012).

48. Bennett, D. A., Schneider, J. A., Arvanitakis, Z. & Wilson, R. S. Overview and
findings from the religious orders study. Curr. Alzheimer Res. 9, 628–645
(2012).

49. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of
genetic association studies using summary statistics. PLoS Genet. 10, e1004383
(2014).

50. Rannikmae, K. et al. COL4A2 is associated with lacunar ischemic stroke and
deep ICH: Meta-analyses among 21,500 cases and 40,600 controls. Neurology
17, 1829–1839 (2017).

51. Brickman, A. M. Contemplating Alzheimer’s disease and the contribution
of white matter hyperintensities. Curr. Neurol. Neurosci. Rep. 13, 415
(2013).

52. Corriveau, R. A. et al. The Science of Vascular Contributions to Cognitive
Impairment and Dementia (VCID): a framework for advancing research
priorities in the cerebrovascular biology of cognitive decline. Cell Mol.
Neurobiol. 36, 281–288 (2016).

53. Williamson, J. D. et al. Effect of intensive vs standard blood pressure control
on probable dementia: a randomized clinical trial. JAMA 321, 553–561
(2019).

54. Kjeldsen, S. E., Narkiewicz, K., Burnier, M. & Oparil, S. Intensive blood
pressure lowering prevents mild cognitive impairment and possible dementia
and slows development of white matter lesions in brain: the SPRINT Memory
and Cognition IN Decreased Hypertension (SPRINT MIND) study. Blood
Press 27, 247–248 (2018).

55. Larsson, S. C., Burgess, S. & Michaelsson, K. Smoking and stroke: a mendelian
randomization study. Ann. Neurol. 86, 468–471 (2019).

56. Naba, A. et al. The matrisome: in silico definition and in vivo characterization
by proteomics of normal and tumor extracellular matrices. Mol. Cell Proteom.
11, M111 014647 (2012).

57. Joutel, A., Haddad, I., Ratelade, J. & Nelson, M. T. Perturbations of the
cerebrovascular matrisome: a convergent mechanism in small vessel disease of
the brain? J. Cereb. Blood Flow. Metab. 36, 143–157 (2016).

58. Vasudevan, A. et al. Basement membrane protein nidogen-1 shapes
hippocampal synaptic plasticity and excitability. Hippocampus 20, 608–620
(2010).

59. Buga, A. M. et al. Transcriptomics of post-stroke angiogenesis in the aged
brain. Front. Aging Neurosci. 6, 44 (2014).

60. Leonardo, C. C., Eakin, A. K., Ajmo, J. M. & Gottschall, P. E. Versican and
brevican are expressed with distinct pathology in neonatal hypoxic-ischemic
injury. J. Neurosci. Res. 86, 1106–1114 (2008).

61. Chang, A. et al. Cortical remyelination: a new target for repair therapies in
multiple sclerosis. Ann. Neurol. 72, 918–926 (2012).

62. Lin, M. K. et al. HTRA1, an age-related macular degeneration protease,
processes extracellular matrix proteins EFEMP1 and TSP1. Aging Cell 17,
e12710 (2018).

63. Jun, G. R. et al. Transethnic genome-wide scan identifies novel Alzheimer’s
disease loci. Alzheimers Dement 13, 727–738 (2017).

64. Lekanne Deprez, R. H. et al. Cloning and characterization of MN1, a gene
from chromosome 22q11, which is disrupted by a balanced translocation in a
meningioma. Oncogene 10, 1521–1528 (1995).

65. Demirci, F. Y. et al. Multiple signals at the extended 8p23 locus are associated
with susceptibility to systemic lupus erythematosus. J. Med. Genet. 54,
381–389 (2017).

66. Pelletier, A. et al. Age-related modifications of diffusion tensor imaging
parameters and white matter hyperintensities as inter-dependent processes.
Front. Aging Neurosci. 7, 255 (2015).

67. Kochunov, P. et al. Fractional anisotropy of water diffusion in cerebral white
matter across the lifespan. Neurobiol. Aging 33, 9–20 (2012).

68. Paus, T., Pesaresi, M. & French, L. White matter as a transport system.
Neuroscience 276, 117–125 (2014).

69. Winklewski, P. J. et al. Understanding the physiopathology behind axial and
radial diffusivity changes-what do we know? Front. Neurol. 9, 92 (2018).

70. Rajani, R. M. et al. Reversal of endothelial dysfunction reduces white matter
vulnerability in cerebral small vessel disease in rats. Sci. Transl. Med. 10, pii:
eaam9507 (2018).

71. Bryois, J. et al. Genetic identification of cell types underlying brain complex
traits yields insights into the etiology of Parkinson’s disease. Nat. Genet. 52,
482–493 (2020).

72. Goadsby, P. J. et al. A controlled trial of erenumab for episodic migraine. N.
Engl. J. Med. 377, 2123–2132 (2017).

73. Winkler, W. T. et al. Quality control and conduct of genome-wide association
meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19111-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6285 | https://doi.org/10.1038/s41467-020-19111-2 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


74. Willer, J. C., Li, Y. & Abecasis, R. G. A. METAL: fast and efficient meta-
analysis of genomewide association scans. Bioinformatics 26, 2190–2191
(2010).

75. Manning, A. K. et al. Meta-analysis of gene-environment interaction: joint
estimation of SNP and SNP x environment regression coefficients. Genet.
Epidemiol. 35, 11–18 (2011).

76. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

77. The 3C Study Group. Vascular factors and risk of dementia: design of the
Three-City Study and baseline characteristics of the study population.
Neuroepidemiology 22, 316–325 (2003).

78. Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L.
Advantages and pitfalls in the application of mixed-model association
methods. Nat. Genet. 46, 100–106 (2014).

79. International Consortium for Blood Pressure Genome-Wide Association, S.
et al. Genetic variants in novel pathways influence blood pressure and
cardiovascular disease risk. Nature 478, 103–109 (2011).

80. Li, M.-X., Yeung, Y. J. M., Cherny, S. S. & Sham, C. P. Evaluating the effective
numbers of independent tests and significant p-value thresholds in
commercial genotyping arrays and public imputation reference datasets. Hum.
Genet. 131, 747–756 (2012).

81. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases
and traits. Nat. Genet. 47, 1236–1241 (2015).

82. Swerdlow, D. I. et al. Selecting instruments for Mendelian randomization in
the wake of genome-wide association studies. Int. J. Epidemiol. 45, 1600–1616
(2016).

83. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with
invalid instruments: effect estimation and bias detection through Egger
regression. Int. J. Epidemiol. 44, 512–525 (2015).

84. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and
hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

85. Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states,
conservation, and regulatory motif alterations within sets of genetically linked
variants. Nucleic Acids Res. 40, D930–D934 (2012).

86. Sakaue, S. & Okada, Y. GREP: genome for REPositioning drugs.
Bioinformatics 35, 3821–3823 (2019).

Acknowledgements
We thank all the participating cohorts from the CHARGE consortium and the UK
biobank participants for contributing to this study. Detailed study-specific acknowl-
edgements are provided in the supplementary note.

Author contributions
W.T.L., L.J.L., M.L., S.Seshadri, C.T., H.H.A., P.M.M., M.F., and S.D. jointly supervised
research. M.S., H.Suzuki, X.J., C.S., and T.E.E. contributed equally. M.S., W.T.L., L.J.L.,
M.L., S.Seshadri, C.T., H.H.A., P.M.M., M.F., and S.D. Designed and conceived the study.

M.S., H.Suzuki, X.J., C.S., T.E.E., J.C.B., G.E., S.Sakaue, N.T., M.H., W.Z., N.J.A., E.H.,
L.R.Y., S.P.H., R.B.K., E.B.V., R.E.M., S.T., A.M., Y.S., C.L.S., G.B., L.P., A.Tsuchida,
L.Z., S.Schilling, S.Sigurdsson, R.F.G., C.E.L., N.T.A., O.L.L., J.A.S., M.C.V., J.v., M.J.W.,
M.J.K., M.D., R.J.T., C.B., M.G.D., A.V.S., D.S.K., P.J.S., D.A.E., J.I.R., A.S.B., S.M.M.,
M.B., J.T., D.J.S., M.W.V., K.W., W.J.N., A.S., E.B., S.Sidney, S.T.T., G.D., A.Thalamuthu,
U.V., M.A.V., N.R.B., J.D., M.E.B., D.A., A.Teumer, P.A., J.B.K., R.B., I.J.D., P.R.S., H.B.,
J.J., Y.T., K.S., S.M., K.Y., M.N., Y.K., F.M., B.M.P., D.A.B., P.L.D., T.H.M., P.S.S., R.S.,
H.R.W., E.E., D.T., M.A.I., W.W., C.D., V.K.S., J.Wouter.J., E.P.S., S.LR.K., Y.O., B.M.,
J.M.W., P.A.N., K.A.M., H.J.G., H.Schmidt, and V.G. conducted cohort-wise GWAS
analysis. M.S. performed shared genetic architecture and functional characterization
analysis. M.S., C.B., and A.S. performed lifetime impact analysis. M.S. and S.Sakaue
performed drug-target enrichment. M.S., W.T.L., L.J.L., M.L., S.Seshadri, C.T., H.H.A.,
P.M.M., M.F., and S.D. wrote and edited the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-19111-2.

Correspondence and requests for materials should be addressed to M.F. or S.D.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

Muralidharan Sargurupremraj1,216, Hideaki Suzuki2,3,4,216, Xueqiu Jian 5,6,216, Chloé Sarnowski 7,216,

Tavia E. Evans8,9,216, Joshua C. Bis10,216, Gudny Eiriksdottir11, Saori Sakaue 12,13,14, Natalie Terzikhan15,

Mohamad Habes6,16,17, Wei Zhao 18, Nicola J. Armstrong19, Edith Hofer20,21, Lisa R. Yanek 22,

Saskia P. Hagenaars23,24, Rajan B. Kumar25, Erik B. van den Akker26,27,28, Rebekah E. McWhirter 29,30,

Stella Trompet31,32, Aniket Mishra 1, Yasaman Saba1,33, Claudia L. Satizabal 6,34,35, Gregory Beaudet36,

Laurent Petit36, Ami Tsuchida 36, Laure Zago 36, Sabrina Schilling1, Sigurdur Sigurdsson11,

Rebecca F. Gottesman37, Cora E. Lewis38, Neelum T. Aggarwal39, Oscar L. Lopez40, Jennifer A. Smith 18,41,

Maria C. Valdés Hernández23,42,43, Jeroen van der Grond44, Margaret J. Wright 45,46, Maria J. Knol 15,

Marcus Dörr47,48, Russell J. Thomson30,49, Constance Bordes1, Quentin Le Grand 1,

Marie-Gabrielle Duperron1, Albert V. Smith 11, David S. Knopman50, Pamela J. Schreiner51, Denis A. Evans52,

Jerome I. Rotter 53, Alexa S. Beiser7,34,35, Susana Muñoz Maniega23,42, Marian Beekman 26,

Julian Trollor 54,55, David J. Stott56, Meike W. Vernooij9,15, Katharina Wittfeld 57, Wiro J. Niessen9,58,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19111-2

14 NATURE COMMUNICATIONS |         (2020) 11:6285 | https://doi.org/10.1038/s41467-020-19111-2 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-19111-2
https://doi.org/10.1038/s41467-020-19111-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0313-6494
http://orcid.org/0000-0002-0313-6494
http://orcid.org/0000-0002-0313-6494
http://orcid.org/0000-0002-0313-6494
http://orcid.org/0000-0002-0313-6494
http://orcid.org/0000-0002-6090-7099
http://orcid.org/0000-0002-6090-7099
http://orcid.org/0000-0002-6090-7099
http://orcid.org/0000-0002-6090-7099
http://orcid.org/0000-0002-6090-7099
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0003-3618-9717
http://orcid.org/0000-0001-7388-0692
http://orcid.org/0000-0001-7388-0692
http://orcid.org/0000-0001-7388-0692
http://orcid.org/0000-0001-7388-0692
http://orcid.org/0000-0001-7388-0692
http://orcid.org/0000-0001-7117-1075
http://orcid.org/0000-0001-7117-1075
http://orcid.org/0000-0001-7117-1075
http://orcid.org/0000-0001-7117-1075
http://orcid.org/0000-0001-7117-1075
http://orcid.org/0000-0002-9409-8074
http://orcid.org/0000-0002-9409-8074
http://orcid.org/0000-0002-9409-8074
http://orcid.org/0000-0002-9409-8074
http://orcid.org/0000-0002-9409-8074
http://orcid.org/0000-0002-8141-1543
http://orcid.org/0000-0002-8141-1543
http://orcid.org/0000-0002-8141-1543
http://orcid.org/0000-0002-8141-1543
http://orcid.org/0000-0002-8141-1543
http://orcid.org/0000-0002-1115-4430
http://orcid.org/0000-0002-1115-4430
http://orcid.org/0000-0002-1115-4430
http://orcid.org/0000-0002-1115-4430
http://orcid.org/0000-0002-1115-4430
http://orcid.org/0000-0001-5160-6203
http://orcid.org/0000-0001-5160-6203
http://orcid.org/0000-0001-5160-6203
http://orcid.org/0000-0001-5160-6203
http://orcid.org/0000-0001-5160-6203
http://orcid.org/0000-0001-8235-2154
http://orcid.org/0000-0001-8235-2154
http://orcid.org/0000-0001-8235-2154
http://orcid.org/0000-0001-8235-2154
http://orcid.org/0000-0001-8235-2154
http://orcid.org/0000-0002-3575-5468
http://orcid.org/0000-0002-3575-5468
http://orcid.org/0000-0002-3575-5468
http://orcid.org/0000-0002-3575-5468
http://orcid.org/0000-0002-3575-5468
http://orcid.org/0000-0001-7133-4970
http://orcid.org/0000-0001-7133-4970
http://orcid.org/0000-0001-7133-4970
http://orcid.org/0000-0001-7133-4970
http://orcid.org/0000-0001-7133-4970
http://orcid.org/0000-0002-3597-1531
http://orcid.org/0000-0002-3597-1531
http://orcid.org/0000-0002-3597-1531
http://orcid.org/0000-0002-3597-1531
http://orcid.org/0000-0002-3597-1531
http://orcid.org/0000-0002-9299-0747
http://orcid.org/0000-0002-9299-0747
http://orcid.org/0000-0002-9299-0747
http://orcid.org/0000-0002-9299-0747
http://orcid.org/0000-0002-9299-0747
http://orcid.org/0000-0003-1942-5845
http://orcid.org/0000-0003-1942-5845
http://orcid.org/0000-0003-1942-5845
http://orcid.org/0000-0003-1942-5845
http://orcid.org/0000-0003-1942-5845
http://orcid.org/0000-0001-7191-1723
http://orcid.org/0000-0001-7191-1723
http://orcid.org/0000-0001-7191-1723
http://orcid.org/0000-0001-7191-1723
http://orcid.org/0000-0001-7191-1723
http://orcid.org/0000-0003-0585-6206
http://orcid.org/0000-0003-0585-6206
http://orcid.org/0000-0003-0585-6206
http://orcid.org/0000-0003-0585-6206
http://orcid.org/0000-0003-0585-6206
http://orcid.org/0000-0002-7685-2977
http://orcid.org/0000-0002-7685-2977
http://orcid.org/0000-0002-7685-2977
http://orcid.org/0000-0002-7685-2977
http://orcid.org/0000-0002-7685-2977
http://orcid.org/0000-0003-4383-5043
http://orcid.org/0000-0003-4383-5043
http://orcid.org/0000-0003-4383-5043
http://orcid.org/0000-0003-4383-5043
http://orcid.org/0000-0003-4383-5043
www.nature.com/naturecommunications


Aicha Soumaré 1, Eric Boerwinkle59, Stephen Sidney60, Stephen T. Turner61, Gail Davies21,62,

Anbupalam Thalamuthu53, Uwe Völker 63, Mark A. van Buchem43, R. Nick Bryan64, Josée Dupuis 6,32,

Mark E. Bastin21,41, David Ames65,66, Alexander Teumer 15,47, Philippe Amouyel 67,68, John B. Kwok69,70,

Robin Bülow71, Ian J. Deary21,62, Peter R. Schofield 70,72, Henry Brodaty 53,73, Jiyang Jiang 53,

Yasuharu Tabara74, Kazuya Setoh75, Susumu Miyamoto75, Kazumichi Yoshida75, Manabu Nagata75,

Yoichiro Kamatani 76, Fumihiko Matsuda74, Bruce M. Psaty77,78, David A. Bennett79, Philip L. De Jager 80,81,

Thomas H. Mosley82, Perminder S. Sachdev 53,83, Reinhold Schmidt18, Helen R. Warren 84,85,

Evangelos Evangelou 86,87, David-Alexandre Trégouët1, International Network against Thrombosis (INVENT)

Consortium*, International Headache Genomics Consortium (IHGC)*, Mohammad A. Ikram 15, Wei Wen 54,

Charles DeCarli88, Velandai K. Srikanth30,89, J. Wouter Jukema 32, Eline P. Slagboom 26,

Sharon L. R. Kardia18, Yukinori Okada 12,13,90, Bernard Mazoyer 36, Joanna M. Wardlaw 23,42,43,91,

Paul A. Nyquist92,93, Karen A. Mather54,72, Hans J. Grabe 94,95, Helena Schmidt33, Cornelia M. Van Duijn 96,

Vilmundur Gudnason 11,97, William T. Longstreth Jr98, Lenore J. Launer99,100, Mark Lathrop101,217,

Sudha Seshadri6,34,35,217, Christophe Tzourio1,102,217, Hieab H. Adams 8,9,217, Paul M. Matthews 4,103,104,217,

Myriam Fornage 5,217✉ & Stéphanie Debette 1,35,105,217✉

1University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000 Bordeaux, France. 2Tohoku
Medical Megabank Organization, Tohoku University, 2-1, Seiryo, Aoba, Sendai 980-8573, Japan. 3Department of Cardiovascular Medicine, Tohoku
University Hospital, 1-1, Seiryo, Aoba, Sendai 980-8574, Japan. 4Department of Brain Sciences, Imperial College London, London W12 0NN, UK.
5University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA. 6Glenn Biggs Institute for
Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX 78229, USA. 7Department of
Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA. 8Department of Clinical Genetics, Erasmus MC, 3015 GE
Rotterdam, The Netherlands. 9Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GE Rotterdam, The Netherlands. 10Cardiovascular
Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA. 11Icelandic Heart Association, IS-201
Kópavogur, Iceland. 12Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan. 13Laboratory for
Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan. 14Department of
Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan. 15Department of Epidemiology, Erasmus
MC, 3015 GE Rotterdam, The Netherlands. 16Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
19104, USA. 17Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany. 18Department of Epidemiology,
School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA. 19Mathematics and Statistics, Murdoch University, Murdoch,
WA 6150, Australia20Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, 8036 Graz, Austria. 21Institute for
Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria. 22GeneSTAR Research Program, Division of
General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. 23Centre for
Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh EH8 9JZ, UK. 24Social Genetic and Developmental Psychiatry
Research Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK. 25Department of Public Health
Sciences, University of California at Davis, Davis, CA 95616, USA. 26Section of Molecular Epidemiology, Biomedical Sciences, Leiden university
Medical Center, 2333 ZA Leiden, The Netherlands. 27Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, NL 2629 HS,
USA. 28Leiden Computational Biology Centre, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands. 29Centre for Law and Genetics,
Faculty of Law, University of Tasmania, Hobart, TAS 7005, Australia. 30Menzies Institute for Medical Research, University of Tasmania, Hobart,
TAS 7000, Australia. 31Department of Internal Medicine, section of gerontology and geriatrics, Leiden University Medical Center, 2333 ZA Leiden,
The Netherlands. 32Department of Cardiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands. 33Gottfried Schatz Research
Center, Department of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria. 34Boston University and the NHLBI’s
Framingham Heart Study, Boston, MA 02215, USA. 35Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA.
36University of Bordeaux, IMN, UMR 5293, 33000 Bordeaux, France. 37Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
38University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA. 39Department of Neurological Sciences, Rush University
Medical Center, Chicago, IL 60612, USA. 40Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
41Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA. 42Centre for Clinical Brain Sciences,
University of Edinburgh, Edinburgh EH16 4SB, UK. 43Row Fogo Centre for Ageing and The Brain, University of Edinburgh, Edinburgh EH8 9JZ, UK.
44Department of Radiology, Leiden University medical Center, 2333 ZA Leiden, The Netherlands. 45Queensland Brain Institute, The University of
Queensland, St Lucia, QLD 4072, Australia. 46Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.
47Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany. 48DZHK (German Center for Cardiovascular
Research), partner site Greifswald, 17475 Greifswald, Germany. 49Centre for Research in Mathematics and Data Science, Western Sydney
University, Penrith, NSW 2751, Australia. 50Mayo Clinic, Rochester, MN 55905, USA. 51University of Minnesota School of Public Health,
Minneapolis, MN 55455, USA. 52Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA. 53Institute for
Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Pediatrics at Harbor-UCLA Medical Center,
Torrance, CA 90502, USA. 54Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052,
Australia. 55Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, NSW 2052,
Australia. 56Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow
G12 8QQ, UK. 57German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, 17489 Greifswald, Germany. 58Faculty of Applied
Sciences, Delft University of Technology, Delft, NL 2629 HS, USA. 59University of Texas Health Science Center at Houston School of Public Health,

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19111-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6285 | https://doi.org/10.1038/s41467-020-19111-2 | www.nature.com/naturecommunications 15

http://orcid.org/0000-0002-0178-6506
http://orcid.org/0000-0002-0178-6506
http://orcid.org/0000-0002-0178-6506
http://orcid.org/0000-0002-0178-6506
http://orcid.org/0000-0002-0178-6506
http://orcid.org/0000-0002-5689-3448
http://orcid.org/0000-0002-5689-3448
http://orcid.org/0000-0002-5689-3448
http://orcid.org/0000-0002-5689-3448
http://orcid.org/0000-0002-5689-3448
http://orcid.org/0000-0003-2871-3603
http://orcid.org/0000-0003-2871-3603
http://orcid.org/0000-0003-2871-3603
http://orcid.org/0000-0003-2871-3603
http://orcid.org/0000-0003-2871-3603
http://orcid.org/0000-0002-8309-094X
http://orcid.org/0000-0002-8309-094X
http://orcid.org/0000-0002-8309-094X
http://orcid.org/0000-0002-8309-094X
http://orcid.org/0000-0002-8309-094X
http://orcid.org/0000-0001-9088-234X
http://orcid.org/0000-0001-9088-234X
http://orcid.org/0000-0001-9088-234X
http://orcid.org/0000-0001-9088-234X
http://orcid.org/0000-0001-9088-234X
http://orcid.org/0000-0003-2967-9662
http://orcid.org/0000-0003-2967-9662
http://orcid.org/0000-0003-2967-9662
http://orcid.org/0000-0003-2967-9662
http://orcid.org/0000-0003-2967-9662
http://orcid.org/0000-0001-9487-6617
http://orcid.org/0000-0001-9487-6617
http://orcid.org/0000-0001-9487-6617
http://orcid.org/0000-0001-9487-6617
http://orcid.org/0000-0001-9487-6617
http://orcid.org/0000-0002-2147-6302
http://orcid.org/0000-0002-2147-6302
http://orcid.org/0000-0002-2147-6302
http://orcid.org/0000-0002-2147-6302
http://orcid.org/0000-0002-2147-6302
http://orcid.org/0000-0001-8748-5597
http://orcid.org/0000-0001-8748-5597
http://orcid.org/0000-0001-8748-5597
http://orcid.org/0000-0001-8748-5597
http://orcid.org/0000-0001-8748-5597
http://orcid.org/0000-0002-8057-2505
http://orcid.org/0000-0002-8057-2505
http://orcid.org/0000-0002-8057-2505
http://orcid.org/0000-0002-8057-2505
http://orcid.org/0000-0002-8057-2505
http://orcid.org/0000-0002-9595-3220
http://orcid.org/0000-0002-9595-3220
http://orcid.org/0000-0002-9595-3220
http://orcid.org/0000-0002-9595-3220
http://orcid.org/0000-0002-9595-3220
http://orcid.org/0000-0003-0511-1386
http://orcid.org/0000-0003-0511-1386
http://orcid.org/0000-0003-0511-1386
http://orcid.org/0000-0003-0511-1386
http://orcid.org/0000-0003-0511-1386
http://orcid.org/0000-0002-5488-2999
http://orcid.org/0000-0002-5488-2999
http://orcid.org/0000-0002-5488-2999
http://orcid.org/0000-0002-5488-2999
http://orcid.org/0000-0002-5488-2999
http://orcid.org/0000-0003-0372-8585
http://orcid.org/0000-0003-0372-8585
http://orcid.org/0000-0003-0372-8585
http://orcid.org/0000-0003-0372-8585
http://orcid.org/0000-0003-0372-8585
http://orcid.org/0000-0003-2753-3870
http://orcid.org/0000-0003-2753-3870
http://orcid.org/0000-0003-2753-3870
http://orcid.org/0000-0003-2753-3870
http://orcid.org/0000-0003-2753-3870
http://orcid.org/0000-0002-3246-8359
http://orcid.org/0000-0002-3246-8359
http://orcid.org/0000-0002-3246-8359
http://orcid.org/0000-0002-3246-8359
http://orcid.org/0000-0002-3246-8359
http://orcid.org/0000-0002-2875-4723
http://orcid.org/0000-0002-2875-4723
http://orcid.org/0000-0002-2875-4723
http://orcid.org/0000-0002-2875-4723
http://orcid.org/0000-0002-2875-4723
http://orcid.org/0000-0002-0311-8472
http://orcid.org/0000-0002-0311-8472
http://orcid.org/0000-0002-0311-8472
http://orcid.org/0000-0002-0311-8472
http://orcid.org/0000-0002-0311-8472
http://orcid.org/0000-0003-0970-2837
http://orcid.org/0000-0003-0970-2837
http://orcid.org/0000-0003-0970-2837
http://orcid.org/0000-0003-0970-2837
http://orcid.org/0000-0003-0970-2837
http://orcid.org/0000-0002-9812-6642
http://orcid.org/0000-0002-9812-6642
http://orcid.org/0000-0002-9812-6642
http://orcid.org/0000-0002-9812-6642
http://orcid.org/0000-0002-9812-6642
http://orcid.org/0000-0003-3684-4208
http://orcid.org/0000-0003-3684-4208
http://orcid.org/0000-0003-3684-4208
http://orcid.org/0000-0003-3684-4208
http://orcid.org/0000-0003-3684-4208
http://orcid.org/0000-0002-2374-9204
http://orcid.org/0000-0002-2374-9204
http://orcid.org/0000-0002-2374-9204
http://orcid.org/0000-0002-2374-9204
http://orcid.org/0000-0002-2374-9204
http://orcid.org/0000-0001-5696-0084
http://orcid.org/0000-0001-5696-0084
http://orcid.org/0000-0001-5696-0084
http://orcid.org/0000-0001-5696-0084
http://orcid.org/0000-0001-5696-0084
http://orcid.org/0000-0003-3687-2508
http://orcid.org/0000-0003-3687-2508
http://orcid.org/0000-0003-3687-2508
http://orcid.org/0000-0003-3687-2508
http://orcid.org/0000-0003-3687-2508
http://orcid.org/0000-0002-1619-8328
http://orcid.org/0000-0002-1619-8328
http://orcid.org/0000-0002-1619-8328
http://orcid.org/0000-0002-1619-8328
http://orcid.org/0000-0002-1619-8328
http://orcid.org/0000-0003-0677-8158
http://orcid.org/0000-0003-0677-8158
http://orcid.org/0000-0003-0677-8158
http://orcid.org/0000-0003-0677-8158
http://orcid.org/0000-0003-0677-8158
http://orcid.org/0000-0001-8675-7968
http://orcid.org/0000-0001-8675-7968
http://orcid.org/0000-0001-8675-7968
http://orcid.org/0000-0001-8675-7968
http://orcid.org/0000-0001-8675-7968
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Houston, TX 77030, USA. 60Kaiser Permanente Division of Research, Oakland, CA 94612, USA. 61Division of Nephrology and Hypertension, Mayo
Clinic, Rochester, MN 55905, USA. 62Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK. 63Interfaculty Institute for
Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany. 64The University of Texas at Austin Dell Medical
School, Austin, TX 78712, USA. 65National Ageing Research Institute Royal Melbourne Hospital, Parkville, VIC 3052, Australia. 66Academic Unit
for Psychiatry of Old Age, University of Melbourne, St George’s Hospital, Kew, VIC 3101, Australia. 67Inserm U1167, 59000 Lille, France.
68Department of Epidemiology and Public Health, Pasteur Institute of Lille, 59000 Lille, France. 69Brain and Mind Centre - The University of
Sydney, Camperdown, NSW 2050, Australia. 70School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
71Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17489 Greifswald, Germany. 72Neuroscience Research
Australia, Randwick, NSW 2031, Australia. 73Dementia Centre for Research Collaboration, University of New South Wales, Sydney, NSW 2052,
Australia. 74Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan. 75Department of Neurosurgery,
Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan. 76Laboratory for Statistical and Translational Genetics, RIKEN Center for
Integrative Medical Sciences, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan. 77Departments of Epidemiology, Medicine and Health
Services, University of Washington, Seattle, WA 98195, USA. 78Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101,
USA. 79Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA. 80Center for Translational and Computational
Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA. 81Program in Population and
Medical Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. 82Memory Impairment and Neurodegenerative Dementia
(MIND) Center, University of Mississippi Medical Center, Jackson, MS 39216, USA. 83Neuropsychiatric Institute, Prince of Wales Hospital, Sydney,
NSW 2031, Australia. 84William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of
London, London E1 4NS, UK. 85National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of
London, London EC1M 6BQ, UK. 86Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7
2AZ, UK. 87Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Mpizani 455 00, Greece. 88Department of
Neurology and Center for Neuroscience, University of California at Davis, Sacramento, CA 95817, USA. 89Peninsula Clinical School, Central Clinical
School, Monash University, Melbourne, VIC 3004, Australia. 90Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-
IFReC), Osaka University, Suita 565-0871 Osaka, Japan. 91MRC UK Dementia Research Institute at the University of Edinburgh, Edinburgh EH8
9YL, UK. 92Department of Neurology, Johns Hopkins School of Medicine, Baltimone, MD 21205, USA. 93General Internal Medicine, Johns Hopkins
School of Medicine, Baltimore, MD 21205, USA. 94Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475
Greifswald, Germany. 95German Center for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, 17475 Greifswald, Germany. 96Nuffield
Department of Population Health, University of Oxford, Oxford OX3 7LF, UK. 97University of Iceland, Faculty of Medicine, 101 Reykjavík, Iceland.
98Departments of Neurology and Epidemiology, University of Washington, Seattle, WA 98104-2420, USA. 99Laboratory of Epidemiology,
Demography, and Biometry, National Institute of Aging, The National Institutes of Health, Bethesda, MD 20892, USA. 100Intramural Research
Program/National Institute on Aging/National Institutes of Health, Bethesda, MD 20892, USA. 101University of McGill Genome Center, Montreal,
QC H3A 0G1, Canada. 102CHU de Bordeaux, Pole de santé publique, Service d’information médicale, 33000 Bordeaux, France. 103UK Dementia
Research Institute, London WC1E 6BT, UK. 104Data Science Institute, Imperial College London, London SW7 2AZ, UK. 105Department of
Neurology, CHU de Bordeaux, 33000 Bordeaux, France. 216These authors contributed equally: Muralidharan Sargurupremraj, Hideaki Suzuki,
Xueqiu Jian, Chloé Sarnowski, Tavia E. Evans, Joshua C. Bis. 217These authors jointly supervised this work: Mark Lathrop, Sudha Seshadri,
Christophe Tzourio, Hieab H. Adams, Paul M. Matthews, Myriam Fornage, Stéphanie Debette. *Lists of authors and their affiliations appear at the
end of the paper. ✉email: myriam.fornage@uth.tmc.edu; stephanie.debette@u-bordeaux.fr

International Network against Thrombosis (INVENT) Consortium

Philippe Amouyel106,107, Mariza de Andrade108, Saonli Basu109, Claudine Berr110, Jennifer A. Brody111,

Daniel I. Chasman112, Jean-Francois Dartigues113, Aaron R. Folsom114, Marine Germain115, Hugoline de Haan116,

John Heit117, Jeanine Houwing-Duitermaat118, Christopher Kabrhel119, Peter Kraft120, Grégoire Legal121,122,

Sara Lindström120, Ramin Monajemi118, Pierre-Emmanuel Morange123,124,125, Bruce M. Psaty111,126,

Pieter H. Reitsma127, Paul M. Ridker128, Lynda M. Rose129, Frits R. Rosendaal116, Noémie Saut123,124,125,

Eline Slagboom130, David Smadja131,132,133, Nicholas L. Smith126,134,135, Pierre Suchon123,124,125, Weihong Tang114,

Kent D. Taylor136, David-Alexandre Trégouët115, Christophe Tzourio115, Marieke C. H. de Visser127,

Astrid van Hylckama Vlieg116, Lu-Chen Weng114 & Kerri L. Wiggins134

106Institut Pasteur de Lille, Université de Lille Nord de France, INSERM UMR_S 744, Lille, France. 107Centre Hospitalier Régional Universitaire de
Lille, Lille, France. 108Division of Biomedical Statistics and Informatics Mayo Clinic, Rochester, MN, USA. 109University of Minnesota, Division of
Biostatistics, Minneapolis, MN, USA. 110INSERM Research Unit U1061, University of Montpellier I, Montpellier, France. 111Cardiovascular Health
Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA. 112Division of Preventive
Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA. 113INSERM Research Center U897, University of
Bordeaux, Bordeaux, France. 114University of Minnesota, Division of Epidemiology and Community Health Minneapolis, Minneapolis, MN, USA.
115Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1219, Bordeaux Population
Health Research Center, 33076 Bordeaux, France. 116Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The
Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands. 117Division of Cardiovascular
Diseases, Mayo Clinic, Rochester, MN, USA. 118Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC
Leiden, The Netherlands. 119Department of Emergency Medicine, Massachusetts General Hospital, Channing Network Medicine, Harvard Medical
School, Boston, MA 2114, USA. 120Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of
Public Health, Boston, MA 2115, USA. 121Université de Brest, EA3878 and CIC1412, Brest, France. 122Ottawa Hospital Research Institute at the
University of Ottawa, Ottawa, ON, Canada. 123Laboratory of Haematology, La Timone Hospital, F-13385 Marseille, France. 124INSERM, UMR_S

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19111-2

16 NATURE COMMUNICATIONS |         (2020) 11:6285 | https://doi.org/10.1038/s41467-020-19111-2 | www.nature.com/naturecommunications

mailto:myriam.fornage@uth.tmc.edu
mailto:stephanie.debette@u-bordeaux.fr
www.nature.com/naturecommunications


1062, Nutrition Obesity and Risk of Thrombosis, F-13385 Marseille, France. 125Aix-Marseille University, UMR_S 1062, Nutrition Obesity and Risk of
Thrombosis, F-13385 Marseille, France. 126Group Health Research Institute, Group Health Cooperative, Seattle, WA 98101, USA. 127Einthoven
Laboratory for Experimental Vascular Medicine, Department of Thrombosis and Hemostasis, Leiden University Medical Center, 2300 RC Leiden,
The Netherlands. 128Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02215, USA.
129Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA 02215, USA. 130Department of Molecular Epidemiology, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands. 131Université Paris Descartes, Sorbonne Paris Cité, Paris, France. 132AP-HP, Hopital
Européen Georges Pompidou, Service ’hématologie Biologique, Paris, France. 133INSERM, UMR_S 1140, Faculté de Pharmacie, Paris, France.
134Department of Epidemiology, University of Washington, Seattle, WA 98195, USA. 135Seattle Epidemiologic Research and Information Center,
VA Office of Research and Development, Seattle, WA 98108, USA. 136Los Angeles Biomedical Research Institute and Department of Pediatrics,
Harbor-UCLA Medical Center, Torrence, CA 90502, USA.

International Headache Genomics Consortium (IHGC)

Padhraig Gormley137,138,139,140, Verneri Anttila138,139,141, Bendik S. Winsvold142,143,144, Priit Palta145,

Tonu Esko138,146,147, Tune H. Pers138,147,148,149, Kai-How Farh138,141,150, Ester Cuenca-Leon137,138,139,151,

Mikko Muona145,152,153,154, Nicholas A. Furlotte155, Tobias Kurth156,157, Andres Ingason158, George McMahon159,

Lannie Ligthart160, Gisela M. Terwindt161, Mikko Kallela162, Tobias M. Freilinger163,164, Caroline Ran165,

Scott G. Gordon166, Anine H. Stam161, Stacy Steinberg158, Guntram Borck167, Markku Koiranen168,169,

Lydia Quaye170, Hieab H. H. Adams171,172, Terho Lehtimäki173, Antti-Pekka Sarin145, Juho Wedenoja174,

David A. Hinds155, Julie E. Buring157,175, Markus Schürks176, Paul M. Ridker157,175, Maria Gudlaug Hrafnsdottir177,

Hreinn Stefansson158, Susan M. Ring159, Jouke-Jan Hottenga160, Brenda W. J. H. Penninx178, Markus Färkkilä162,

Ville Artto162, Mari Kaunisto145, Salli Vepsäläinen162, Rainer Malik163, Andrew C. Heath179,

Pamela A. F. Madden179, Nicholas G. Martin166, Grant W. Montgomery166, Mitja Kurki137,138,139, Mart Kals146,

Reedik Mägi146, Kalle Pärn146, Eija Hämäläinen145, Hailiang Huang138,139,141, Andrea E. Byrnes138,139,141,

Lude Franke180, Jie Huang140, Evie Stergiakouli159, Phil H. Lee137,138,139, Cynthia Sandor181, Caleb Webber181,

Zameel Cader182,183, Bertram Muller-Myhsok184, Stefan Schreiber185, Thomas Meitinger186,

Johan G. Eriksson187,188, Veikko Salomaa188, Kauko Heikkilä189, Elizabeth Loehrer171,190, Andre G. Uitterlinden191,

Albert Hofman171, Cornelia M. van Duijn171, Lynn Cherkas170, Linda M. Pedersen142, Audun Stubhaug192,193,

Christopher S. Nielsen192,194, Minna Männikkö168,169, Evelin Mihailov146, Lili Milani146, Hartmut Göbel195,

Ann-Louise Esserlind196, Anne Francke Christensen196, Thomas Folkmann Hansen197, Thomas Werge198,199,200,

Jaakko Kaprio145,174,201, Arpo J. Aromaa188, Olli Raitakari202,203, M. Arfan Ikram171,172,203,204, Tim Spector170,

Marjo-Riitta Järvelin168,169,205,206,207,208, Andres Metspalu146, Christian Kubisch209, David P. Strachan210,

Michel D. Ferrari161, Andrea C. Belin165, Martin Dichgans163,211, Maija Wessman145,152,

Arn M. J. M. van den Maagdenberg161,212, John-Anker Zwart142,143,144, Dorret I. Boomsma160,

George Davey Smith159, Kari Stefansson158,213, Nicholas Eriksson155, Mark J. Daly138,139,141,

Benjamin M. Neale138,139,141, Jes Olesen196, Daniel I. Chasman157,175, Dale R. Nyholt214 &

Aarno Palotie137,138,139,140,141,145,215

137Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. 138Medical
and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA. 139Stanley Center for Psychiatric Research, Broad
Institute of MIT and Harvard, Cambridge, MA, USA. 140Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
141Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. 142FORMI, Oslo
University Hospital, P.O. 4956 Nydalen, 0424 Oslo, Norway. 143Department of Neurology, Oslo University Hospital, P.O. 4956 Nydalen, 0424
Oslo, Norway. 144Institute of Clinical Medicine, University of Oslo, P.O. 1171 Blindern, 0318 Oslo, Norway. 145Institute for Molecular Medicine
Finland (FIMM), University of Helsinki, Helsinki, Finland. 146Estonian Genome Center, University of Tartu, Tartu, Estonia. 147Division of
Endocrinology, Boston Children’s Hospital, Boston, MA, USA. 148Statens Serum Institut, Dept of Epidemiology Research, Copenhagen, Denmark.
149Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark. 150Illumina, 5200 Illumina
Way, San Diego, CA, USA. 151Vall d’Hebron Research Institute, Pediatric Neurology, Barcelona, Spain. 152Folkhälsan Institute of Genetics, FI-00290
Helsinki, Finland. 153Neuroscience Center, University of Helsinki, FI-00014 Helsinki, Finland. 154Research Programs Unit, Molecular Neurology,
University of Helsinki, FI-00014 Helsinki, Finland. 15523andMe, Inc., 899 W. Evelyn Avenue, Mountain View, CA, USA. 156Inserm Research Center
for Epidemiology and Biostatistics (U897), University of Bordeaux, 33076 Bordeaux, France. 157Division of Preventive Medicine, Brigham and
Women’s Hospital, Boston, MA 02215, USA. 158deCODE Genetics, 101 Reykjavik, Iceland. 159Medical Research Council (MRC) Integrative
Epidemiology Unit, University of Bristol, Bristol, UK. 160VU University Amsterdam, Department of Biological Psychology, 1081 BT Amsterdam, The
Netherlands. 161Leiden University Medical Centre, Department of Neurology, PO Box 9600, 2300 RC Leiden, The Netherlands. 162Department of

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19111-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6285 | https://doi.org/10.1038/s41467-020-19111-2 | www.nature.com/naturecommunications 17

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Neurology, Helsinki University Central Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland. 163Institute for Stroke and Dementia Research,
Klinikum der Universtität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377 Munich, Germany. 164Department of
Neurology and Epileptology, Hertie Institute for Clincal Brain Research, University of Tuebingen, Tübingen, Germany. 165Karolinska Institutet,
Department of Neuroscience, 171 77 Stockholm, Sweden. 166Department of Genetics and Computational Biology, QIMR Berghofer Medical
Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia. 167Ulm University, Institute of Human Genetics, 89081 Ulm, Germany.
168University of Oulu, Center for Life Course Epidemiology and Systems Medicine, Oulu, Finland. 169Box 5000, Fin-90014 University of Oulu, Oulu,
UK. 170Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK. 171Department of Epidemiology, Erasmus
University Medical Center, 3015 CN Rotterdam, The Netherlands. 172Department of Radiology, Erasmus University Medical Center, 3015 CN
Rotterdam, The Netherlands. 173Department of Clinical Chemistry, Fimlab Laboratories, and School of Medicine, University of Tampere, Tampere,
Finland 33520. 174Department of Public Health, University of Helsinki, Helsinki, Finland. 175Harvard Medical School, Boston, MA 02115, USA.
176University Duisburg Essen, Essen, Germany. 177Landspitali University Hospital, 101 Reykjavik, Iceland. 178VU University Medical Centre,
Department of Psychiatry, 1081 HL Amsterdam, The Netherlands. 179Department of Psychiatry, Washington University School of Medicine, 660
South Euclid, CB 8134, St. Louis, MO 63110, USA. 180University Medical Center Groningen, University of Groningen, 9700RB Groningen, The
Netherlands. 181MRC Functional Genomics Unit, Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK. 182Nuffield
Department of Clinical Neuroscience, University of Oxford, Oxford, UK. 183Oxford Headache Centre, John Radcliffe Hospital, Oxford, UK. 184Max-
Planck-Institute of Psychiatry, Munich, Germany. 185Christian Albrechts University, Kiel, Germany. 186Institute of Human Genetics, Helmholtz
Center Munich, Neuherberg, Germany. 187Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University
Hospital, Helsinki, Finland. 188National Institute for Health and Welfare, Helsinki, Finland. 189Institute of Clinical Medicine, University of Helsinki,
Helsinki, Finland. 190Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA. 191Department of
Internal Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands. 192Department of Pain Management and Research,
Oslo University Hospital, Oslo, 0424 Oslo, Norway. 193Medical Faculty, University of Oslo, Oslo, 0318 Oslo, Norway. 194Division of Mental Health,
Norwegian Institute of Public Health,P.O. Box 4404 Nydalen, Oslo NO-0403, Norway. 195Kiel Pain and Headache Center, 24149 Kiel, Germany.
196Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark.
197Institute of Biological Psychiatry, Mental Health Center Sct. Hans, University of Copenhagen, Roskilde, Denmark. 198Institute Of Biological
Psychiatry, MHC Sct. Hans, Mental Health Services Copenhagen, DK-2100 Copenhagen, Denmark. 199Institute of Clinical Sciences, Faculty of
Medicine and Health Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark. 200iPSYCH—The Lundbeck Foundation’s Initiative for
Integrative Psychiatric Research, DK-2100 Copenhagen, Denmark. 201Department of Health, National Institute for Health and Welfare, Helsinki,
Finland. 202Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20521, Finland. 203Department of
Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20521, Finland. 204Department of Neurology, Erasmus University
Medical Center, 3015 CN Rotterdam, The Netherlands. 205Imperial College London, Department of Epidemiology and Biostatistics, MRC Health
Protection Agency (HPE) Centre for Environment and Health, School of Public Health, London, UK W2 1PG. 206University of Oulu, Biocenter Oulu,
Oulu, Finland. 207198Box 5000, Fin-90014 University of Oulu, Oulu, UK. 208Oulu University Hospital, Unit of Primary Care, OuluBox 10, Fin-
90029 OYSFinland. 209University Medical Center Hamburg Eppendorf, Institute of Human Genetics, 20246 Hamburg, Germany. 210Population
Health Research Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK. 211Munich Cluster for Systems Neurology
(SyNergy), Munich, Germany. 212Leiden University Medical Centre, Department of Human Genetics, PO Box 9600, 2300 RC Leiden, The
Netherlands. 213Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland. 214Statistical and Genomic Epidemiology Laboratory, Institute of
Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia. 215Department of
Neurology, Massachusetts General Hospital, Boston, MA, USA.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19111-2

18 NATURE COMMUNICATIONS |         (2020) 11:6285 | https://doi.org/10.1038/s41467-020-19111-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

	Cerebral small vessel disease genomics and its implications across the lifespan
	Results
	Genetic discovery from association analyses
	Implications of WMH genes across the lifespan
	Shared genetic risk with vascular traits
	Biological interpretation of association signals

	Discussion
	Methods
	Study population
	Phenotypes
	Genotyping and imputation
	Genome-wide association analyses
	Genome-wide association meta-analyses
	WMH heritability estimates
	Analysis of the lifetime impact of WMH risk variants
	Shared genetic architecture of WMH with related traits
	Mendelian randomization (MR)
	Cell and tissue type enrichment analysis
	Transcriptome-wide association study and colocalization
	Drug-target enrichment

	Reporting summary
	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




