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Scattering from quasi-planar and moderate rough
surfaces: Efficient method to fill the EFIE-Galerkin

MoM impedance matrix and to solve the linear
system

Christophe Bourlier

Abstract—First, an acceleration to compute the impedance
matrix obtained from the EFIE (electric field integral equation)
discretized by the Galerkin MoM (method of moments) with Rao-
Wilton-Glisson basis functions, is addressed. It is based on a far-
field approximation and makes it possible to avoid to loop on the
source and observation triangles. Next, the impedance matrix is
split into strong and weak interactions; the latter is compressed
by expressing it from Toeplitz sub-matrices. Then, the linear
system is efficiently solved by a bi-iterative scheme. For a given
order, the LSQR (least squares QR) algorithm is applied to solve
the sparse linear system related to the strong interactions, while
the matrix-vector products, related to the weak interactions, are
accelerated by using FFTs. Numerical results of the field scattered
by perfectly-conducting paraboloid-shape object and Gaussian
rough surface are shown.

Index Terms—Electric field integral equation, Method of
moments, Radar cross section, Fast algorithm, Rough surface
scattering.

I. INTRODUCTION

The calculation of full vector wave scattering from a large
perfectly-conducting surface is a very challenging issue; the
main difficulty lies in the problem size. Solving a problem of
this kind, from the EFIE (electric field integral equation) dis-
cretized by the Galerkin MoM (method of moments) with Rao-
Wilton-Glisson basis functions [1], requires a great number of
unknowns NEdge in order to obtain accurate and meaningful
results. Thus, reduction of both computation time and data
storage requirement is continuously in progress.

Direct solvers, like the LU decomposition, require O(N3
Edge)

operations while iterative solvers [2], such as conjugate gradi-
ent or generalized minimal residual (GMRES) techniques [3],
need O(N2

Edge) operations for the matrix-vector multiplication
at each iteration. The memory requirement for these two
solvers is usually O(N2

Edge). Such computational complexity
and memory requirements are too restrictive to be able to solve
a large-scale scattering problem.

These two disadvantages can be alleviated by using the
SMCG (sparse matrix canonical grid method) [4], [5], [6],
[7], the adaptive integral method (AIM) [8], [9], [10], [11],
[12], the SEBCM (stabilized extended boundary condition
method) [13] and the FMM (fast multipole method) [14],

C. Bourlier is with the IETR (Institut d’Electronique et des Technolo-
gies numéRique), UMR CNRS 6164, University of Nantes, France (e-mail:
christophe.bourlier@univ-nantes.fr).

[15]. For far-field interactions, the principle of AIM and
SMCG is similar and consists in expressing the Green function
on a uniform grid by using an interpolation scheme. From
SMCG, a Taylor series expansion is also applied on the
surface elevations. It is related to the concept of the short
interaction range [16]. This implies that the matrix is Toeptliz,
making it possible to reduce the memory requirement and to
accelerate the matrix-vector product by using FFTs. The first
novelty of this paper is to accelerate the calculation of the
weak impedance matrix elements by deriving a closed-form
expression, resulting from the sum over the 4 facets common
to the source and observation edges. In addition, since with a
triangular discretization the basis functions are not uniformly
distributed, the weak impedance matrix is expressed from 3
Toeplitz sub-matrices by defining two uniform sub-grids. This
avoids applying interpolations. Next, for quasi-planar surfaces
and similarly to [7], the surface elevation ∆z is accounted for
by expanding the Toeplitz sub-matrices over ∆z.

For an iterative solver, the convergence of iterations is not
very good for ill-posed matrix equations. This often occurs
when the EFIE is used to solve 3-D complex scattering prob-
lems. For instance, Hu et al. [17] added the MFIE contribution
to decrease the condition number of the resulting matrix, and
the linear system is solved from a bi-iterative procedure. The
present method distinguishes the strong near-field interactions
and the weak ones between the observation point and the
source point. This has the advantage that only the near interac-
tion matrix is stored and the far interaction matrix is Toeplitz
by blocks and requires to store only O(NEdge) elements. The
second novelty of this paper is to take advantage of this
decomposition for solving efficiently the linear system from a
bi-iterative algorithm. Then, for a given order, the LSQR (least
squares QR) algorithm [18] is applied to efficiently solve the
sparse linear system related to the strong interactions, while
the matrix-vector products, related to the weak interactions,
are accelerated by using FFTs. Numerical tests showed that
LSQR converges more rapidly than GMRES or bi-conjugate
gradient stabilized method.

The paper is organized as follows. Section II presents the
EFIE impedance matrix and the scattered field. Section III
addresses the derivation of the weak interaction impedance
matrix and section IV deals with how this matrix can be
partitioned into Toeplitz sub-matrices. Section V presents the
bi-iterative scheme to efficiently solve the linear system and
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section VI shows numerical results for a paraboloid-shaped
object and a Gaussian rough surface. The last section gives
concluding remarks.

II. EFIE IMPEDANCE MATRIX AND SCATTERED FIELD

In this paper, to compute the field scattered by a perfectly-
conducting object, the EFIE is solved from the MoM. In
addition, the Galerkin method is applied by using the Rao-
Wilton-Glisson basis functions. This leads to solve the linear
system Z̄X = b, where Z̄ is the impedance matrix and X a
vector related to the incident wave. The time convention e−jωt

is used throughout this paper.
The element Zm,n of the impedance matrix Z̄, correspond-

ing to the interaction between two edges m (observation) and
n (source) of a facet couple (p, q), is expressed as [2]

Zm,n =
spsq

4πApAqLmLn

∫∫
Tp

∫∫
Tq

(
ρpm · ρqn −

1

k2

)
× e−jkDp,q

Dp,q
dRpdRq, (1)

where sp,q = ±1, {Ap,q} the triangle areas, {Lm,n} the edge
lengths, ρp,qm,n =

(
V p,q
m,n −Rp,q

)
/2, in which V p,q

m,n is the
position vector of the vertex unshared by the edge (m,n) and
belonging to the facet (p, q). In addition, Dp,q = ‖Rp −Rq‖
and k is the wavenumber which equals 2π/λ, where λ is the
wavelength in free space.

Assuming a plane incident wave, a component bn of the
vector b associated to the source edge m and facet p is given
by [2]

bm = − j

ωµ

Lmsm
2Ap

∫∫
Tp

ρpm · p̂ince
−kinc·RpdRp, (2)

where ω is the wave pulsation and µ the permeability of the
surrounding medium. In addition, p̂inc (either vertical, v̂inc

(θ), or horizontal, ĥinc (φ)) and kinc are the polarization and
incident wave vectors, respectively, both defined in spherical
coordinates from the angles (θinc, φinc). By solving the linear
system X = Z̄

−1
b, the components {an} of the vector X

are found. The scattered far field is then expressed as

E∞sca(R0) = −jωµe
−jkR0

8πR0

PFacet∑
p=1

MEdge∑
m=1

Lmamsm
Ap

×
∫∫

Tp

ρpme
jksca·RpdRp, (3)

where PFacet is the number of facets and MEdge the number
of edges associated to the facet p. In addition, R0 is the
distance from the receiver to the phase origin of the object.
The scattering coefficient is then expressed as

SCpincpsca = lim
R0→∞

2
√
πR0

E∞sca · p̂sca

Einc · p̂inc
, (4)

where pinc = {θ, φ} and psca = {θ, φ}. The subscripts
“inc” and “sca” stand for incident and scattered (waves),
respectively. The receiver polarization basis (k̂sca, v̂sca, ĥsca)
can be defined in a similar way as that of the incident field
(k̂inc, v̂inc, ĥinc), in which θsca and φsca are the receiver (scat-
tering) angles. The radar cross section RCSpincpsca is obtained
by taking the squared modulus of SCpincpsca .

III. DERIVATION OF THE WEAK INTERACTION IMPEDANCE
MATRIX

The impedance matrix is split into near Z̄Strong (or strong)
and far Z̄Weak (or weak) interactions as

Z̄ = Z̄Strong + Z̄Weak, (5)

where the elements of the strong interactions are calculated
from equation (1) (without approximation) and those of the
weak interactions from the equation derived in appendix A.
Equation (1) shows that Zm,n requires the calculation of
two two-fold numerical integrations over the surfaces of the
triangles Tp and Tq . This is done from two-fold Gauss-
Legendre integrations. In this paper, the weak interactions are
derived from a closed-form expression addressed in appendix
A. The singularity, which occurs for Dp,q = 0, is computed
from the work published by [19].

Then, calculating the sum over the 4 facets of edges (m,n),
appendix A shows that an element of the weak interaction is

Z̃m,n ≈
p=3∑
p=1

G(p) (Rm −Rn)W (p) (Rm,Rn)

=

p=3∑
p=1

G(p),(0) (rm,n)

q=Q∑
q=0

W (p) (Rm,Rn)

× (zm − zn)
2q
A(p),(q) (rm,n) , (6)

where Rm,n = rm,n + (zm − zn)ẑ and G
(p),(0)
m,n =

G
(p)
m,n|zn−zm=0. The above equation shows that the matrix

˜̄Zm,n is expressed as the sum over three matrices {Ḡ(p)} that
depend only on Rm −Rn weighted by polynomial functions
{W (p)} that depend on the source edge Rn (its middle) and
observation edge Rm (its middle). In addition, the element
G

(p)
m,n can be expanded over z = zm − zn near 0, where

z is the elevation difference between the edge middles m

and n. It is important to underline that G(p),(0)
m,n and A

(p),(q)
m,n

(weighting of the Taylor series expansion) depend only on
rm,n =

√
(xm − xn)2 + (ym − yn)2. The functions W (p)

m,n,
G

(p),(0)
m,n and A

(p),(q)
m,n are expressed from equations (A15),

(A17), (A20) (Q = 1) and (A21) (Q = 2).
The appendix also shows that equation (6) is valid if the

strong interaction distance (equations (A6) and (A22)) satisfies

rStrong > max

(
max (Lm,∆z)

2
n0

2λ
,max(∆z)

√
n0
2

)
, (7)

where n0 = 20, ∆z = max(z)−min(z) on the distance rStrong
and Lm the m edge length.

If the (xm, ym) (or (xn, yn)) Cartesian grid is uniform, then
the matrix associated to the element G(p),(0)

m,n × A
(p),(q)
m,n =

B
(p),(q)
m,n is Toeplitz. In addition, since W (p)

m,n =
∑s=S
s=1 f

(s)
m g

(s)
n

is a polynomial function of Rn and Rm, equation (6) can be
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written as

Z̃m,n ≈
p=3∑
p=1

q=Q∑
q=0

R=2q∑
r=0

W (p)
m,nB

(p),(q)
m,n (zm)

2q−r
(−zn)

r
Cr2q

=

p=3∑
p=1

s=S∑
s=1

q=Q∑
q=0

R=2q∑
r=0

Cr2q

[
(zm)

2q−r
f (s)m

]
B(p),(q)
m,n ×[

(−zn)
r
g(s)n

]
, (8)

where B
(p),(q)
m,n = G(p),(0) (rm,n)A(p),(q) (rm,n), Cr2q =

(2q)!/[r!(2q− r)!] (binomial coefficient). The above equation
is in a form such that the source point n is on the right side of
B

(p),(q)
m,n while the observation point m is located on the left

side of B(p),(q)
m,n . Appendix A shows that S = 3 + 6 + 36 = 45

and gives the expression of {g(s)n , f
(s)
m } for s = {1, 2, 3},

corresponding to p = 1. The terms defined for s > 3 are
obtained in a similar way.

The integer S corresponds to the expansion order that
decomposes any function as a sum of S terms that depend
only on the (m,n) product. For example, the dot product
ρm · ρn = ρm,xρn,x + ρm,yρn,y + ρm,zρn,z , where the
subscripts (x, y, z) denote the vector components. Then S = 3.
This way is applied in Eq. (A15).

Then, the matrix product O ˜̄ZS can be computed from 3×
45× [Q(Q+2)+1] FFTs, where O and S are any observation
and source vectors, respectively.

IV. TOEPLITZ SUB-MATRICES

As shown in Figure 1, the (xm, ym) (or (xn, yn)) Cartesian
grid over the center of the edges is not uniform, but the grid
can be uniform by blocks. To this end, as shown in Fig. 1,
the edges are sorted in ascending order going from left to
right and from bottom to top. In what follows, the edges of
y values equal to {−0.15,−0.5, 0.5, 0.15}λ are named odd
rows whereas those of y values equal to {−0.1, 0, 0.1}λ are
named even rows.

Let f be any function of rm,n =√
(xn − xm) + (yn − ym)2 (planar surface) and Zm,n

an element of the matrix Z̄ associated to the function
f(rm,n). Then, as shown in Figure 2, Z̄ is Toeplitz by blocks
by considering 4 cases:

1) The purple color represents the Toeplitz sub-matrices
between the edges of odd rows.

2) The blue color represents the Toeplitz sub-matrices
between the edges of even rows.

3) The green color represents the Toeplitz sub-matrices
between the edges of odd rows and even rows, for which
the edge numbers are odd.

4) The yellow color represents the Toeplitz sub-matrices
between the edges of odd rows and even rows, for which
the edge numbers are even.

In addition, for two rows separated by the same y distance,
the matrix is the same. For example, in Fig. 2, the sub-matrix
of edges m = n = {1, 2, 3, 4, 5, 6, 7} is the same as that
obtained for m = n = {12, 13, 14, 15, 16, 17, 18}. For cases
1, 2 and 3, the sub-matrices are also symmetric, which implies

Fig. 1. Sort of the edges. A square plate of area Lx × Ly = (0.4λ)2

is considered and the sampling steps with respect to the x and y directions
are ∆x = ∆y = 0.1λ. The label m ⇒ m′ (or n ⇒ n′) means that the
first number m indicates the original edge number and the second number
m′ gives the new edge number. The integer m′ sorts the edges in ascending
order going from left to right and from bottom to top.

Fig. 2. Structure of the impedance matrix represented by Toeplitz sub-
matrices.The four cases are represented by four colors and the geometry is
shown in Fig. 1.

that only the first row is calculated, whereas for case 4, the
first row and column are computed.

For each case, Table I lists the length of the rows or columns
of the sub-matrices and their number. Nx,y is the number of
vertices on a uniform grid of step ∆x and ∆y , respectively.
For instance, in Fig. 1, ∆x = ∆y = 0.1λ, Nx = Ny = 5.

The total number of elements is then NToep = 6NxNy −
10Nx − 8Ny + 13, while the number of edges is NEdge =
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TABLE I
FOR EACH CASE, NUMBER AND LENGTH OF THE ROWS OR COLUMNS OF

THE SUB-MATRICES. FOR CASE 4, THE LAST LINE CORRESPONDS TO THE
COLUMNS.

Case Number Length
1 Ny − 1 2Nx − 3
2 Ny − 2 Nx − 1
3 Ny − 2 Nx − 1
4 Ny − 2 Nx − 1
4 Ny − 2 Nx − 2

3NxNy−4(Nx+Ny)+5. For Nx � 1 and Ny � 1, NToep ≈
2NEdge. For the weak interactions and for a planar surface, this
means that instead of calculating N2

Edge−NStrong elements, only
2NEdge elements are computed, where NStrong is the number of
edge pairs in near field. In other words, for N2

Edge � NStrong,
the compression rate is of the order of 1− 2/NEdge.

In addition, from the previous subsection and Table I, for
Nx,y � 1, the complexity of the matrix-vector product Z̄X =
(Z̄Strong + Z̄Weak)X is

CMVP = 135× [Q(Q+ 2) + 1]× 4×Ny log2Nx +NStrong

= 540 [Q(Q+ 2) + 1]Ny log2Nx +NStrong

≈ α
√
NEdge log2NEdge +NStrong, (9)

where α = 270 [Q(Q+ 2) + 1] /
√

3, NEdge ≈ 3NxNy = 3N2
x

with Ny = Nx. For rStrong = 0, NStrong = N2
Edge (Z̄Weak = 0̄).

Then, in comparison to a conventional matrix-vector product
of complexity N2

Edge, the use of FFTs is efficient if

ηMVP =
α log2NEdge

N
3/2
Edge

+
NStrong

N2
Edge

� 1. (10)

V. RESOLUTION OF THE LINEAR SYSTEM

The final step is to efficiently solve the linear system Z̄X =
b. For large problems, the conventional LU decomposition
cannot be used and iterative schemes are preferred. Usually,
the conjugate gradient algorithm and their improved versions
can be good candidates, but for the EFIE, their convergence
order is very large (for the scenarii presented in the next
section, the order exceeds 300). In this paper, we propose to
use Z̄Strong as a preconditioning matrix M̄ c = Z̄

−1
StrongZ̄Weak

and next, a Taylor series expansion is applied on the resulting
characteristics matrix to account for the weak interactions
through Z̄Weak. Then

X =
(
Z̄Strong + Z̄Weak

)−1
b

=
[
Z̄Strong

(
Ī + Z̄

−1
StrongZ̄Weak

)]−1
b

=
(
Ī + M̄ c

)−1
Z̄
−1
Strongb

≈
K∑
k=0

(
−M̄ c

)k
Z̄
−1
Strongb =

K∑
k=0

Ȳ
(k)
, (11)

in which{
Ȳ

(0)
= Z̄

−1
Strongb k = 0

Ȳ
(k+1)

= −M̄ cȲ
(k)

= −Z̄−1Strong

(
Z̄WeakȲ

(k)
)

k > 0
.

(12)

This algorithm converges if the spectral radius (largest mod-
ulus of its eigenvalues) of M̄ c is strictly smaller than one.
This implies that the strong distance must be not too small.
For large problems, this value is not calculated because it is
very time consuming. Since Z̄Strong is a sparse matrix, its LU
decomposition matrices is also sparse, but this operation can be
time consuming. To overcome this issue, the LSQR [18] (least
squares QR) algorithm is applied because it is efficient for a
sparse matrix and more efficient than a gradient conjugate-
based method.

From equation (12), the complexity of the I-LSQR (I as
iterative) algorithm is

CI-LSQR = CLSQR +KI-LSQR (CLSQR + CMVP) , (13)

where CLSQR is the complexity of the LSQR algorithm and
CMVP is expressed from equation (9). The convergence order
KI-LSQR = k is obtained when the relative residual error (RRE)
satisfies

RRE =
norm

(
X(k+1) −X(k)

)
norm

(
X(k+1)

) < εI-LSQR, (14)

where X(K) =
∑k=K
k=0 Y

(k) and εI-LSQR is the threshold of
I-LSQR. Typically, εI-LSQR = 10−2 and εLSQR = 5 × 10−4

equals the LSQR threshold.

VI. NUMERICAL RESULTS

The wavelength in free space λ is 1 m and the polarization
is θθ.

A. Paraboloid surface

First, a paraboloid surface of equation z(x, y) = 2a(x2 +
y2)/L2

x is considered and it is shown in Figure 3. In the
(Ox,Oy) plane, the surface area is LxLy , where {Lx,y} are
the surface lengths with respect to the x and y directions.
In addition, the center of the surface is the point O of
coordinates (0, 0). For x = Lx/2 and y = Ly/2 = Lx/2,
z = a = max(z). In Figure 3, the number of edges is
NEdge = 42, 960, the sampling steps with respect to the x
and y directions are ∆x = ∆y = 0.1λ and a = λ/2.

Fig 4 plots the bistatic RCS in dBm2 versus the scat-
tering angle θsca. To better highlight the differences, in the
lower subfigure, the ratio RCSI-LSQR/RCSLU is plotted in
dB scale, where RCSLU is the RCS computed from a LU
decomposition of the impedance matrix. The incidence an-
gles are θinc = π/6 and φinc = 0, and φsca = 0 is
the azimuthal scattering angle. The illuminated object is a
paraboloid surface, as shown in Figure 3. In the legend, “LU:
(tLU,1, tLU,2) s” and “uStrong, I-LSQR− (Q,KI-LSQR, NLSQR) :
(tI-LSQR,1, tI-LSQR,2, tI-LSQR,3) s,RRE” mean
• tLU,1: Computing time to fill the impedance matrix, in

seconds.
• tLU,2: Computing time to solve the linear system from

LU, in seconds.
• uStrong = rStrong/λ: Distance of the strong interactions

normalized by λ.
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Fig. 3. Paraboloid surface with Lx = Ly = 12λ. NEdge = 42, 960,
∆x = ∆y = 0.1λ and a = λ/2.

Fig. 4. Top: Bistatic RCS in dBm2 versus the scattering angle θsca. Bottom:
Ratio RCSI-LSQR/RCSLU in dB scale. Q = 0, rStrong = {1.2, 1.4, 1.6}λ,
θinc = π/6, φinc = 0 and φsca = 0. The illuminated object is a paraboloid
surface, as shown in Figure 3.

• KI-LSQR: Convergence order of I-LSQR.
• NLSQR: Mean convergence order of LSQR (εLSQR = 5×

10−4).
• Q: Order of the Taylor series expansion over z.
• tI-LSQR,1: Computing time to fill the impedance matrix of

the strong interactions, in seconds.
• tI-LSQR,2: Computing time to compute the matrix-vector

product Z̄WeakȲ
(k)

= v, in seconds.
• tI-LSQR,3: Computing time to solve the linear system
Z̄
−1
Strongv from LSQR (εLSQR = 5× 10−4), in seconds.

• RRE: Relative residual error obtained at the convergence
order KI-LSQR (εI-LSQR = 10−2) .

The total computing time is then tLU,1 + tLU,2 for LU and
tI-LSQR,1 + tI-LSQR,2 + tI-LSQR,3 for I-LSQR.

As we can see in Fig. 4, the results match well with
those obtained from LU. As rStrong increases, the results better
match and the order of convergence, KI-LSQR, decreases from
5 to 3 and the filling time tI-LSQR,1 increases slightly. By

Fig. 5. Same variations as in Fig. 4 but a = 1.5λ, rStrong = 1.6λ and
Q = {0, 1, 2}.

calculating only Z̄Strong, the memory requirement is divided
by 20 in comparison to LU, which needs to calculate all the
elements of Z̄. Compared to the filling computation time of
LU, the gain is of the order of 9. On the other hand, the time
tI-LSQR,2 + tI-LSQR,3 to solve the linear system by I-LSQR is
slightly smaller than that of LU, tLU,2.

From equation (10), ηMVP ≈ 0.05, with rStrong = 1.6λ. This
means that the matrix-vector product computed from NFFT
FFTs should be 1/ηMVP ≈ 20 faster than the one computed
in a conventional manner. In practice, it is not the case. The
FFTs (and IFFTs) are computed from the fft and ifft MatLab
functions in a matrix manner to accelerate their calculation.
Nevertheless, loops are required and the reshape MatLab
function is also applied, which increases the computing time.
If this step was programmed in C, the computing time would
be smaller. We can also note that this time tI-LSQR,2 is larger
than tI-LSQR,3, allocated to solve the linear system by LSQR,
also computed in MatLab but by calling C functions.

However, both computing times (tI-LSQR,2, tI-LSQR,3) are not
comparable and tI-LSQR,2 would be much smaller if the matrix-
vector product was made in C. In addition, a parallelization
would make it possible to significantly to decrease this com-
putation time. With MatLab, the LU inversion is optimized
and parallelized.

Fig. 5 plots the same variations as in Fig. 4 but a = 1.5λ,
rStrong = 1.6λ and Q = {0, 1, 2}. As expected, as Q increases,
the results better match with those obtained from LU, and the
results computed for Q = 1 and Q = 2 are nearly the same.

Equation (7) gives the lowest value of the strong interaction
distance, for which the derivation of the weak interaction
matrix is valid at order zero (Q = 0). In polar coordinates
z(x, y) = h(r) = 2ar2/L2

x and dh/dr = 4ar/L2
x. Then,

max(∆z) ≈ 4amax(r)rStrong/L
2
x = 2arStrong/Lx = 0.4λ in

Fig. 5. From equation (7), rStrong > max(0.22, 1.60, 126)λ =
1.6λ = rStrong,min with n0 = 20. This explains in Fig. 5
why the results for Q = 0 deviate from those obtained from
LU for low values of the RCS since rStrong = rStrong,min.
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Fig. 6. Surface height versus the coordinates x and y. Lx × Ly = 144λ2,
σz = 0.3λ and Lc,x = Lc,y = 1.5λ. The number of edges is NEdge =
42, 960.

Fig. 7. Top: Bistatic RCS in dBm2 versus the scattering angle θsca. Bottom:
Ratio RCSI-LSQR/RCSLU in dB scale. Q = 0, rStrong = {1.2, 1.4, 1.6}λ,
θinc = π/6, φinc = 0 and φsca = 0. The illuminated object is a rough
surface, which is plotted in Figure 6.

The order Q = 1 makes it possible to significantly decrease
this deviation, and the contribution of the second order is
negligible.

B. Rough surface

To strongly attenuate the edge diffractions by the surface,
the well-known incident tapered wave published by Braunish
et al. [20] is applied (at the order two) with tapering parameter
g = Lx/4 (surface of area A0 = L2

x). The length g controls
the extent of the incident beam that illuminates the surface.

Fig. 6 plots a random rough surface of Gaussian height
distribution and Gaussian height autocorrelation function. The
surface correlation lengths with respect to the x and y direc-
tions are Lc,x = Lc,y = 1.5λ, the surface height standard de-
viation is σz = 0.3λ and the surface area is Lx×Ly = 144λ2.

Fig. 8. Same variations as in Fig. 7 but the incidence angle θinc = π/4.

Fig. 9. Same variations as in Fig. 7 but rStrong = 1.6λ and Q = {0, 1, 2}.

Fig. 7 plots the bistatic RCS in dBm2 versus the scattering
angle θsca. At the bottom, the ratio RCSI-LSQR/RCSLU is
plotted in dB scale. Q = 0, rStrong = {1.2, 1.4, 1.6}λ,
θinc = π/6, φinc = 0 and φsca = 0. The illuminated object
is a rough surface, which is plotted in Figure 6. For high
values of RCS, the results match well with those obtained
from LU. From equation (7) and by taking ∆z ≈

√
2σz ,

rStrong > max(0.34, 1.80, 1.34)λ = 1.8λ. In Fig. 7, this
explains why differences with LU appear for low values of
RCS.

Fig. 8 plots the same variations as in Fig. 7 but the incidence
angle θinc = π/4 (instead of θinc = π/6). Like in Fig. 7,
a deviation occurs from incidence angles larger than 30-45
degrees and the proposed method gives similar performances.

Fig. 9 plots the same variations as in Fig. 7 but rStrong =
1.6λ and Q = {0, 1, 2}. For Q = 1, the results match well
with those obtained from LU. Fig. 9 also shows that it is not
relevant to calculate the order Q = 2.

Fig. 10 plots the same variations as in Fig. 9 but in cross
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Fig. 10. Same variations as in Fig. 9 but in cross polarization (θφ or VH).

Fig. 11. Same variations as in Fig. 9 but Lc,x = Lc,y = 2λ (instead of
Lc,x = Lc,y = 1.5λ).

polarization (θφ or VH). The VH strengths are 20 dB lower
than those obtained in VV, which explains why the deviation
with LU is larger than those shown in Fig. 9. Indeed, the
cross polarization requires a better accuracy, since the levels
are smaller.

Fig. 11 plots the same variations as in Fig. 9, but Lc,x =
Lc,y = 2λ (instead of Lc,x = Lc,y = 1.5λ). As we can see,
the results obtained for Q = 1 match well with those obtained
from LU. In comparison to Fig. 9, the total computing time
is slightly smaller because rStrong remains unchanged and the
mean convergence order NI−LSQR ≈ 117 is smaller, whereas
the convergence order KLSQR = 4 remains constant.

Fig. 12 plots the same variations as in Fig. 9 but rStrong =
4.4λ and σz = 0.5λ (instead of σz = 0.3λ). The value
rStrong = 4.4λ is chosen so that it satisfies criterion (7). As
we can see, the results obtained for Q = 1 match well with
those computed from LU. In comparison to LU (and Fig. 9),
the computing time is greater because rStrong is larger than

Fig. 12. Same variations as in Fig. 9 but rStrong = 4.4λ and σz = 0.5λ
(instead of σz = 0.3λ).

that used for σz = 0.3λ (it is proportional to σ2
z ) and the

mean convergence order NI−LSQR ≈ 206 increases, whereas
KLSQR = 3 is smaller. As expected, as σz increases, the
proposed method is less efficient.

VII. CONCLUSION

First, an acceleration to compute the impedance matrix,
based on a far-field approximation, is addressed. Next, the
impedance matrix is split into strong and weak interactions and
this latter is compressed by expressing it from Toeplitz sub-
matrices. Then, the linear system is efficiently solved from a
bi-iterative scheme. For a given order, the LSQR (least squares
QR) algorithm is applied to solve the sparse linear system
related to the strong interactions, while the matrix-vector
products, related to the weak interactions, are accelerated by
using FFTs.

For a paraboloid-shaped object, the numerical results show
that the proposed method, named I-LSQR, is very efficient.
The computation of the higher order (related to ∆z =
max(z)−min(z)) makes it possible to obtain more accurate
results with an increase of the computing time.

For a rough surface, the numerical results also show that
I-LSQR is efficient, but it is more sensitive to ∆z ∝ σz . In
addition, the method becomes less efficient as σz increases, be-
cause the minimum strong interaction distance (7) increases. It
is approximately expressed as (

√
2σz)

2×20/(2λ) = 20σ2
z/λ.
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APPENDIX A
DERIVATION OF THE WEAK IMPEDANCE MATRIX ELEMENTS

For a pair of facets in far field from each other, using an
updated Fraunhofer criterion, Bourlier [21], [22] showed that
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Fig. 13. For a planar surface, interaction of an edge pair (m,n) and their
two facets. The facets are assumed to be identical.

equation (1) can be simplified as

Zm,n ≈
spsqe

−jkRp,q

4πApAqRp,qLmLn

∫∫
Tp

∫∫
Tq

(
ρpm · ρqn −

1

k2

)
× e−jkR̂p,q·(δp−δq)dRpdRq, (A1)

where Rp,q = Gp − Gq and δp,q = Mp,q − Gp,q , in
which Gp,q is the gravity center of the facets p and q,
respectively, and Mp,q the integration point on the facets p
and q, respectively (Dp,q = Mp −M q = Rp,q + δp − δq).
In addition, R̂p,q = Rp,q/Rp,q , where Rp,q = ‖Rp,q‖.

For the weak interactions, the integral can be evaluated from
a single point chosen at the middle of the egde m or n, Pm,n.
Equation (A1) becomes

Zm,n ≈
spsqe

−jkR′
m,n

4πR′m,nLmLn

(
ρpm · ρqn −

1

k2

)
, (A2)

where

R′m,n = Rm,n

[
1 +

(δm − δn) ·Rm,n

R2
m,n

]
, (A3)

and δp,q = δm,n = Pm,n−Gp,q, Rp,q = Pm−P n = Rm,n.
In comparison to equation (A2) at the denominator, Rp,q is
changed by R′p,q . Since | (δm − δn) ·Rm,n|/R2

m,n � 1, and
by using the approximation 1/(1 + x) ≈ 1 − x ≈ e−x for
|x| � 1, equation (A2) can be expressed as

Zm,n ≈
spsqe

−jkRm,n

4πRm,nLmLn

(
ρpm · ρqn −

1

k2

)
ej(φ1+φ2), (A4)

where
φ1 = −kδmδ̂m · R̂m,n

(
1− j

kRm,n

)
φ2 = +kδnδ̂n · R̂m,n

(
1− j

kRm,n

) . (A5)

Equation (A4) is valid if ∆2/2Rm,n < λ/n0 [21], where
n0 is an integer ranging from 10 to 20 and ∆ = max(δn) +

max(δm) ≈ max(Lm). Typically, n0 = 20. In other words,
the distance of the strong interactions must satisfy

RStrong >
n0 max(Lm)2

2λ
. (A6)

Since an edge shares two facets, a pair of edges (m,n)
implies 4 facets. As shown in Fig. 13, assuming that the
meshed triangles are identical, the sum over the facets of
Zm,n can be made analytically. Since for a given edge,
δ−m,n = −δ+m,n and ρp−,q−m,n = −ρp+,q+m,n , the sum over the
4 triangles of spsqej(φ1+φ2) reduces to

ej(φ1+φ2) − ej(−φ1+φ2) − ej(φ1−φ2) + e−j(φ1+φ2)

= −4 sinφ1 sinφ2. (A7)

In the same way, the sum over the 4 triangles of
spsqe

j(φ1+φ2)ρpm · ρqn/(ρp+m · ρq+n ) reduces to

ej(φ1+φ2) + ej(−φ1+φ2) + ej(φ1−φ2) + e−j(φ1+φ2)

= 4 cosφ1 cosφ2. (A8)

An element Z̄m,n of the impedance matrix is then

Z̃m,n ≈
e−jkRm,n

πRm,nLmLn

(
ρp+m · ρq+n cosφ1 cosφ2

+
sinφ1 sinφ2

k2

)
. (A9)

Applying the following identities [23]
cos(z cos θ) = J0(z) + 2

∞∑
p=1

J2p(z) cos(2pθ)

sin(z cos θ) = 2
∞∑
p=1

(−1)pJ2p+1(z) cos [(2p+ 1)θ]

,

(A10)

where Jp is the Bessel function of the first kind and order p,
we have{

cosφ1 cosφ2 ≈ J0 (qm) J0 (qn)
sinφ1 sinφ2 ≈ −4J1 (qm) J1 (qn) cosφm cosφn

, (A11)

where φ1 = −qm cosφm and φ2 = qn cosφn. The use of Eq.
(A5) leads to

qm,n = kδm,n

(
1− j

kRm,n

)
, cosφm,n = δ̂m,n · R̂m,n.

(A12)

In equation (A10), only the first term of the sum is kept,
since |qm,n| � 1.

In equation (A12), it is important to keep in mind that the
extra term j/(kRm,n) comes from a Taylor series expansion
up to the order one. Then, we can simplify equation (A11) as

cosφ1 cosφ2 ≈ J0 (wm) J0 (wn) +
j

kRm,n
×

[wmJ1 (wm) J0 (wn) + wnJ1 (wn) J0 (wm)]

≈
(

1− w2
m

4

)(
1− w2

n

4

)
+

j

2kRm,n

(
w2
m + w2

n

)
, (A13)
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and
sinφ1 sinφ2

cosφm cosφn
≈ −4J1 (wm) J1 (wn) +

2j

kRm,n
×{

wmJ1 (wn) [J0 (wm)− J2 (wm)]

+ wnJ1 (wm) [J0 (wn)− J2 (wn)]
}

≈ −4J1 (wm) J1 (wn) +
2j

kRm,n
×

[wmJ1 (wn) J0 (wm) + wnJ1 (wm) J0 (wn)]

≈ −wmwn
(

1− 2j

kRm,n

)
. (A14)

where wm,n = kδm,n. In addition, since |wm,n| � 1,
J0(wm,n) ≈ 1 − w2

m,n/4 and J1(wm,n) ≈ wm,n/2. These
approximations makes the programming easier.

In conclusion, an element of the impedance can be approx-
imated as

LmLnZ̃m,n ≈ G(1)
m,n

(
1− w2

m

4

)(
1− w2

n

4

)
ρp+m · ρq+n

+
(
w2
m + w2

n

)
G(2)
m,nρ

p+
m · ρq+n

+ wmwnG
(3)
m,n

(
Rm,n · δ̂m

)(
Rm,n · δ̂n

)
,

(A15)

where 
wm,n = kδm,n = k ‖δm,n‖
δm,n = Pm,n −Gp+,q+

Rm,n = Pm − P n

ρp+,q+m,n =
(
V p+,q+
m,n −Gp+,q+

)
/2

, (A16)

and 

G
(1)
m,n =

e−jkRm,n

πRm,n

G
(2)
m,n = G

(1)
m,n

j

2kRm,n

G
(3)
m,n = −G(1)

m,n

(
1− 2j

kRm,n

)
1

k2R2
m,n

. (A17)

Since for a planar surface, Rm,n = rm,n = (xn − xm)x̂+

(yn − ym)ŷ on a uniform grid, the matrix Z̄(i)
m,n associated

to the element G(i)
m,n is Toeplitz. Then, the matrix product

OmZ̄
(i)
m,nSn can be computed from FFTs, where Om and

Sn are any observation and source vectors, respectively. For
instance, the first term of equation (A15) is expanded as(

fmρ
p+
m,x

)
G(1)
m,n

(
ρq+n,xfn

)
+
(
fmρ

p+
m,y

)
G(1)
m,n

(
ρq+n,yfn

)
+
(
fmρ

p+
m,z

)
G(1)
m,n

(
ρq+n,zfn

)
, (A18)

where fm,n = 1 − w2
m,n/4 and the subscripts (x, y, z) stand

for the components of the vector. The above equation is in a
form such that the source point is on the right side of Green’s
function while the observation point is located on the left side
of Green’s function. In addition, three matrix-vector products
are required, which are computed from FTTs. The same way
is used for the last two terms of equation (A15), which
requires 6 and 36 matrix-vector products, respectively, which

are computed from FTTs. Thus, 45 matrix-vector products are
necessary.

If the surface is not planar, then Rm,n =√
r2m,n + (zn − zm)2, where z(x, y) is the elevation of

the surface. A Taylor series expansion over z = zn − zm up
to the fourth order leads to

G(p)
m,n = G(p),(0)

m,n

(
1 + z2A(p),(1)

m,n + z4A(p),(2)
m,n

)
, (A19)

where 

A
(1),(1)
m,n = −1 + ju

2r2m,n

A
(2),(1)
m,n = −2 + ju

2r2m,n

A
(3),(1)
m,n = −j u

2 − 5ju− 8

2r2m,n(u− 2j)

, (A20)



A
(1),(2)
m,n =

3 + 3ju− u2

8r4m,n

A
(2),(2)
m,n =

8 + 5ju− u2

8r4m,n

A
(3),(2)
m,n =

9ju2 + 33u− 48j − u3

8r4m,n(u− 2j)

, (A21)

and G
(p),(0)
m,n = G

(p)
m,n|zn−zm=0 = G

(p)
m,n(rm,n), u =

k ‖rm,n‖ = krm,n (rm,n = (xn − xm)x̂ + (yn −
ym)ŷ). Since {A(p),(1)

m,n , A
(p),(2)
m,n } depends only on rm,n, on

a uniform grid, the matrices associated to the elements
{G(p),(0)

m,n A(p),(1), G
(p),(0)
m,n A(p),(2)} are also Toeplitz.

For the first order, since Rm,n = rm,n[1 + z2/(2r2m,n)], the
second order is neglected in comparison to the order zero if
kz2/(2rm,n) < 2π/n0 (condition on the phase of e−jkRm,n )
and if z2/(2r2m,n) < 1/n0 (condition on the amplitude of
1/Rm,n), where n0 > 1 is an integer ranging from 10 to 20.
Typically, n0 = 20. This is consistent with equations (A20)
and (A21). In other words, the strong interaction distance must
satisfy

rStrong > max

(
max(∆z)2n0

2λ
,max(∆z)

√
n0
2

)
, (A22)

where ∆z = max(z)−min(z).
For a non-planar surface, the conditions δ−m,n = −δ+m,n and

ρp−,q−m,n = −ρp+,q+m,n are not satisfied. Then, the mean value is
taken, that is δ+m,n → [δ+m,n + (−δ−m,n)]/2 and ρp+,q+m,n →
[ρp+,q+m,n + (−ρp−,q−m,n )]/2.
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