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Introduction and statement of the main results

For h ∈ L 1 (T) we denote by T N (h) the Toeplitz matrix of order N with symbol h. It is the (N + 1) × (N + 1) matrix such that, for N ≥ k, l ≥ 0, (T N (h)) k+1,l+1 = ĥ(k -l) where ĥ(u) is the Fourier coefficient of order u of h ( [START_REF] Grenander | Toeplitz forms and their applications[END_REF][START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF]). For h a real valued function the matrix T N (h) is an Hermitian Toeplitz matrix. We here consider symmetric Toeplitz matrix, which is equivalent to assuming that the symbol h is an even function and we denote by λ

(1)

N ≤ λ (2) N ≤ • • • ≤ λ (N +1) N
the eigenvalues of the (N + 1) × (N + 1) matrix T N (h). This paper adresses the asymptotic behavior of the eigenvalues of T N (h) as N goes to the infinity. This is a topic which has attracted mathematicians and physicists for a long time. Toeplitz matrices and their relatives emerge in particular in statistic [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF] and in statistical physics [START_REF] Basor | Toeplitz determinants and Statistical Mechanics[END_REF][START_REF] Basor | The Fisher-Hartwig conjecture and Toeplitz eigenvalues[END_REF] and the questions about the asymptotic behavior of their spectral characteristics, especially their determinants, eigenvalues, and eigenvectors, are always at the heart of the matter. We refer to the papers [START_REF] Deift | Toeplitz matrices and Toeplitz determinants under the impetus of the ising model. some history and some recent results[END_REF] for an extensive list of references. According to the first Szegö limit theorem (see [START_REF] Grenander | Toeplitz forms and their applications[END_REF]) the eigenvalues of T N (h) are asymptotically distributed as the value of h; see [START_REF] Grenander | Toeplitz forms and their applications[END_REF] for L ∞ symbols, [START_REF] Tyrtyshnikov | Toeplitz eigenvalues for Radon measures[END_REF] for L 1 symbols, and [START_REF] Trench | Asymptotic distibution of the spectra of a class of generalized Kac-Murdoch-Szegö matrices[END_REF], [START_REF] Tyrtyshnikov | Distribution of the eigenvalues and singular numbers of toeplitz matrices under weakened requirements on the generating function[END_REF] for more general situations. In the Hermitian case extensive works has been done on the search for eigenvalues (or the extreme eigenvalues) of Toeplitz matrices [START_REF] Widom | On the eigenvalues of certain hermitian operators[END_REF][START_REF] Grenander | Toeplitz forms and their applications[END_REF][START_REF] Serra | On the extreme eigenvalues of Hermitian (block) Toeplitz matrices[END_REF][START_REF] Rinkel | Inverses et propriétés spectrales des matrices de Toeplitz à symbole singulier[END_REF][START_REF] Parter | Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations[END_REF][START_REF] Parter | On the extreme eigenvalues of truncated Toeplitz matrices[END_REF][START_REF] Parter | On the extreme eigenvalues of Toeplitz matrices[END_REF] and more recently, for instance, [START_REF] Bogoya | Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols[END_REF][START_REF] Bogoya | From convergence in distribution to uniform convergence[END_REF][START_REF] Bogoya | Eigenvalues of Hermitian Toeplitz matrices with polynomially increasing entries[END_REF][START_REF] Barrera | Eigenvalues of even very nice Toeplitz matrices can be unexpectedly erratic[END_REF][START_REF] Ekström | Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols[END_REF][START_REF] Ekström | Exact formulae and matrix-less eigensolvers for block banded symmetric Toeplitz matrices[END_REF][START_REF] Rambour | Une extension d'un résultat de Szegö sur les valeurs propres des matrices de Toeplitz[END_REF]. The results of theorem 1 are consistent with those of theorem 2.3 of [START_REF] Bogoya | Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols[END_REF]. But the method of proof is different and the first three points of the statement concern functions which are outside the framework of [START_REF] Bogoya | Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols[END_REF]. The corollaries 1, 2 and 3 (which are immediate consequences of Theorem 1) cannot be obtained from the results of [START_REF] Bogoya | Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols[END_REF]. These corollaries give results for Toeplitz matrices with trigonometric symbol, which are useful for statistic applications. On the other hand Theorem 1 indicates that the problem of the eigenvalues of Toeplitz matrices is a local problem, related to the variation of the function which is the symbol of the matrix. Here we denote by A + ([0, 2π]) (resp. A -([0, 2π])) the set of even differentiable periodic functions of period 2π, such that f (θ) > 0 (resp. f (θ) < 0) for all θ in ]0, π[. Here we must consider a function f ∈ L 1 (T). For [θ 1 , θ 2 ] ⊂ [0, π] we say that

f ∈ A + ([θ 1 , θ 2 ]) (resp. f ∈ A -([θ 1 , θ 2 ]
) if f is a differentiable, periodic and even function such that f (θ) > 0 (resp. f (θ) < 0) for all θ ∈ [θ 1 , θ 2 ] and also ∀θ ∈

[0, π] f (θ) ∈ [f (θ 1 , f (θ 2 )] ⇐⇒ θ ∈ [θ 1 , θ 2 ] (resp. f (θ) ∈ [f (θ 2 , f (θ 1 )] ⇐⇒ θ ∈ [θ 1 , θ 2 ]).
For ν ≥ 0 we denote by W ν the weighted Wiener algebra of all functions ψ T → C whose Fourier coefficients satisfy 

ψ ν = j∈Z | ψ(j)| (|j + 1|) ν < ∞.

Now we define the functions

H(θ 1 , θ 2 ) = f (θ 1 ) -f (θ 2 ) (1 -cos θ 1 ) -(1 -cos θ 2 ) and ρ(θ) = - 1 4π P.V. 2π 0 ln ((H(t, θ)) tan t-θ 2 dt + 1 4π P.V.
Theorem 1 Let f in C 4 [0, 2π] such that f ∈ A + ([θ 1 , θ 2 ]) for an interval [θ 1 , θ 2 ] ⊂ [0, π]. We have the following results. i) If [θ 1 , θ 2 ] ⊂]0, π[ and [a, b] ⊂]θ 1 , θ 2 [ then for N be a sufficiently large integer T N (f ) has k b,N -k a,N + 1 eigenvalues in f ([a, b]). For k an integer in [k a,N , k b,N ] the corresponding eigenvalue is λ(k) N = f kπ N + 2 + c 1 (N + 2) + c 2 (N + 2) 2 + O 1 (N + 2) 3 , uniformly in λ, with c 1 = f kπ N + 2 ρ kπ N + 2 and c 2 = f kπ N + 2 ρ kπ N + 2 ρ kπ N + 1 + 1 2 f kπ N + 2 ρ kπ N + 2 2 .
ii) If θ 1 = 0 and b < θ 2 < π then for a sufficiently large N the matrix

T N (f ) has k b,N eigenvalues in f ([0, b]), with 0 < λ (1) 
N < λ

(2)

N < • • • < λ k b,N N ≤ f (b). For k ∈ [1, k b,N
] the corresponding eigenvalue is as in the point i).

iii) If θ 2 = π and 0 < a < π then for a sufficiently large N the matrix

T N (f ) has N +1-k a,N eigenvalues in f ([a, π]) with f (a) ≤ λ (k a,N ) N < λ (k a,N +1) N < • • • < λ N +1 N < f (π). For k ∈ [k a,N , N + 1] the corresponding eigenvalue is as in the point i). iv) If θ 1 = 0 θ 2 = π then for a sufficiently large N the matrix T N (f ) has N + 1 eigenvalues in f ([0, π]) with f (0) < λ (1) 
N < λ

(2)

N < • • • < λ (N +1) N < f (π). For k ∈ [1, N + 1
] the corresponding eigenvalue is as in the point i).

Remark 1 Similar results to Theorem 1 holds for the case where

f in A -([θ 1 , θ 2 ]) for an interval [θ 1 , θ 2 ] ⊂ [0, π]. Remark 2 In the point i) of Theorem 1 λ(k) N is not necessarily the k-th largest eigenvalue of f . This is nevertheless true in the cases 0 = θ 1 < θ 2 < π, 0 < θ 1 < θ 2 = π, or 0 = θ 1 < θ 2 = π.
Remark 3 Revisiting the proof of Theorem 1, one can show that under the assumption f ∈ C 3 ([0, 2π]) we obtain the different point of the theorem with the formula

λ(k) N = f kπ N + 2 + c 1 (N + 2) + O log N (N + 2) 2 ,
uniformly in λ and c 1 as in Theorem 1

The following corollaries are tree interesting consequences of Theorem 1. For these corollaries we recall that a function c is said to be a regular function iff c is a 2π-periodic function, with c(θ) > 0 for all θ ∈ [0, 2π] and c ∈ L 1 ([0, 2π]). In the following we denote by λ

(1) N,α ≤ λ (2) N,α ≤ • • • ≤ λ (k) N,α ≤ • • • ≤ λ (N +1) N,α
the eigenvalue of the function h α : θ → |1 -e iθ | 2α c(θ) where c is an even regular function and α a positive real.

Corollary 1 Consider a real α ≥ 2 and a function h α : θ → |1 -e iθ | 2α c(θ) where c is an even regular function such that

• c ∈ C 4 ([0, 2π]) • c (θ) > 0 for all θ ∈]0, π[.
Then for a sufficiently large N the matrix T N (h α ) has N + 1 eigenvalues such that

λ (k) N,α = h α kπ N + 2 + c 1,α (N + 2) + c 2,α (N + 2) 2 + O 1 (N + 2) 3 , for 1 ≤ k ≤ N + 1 and where c 1,α = h α kπ N + 2 ρ α kπ N + 2 c 2,α = h α kπ N + 2 ρ α kπ N + 2 ρ α kπ N + 1 + 1 2 h α kπ N + 2 ρ α kπ N + 2 2 with ρ α (θ) = - 1 4π P.V. 2π 0 ln ((H α (t, θ)) tan t-θ 2 dt + 1 4π P.V. 2π 0 ln ((H α (t, θ)) tan t+θ 2 dt
and

H α (θ 1 , θ 2 ) = h α (θ 1 ) -h α (θ 2 ) (1 -cos(θ 1 )) (1 -cos(θ 2 )) for θ 1 , θ 2 , θ in [0, π].
Using the remark 3 we can write the following corollary.

Corollary 2 Let α be a real such that α ∈ [ 3 2 , 2[ and a function h α : θ → |1 -e iθ | 2α c(θ) where c is an even regular such that

• c ∈ C 3 ([0, 2π]) • c (θ) > 0 for all θ ∈]0, π[. Then T N (h α ) has N + 1 eigenvalues in f ([0, π]) with λ (k) N,α = h α kπ N + 2 + c 1,α (N + 2) + O log N (N + 2) 2 ,
where N + 1 ≥ k ≥ 1 and c 1 as in the corollary 1.

Now if we remark that

(1 -cos θ 1 )c(θ 1 ) -(1 -cos θ 2 )c(θ 2 ) (1 -cos θ 1 ) -(1 -cos θ 2 ) = c(θ 1 ) + (1 -cos θ 2 ) c(θ 1 ) -c(θ 2 ) (1 -cos θ 1 ) -(1 -cos θ 2 )
we obtain the following corollary.

Corollary 3 Consider a function h 1 : θ → |1 -e iθ | 2 c(θ) where c is an even regular function such that

• c ∈ C 4 ([0, 2π]) • c (θ) > 0 for all θ ∈]0, π[.
Then for all integers k we have

λ (k) N,1 = h 1 kπ N + 2 + c 1 (N + 2) + c 2 (N + 2) 2 + O 1 (N + 2) 3 , where λ (k)
N,1 is the k-th largest eigenvalue of T N (h 1 ) and c 1 , c 2 as in Corollary 2 .

Remark 4 For c = 0 the proof of Theorem 1 provides c 1 = c 2 = 0 and we find again the classical result given in [START_REF] Grenander | Toeplitz forms and their applications[END_REF] Our result can also be compared with that of Trench [START_REF] Trench | Interlacement of the even and odd spectra of real symetric Toeplitz matrices[END_REF] where it is proved that for this class of symbols the eigenvalues are all distinct.

Proof of Theorem 1

In this proof we have used an inversion formula adapted for the Toeplitz matrix with symbol f = g 1 g 2 , g 1 = χ 0 (1 -r χ0 χ) (P N +1 ) -1 , g 2 = (1 -r χ0 χ) (P N +1 ) -1 , where 0 < r < 1, and P N +1 a polynomial with degree N + 1 without zeros on D = {z/|z| ≤ 1}, χ is the function θ → e iθ , χ 0 = e iθ 0 , with θ 0 ∈ R (see [START_REF] Rambour | Une extension d'un résultat de Szegö sur les valeurs propres des matrices de Toeplitz[END_REF] for the statement and the proof of this formula). In the appendix of this article we give this formula and briefly recall how we use it to calculate the inverse of a Toeplitz matrix (N + 1)

× (N + 1) with symbol χ 0 (1 -χ0 χ) (1 -χ0 χ) 1
|P N +1 | 2 . Now we need to recall the definition of the predictor polynomial and its main property.

Definition 1

The predictor polynomial of degree M of a regular function h is the trigonometric polynomial K M defined by

K M = M k=0 (T M (h)) -1 k+1,1 (T M (h)) -1 1,1 χ k .
Property 1 For all integers j, such that -M ≤ j ≤ M we have

1 |K M | 2 (j) = ĥ(j).
For an integer k we denote by β k,N the coefficient of χ k in the predictor polynomial P N of f . The reader can consult [START_REF] Landau | Maximum entropy and the moment problem[END_REF] for the predictor polynomials. We will now give the following definition, which will be used in the demonstration.

Definition 2

We denote by H + is the set of all functions ϕ in L 2 (T) whose Fourier coefficients satisfy φ(j) = 0 for all j < 0.

We can now begin the demonstration of the theorem. Using the assumptions we can write

f (θ) = f 1 (1 -cos θ) where f 1 is a differentiable function strictly increasing on [0, 2]. For all λ in [f (θ 1 ), f (θ 2 )] we put θ λ = f -1 (λ) and λ = f -1 1 (λ), that means θ λ = arccos(1 -λ ), since λ ∈ [0, 2] and θ λ ∈ [0, π]. We have clearly, for λ ∈ [f (θ 1 ), f (θ 2 )], f (θ) -λ = f 1 (1 -cos θ) -λ = ((1 -cos θ) -(1 -cos θ λ )) H λ (θ)
where

H λ : θ → H(θ, θ λ ) is a regular function on [-π, π]. We can write ((1 -cos θ) -(1 -cos θ λ )) = (1 -cos θ) -λ = 1 2 |1 -χ| 2 -2λ . (1) 
If χ λ = e iθ λ and χ = e iθ we have 2 and we can write the equation (1) as

χ λ = (1 -λ ) + i 1 -(λ -1)
((1 -cos θ) -(1 -cos θ λ )) = - 1 2 χ λ (1 -χλ χ)(1 -χλ χ). ( 2 
)
Remark 5 If we denote by P N +1,λ the predictor polynomial of H λ the main property of these polynomials (see the property 1) allows to write that the (N + 1) × (N + 1) Toeplitz matrices of the respective symbol

((1 -cos θ) -(1 -cos θ λ )) H λ and -1 2 χ λ (1 -χλ χ)(1 -χλ χ) 1 |P N +1,λ | 2
are the same.

For N a fixed integer we denote by T 1,N,λ the quantity (T N (f ) -λI N ) -1 1,1 . We have

T 1,N,λ = det (T N -1 (f ) -λI N -1 ) det (T N (f ) -λI N )
and, since the eigenvalues of (T N -1 (f )) are not in Spec (T N (f )) (see [START_REF] Haugazeau | Application du théorème de sylvester à la localisation des valeurs propres ax = λbx dans le cas symétrique[END_REF][START_REF] Barbaresco | Analyse spectrale par décomposition récursive en sous-espaces propres via les coefficients de réflexion[END_REF]), we have

λ ∈ Spec (T N (f )) ⇐⇒ 1 T 1,N,λ = 0.
Using the remark ( 5) and the inversion formula of Toeplitz matrices obtained in [START_REF] Rambour | Une extension d'un résultat de Szegö sur les valeurs propres des matrices de Toeplitz[END_REF] (the reader can consult the appendix to have an explicit expression of this formula) we obtain the entry

T -1 N (f ) (1,1)
. Hence with the results of the appendix we can write

1 T 1,N,λ = 1 - χ2(N+1) λ τ N (χ λ ) 1 - χ2(N+1) λ τ N (χ λ ) B 2,N,λ -B 1,N,λ . (3) 
With

τ N (θ λ ) = PN+1,λ (χ λ )P N +1,λ (χ λ ) PN+1,λ (χ λ )P N +1,λ (χ λ ) ,
and

B 1,N,λ = P N +1,λ (0) P N +1,λ (χ λ ) PN+1,λ (χ λ ) 2 (1 -χ2 λ ) -1 .
For χ λ = -1, 1 the quantity B 1,N,λ is defined and the definition of the predictor polynomial provides that P N +1,λ (0) = det(T N (H λ )) det(T N +1 (H λ )) . Since det (T N (H λ )) = 0 for all N ∈ N * (see [START_REF] Grenander | Toeplitz forms and their applications[END_REF]) and P N +1,λ (e iθ ) = 0 for all θ ∈ R (see [START_REF] Landau | Maximum entropy and the moment problem[END_REF]) we have B 1,N,λ = 0 for χ λ = -1, 1. The constant B 2,N,λ will be is defined for

χ λ = -1, 1. χ λ ∈ {-1, 1} ⇐⇒ λ ∈ {0, 2} ⇐⇒ λ ∈ {min T f, max T f }.
and with the additional remark that neither min f nor max f cannot be eigenvalues of f we can consider that B 2,N,λ is defined. But in any case this constant does not matter in our

demonstration. Indeed if 1 - χ2(N+2) λ τ N (χ λ ) B 2,N,λ -B 1,N,λ = 0 this equality means that det (T N -1 (f ) -λI N -1 ) = 0 and λ is an eigenvalue of T N -1 (f ) so it cannot be an eigenvalue of T N (f ). Hence we can write λ ∈ (Spec (T N (f )) ∩ I) ⇐⇒ χ 2(N +2) λ = τ N (θ λ ), λ ∈ I (4)
Since the function H λ is even, the constant τ N (θ λ ) can be rewritten as

τ N (θ λ ) = P N +1,λ ( χλ ) P N +1,λ (χ λ ) 2 .
As the function θ λ →

P N +1,λ ( χλ ) 
P N +1,λ (χ λ ) is continuous from I to {z||z| = 1} we have a non negative function ρ N defined and continuous on I such that τ N (θ λ ) = e 2iρ N (θ λ ) Then the equation 4 can be write

λ ∈ (Spec (T N (f )) ∩ I) ⇐⇒ χ 2(N +2) λ = e 2iρ N (θ λ ) , λ ∈ I. (5) 
Now according to the construction of χ λ we have necessary, if k 1,N and k 2,N as in the introduction

λ ∈ (Spec (T N (f )) ∩ I) ⇐⇒ λ = 1 -cos ρ N (θ λ ) + kπ (N + 2) for k ∈ [k 1,N , k 2,N ] , λ ∈ I.
(6) Lastly if we consider the equation the equation

θ λ = ρ N (θ λ ) + kπ (N + 2) ( 7 
)
it is clear that ( 7) implies ( 6). Now we have to make a more precise study of the function ρ N . If s ≥ 0, then every function f ∈ A(T, s) without zeros on T admits a Wiener-Hopf factorization, that is, there exist function f + and f -such that f (e iθ ) = f + (e iθ )e iγθ f -(e iθ ) with some γ ∈ Z the index of the factorization. The function f + (resp. f -) belongs to set A(T, s) + (resp. A(T, s) -) where

A(T, s) + = f (e iθ ) = +∞ j=0 f (j)e ijθ | f s < +∞ and A(T, s) -= f (e iθ ) = +∞ j=0 f (-j)e -ijθ | f s < +∞ .
Here we have clearly can be written in the form :

1 |P N +1,λ (e iθ )| 2 = 1 P N +1,λ (e iθ ) 1 P N +1,λ (e -iθ
1 |P N +1,λ (e iθ )| 2 + = exp   1 2 log 1 |P N +1,λ (e iθ )| 2 + 1 2πi P.V. T log 1 |P N +1,λ (e iv )| 2 e iv -e iθ dv   that be rewritten as exp   1 2 log 1 |P N +1,λ (e iθ )| 2 - 1 4πi P.V. 2 π 0 log 1 |P N +1,λ (e iu )| 2 tan u-θ 2 du + 1 4π 2 π 0 log 1 |P N +1,λ (e iu )| 2 du   .
that provides

P N +1,λ (e -iθ ) P N +1,λ (e iθ ) = e iρ N,λ (θ) with ρ N,λ (θ) = - 1 4π P.V. 2 π 0 log 1 |P N +1,λ (e iu )| 2 tan u-θ 2 du + 1 4π P.V. 2 π 0 log 1 |P N +1,λ (e iu )| 2 tan u+θ 2 du and finally ρ N (θ λ ) = ρ N,λ (θ λ ). The same methods give, for G λ = (H λ ) + G λ (e iθ ) = (H λ (θ)) + = exp 1 2 log (H λ (v)) + 1 2πi P.V. T log (H λ (v))
e iv -e iθ dv and ρ λ (θ) = -P.V. 1 4π

2 π 0 log (H λ (u)) tan u-θ 2 du + P.V. 1 4π 2 π 0 log (H λ (u)) tan u+θ 2 du, ρ(θ λ ) = ρ λ (θ λ ).
Now we need the following lemmas to relate the two functions ρ N and ρ.

Lemma 1 For all λ ∈ [f (θ 1 , f (θ 2 )] λ = f (0), f (π) the function θ → H λ (θ) is in C 3 ([0, 2π])
and for all j ∈ {0, 1, 2, 3} we have a real K j no depending from λ such that

H (j) λ ∞ ≤ K j Remark 6
The hypothesis λ = f (0), f (π) corresponds to the fact that the maximum and minimum of the function f cannot be eigenvalues of T N (f ). The values f 0) and f (π) are therefore never considered in the proof of Theorem 1 .

Proof of the lemma 1 : If t = 1-cos θ and t λ = 1-cos θ λ we have to prove that the function

H 1,λ : t → f 1 (t)-f 1 (t λ ) t-t λ is in C 3 ([0, 2π]
) and that for all integer j, 0 ≤ j ≤ 3 we have a real K 1,j such that, for all λ in [f (θ 1 ), f (θ 2 )] we have

H (J) 1,λ ∞ ≤ K 1,j . Clearly H 1,λ | ∞ ≤ f (1) ∞ . Now we have for t = t λ H (1) 1,λ (t) = f (1) 1 (t)(t -t λ ) -(f 1 (t) -f 1 (t λ )) (t -t λ ) 2 = f (1) 
1 (t λ ) + (t -t λ )f (2) 1 (a 1 ) (t -t λ ) -f (1) 
1 (t λ )(t -t λ ) + (t-t λ ) 2 2 f (2) 1 (a 2 ) (t -t λ ) 2
with a 1 and a 2 between t and t λ . That provides

• H (1) 1,λ (t λ ) = f (2) 1 (t λ ) 2 • H (1) 1,λ ∞ ≤ 3 2 f (2) 1 ∞ Now we have, for t = t λ H (2) 1,λ (t) = f (2) 1 (t)(t -t λ ) 2 -2 f (1) 1 (t)(t -t λ ) -(f 1 (t) -f 1 (t λ )) (t -t λ ) 3 = f (2) 1 (t λ ) + f (3) 1 (a 3 )(t -t λ ) (t -t λ ) 2 -2 (d 1,λ (t) -d 2,λ (t)) (t -t λ ) 3 .
with

d 1,λ (t) = f (1) 1 (t λ (t -t λ ) + f (2) 1 (t λ )(t -t λ ) 2 + f (3) 1 (a 4 ) (t -t λ ) 3 2 d 2,λ (t) = f (1) 1 (t λ (t -t λ ) + f (2) 1 (t λ ) (t -t λ ) 2 2 + f (3) 1 (a 5 ) (t -t λ ) 3 6 
and a 3 , a 4 , a 5 between t and t λ . That provides

• H (2) 1,λ (t λ ) = f (3) (t λ ) 3 • H (2) 1,λ ∞ ≤ 7 3 f (3) 1 ∞
Finally we can write, always for t = t λ

H (3) 1,λ (t) = f (3) 1 (t)(t -t λ ) 3 -3 f (2) 1 (t)(t -t λ ) 2 -2 f (1) 1 (t)(t -t λ ) -(f 1 (t) -f 1 (t λ )) (t -t λ ) 4 = f (3) 1 (t λ ) + f (4) 1 (a 6 )(t -tλ) (t -t λ ) 3 -3 (d 3,λ (t) -2d 4,λ (t)) (t -t λ ) 4 with d 3,λ (t) = f (2) 1 (t λ )(t -t λ ) 2 + f (3) 1 (t λ )(t -t λ ) 3 + f (4) 1 (a 7 ) (t -t λ ) 4 2 d 4,λ (t) = f (1) 1 (t λ) (t -t λ ) + f (2) 1 (t λ )(t -t λ ) 2 + f (3) 1 (t λ ) (t -t λ ) 3 2 + f (4) 1 (a 8 ) (t -t λ ) 4 6 
and a 6 , a 7 , a 8 between t and t λ . This last equalities gives us

• H 1,λ (t λ ) = 1 4 f (4) 1 (t λ ) • H 1,λ ∞ ≤ 15 4 f 1 ∞ .
that ends the proof. 2

Lemma 2 We have a real H no depending from k and λ such that

1 G λ (k) ≤ H k 3 , for k > 0, and 
G λ Ḡλ (k) ≤ H k 3 . for k = 0 Proof : We can observe that, for 0 ≤ j ≤ 3 (π + (log H λ )) (j) = π + (log H λ ) (j)
. Hence, with the lemma 1, we have, for 0 ≤ j ≤ 3,

(π + (log H λ )) (j) 2 ≤ (log H λ ) (j) 2 ≤ T j (8) If m 0 is the minimum of H on [0, 2π] × [θ 1 , θ 2 ]
it is clear that for all j ∈ {0, 1, 2, 3} T j is only depending from the constants m 0 , K 0 , K 1 , K 2 , K 3 , of the lemma 1. Hence T j is no depending from λ.

On the other hand since log

H λ ∈ C 3 ([0, 2π]) we have, for all n ≥ 0 | log H λ (n)| ≤ (log H λ ) (3) 2 n 3 ≤ T 3 n 3 and | (log H λ ) (1) (n)| ≤ (log H λ ) (3) 2 n 2 ≤ T 3 n 2 . Hence exp (π + (log H λ )) ∞ ≤ exp   T 3 n≥0 1 n 3   = M 1 and (π + (log H λ )) (1) ∞ ≤ T 3 n≥0 1 n 2 = M 2 . Now if we put π + (log H λ ) = F λ we can write (exp -F λ ) (3) = -F (3) λ + 3F (1) 
λ F

(2)

λ -F (1) λ 3 exp F λ .
Clearly we have the inequalities

F (3) λ exp F λ 2 ≤ F (3) λ 2 exp F λ ∞ ≤ T 2 M 1 F (1) 
λ F

(2)

λ exp F λ 2 ≤ F (1) λ ∞ exp F λ ∞ F (2) λ 2 ≤ M 1 M 2 T 2 (F (1) 
λ ) 3 exp F λ 2 ≤ (F (1) λ ) 3 ∞ exp F λ ∞ ≤ M 3 2 M 1
according to [START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF] this means that (exp F λ ) (3) 2 , is bounded by a constant H 1 no depending from λ. This result implies

| exp -F λ (n)| ≤ (exp -F λ ) (3) 2 n 3 ≤ H 1 n 3
for all n ≥ 0, and H no depending from λ and n. On the other hand for n > 0 we have

G λ Ḡλ (n) = h≥0 G λ (h + n) 1 Ḡλ (-h) ≤ H 2 1 h>0 1 h 3 n 3 + 1 n 3 | 1 Ḡλ (0)|,
and

G λ Ḡλ (-n) = k≥0 G λ (k) 1 Ḡλ (-(k + n)) ≤ H 2 1 k>0 1 k 3 n 3 + 1 n 3 | 1 Ḡλ (0)|,
with the additional remark that | 1 Ḡλ (0)| ≤ 1 m 0 with m 0 as previous we have the lemma with

H = max H 1 , H 2 1 k>0 1 k 3 + 1 m 0 , where m 0 = min{H(θ 1 , θ 2 )|(θ 1 , θ 2 ) ∈ [0, 2π]×[f (θ 1 ), f (θ 2 )]}. 2 Lemma 3 If β k,λ = 1 G λ (k) we have, for a sufficient large N ((T N ((H λ )) -1 k,1 = β 0,λ β k,λ + R k,N,λ with |R k,N,λ | ≤ M N 2 (N +1-k) 2
where M is no depending from λ and k.

Proof :

Using the inversion formula given in the appendix of this paper we obtain, for

H λ = G λ Ḡλ , G λ ∈ H + (T). (T N (H λ )) -1 l+1,k+1 = π + χ l Ḡλ | χ k Ḡλ - +∞ s=0 H * Φ N,λ H Φ N,λ s π + ΦN,λ π + χ l Ḡλ |π + ΦN,λ π + χ k Ḡλ . with Φ N,λ = G λ Ḡλ χ N +1 , and ΦN,λ = λ G λ χ -(N +1)
and (see the appendix for H + , π + , π -)

H Φ N,λ (Ψ) = π -(Φ N,λ Ψ) for Ψ ∈ H + H * Φ N,λ (Ψ) = π + ( ΦN,λ Ψ) for Ψ ∈ (H + ) ⊥ . For l = 0 this formula becomes (T N (H λ )) -1 k+1,1 = π + 1 Ḡλ | χ k Ḡλ - +∞ s=0 H * Φ N,λ H Φ N,λ s π + ΦN,λ π + 1 Ḡλ |π + ΦN,λ π + χ k Ḡλ .
In the next of the proof we use the following notations :

1 G λ = u≥0 β u,λ χ u G λ Ḡλ = u∈Z γ u,λ χ u .
With lemma 2 we have a positive constant H such that

|β u,λ | ≤ H u 3 ∀u ∈ N and |γ u,λ | ≤ H u 3 ∀u ∈ Z .
With these notations we obtain

π + 1 Ḡλ | χ k Ḡλ = β0,λ β k,λ π + ΦN,λ π + 1 Ḡλ = π + ΦN,λ β0,λ = β0,λ v≥N +1 γ-v,λ χ v-N -1 , π + ΦN,λ π + χ k Ḡλ = k w=0 βw,λ   v≥N +1-k+w γ-v,λ χ v-N -1+k-w   .
Hence, with lemma 2 we obtain

π + ΦN,λ π + 1 Ḡλ 2 ≤ H (N + 1) -2 and π + ΦN,λ π + χ k Ḡλ 2 ≤ H((N + 1 -k) -2 .
On the other hand for ψ = w≥0 α w χ w a function in H + we have, with the continuity of the projection π -,

H Φ N,λ (ψ) = w≥0 α w v>N +1+w γ -v,λ χ v+w+N +1
that provides

H Φ N,λ (ψ) 2 ≤ w≥0 |α w | v>N +1+w |γ -v,λ | ≤ ψ 2   w≥0 v>N +1+w |γ -v,λ | 2   1/2 ≤ H ψ 2 (N + 1) -3/2
that means H Φ N,λ ≤ H(N + 1) -3/2 . Clearly we have also H Φ N,λ ≤ H(N + 1) -3/2 and we can write

+∞ s=0 H * Φ N,λ H Φ N,λ s π + ΦN,λ π + 1 Ḡλ 2 ≤ H (1 -H 2 (N + 1) -3 ) 2 (N + 1) -2 .
And finally we can write

(T N (H λ )) -1 1,k+1 = β0,λ β k,λ + O (N + 1) -2 (N + 1 -k) -2 with O (N + 1) -2 (N + 1 -k) -2 = 2H 2 (N + 1) -2 (N + 1 -k) -2
uniformly in λ that is the expected result with M = 2H 2 . 2

Remark 7 As the coefficient β 0,λ is real the form of τ N (χ λ ) allows to assume that β 0,λ = 1 is the rest of our demonstration.

Lemma 4 For a sufficiently large N we have two constants, no depending from λ such that

1 P N +1,λ 0 ≤ A 1 and G λ 0 ≤ A 2
Proof : As previously we have

P -1 N +1,λ 0 ≤ +∞ u=1 1 u 2 (P -1 N +1,λ ) (2) 2 .
We write

(P -1 N +1,λ ) (2) = D N +1,λ P 3 N +1,λ
.

The lemmas 2 and 3 provide that D N +1,λ is bounded by a constant no depending from λ and θ. Since G λ ((θ) = 0 we have a real m 1 > 0 such that for all θ ∈ [0, 2π] and λ ∈ [f (θ 1 ), f (θ 2 )] we can write |G λ (θ)| > m 1 . That implies, with the lemma 3, that we have a real m 1 > 0, no depending from θ and λ and such that

1 |P N +1,λ (e iθ )| 3 < m 1
, that provides the constant A 1 . Lastly we can obtain, as in the lemma 2, | G λ (k)| ≤ M 0 k 3 with M 0 a constant no depending from λ, that provides the existence of the real A 2 .

2 Lemma 5 For s 0 = 0 we have ln

1 |P N +1,λ | 2 -ln (H λ ) s 0 = O 1 N 2 uniformly in λ.
Proof : Using the lemma 3, we obtain

P N +1,λ - 1 G λ s 0 ≤ M (N + 1) -2 N k=0 1 (N + 1 -k) 2 + +∞ k=N +1 |β k,λ | Hence P N +1,λ - 1 G λ s 0 ≤ M + H (N + 1) 2 (9) 
where M and β k,λ as in the lemma 3 and H is the real no depending from N and from λ which has been introduced in the lemma 2. always with M and H no depending from λ and the norm

P N +1,λ -1 G λ s 0 is bounded by O 1 N 2 . Now since ΨΦ s 0 ≤ Ψ s 0 Φ s 0 we have 1 P N +1,λ -G λ s 0 ≤ P N +1,λ - 1 G λ s 0 G λ P N +1,λ s 0 ≤ A M + H (N + 1) 2 (10) 
with

A = A 1 A 2 , A 1 , A 2 as in the lemma 4.
Then, according to (10)

1 |P N +1,λ | 2 -H λ s 0 ≤ 1 |P N +1,λ | 2 - 1 P N +1,λ Ḡλ s 0 + 1 P N +1,λ Ḡλ -H λ s 0 ≤ (A 1 +A 2 ) M + H (N + 1) 2 Since 1 |P N +1,λ | 2 -H λ s 0 = O 1 N 2 , uniformly in λ. Now observe that ln 1 |P N +1,λ | 2 -ln (H λ ) s 0 = ln 1 + 1 |P N +1,λ | 2 -H λ H λ s 0 that is also ln 1 + 1 |P N +1,λ | 2 -H λ H λ s 0 ≤ n≥1 1 n 1 |P N +1,λ | 2 -H λ s 0 n 1 H λ s 0 n . Now we have 1 H λ s 0 ≤ 1 H λ s 0 ≤ 1 | H λ (0)| ≤ 1 m 0
with m 0 as in the lemma 2. That gives us ln 1 +

1 |P N +1,λ | 2 -H λ H λ s 0 ≤ n≥1 1 n 1 |P N +1,λ | 2 -H λ s 0 n 1 m n 0 .
Since m 0 no depending from λ we can conclude

ln 1 |P N +1,λ | 2 -ln (H λ ) s 0 = ln 1 + 1 |P N +1,λ | 2 -H λ H λ s 0 = O 1 N 2
uniformly in λ.

2

Then the fact that the Cauchy singular operator is bounded on the Wiener classes A(T, s), s ≥ 0, with ρ N -

ρ s 0 = O( 1 N 2 ) that implies that |ρ N (θ λ ) -ρ(θ λ )| = O( 1 N 2 ) uniformly in λ. Hence we have two reals m, M with M ≥ m such that m ≤ ρ N (θ) ≤ M for all θ ∈ [θ 1 , θ 2 ]
and all N ∈ N. Then for an integer k ∈ {k a,N , • • • , k b,N } we have, for a sufficiently large N , and for all θ ∈ [θ 1 , θ 2 ],

θ 1 < kπ + m N + 2 < kπ + ρ N (θ) N + 2 < kπ + M N + 2 < θ 2
and we have two reals θ 0 and θ 0 such that

θ 0 < kπ+m N +2 < kπ+ρ N (θ) N +2
and kπ+ρ N (θ)

N +2 < kπ+M N +2 < θ 0 . Hence the function Ψ k : θ λ → ρ N (θ λ )+kπ N +2
-θ λ changes sign on [θ 1 , θ 2 ] then, by continuity of the function ρ N on this interval, the equation 7 has at less one solution on this interval. If θ 1 = 0 we can remark that we have necessary, for all k ∈ {1, • • • , k 2,N } and for all θ ∈ [0, θ 2 ] the inequality

0 ≤ 1 -cos ρ N (θ) + kπ N + 2
and always :

1 -cos ρ N (θ) + kπ N + 2 ≤ 1 -cos kπ + M N + 2 ≤ 1 -cos θ 0 .
Hence we can conclude that the equation ( 6 and always :

1 -cos θ 0 < 1 -cos kπ + m N + 2 < 1 -cos kπ + ρ N (θ) N + 2 .
Hence we can conclude that the equation ( 6) has at less one solution on [θ 0 , π]. Finally we have obtain the eigenvalues in the interval [f (a), f (b)]. Now we have to obtain the asymptotic behavior of these eigenvalues and to prove that we have k b,N -k a,N + 1 eigenvalues in this interval Now we need the two following lemmas :

Lemma 6 The function ρ is in C 2 ([θ 1 , θ 2 ]).
Proof : We prove the result for the function A simple calculus provides us I 1,θ = 0. On the other hand we can observe that the function

I : θ → P.V.
Ψ : (t, θ) → log(H(t,θ))-log(H(θ,θ)) tan( t-θ 2 )
can be write log(H(t,θ))-log(H(θ,θ)) are continuous on [0, 2π] × [θ 1 , θ 2 ] we can conclude that the function (t, θ) → ∂Ψ ∂θ is defined and continuous on [0, 2π]×[θ 1 , θ 2 ], that conclude this demonstration for the existence of ρ (1) . For ρ (2) the function ∂Ψ 1 ∂θ (t, θ) which is defined for all t = θ and is (t -θ) 2 Ψ 2 (t, θ) + 2(-θ)Ψ 3 (t, θ) + 2Ψ 3 (t, θ) (t -θ) 3 where, with same notation as for ρ ,

Ψ 1 (t, θ) = (log H) θ 2 (t, θ) -(log H) t 2 (θ, θ) -(log H) θ 2 (θ, θ) -2(log H) t,θ (θ, θ) Ψ 2 (t, θ) = (log H) θ (t, θ) -(log H) t (θ, θ) -(log H) θ (θ, θ) Ψ 3 (t, θ) = (log H)(t, θ) -(log H)(θ, θ)
and for t = θ we see that

∂ 2 Ψ 1 ∂θ 2 = (log H) (3) 
θ 2 ,t (θ, θ) + (log H) (3) 
t 3 (θ, θ) + (log H) (3) 
t 2 θ (θ, θ)(θ, θ).
Then the same arguments as previously allow us to conclude the proof. 2

Now we can easily obtain the formula announced in the statement of the Theorem 1. For λ an eigenvalue in ]f (θ 1 ), f (θ 2 )[ we have, following the equation (7

) λ = f kπ+ρ N (θ λ ) N +2
that is also

λ = f kπ+ρ(θ λ ) N +2 + R N,λ (N +2) with R N,λ (N +2) = O 1 (N +2) 3
uniformly in λ according to the lemma 5. Putting d = πk N +2 we have by Taylor's theorem,

λ = f (d) + f (d) ρ(θ λ ) + R N,λ N + 2 + 1 2 f (d) ρ(θ λ ) + R N,λ N + 2 2 + 1 6 f (3) d + h 1 ρ(θ λ ) + R N,λ N + 2 ρ(θ λ ) + R N,λ N + 2 3 , with 0 < h 1 < 1. That provides λ = f (d)+f (d) ρ(θ λ ) N + 2 + 1 2 f (d) ρ(θ λ ) N + 2 2 + 1 6 f (3) d + h 1 ρ(θ λ ) N + 2 ρ(θ λ ) N + 2 3 +O 1 (N + 2) 3 , (11) 
where the quantityO 1 (N +2) 3 is bounded uniformly in λ. On the other hand, with the equation [START_REF] Bogoya | From convergence in distribution to uniform convergence[END_REF] 

θ λ = kπ+ρ(θ λ ) N +2 + R N,λ
N 2 ) and we can write, always by Taylor's theorem,

ρ(θ λ ) = ρ(d) + ρ (d) ρ(θ λ ) + R N,λ N + 2 + 1 2 ρ (d + h 2 ρ(θ λ ) + R N,λ N + 2 ρ(θ λ ) + R N,λ N + 2 2 , (12) 
with 0 < h 2 < 1, that implies

ρ(θ λ ) = ρ(d) + ρ (d) ρ(d) N + 2 + O( 1 (N + 2) 2 ). ( 13 
)
with

O( 1 (N + 2) 2 ) = (ρ (d)) 2 ρ(θ λ ) (N + 2) 2 + 1 2(N + 2) ρ (d + h 2 ρ(θ λ ) N + 2 ρ(θ λ ) N + 2 2 + 1 2 ρ (d + h 2 ρ(θ λ ) N + 2 ρ(θ λ ) N + 2 2 + RNλ ,
where the quantity RN,λ can be bounded with R N,λ , and the maximum of the functions ρ, ρ and ρ Combining the equation ( 11) and ( 13) we obtain

λ = f (d) + f (d)ρ(d) N + 2 + f (d)ρ (d)ρ(d) (N + 2) 2 + 1 2 f (d)ρ 2 (d) (N + 2) 2 + R N,d , (14) 
with

R N,d = f (d) ρ(θ λ) -ρ(d) -ρ (d) ρ(d) N +2 (N + 2) 3 + f (d) (N + 2) 2 (ρ(θ λ ) -ρ(d)) 2 + 1 6 f (3) d + h 1 ρ(θ λ ) N + 2 ρ(θ λ ) N + 2 3 + O( 1 (N + 2) 3 ) = O 1 (N + 2) 3
uniformly in λ. To achieve the proof of the theorem we have to be sure that the eigenvalues found are distinct. To do this we need the following two lemmas. Proof : Assume λ N and λ N two solutions of (7) for a same integer k. By [START_REF] Haugazeau | Application du théorème de sylvester à la localisation des valeurs propres ax = λbx dans le cas symétrique[END_REF] we have |λ -λ | = o( 1 (N +2) 2 ). By [START_REF] Barbaresco | Analyse spectrale par décomposition récursive en sous-espaces propres via les coefficients de réflexion[END_REF] we know that we have an eigenvalue, λ N +1 with the bound λ N < λ N +1 < λ N that implies |λ N -λ N +1 | = o( 1 (N +2) 2 ). By [START_REF] Haugazeau | Application du théorème de sylvester à la localisation des valeurs propres ax = λbx dans le cas symétrique[END_REF] we have |λ N -λ N +1 | ≥ O( 1 N ), that is a contradiction with the previous estimation. In [START_REF] Rambour | Une extension d'un résultat de Szegö sur les valeurs propres des matrices de Toeplitz[END_REF] we have state the following inversion formula Theorem 2 Let P N +1 a trigonometric polynomial with degree N + 1 and without zeros on the united disc D. Let ω = r χ0 , 0 < r < 1, |χ 0 | = 1 and also f r = g 1, g 2, with g 1 = χ 0 (1 -ωχ)(P N +1 ) -1 and g 2 = (1 -ω χ) P N +1 -1 . Then for all polynomial P in P N we have

Lemma 7 For k, k + 1 in ]f (θ 1 ), f (θ 2 )[ we have λ(k+1) N - λ(k) N > 0 and | λ(k) N - λ(k+1) N | = O( 1 
T N (f r ) -1 (P ) = 1 g 1 π + P g 2 - 1 g 1 π + Φ N +∞ s=0 H * Φ N H Φ N s π + ΦN π + P g 2 . with          Φ N = g 1 g 2 χ N +1 , ΦN = g 2 g 1 χ -(N +1) , H Φ N (Ψ) = π -(Φ N Ψ) H * Φ N (Ψ) = π + ( ΦN Ψ) for Ψ ∈ H + .
For the proof Ttheorem 2 we have to know T N (f r ) - 1 1,1 that is also T N (f r ) -1 (1)|1 . Write T N (f ) -1 (1)|1 = x 0 -y 0 . The previous theorem provides

x 0 = π + 1 g 2 | 1 ḡ1 = χ 0 1 P N +1 (0) 2 .
To obtain y 0 we need the terms π + ΦN π + 1 g 2 and π + ΦN π + 1 ḡ1

. We have

π + ΦN π + 1 g 2 = P N +1 (0)π + g 2 g 1 χ -N -1 = C 1 1 1 -ωχ with C 1 = P N +1 (0) χ0 P N +1 ( 1 ω ) PN+1 (ω) ω N +1 (1 -ω 2 ).
Likewise we can write

π + ΦN π + 1 ḡ1 = C 1 1 1 -ωχ , with C 1 = P N +1 (0) χ0 P N +1 ( 1 ω ) PN+1 (ω)
ωN+1 (1 -ω2 ).

Hence

y 0 = C 1 C 1 (I -H Φ * N H Φ N ) 1 1 -ωχ 1 1 -ωχ .
We have now to use the lemma Lemma 9 1 1-ωχ is an eigenvector of H Φ N H Φ N for the eigenvalue τ N,r (ω)ω 2(N +2) with τ N,r (ω) = P N +1 ( 1 ω )P N +1 ( 1 ω )

P N +1 (ω)P N +1 (ω) , with |τ N,r (ω)| = 1 for 0 < r < 1.

It is the lemma 1 of [START_REF] Rambour | Une extension d'un résultat de Szegö sur les valeurs propres des matrices de Toeplitz[END_REF]. We obtain

y 0 = C 1 C 1 1 1 -ω 2N +2 τ N,r (ω) 1 1 -ω 2 .
If now we consider the function f 1 defined by the product f 1 = g1 g2 with g1 = χ 0 (1-χ0 χ) 1 P N +1 and g2 = (1 -χ0 χ) 1

PN+1

, then for a fixed N lim r→1 (T N f r ) -1

1,1 = (T N f ) -1 1,1 . Indeed

(T N f r ) -1 (T N f ) = (T N f r ) -1 (T N f r ) + (T N f r ) -1 (T N (f 1 -f r )) .
And lim r→1 (T N (f -f r )) = 0 that implies lim r→1 (T N f r ) -1 (T N f ) = I N . Hence we can conclude that

(T N (f )) -1 1,1 = 1 -χ 2(N +2) 0 τ N (χ 0 ) B 2,N -B 1,N 1 -χ 2(N +2) 0 τ N , with B 1,N = C 1 C 1 (1 -χ2 0 ), B 2,N = χ 0 1 P N +1 (0) 2
, and τ N (χ 0 ) = P N +1 ( χ0 )P N +1 ( χ0 ) P N +1 (χ 0 )P N +1 (χ 0 )

tan t+θ 2 dt for θ 1

 21 , θ 2 , θ in [0, π]. Lastly for an interval [a, b] ⊂]θ 1 , θ 2 [ and N an integer we denote by k a,N and k b,N the integers such that : k a,N = min{k| kπ N +2 ∈ [a, b]}, k b,N = max{k| kπ N +2 ∈ [a, b]}. Now we can give the following theorem.

) and 1

 1 |P N +1,λ (e iθ )| 2 + = 1 P N +1,λ (e iθ ) and 1 |P N +1,λ (e iθ )| 2 -= 1 P N +1,λ (e -iθ ) , with index zero. Now it is well known that in the Wiener-Hopf factorization 1 |P N +1,λ (e iθ )| 2 +

  )has at less one solution on [0, θ 2 ]. If θ 2 = π we can remark that we have necessary, for all k ∈ {k 1,N , • • • , π} and for all θ ∈ [θ 1 , π] the inequality 1 -cos ρ N (θ) + kπ N + 2 ≤ 2

  quite the same for the function θ → P.V.

  (t, θ)) tan t+θ 2 dt.

First

  we write I(θ) = I 1,θ + I 2,θ with I 1,θ = P.V.

  t, θ)) -log (H(θ, θ)) tan t-θ 2 dt.

2 Lemma 8

 28 N ) Proof : This lemma follows directly from[START_REF] Haugazeau | Application du théorème de sylvester à la localisation des valeurs propres ax = λbx dans le cas symétrique[END_REF]. For a fixed k the equation[START_REF] Bogoya | From convergence in distribution to uniform convergence[END_REF] has one and only one solution in [θ 1 , θ 2 ].
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 2 

3 Appendix 3 . 1

 331 Inversion formula for Toeplitz matrices. We denote by π + and π -the operator defined by π + n∈Z a n χ n = n∈N a n χ n and π - n∈Z a n χ n = n∈N * a -n χ -n .

  function H we can say that the function θ → H(t, θ) is in C 3 ([θ 1 , θ 2 ]) for all t in [0, 2π]. Hence if Ψ 1 is the function defined by Ψ 1 : θ → log(H(t,θ))-log(H(θ,θ))We see that for t = θ the function∂Ψ 1 ∂θ is equal to ∂ 2 log H ∂θ 2 (θ, θ) . Since the functions log H,

				t-θ
				t-θ 2	2 tan( t-θ 2 )	. Thanks to the
	symmetry of the t-θ	the function
	∂Ψ 1 ∂θ (t, θ) is defined for all θ = t and is equal to
	(t -θ) ((log H) θ (t, θ) -(log H) t (θ, θ) -(log H) θ (θ, θ)) + ((log H)(t, θ) -(log H)(θ, θ)))
			(t -θ) 2
	where we have denoted by (log H) t the quantity ∂(log H) ∂t	and by (log H) θ the quantity ∂(log H) ∂θ
	∂(log H) ∂t	, ∂(log H) ∂θ	, and ∂ 2 log H ∂θ 2