Extending Drawings of Graphs to Arrangements of Pseudolines

Alan Arroyo, Julien Bensmail, Bruce R. Richter

To cite this version:

Alan Arroyo, Julien Bensmail, Bruce R. Richter. Extending Drawings of Graphs to Arrangements of Pseudolines. Journal of Computational Geometry, 2021, 12 (2), pp.3-24. 10.20382/jocg.v12i2a2 . hal-03120899

HAL Id: hal-03120899

https://hal.science/hal-03120899

Submitted on 25 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Extending Drawings of Graphs to Arrangements of Pseudolines

Alan Arroyo
IST Austria, Klosterneuburg, Austria
alanmarcelo.arroyoguevara@ist.ac.at
Julien Bensmail
Université Côte d'Azur, CNRS, Inria, I3S, Sophia-Antipolis, France
julien.bensmail.phd@gmail.com
R. Bruce Richter
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada
brichter@uwaterloo.ca

Abstract

- Abstract

In the recent study of crossing numbers, drawings of graphs that can be extended to an arrangement of pseudolines (pseudolinear drawings) have played an important role as they are a natural combinatorial extension of rectilinear (or straight-line) drawings. A characterization of the pseudolinear drawings of K_{n} was found recently. We extend this characterization to all graphs, by describing the set of minimal forbidden subdrawings for pseudolinear drawings. Our characterization also leads to a polynomial-time algorithm to recognize pseudolinear drawings and construct the pseudolines when it is possible.

2012 ACM Subject Classification Mathematics of computing \rightarrow Graph algorithms; Mathematics of computing \rightarrow Graphs and surfaces

Keywords and phrases graphs, graph drawings, geometric graph drawings, arrangements of pseudolines, crossing numbers, stretchability.

Funding Alan Arroyo: Supported by CONACYT. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 754411.
Julien Bensmail: ERC Advanced Grant GRACOL, project no. 320812.
R. Bruce Richter: Supported by NSERC.

1 Introduction

Since 2004, geometric methods have been used to make impressive progress for determining the crossing number of (certain classes of drawings of) the complete graph K_{n}. In particular, drawings that extend to straight lines, or, more generally, arrangements of pseudolines, have been central to this work, spurring interest in such drawings for arbitrary graphs, not just complete graphs $[2,4,5,6,12]$.

In particular, for pseudolinear drawings, it is now known that, for $n \geq 10$, a pseudolinear drawing of K_{n} has more than

$$
H(n):=\frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor
$$

crossings $[1,14]$. The number $H(n)$ is conjectured by Harary and Hill to be the smallest number of crossings over all topological drawings of K_{n}; that is, the crossing number $\operatorname{cr}\left(K_{n}\right)$ is conjectured to be $H(n)$.

A pseudoline is the image ℓ of a continuous injection from the real numbers \mathbb{R} to the plane \mathbb{R}^{2} such that $\mathbb{R}^{2} \backslash \ell$ is not connected. An arrangement of pseudolines is a set Σ of
pseudolines such that, if ℓ, ℓ^{\prime} are distinct elements of Σ, then $\left|\ell \cap \ell^{\prime}\right|=1$ and the intersection is a crossing point. Informally, a crossing point or crossing is an intersection point between two pseudolines that locally looks like a crossing point between two non parallel lines (a formal definition of crossing will be given when we introduce the notion of string). More on pseudolines and their importance for studying geometric drawings of graphs can be found in [10, 11].

A drawing D of a graph G is pseudolinear if there is an arrangment of pseudolines consisting of a different pseudoline ℓ_{e} for each edge e of G and such that $D[e] \subseteq \ell_{e}$.

In the study of crossing numbers, restricting the drawing to either straight lines or pseudolines yields the rectilinear crossing number $\overline{\operatorname{cr}}\left(K_{n}\right)$ or the pseudolinear crossing number $\widetilde{\operatorname{cr}}\left(K_{n}\right)$, respectively. Clearly $\overline{\operatorname{cr}}\left(K_{n}\right) \geq \widetilde{\operatorname{cr}}\left(K_{n}\right)$ and the geometric methods prove that $\widetilde{\operatorname{cr}}\left(K_{n}\right)>H(n)$, for $n \geq 10$.

A good drawing is one where no edge self-intersects and any two edges share at most one point - either a crossing or a common end point - and no three edges share a common crossing. One somewhat surprising result is from Aichholzer et al.: a good drawing of K_{n} in the plane is homeomorphic to a pseudolinear drawing if and only if it does not contain a non-planar drawing of K_{4} whose crossing is incident with the unbounded face of the K_{4} [2] (see Figure 1). By ignoring the grey edges from Figure 1, we see that any such drawing of K_{4} contains a B-configuration, depicted as the third drawing of the first row of Figure 2. Based on our Theorem 2, Theorem 2.5.1 from [3] shows that any non-pseudolinear drawing contains a B-configuration. Thus, either Fig. 1 or the B-configuration can be used to characterize pseudolinear drawings of K_{n}. In [4] pseudolinear drawings of K_{n} are characterized as f-convex, and in [5] are characterized as monotone and free of a specific drawing of K_{4}.

Figure 1 Non-pseudolinear K_{4} with its crossing incident with the outer face.

Twenty-five years earlier, Thomassen [19] proved a similar theorem for a 1-planar drawing (that is, a drawing in which each edge is crossed at most once). The B - and W-configurations are shown as the third and fourth drawings in the first row of Figure 2. Thomassen's theorem is: if D is a 1-planar drawing of graph G, then D is homeomorphic to a rectilinear drawing of G if and only if D contains no B - or W-configuration.

Thomassen presented in [19] the clouds (first column in Figure 2) as an infinite family of drawings that are minimally non-pseudolinear.

Shortly after Thomassen's paper, Bienstock and Dean proved that if $\operatorname{cr}(G) \leq 3$, then $\overline{\operatorname{cr}}(G)=\operatorname{cr}(G)[7]$. They also exhibited examples based on overlapping W-configurations to show the result fails for $\operatorname{cr}(G)=4$; such graphs can have arbitrarily large rectilinear crossing number.

Despite the existence of infinitely many obstructions to pseudolinearity, we characterize them all.

- Theorem 1. A good drawing of a graph G is pseudolinear if and only if it does not contain one of the infinitely many obstructions shown in Figure 1.

The drawings in Figure 2 are obtained from the clouds (first column) by replacing at most two crossings by vertices. The formal statement of Theorem 1 is Theorem 15 in Section 6; also a more general version of this statement, Theorem 2, is discussed below. Our result draws a

Figure 2 Obstructions to pseudolinearity.
line between the class of pseudolinear drawings and the class of rectilinear drawings: Our result shows that recognizing pseudolinear drawings is a combinatorial/topological problem and implies a polynomial-time algorithm to detect pseudolinear drawings (Theorem 14). This contrast with the rather real algebraic geometry problem of deciding the stretchability of a drawing, defined as the problem of deciding whether a given drawing is homeomorphic to a rectilinear drawing. Mnëv $[16,17]$ showed that deciding the stretchability of an arrangement of pseudolines is $\exists \mathbb{R}$-hard, implying the $\exists \mathbb{R}$-hardness for the problem of deciding the stretchability of a graph drawing. Since $N P \subseteq \exists \mathbb{R}[15,18,8]$, this in particular shows that the stretchability problem is NP-hard. We refer to Matoušek's survey [15] for an approachable introduction to the complexity class $\exists \mathbb{R}$.

The natural setting for our characterization is strings embedded in the plane. An arc σ is the image $f([0,1])$ of the compact interval $[0,1]$ under a continuous map $f:[0,1] \rightarrow \mathbb{R}^{2}$. Let $S(\sigma)=\left\{p \in \sigma:\left|f^{-1}(p)\right| \geq 2\right\}$ be the set of self-intersections of σ. A string is an arc σ for which $S(\sigma)$ is finite. If $S(\sigma)=\emptyset$, then σ is simple. If σ^{\prime} is a string and $\sigma^{\prime} \subseteq \sigma$, then σ^{\prime} is a substring of σ.

Suppose that σ and σ^{\prime} whose intersection $\sigma \cap \sigma^{\prime}$ is a finite set and let $p \in \sigma \cap \sigma$. The rotation at p is a cyclic sequence of substrings determined by a small neighbourhood homeomorphic to the plane in which p is origin and the substrings incident with p are rays emanating from p [13, Thm. 3.1]. The strings σ_{1}, σ_{2} cross at p if they each have two substrings that alternate $\sigma_{1}-\sigma_{2}-\sigma_{1}-\sigma_{2}$ in the rotation at p.

An intersection point between of two strings σ and σ^{\prime} is ordinary if it is either an endpoint of σ or σ^{\prime}, or is a crossing. A set Σ of strings is ordinary if Σ is finite and any two strings in Σ have only finitely many intersections, all of which are ordinary. All the sets of strings considered in this paper are ordinary.

If Σ is an ordinary set of strings, then its planarization $G(\Sigma)$ is the plane graph obtained from Σ by inserting vertices at each crossing between strings and also at the endpoints of every string in Σ. To keep track of the information given by the strings, we will always assume that each string Σ has a different color and that each edge in $G(\Sigma)$ inherits the color of the string including it.

If Σ is an ordinary set of strings, then, for a cycle C in $G(\Sigma)$ (which is a simple closed curve in \mathbb{R}^{2}) the edges inside C are those drawn in the closed disk bounded by C (this includes the edges of C). A vertex $v \in V(C)$ is a rainbow for C if all the edges incident with v and drawn inside C have different colours. The reader can verify that, for each drawing in Figure 2, if we let Σ be the edges of the drawing, then the unique cycle in $G(\Sigma)$ has at most two rainbows. Our main result characterizes these cycles as the only possible obstructions:

- Theorem 2. An ordinary set of strings Σ can be extended to an arrangement of pseudolines if and only if every cycle C of $G(\Sigma)$ has at least three rainbows.

Henceforth, we define any cycle C in $G(\Sigma)$ with at most two rainbows as an obstruction. A set of strings is pseudolinear if it has an extension to an arrangement of pseudolines.

Theorem 2 is our main contribution. In the next section, we show that the presence of an obstruction implies the set of ordinary strings is not pseudolinear. The converse is proved in Section 4 by extending, one small step at a time, the strings in Σ to get closer to an arrangement of pseudolines. After each extension, we must show that no obstruction has been introduced. This involves dealing with cycles in $G(\Sigma)$ that have precisely three rainbows (that we refer as near-obstructions). In Section 3 we show the key lemma that if G has two such near-obstructions that intersect nicely at a vertex v, then G has an obstruction. In Section 5 we present a polynomial-time algorithm for detecting obstructions and we argue why the proof of Theorem 2 implies a polynomial-time algorithm for extending a pseudolinear set of strings. Finally, in Section 6, we show how Theorem 1 follows from Theorem 2 and we present some concluding remarks.

2 A set of strings with an obstruction is not extendible

Let us start by showing the easy direction of Theorem 2 :

- Lemma 3. If the underlying graph $G(\Sigma)$ of a set Σ of strings has an obstruction, then Σ is not pseudolinear.

Suppose that C is a cycle of $G(\Sigma)$ for some set of strings Σ. We define $\delta(C)$ as the set of vertices of C for which their two incident edges in C have different colours. In a set Σ of simple strings where no two intersect twice, $|\delta(C)| \geq 3$ for every cycle C of $G(\Sigma)$.

- Lemma 4. Let Σ be a set of simple strings where every pair intersect at most once. Suppose that C is an obstruction with $|\delta(C)|$ as small as possible. Let $S=x_{0}, x_{1}, \ldots, x_{\ell}$ be a path of $G(\Sigma)$ representing a substring of some string $\sigma \in \Sigma$ such that $x_{0} x_{1} \in E(C), x_{1} \in \delta(C)$ and x_{1} is not a rainbow of C. Then $V(C) \cap V(S)=\left\{x_{0}, x_{1}\right\}$.

Proof. By way of contradiction, suppose that there is a vertex $x_{r} \in V(C) \cap V(S)$ with $r \geq 3$. Assume that $r \geq 3$ is as small as possible. Let P be the subpath of S connecting x_{1} to x_{r}. The facts $x_{0} x_{1} \in E(C), x_{1} \in \delta(C)$, and $P \subseteq \sigma$ imply that $x_{1} x_{2} \neq E(C)$. Because x_{1} is not a rainbow for C and no two strings tangentially intersect at x_{1}, the edge $x_{1} x_{2}$ is drawn in the closed disk bounded by C. By choice of r, P is an arc connecting x_{1} to x_{r} in the interior of C.

Let C_{1} and C_{2} be the two cycles of $C \cup P$ containing P, labelled so that $x_{0} x_{1} \in E\left(C_{1}\right)$. We shall use the minimality of $|\delta(C)|$ to show that C_{1} and C_{2} are not obstructions. Then, we will count rainbows in C_{1} and C_{2} to obtain the contradiction that C is not an obstruction.

For a cycle X, let $\rho(X)$ be the set of rainbows of X. For $i=1,2$, let $Q_{i}=V\left(C_{i}\right) \backslash V(P)$. As the edges of S are included in the same string, we see that $\rho\left(C_{1}\right) \backslash Q_{1} \subseteq\left\{x_{r}\right\}$ and $\rho\left(C_{2}\right) \backslash Q_{2} \subseteq\left\{x_{1}, x_{r}\right\}$. Likewise, $\delta\left(C_{1}\right) \backslash Q_{1} \subseteq\left\{x_{r}\right\}$ and $\delta\left(C_{2}\right) \backslash Q_{2} \subseteq\left\{x_{1}, x_{r}\right\}$.

Let us show that C_{1} and C_{2} are not obstructions. Because $\left|\delta\left(C_{2}\right)\right| \geq 3$ and $\delta\left(C_{2}\right) \backslash Q_{2} \subseteq$ $\left\{x_{1}, x_{r}\right\},\left|\delta(C) \cap Q_{2}\right| \geq 1$. Since $\delta\left(C_{1}\right) \backslash Q_{1} \subseteq\left\{x_{r}\right\}$ and $x_{1} \in \delta(C),\left|\delta\left(C_{1}\right)\right| \leq\left|\delta\left(C_{1}\right) \cap Q_{1}\right|+$ $\left|\left\{x_{r}\right\}\right| \leq|\delta(C)|-2+\left|\left\{x_{r}\right\}\right|<|\delta(C)|$. Because $\left|\delta\left(C_{1}\right)\right| \geq 3$ and $\left|\delta\left(C_{1}\right) \backslash Q_{1}\right| \leq 1,\left|\delta(C) \cap Q_{1}\right| \geq 2$. Since $x_{1} \in \delta(C) \cap \delta\left(C_{2}\right),\left|\delta\left(C_{2}\right)\right| \leq\left|\delta(C) \cap Q_{2}\right|+\left|\left\{x_{1}, x_{r}\right\}\right| \leq|\delta(C)|-3+\left|\left\{x_{1}, x_{r}\right\}\right|<|\delta(C)|$. Thus, neither C_{1} nor C_{2} is an obstruction.

Finally, as $\left|\rho\left(C_{1}\right)\right| \geq 3$ and $\left|\rho\left(C_{1}\right) \backslash Q_{1}\right| \leq 1,\left|\rho(C) \cap Q_{1}\right|=\left|\rho\left(C_{1}\right) \cap Q_{1}\right| \geq 2$. Because $\left|\rho\left(C_{2}\right)\right| \geq 3$ and $\left|\rho\left(C_{2}\right) \backslash Q_{2}\right| \leq 2,\left|\rho(C) \cap Q_{2}\right|=\left|\rho\left(C_{2}\right) \cap Q_{2}\right| \geq 1$. Thus $|\rho(C)| \geq 3$, a contradiction.

Proof of Lemma 3. By way of contradiction, suppose that Σ is pseudolinear and that $G(\Sigma)$ has an obstruction C.

Consider an extension of Σ to an arrangement of pseudolines, and then cut off the two infinite ends of each pseudoline to obtain a set of strings Σ^{\prime} extending Σ, and in which every pair of strings in Σ^{\prime} cross once. In $G\left(\Sigma^{\prime}\right)$, there is a cycle C^{\prime} that represents the same simple closed curve as C. Because every rainbow of C^{\prime} is a rainbow of C, C^{\prime} has fewer than three rainbows. Therefore, we may assume that $\Sigma=\Sigma^{\prime}$ and $C=C^{\prime}$. Now, the ends of every string in Σ are degree-1 vertices in the outer face of $G(\Sigma)$.

As every string in Σ is simple and no two strings intersect more than once, $|\delta(C)| \geq 3$. We will assume that C is chosen to minimize $|\delta(C)|$.

Since C is an obstruction, there exists $x_{1} \in \delta(C)$ such that x_{1} is not a rainbow in C. Consider a neighbour x_{0} of x_{1} in C. Let $S=x_{0}, x_{1}, \ldots x_{\ell}$ be the path obtained by traversing the string σ extending $x_{0} x_{1}$, such that x_{ℓ} is an end of σ. By Lemma $4, V(S) \cap V(C)=\left\{x_{0}, x_{1}\right\}$, and because x_{ℓ} is in the outer face of C, the segment of σ from x_{1} to x_{ℓ} has its relative interior in the outer face of C.

However, since x_{1} is not a rainbow, there exists a string $\sigma^{\prime} \in \Sigma$ including two edges at x_{1} drawn inside C. Thus, σ and σ^{\prime} tangentially intersect at x_{1}, a contradiction.

3 The key lemma

In this section we present the key lemma used in the proof of Theorem 2.
A plane graph G is path-partitioned if for $m \geq 1$, there exists a colouring $\chi: E(G) \rightarrow$ $\{1, \ldots, m\}$ such that for each $i \in\{1, \ldots, m\}$, the edges in $\chi^{-1}(i)$ induce a path $P_{i} \subseteq G$ where any two distinct paths P_{i} and P_{j} do not tangentially intersect. Indeed, every underlying planar graph $G(\Sigma)$ of a set of simple strings Σ is path-partitioned. Moreover, every pathpartitioned plane graph can be obtained by subdividing a planarization of an ordinary set of simple strings. To extend the previously introduced notation we refer to each P_{i} as a string. The concepts of rainbow and obstruction naturally extend to the context of path-partitioned plane graphs.

Suppose that G is a path-partitioned plane graph. Given $v \in V(G)$, a near-obstruction at v is a cycle C with at most three rainbows and such that v is a rainbow of C. Understanding how near-obstructions behave is the key ingredient needed in the proof of Theorem 2:

- Lemma 5. Let G be a path-partitioned plane graph and let $v \in V(G)$. Suppose that C_{1} and C_{2} are two near-obstructions at v such that the union of the closed disks bounded by C_{1} and C_{2} contains a small open ball centered at v. Suppose that one of the following two holds:

1. no obstruction of G contains v; or
2. the two edges of C_{1} incident with v are the same as the two edges of C_{2} incident with v.

Then G has an obstruction not including v.
Given a plane graph G, a cycle $C \subseteq G$ and a vertex $v \in V(C)$, the edges at v inside C are the edges of G incident with v drawn inside C. Consider a homeomorphism from a small disc neighbourhood of v to the plane so that each edge segment incident with v is a straight ray from the origin (which is v). Since no two strings intersect tangentially at v, we may assume that the rotation at v has substrings of the same colour making an angle of π at v.

(a)

(b)

Figure 3 Auxiliary figures used in the proof of Lemma 5.

The angles between rays are the angles at v and we associate to them the set of edges at v drawn as rays inside them. From this geometric perspective, it is obvious that, if an angle α is less than π, then α is rainbow. This proves the second of the following facts.

- Useful Facts. Let G be a plane path-partitioned graph and let $v \in V(G)$. Then

1. if α, β are two angles at v with $\alpha \subseteq \beta$ and β is rainbow, then α is rainbow; and
2. if α and β are two angles such $\bar{\alpha}$ is not rainbow and β is a proper subangle of the complement $\bar{\alpha}$ of α, then β is rainbow.

Proof of Lemma 5. By way of contradiction, suppose that G has no obstruction not including v. The "small ball" hypothesis implies that v is not in the outer face of the subgraph $C_{1} \cup C_{2}$.

We claim that $\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right| \geq 3$. Suppose not. For $i=1,2$, let e_{i} and f_{i} be the edges of C_{i} at v and let Δ_{i} be the closed disk bounded by C_{i}. From the "small ball" hypothesis it follows that (i) Δ_{1} contains the edges e_{2} and f_{2}; and (ii) the points near v in the exterior of Δ_{2} are contained in Δ_{1}. These two properties imply that the path $C_{2}-v$ intersects C_{1} at least twice, and because $v \in V\left(C_{1}\right) \cap V\left(C_{2}\right),\left|V\left(C_{1}\right) \cap V\left(C_{2}\right)\right| \geq 3$.

From the last paragraph we know that $C_{1} \cup C_{2}$ is 2-connected, and hence the outer face of $C_{1} \cup C_{2}$ is bounded by a cycle $C_{o u t}$. We will assume that
(*) the cycles C_{1} and C_{2} satisfying the hypothesis of Lemma 5 are chosen so that the number of vertices of G in the disk bounded by $C_{o u t}$ is minimal.

Useful Fact 1 applied to the interior angles at vertices of $C_{o u t}$ shows that every vertex that is a rainbow in $C_{o u t}$ is also a rainbow in each of the cycles in $\left\{C_{1}, C_{2}\right\}$ containing it. We can assume that $C_{\text {out }}$ is not an obstruction or else we are done. We may relabel C_{1} and C_{2} so that two of the rainbows of $C_{o u t}$, say p and q, are also rainbows in C_{1}. Neither p nor q is v because $v \notin V\left(C_{\text {out }}\right)$. Because C_{1} is a near-obstruction, p, q and v are the only rainbows of C_{1}.

Since $v \notin V\left(C_{\text {out }}\right)$, by following C_{1} in the two directions starting at v, we find a path $P_{v} \subseteq C_{1}$ containing v in which only the ends u and w of P_{v} are in $C_{o u t}$ (note that $u \neq w$ because $\left.\{p, q\} \subseteq V\left(C_{1}\right) \cap V\left(C_{o u t}\right)\right)$. See Figure 3a.

As v is in the interior face of $C_{o u t}, P_{v}$ is also in the interior of $C_{o u t}$. Let $Q_{o u t}^{1}, Q_{o u t}^{2}$ be the $u w$-paths of $C_{o u t}$. One of the two closed disks bounded by $P_{v} \cup Q_{o u t}^{1}$ and $P_{v} \cup Q_{o u t}^{2}$ contains C_{1}. By symmetry, we may assume that C_{1} is contained in the first disk. Since $C_{\text {out }} \subseteq C_{1} \cup C_{2}$, this implies that $Q_{\text {out }}^{2}$ is a subpath of C_{2}.

Our desired contradiction will be to find three rainbows in C_{2} distinct from v. We find the first: let $C_{1}-\left(P_{v}\right)$ be the $u w$-path in C_{1} distinct from P_{v}. The disk bounded by
$\left(C_{1}-\left(P_{v}\right)\right) \cup Q_{\text {out }}^{2}$ contains the one bounded by C_{1}. Useful Fact 1 applied to the interior angles at the vertices of $\left(C_{1}-\left(P_{v}\right)\right) \cup Q_{\text {out }}^{2}$ implies that each vertex in $C_{1}-\left(P_{v}\right)$ that is a rainbow in $\left(C_{1}-\left(P_{v}\right)\right) \cup Q_{\text {out }}^{2}$ is also rainbow in C_{1}. Since C_{1} has at most two rainbows in $C_{1}-\left(P_{v}\right)$, namely p and $q,\left(C_{1}-\left(P_{v}\right)\right) \cup Q_{o u t}^{2}$ has a third rainbow r_{1} in the interior of $Q_{o u t}^{2}$ (else $\left(C_{1}-\left(P_{v}\right)\right) \cup Q_{\text {out }}^{2}$ is an obstruction and we are done). Note that r_{1} is also a rainbow for C_{2}.

To find another rainbow in C_{2}, consider the edge e_{u} of C_{2} incident to u and not in $Q_{o u t}^{2}$. We claim that either u is a rainbow in C_{2} or that e_{u} is not included in the closed disk bounded by $P_{v} \cup Q_{\text {out }}^{2}$. Seeking a contradiction, suppose that u is not a rainbow of C_{2} and that e_{u} is included in the disk. Then Useful Fact 2 implies that u is a rainbow in C_{1}. As p and q are the only rainbows of C_{1} in $C_{o u t}, u$ is one of p and q. Therefore u is a rainbow in $C_{\text {out }}$, and hence, a rainbow in C_{2}, a contradiction.

If u is a rainbow in C_{2}, then this is the desired second one. Otherwise, e_{u} is not in the closed disk bounded by $P_{v} \cup Q_{o u t}^{2}$. Let $P_{u} \subseteq C_{2}$ be the path starting at u, continuing on e_{u} and ending on the first vertex u^{\prime} in P_{v} that we encounter. Let C_{u} be the cycle consisting of P_{u} and the $u u^{\prime}$-subpath $u P_{v} u^{\prime}$ of P_{v}. See Figure 3b.
\triangleright Claim 6. If P_{u} does not have a rainbow of C_{u} in its interior, then either C_{u} is an obstruction not containing v or:
(a) C_{u} and C_{2} are near-obstructions at v satisfying the same conditions as C_{1} and C_{2} in Lemma 5; and
(b) the closed disk bounded by the outer cycle of $C_{u} \cup C_{2}$ contains fewer vertices than the disk bounded by $C_{\text {out }}$.

Proof. Suppose that all the rainbows of C_{u} are located in $u P_{v} u^{\prime}$. If z is a rainbow of C_{u}, then $z \in\left\{u, v, u^{\prime}\right\}$, as otherwise z is a rainbow of C_{1} distinct from p, q and v, a contradiction. Thus, if $v \notin V\left(C_{u}\right)$, then C_{u} is the desired obstruction. We may assume that $v \in V\left(C_{u}\right)$.

If $u^{\prime}=w$, then $C_{2}=P_{u} \cup Q_{o u t}^{2}$, violating the assumption that $v \in V\left(C_{2}\right)$. Thus $u^{\prime} \neq w$. If $u^{\prime}=v$, then the rainbows of C_{u} are included in $\left\{u, u^{\prime}\right\}$, and hence C_{u} is an obstruction. However, the existence of C_{u} shows that both alternatives (1) and (2) in Lemma 5 fail: condition (1) fails because C_{u} contains v and (2) fails because the edge of P_{u} incident with v is in $E\left(C_{2}\right) \backslash E\left(C_{1}\right)$. Thus $u^{\prime} \neq v$.

The previous two paragraphs show that C_{u} is a near-obstruction at v with rainbows u, v and u^{\prime}. Since the interior of C_{u} near v is the same as the interior of C_{1} near v, the pair $\left(C_{u}, C_{2}\right)$ satisfies the "small ball" hypothesis. Thus, (a) holds.

Let $C_{\text {out }}^{\prime}$ be the outer cycle of $C_{u} \cup C_{2}$. From the fact that $C_{u} \cup C_{2} \subseteq C_{1} \cup C_{2}$ it follows that the disk bounded by $C_{\text {out }}$ includes the disk bounded by $C_{o u t}^{\prime}$.

Since $p, q \in V\left(C_{\text {out }}\right), p$ and q are in the disk bounded by $C_{\text {out }}$. If both p and q are in C_{2}, then p, q and r_{1} are rainbows in C_{2}, and also distinct from v, contradicting that C_{2} is a near-obstruction for v. If, say $p \notin V\left(C_{2}\right)$, then p is not in the disk bounded by $C_{o u t}^{\prime}$, which implies (b).

From Claim 6(b) and assumption $\left(^{*}\right)$ either C_{u} is the desired obstruction or P_{u} contains a rainbow r_{2} of C_{2} in its interior. We assume the latter as otherwise we are done.

In the same way, the last rainbow r_{3} comes by considering the edge of $C_{2}-Q_{o u t}^{2}$ incident with w. It follows that v, r_{1}, r_{2} and r_{3} are four different rainbows in C_{2}, contradicting the fact that C_{2} is a near-obstruction.

4 Proof of Theorem 2

In this section we prove that a set of strings with no obstructions can be extended to an arrangement of pseudolines.

Proof of Theorem 2. It was shown in Observation 3 that the existence of obstructions implies non-extendibility. For the converse, suppose that Σ is a set of strings for which $G(\Sigma)$ has no obstructions.

We start by reducing to the case where the point set $\bigcup \Sigma$ is connected: iteratively add a new string in a face of $\bigcup \Sigma$ connecting two connected components of $\bigcup \Sigma$. No obstruction is introduced at each step (obstructions are cycles), and, eventually, the obtained set $\bigcup \Sigma$ is connected. An extension of the new set of strings contains an extension for the original set, thus we may assume that $\bigcup \Sigma$ is connected.

Our proof is algorithmic, and consists of repeatedly applying one of the three steps described below.

- Disentangling Step. If a string $\sigma \in \Sigma$ has an end a with degree at least 2 in $G(\Sigma)$, then we slightly extend the a-end of σ into one of the faces incident with a.
- Face-Escaping Step. If a string $\sigma \in \Sigma$ has an end a with degree 1 in $G(\Sigma)$, and is incident with an interior face, then we extend the a-end of σ until it intersects some point in the boundary of this face.
- Exterior-Meeting Step. Assuming that all the strings in Σ have their two ends in the outer face and these ends have degree 1 in $G(\Sigma)$, we extend the ends of two disjoint strings so that they meet in the outer face.

Each of these three steps either increases the number of pairs of strings that intersect, or increase the number crossings (recall that a crossing between σ and σ^{\prime} is a non-tangential intersection point in $\sigma \cap \sigma^{\prime}$ that is not an end of σ or σ^{\prime}). Moreover, these steps can be performed as long as one of the next two conditions holds: (1) at least one string does not have an end incident with the outer face; and (2) there is a pair of strings that do not cross. If none of (1) and (2) hold, then our set of strings is extendible into an arrangement of pseudolines. Henceforth, we will show that, if performed correctly, none of these steps introduces an obstruction. The proof for each step can be read independently.

- Lemma 7 (Disentangling Step). Suppose that $\sigma \in \Sigma$ has an end a with degree at least 2 in $G(\Sigma)$. Then we can extend the a-end of σ into one of the faces incident to a without creating an obstruction.

Proof. A pair of different edges f and f^{\prime} in $G(\Sigma)$ incident with a are twins if they belong to the same string in Σ. The edge $e \subseteq \sigma$ incident with a has no twin.

The fact that no pair of strings tangentially intersect at a tells us that if $\left(f_{1}, f_{1}^{\prime}\right)$ and $\left(f_{2}, f_{2}^{\prime}\right)$ are pairs of twins, then $f_{1}, f_{2}, f_{1}^{\prime}, f_{2}^{\prime}$ occur in this cyclic order for either the clockwise or counterclockwise rotation at a. Thus, we may assume that the counterclockwise rotation at a restricted to the twins and e is $e, f_{1}, \ldots, f_{t}, f_{1}^{\prime}, \ldots, f_{t}^{\prime}$, where $\left(f_{i}, f_{i}^{\prime}\right)$ is a twin pair for $i=1, \ldots, t$.

To avoid tangential intersections, the extension of σ at a must be in the angle between f_{t} and f_{1}^{\prime} not containing e. Let e_{1}, \ldots, e_{k} be the counterclockwise ordered list of non-twin edges at a having an end in this angle (as depicted in Figure 4). We label $e_{0}=f_{t}$ and $e_{k+1}=f_{1}^{\prime}$. If there are no twins, then let $e_{0}=e_{k+1}=e$.

\square Figure 4 Substrings included in the disk bounded by C_{0}.

Let us consider all the possible extensions: for $i \in\{0, \ldots, k\}$, let Σ_{i} be the set of strings obtained from Σ by slightly extending the a-end of σ into the face containing the angle between e_{i} and e_{i+1}. Let α_{i} be the new edge at a extending σ in Σ_{i} (see α_{0} in Figure 4).

Seeking a contradiction, suppose that, for each $i \in\{0, \ldots, k\}, G\left(\Sigma_{i}\right)$ contains an obstruction C_{i}. Since α_{i} contains a degree- 1 vertex, α_{i} is not in C_{i}. Hence C_{i} is a cycle of $G(\Sigma)$. Thus, C_{i} is not an obstruction in $G(\Sigma)$ and becomes an obstruction in $G\left(\Sigma_{i}\right)$. This conversion has a simple explanation: in $G(\Sigma), C_{i}$ has exactly three rainbows, and one of them is a. After α_{i} is added, a is not a rainbow in C_{i} (witnessed by the edges e and α_{i} included in the new version of σ).

Recall from Section 3 that a near-obstruction at a is a cycle with exactly three rainbows, and one of them is a. Each of $C_{0}, C_{1}, \ldots, C_{k}$ is a near-obstruction at a in $G(\Sigma)$.

For a cycle $C \subseteq G$, let $\Delta(C)$ denote the closed disk bounded by C. Both e and α_{0} are in $\Delta\left(C_{0}\right)$. Thus, either $\Delta\left(C_{0}\right) \supseteq\left\{e, f_{1}, f_{2}, \ldots, f_{t}, e_{1}\right\}$ (blue bidirectional arrow in Figure 4) or $\Delta\left(C_{0}\right) \supseteq\left\{f_{t}, e_{1}, \ldots, e_{k}, f_{1}^{\prime}, f_{2}^{\prime}, \ldots, f_{t}^{\prime}, e\right\}$ (green bidirectional arrow). We rule out the latter situation as the second list contains f_{t} and f_{t}^{\prime}, and this would imply that a is not a rainbow for C_{0} in $G(\Sigma)$.

We just showed that $\left\{e, e_{0}, e_{1}\right\} \subseteq \Delta\left(C_{0}\right)$. By symmetry, $\left\{e_{k}, e_{k+1}, e\right\} \subseteq \Delta\left(C_{k}\right)$. Consider the largest index $i \in\{0,1, \ldots, k-1\}$ for which $\left\{e, e_{0}, \ldots, e_{i+1}\right\} \subseteq \Delta\left(C_{i}\right)$. By the choice of i, and because $\left\{e, \alpha_{i+1}\right\} \subseteq \Delta\left(C_{i+1}\right),\left\{e, f_{t}^{\prime}, \ldots, f_{1}^{\prime}, e_{k}, \ldots, e_{i}\right\} \subseteq \Delta\left(C_{i+1}\right)$. Apply Lemma 5 to the pair C_{i} and C_{i+1}, where C_{i}, C_{i+1} and a play the roles of C_{1}, C_{2} and v. Condition 1 of Lemma 5 holds, and hence we obtain that $G(\Sigma)$ has an obstruction, a contradiction.

- Lemma 8 (Face-Escaping Step). Suppose that there is a string σ that has an end a with degree 1 in $G(\Sigma)$, and a is incident to an interior face F. Then there is an extension σ^{\prime} of σ from its a-end to a point in the boundary of F such that the set $(\Sigma \backslash\{\sigma\}) \cup\left\{\sigma^{\prime}\right\}$ has no obstruction.

Proof. Let W be the closed boundary walk $\left(x_{0}, e_{1}, x_{1}, e_{2}, \ldots, e_{n}, x_{n}\right)$ of F such that $x_{0}=$ $x_{n}=a$ and F is to the left as we traverse W (see Figure 5 for an illustration with $n=9$). For $i=1, \ldots, n$ we let m_{i} be a point in the relative interior of e_{i}, and let P be the list of non-necessarily distinct points $m_{1}, x_{1}, m_{2}, x_{2} \ldots, m_{n}$, which are the potential ends for all the different extensions. For each $p \in P$, let Σ_{p} be the set of strings obtained from Σ by extending the a-end of σ by adding an arc α_{p} connecting a to p in F (see Figure 5). We assume that every two distinct $\operatorname{arcs} \alpha_{p}$ and $\alpha_{p^{\prime}}$ are internally disjoint.

Let f_{p} be the edge $e_{1} \cup \alpha_{p}$ in $G\left(\Sigma_{p}\right) ; f_{p}$ has ends x_{1} and p. Also, let $\sigma^{p}=\sigma \cup \alpha_{p}$. See Figure 6. Seeking a contradiction, suppose that each $G\left(\Sigma_{p}\right)$ has an obstruction.

Figure 5 All possible extensions in the Face-Escaping Step.

Figure 6 Transforming Σ into Σ_{p}.
\triangleright Claim 9. Let $p \in P$. Then there exists an obstruction C_{p} in $G\left(\Sigma_{p}\right)$ including f_{p}. Moreover,
(1) if $p \in \sigma$, then C_{p} can be chosen so that all its edges are included in σ^{p}; and
(2) if $p \notin \sigma$, then every obstruction includes f_{p}.

Proof. First, if $p \in \sigma$, then the string σ^{p} self-intersects at p thus σ^{p} has a simple close curve including f_{p}. In this case let C_{p} be the cycle in $G\left(\Sigma_{p}\right)$ representing this simple closed curve without rainbows, and thus (1) holds.

Second, assume that $p \notin \sigma$ and let C_{p} be any obstruction of $G\left(\Sigma_{p}\right)$. For (2), we will show that $f_{p} \in E\left(C_{p}\right)$.

Seeking a contradiction, suppose that $f_{p} \notin E\left(C_{p}\right)$.
If $p=m_{i}$ for $i \in\{1, \ldots, n\}$, since m_{i} is the only vertex whose rotation in $G(\Sigma)$ differs from its rotation in $G\left(\Sigma_{m_{i}}\right), m_{i} \in V\left(C_{p}\right)$. Consider the cycle C of $G(\Sigma)$ obtained from C_{p} by replacing the subpath $\left(x_{i-1}, m_{i}, x_{i}\right)$ by the edge $x_{i-1} x_{i}$. For each vertex $v \in V(C)$ the colors of the edges of $G(\Sigma)$ at v included in the disk bounded by C are the same as in $G\left(\Sigma_{p}\right)$ for the disk bounded by $V\left(C_{p}\right)$. Thus, C is an obstruction for $G(\Sigma)$, a contradiction.

Suppose now that p is one of x_{1}, \ldots, x_{n-1}. The only vertex in $G(\Sigma)$ whose rotation is different in $G\left(\Sigma_{p}\right)$ is p. Therefore, p is a point that is a rainbow for C_{p} in $G(\Sigma)$, but not a rainbow in $G\left(\Sigma_{p}\right)$, as witnessed by the two edges of σ^{p} that are incident with p and inside C_{p}. This contradicts the assumption that $p \notin \sigma$. Hence $f_{p} \in E\left(C_{p}\right)$.

Henceforth we assume that, for $p \in P, C_{p}$ is an obstruction in $G\left(\Sigma_{p}\right)$ as in Claim 9.
More can be said about the obstructions in $G\left(\Sigma_{p}\right)$, but for this we need some terminology. If we orient an edge e in a plane graph, then the sides of e are either the points near e that are to the right of e, or the points near e to the left of e. For any cycle C of G through e, exactly one side of e lies inside C. This is the side of e covered by C. For the next claim and in the rest of the proof we will assume that for $p \in P, f_{p}$ is oriented from x_{1} to p.

Figure 7 The two edge colorings χ and χ^{\prime} discussed in the proof of Claim 10.
\triangleright Claim 10. For $p \in P$ with $p \notin \sigma$, every obstruction in $G\left(\Sigma_{p}\right)$ covers the same side of f_{p}.

Proof. Suppose that for $p \in P$ there are obstructions C_{p} and C_{p}^{\prime} covering both sides of f_{p}. Let G^{\prime} be the plane graph obtained from $G\left(\Sigma_{p}\right)$ by subdividing f_{p}, and let v be the new degree- 2 vertex inside f_{p}.

We consider the edge-colouring χ induced by the strings in Σ_{p}. Let χ^{\prime} be a new colouring obtained from χ by replacing the colour of the edge $v p$ by a new colour not used in χ (see Figure 7). It is immediate that (i) χ^{\prime} induces a path-partition in G^{\prime}; and in the next paragraph we show that (ii) C_{p} and C_{p}^{\prime} are near-obstructions for v with respect to χ^{\prime}.

Consider the set of edges in the rotation at p inside the disk bounded by C_{p} and assume they are colored by χ. No edge from this set (except f_{p}) can have the same color as f_{p} or else $p \in \sigma$, contradicting our hypothesis. Therefore, p is a rainbow in C_{p} in χ if and only if p is a rainbow in C_{p} in χ^{\prime}. Thus, when we switch from χ to χ^{\prime}, v is the only vertex of C_{p} switching identity (where the identity is to be or not to be a rainbow). As C_{p} is an obstruction for χ, then C_{p}^{\prime} is a near obstruction at v for χ^{\prime}. Likewise, C_{p}^{\prime} is a near obstruction for χ^{\prime}.

As Condition 2 of Lemma 5 holds for $C_{1}=C_{p}, C_{2}=C_{p}^{\prime}$ and $v=v$ with respect to $\chi^{\prime}, G^{\prime}$ has an obstruction not containing v in χ^{\prime}. However, this implies the existence of an obstruction in $G(\Sigma)$ with respect to χ, a contradiction.

Recall that the boundary walk of F is $W=\left(x_{0}, e_{1}, \ldots, e_{n}, x_{n}\right)$, with $x_{0}=x_{n}=a$. Since x_{1} and x_{n-1} are in σ, the extreme obstructions $C_{x_{1}}$ and $C_{x_{2}}$ cover the right of $f_{x_{1}}$ and the left of $f_{x_{n-1}}$, respectively. Thus, there are two consecutive vertices x_{i-1}, x_{i} in $W-a$, such that the interior of $C_{x_{i-1}}$ covers the right of $f_{x_{i-1}}$ and the interior of $C_{x_{i}}$ covers the left of $f_{x_{i}}$. Moreover, we may assume that the interior of $C_{m_{i}}$ includes the left of $f_{m_{i}}$ (otherwise we reflect our drawing).

The next claim is the last ingredient to obtain a final contradiction. To make the notation simpler, we let $x=x_{i-1}$ and $m=m_{i}$.
\triangleright Claim 11. Exactly one of the following holds:
(a) $x \in \sigma, m \notin \sigma$ and $G\left(\Sigma_{m}\right)$ has an obstruction covering the side of f_{m} not covered by C_{m}; or
(b) $x \notin \sigma$ and $G\left(\Sigma_{x}\right)$ has an obstruction covering the side of f_{x} not covered by C_{x}.

Proof. By redrawing the arcs representing f_{x} and f_{m}, we will assume that they only intersect at x_{1}. In particular this redrawing creates two copies of the edge e_{1}.

Figure 8 Illustrations for Claim 11.a.

First, suppose that $x \in \sigma$. For (a) we have two cases depending on whether $x x_{i}$ is an edge in C_{x}.

Case a. $1 x x_{i} \notin E\left(C_{x}\right)$. See Figure $8 a$.
Let C_{m}^{\prime} be the cycle obtained from C_{x} by replacing the edge f_{x} by the path $P=\left(x_{1}\right.$, $\left.f_{m}, m, m x, x\right)$. Since $x \in \sigma$, by the choice of C_{x} (Claim 9), all the edges in C_{x} are in σ^{x}. Therefore, by Claim 9.1, all the edges in C_{m}^{\prime}, with the possible exception of $m x$, are in σ^{m}. Thus C_{m}^{\prime} is an obstruction in $G\left(\Sigma_{m}\right)$.

Now we show that C_{m}^{\prime} covers the right side of f_{m}. The disk bounded by $P \cup f_{x}$ is to the right of f_{m} as this side of $P \cup f_{x}$ is included in the bounded face F. Since the interior of C_{x} is to the right of f_{x}, the interior of C_{m}^{\prime} covers the right side of f_{m}.

Finally, note that $m \notin \sigma$, or else, $C_{m}^{\prime} \subseteq \sigma^{m}$ and hence by the choice of C_{m}, and Claim $10, C_{m}^{\prime}=C_{m}$. However, this contradicts that C_{m} covers the left side of f_{m}. Thus, (a) holds.

Case a.2. $x x_{i} \in E\left(C_{x}\right)$. See Figure $8 b$.
Let C_{m}^{\prime} be the cycle obtained from C_{x} by replacing the path $\left(x_{1}, f_{x}, x, x x_{i}, x_{i}\right)$ by $\left(x_{1}, f_{m}, m\right.$, $\left.m x_{i}, x_{i}\right)$. Since $x \in \sigma$, by the choice of C_{x} (Claim 9), all the edges in C_{x} are in σ^{x}. Therefore all the edges in C_{m}^{\prime} are in σ^{m}. Thus C_{m}^{\prime} is an obstruction in $G\left(\Sigma_{m}\right)$.

Now we show that C_{m}^{\prime} covers the right side of f_{m}. The disk bounded by $f_{x} \cup f_{m} \cup x m$ is to the right of f_{m} as this side of $f_{x} \cup f_{m} \cup x m$ is included in the bounded face F. Since the interior of C_{x} is to the right of f_{x}, the interior of C_{m}^{\prime} covers the right side of f_{m}.

Finally, as $C_{m}^{\prime} \subseteq \sigma^{m}$ and by the choice of $C_{m}, C_{m}^{\prime}=C_{m}$. However, this contradicts the assumption that C_{m} covers the left side of f_{m}. Thus, (a) holds.

Turning to (b), let us suppose that $x \notin \sigma$.

(a) Case b.1.

(b) Case b.2.

Figure 9 Illustrations for Claim 11.b.

Case b.1. $x \in V\left(C_{m}\right)$. See Figure 9a.
Let T be the triangle bounded by f_{x}, f_{m} and $x m$. The interior face of T is to the left of f_{x} and to the right of f_{m}. Let P be the $m x$-path of $C_{m}-f_{m}$ and let P^{\prime} be the $x x_{1}$-path of $C_{m}-m$. Since the interior face of T is a subset of F, P and P^{\prime} are drawn in the closure of the exterior of T (possibly $P=(m, m x, x)$).

Let C be the simple closed curve bounded by $P \cup f_{x} \cup f_{m}$ (in other words, C is obtained from T by replacing $x m$ by P). Seeking a contradiction, suppose that $x m$ is in the closed exterior of C. Then, P^{\prime} is included inside the cycle $C^{\prime}=P+x m$. Since $V\left(C^{\prime}\right) \subseteq V\left(C_{m}\right)$ and C_{m} is included in the disk bounded by C^{\prime}, the number of rainbows in C^{\prime} is at most the number of rainbows in C_{m}. Then C^{\prime} is an obstruction in $G\left(\Sigma_{m}\right)$ not containing f_{m}, contradicting Claim 9.2. Thus, $x m$ is inside C.

Our last observation implies that P^{\prime} is an arc connecting x_{1} and x in the exterior of C. Since the interior of C_{m} covers the left of f_{m}, the interior of $C_{x}^{\prime}=P^{\prime}+f_{x}$ covers the left of f_{x}. The cycle C_{x}^{\prime} is an obstruction because $V\left(C_{x}^{\prime}\right) \subseteq V\left(C_{m}\right)$ and C_{m} is included inside C_{x}^{\prime}.

Case b.2. $x \notin V\left(C_{m}\right)$. See Figure $9 b$.
In this case we let C_{x}^{\prime} be the cycle obtained by replacing the path $\left(x_{1}, f_{m}, m, m x_{i}, x_{i}\right)$ in C_{m} by the path $P=\left(x_{1}, f_{x}, x, x x_{i}, x_{i}\right)$ in $G\left(\Sigma_{x}\right)$. Since C_{m} covers the left of f_{m} and F is bounded, C_{x}^{\prime} covers the left of f_{x}.

To show that C_{x}^{\prime} is an obstruction, note that C_{m} is inside C_{x}^{\prime} and that $V\left(C_{x}^{\prime}\right) \backslash\{x\} \subseteq$ $V\left(C_{m}\right)$. Thus, all the rainbows of C_{x}^{\prime} in $V\left(C_{x}^{\prime}\right) \backslash\{x\}$ are also rainbows in C_{m}. Since $x \notin \sigma$, we see that x is a rainbow in C_{x}^{\prime}, but is not a vertex of C_{m}. To compensate, we note that m is a rainbow in C_{m} that is not in $V\left(C_{x}\right)$: if m is not rainbow, both f_{m} and $x x_{i}$ are included in σ, implying that $x \in \sigma$. This shows that C_{x}^{\prime} has at most as many rainbows as C_{m}. Therefore C_{x}^{\prime} is the desired obstruction.

Claims 10 and 11 contradict each other, so, for some $p \in P, G\left(\Sigma_{p}\right)$ has no obstructions.

Lemma 12 (Exterior-Meeting Step). If all the strings in Σ have their ends on the outer face of $G(\Sigma)$ and the ends have degree 1 in $G(\Sigma)$, then we can extend a pair disjoint strings so that they intersect without creating an obstruction.

Proof. First, consider a simple closed curve in the outerface of $\bigcup \Sigma$ closely following the outerboundary of $\bigcup \Sigma$. Then, by slightly modifying this curve, we obtain a simple closed cuve \mathcal{O} containing all the ends of the strings in Σ, but otherwise disjoint from $\cup \Sigma$. See Figure 10.

Figure 10 Construction of the curve \mathcal{O}.

Suppose σ_{1}, σ_{2} are two disjoint strings in Σ. For $i=1,2$, let a_{i}, b_{i} be the ends of σ_{i}; since σ_{1} and σ_{2} do not cross, we may assume that these ends occur in the cyclic order a_{1}, b_{1},
b_{2}, a_{2}. We extend the a_{i}-ends of σ_{1} and σ_{2} so that they meet in a point p in the outer face, and so that all the ends of σ_{1} and σ_{2} remain incident with the outer face (Figure 11). Let Σ^{\prime} be the obtained set of strings.

Figure 11 Exterior-Meeting Step.

Seeking a contradiction, suppose that $G\left(\Sigma^{\prime}\right)$ has an obstruction C. Since $G(\Sigma)$ has no obstruction, $p \in V(C)$. Our contradiction will be to find three rainbows in C. Note that p is a rainbow. To obtain a second rainbow, traverse C starting from p towards a_{1}. Let d_{1} be the first vertex during our traversal that is not in the extended σ_{1}, and let c_{1} be its neighbour in σ_{1}, one step before we reach d_{1}. Since b_{1} has degree one, $c_{1} \neq b_{1}$.

The strings σ_{1} and σ_{2} divide the disk bounded by \mathcal{O} into three closed regions Δ_{1}, Δ_{2}, Δ_{3} such that $\Delta_{1} \cap \Delta_{2}=\sigma_{1}, \Delta_{2} \cap \Delta_{3}=\sigma_{2}$ and $\Delta_{1} \cap \Delta_{3}=\emptyset$ (see Figure 11).
\triangleright Claim 13. The cycle C has a rainbow included in Δ_{1}.
Proof. First, suppose that $d_{1} \notin \Delta_{1}$. In this case, c_{1} is a rainbow because otherwise there would be a string σ that tangentially intersects σ_{1} at c_{1}. Thus, if $d_{1} \notin \Delta_{1}$, then c_{1} is the desired rainbow.

Second, suppose that $d_{1} \in \Delta_{1}$. Let P_{1} be the path of C starting at c_{1}, continuing on the edge $c_{1} d_{1}$, and ending at the first vertex we encounter in σ_{1}. Let C^{\prime} be the cycle enclosed by $P_{1} \cup \sigma_{1}$. Since C^{\prime} is not an obstruction, there is one rainbow of C^{\prime} that is an interior vertex of P_{1}; this is the desired rainbow of C. This concludes the proof of Claim 13.

Considering σ_{2} instead of σ_{1}, Claim 13 yields a third rainbow in C inside the region Δ_{3} analogous to Δ_{1}, contradicting that C is an obstruction. Hence Lemma 12 holds.

We iteratively apply the Disentangling Step, Face-Escaping Step or Exterior-Meeting Step without creating obstructions. Each step increases the number of pairwise intersecting strings in Σ until we reach a stage where the strings are pairwise intersecting and all of them have their two ends in the unbounded face. From this we extend them into an arrangement of pseudolines. This concludes the proof of Theorem 2.

5 Finding obstructions and extending strings in polynomial time

We start this section by describing an algorithm to detect obstructions. Henceforth, we assume that the input to the problem is the planarization $G(\Sigma)$ of an ordinary set of s strings Σ. For the running-time analysis, we assume that n and m are the number of vertices and edges in $G(\Sigma)$, respectively. Since $G(\Sigma)$ is planar, $m=O(n)$. Moreover, if Σ is pseudolinear, then $n \leq\binom{ s}{2}+2 s=\binom{s+2}{2}-1$. At the end of this section we explain how to extend Σ (if possible) in polynomial time.

Recall that each string in Σ receives a different colour; this induces an edge-colouring on $G(\Sigma)$ where each string is a monochromatic path. An outer-rainbow is a vertex $x \in V(G(\Sigma))$ incident with the outer face and for which the edges incident with x have different colours. Next we describe the basic operation in our obstruction-detecting algorithm.

Figure 12 From Σ to $\Sigma-x$.

Outer-rainbow deletion. Given an outer-rainbow $x \in V(G(\Sigma))$, the instance $G(\Sigma-x)$ is defined by: first, removing x and the edges incident to x; second, suppressing the degree-2 vertices incident with edges of the same colour; and third, removing remaining degree-0 vertices (Figure 12 illustrates this process). Edge colours are preserved.

It is easy to verify that $G(\Sigma-x)$ is the planarization of an arrangement of strings. The colours removed by this operation are those belonging to strings that are paths of length 1 in $G(\Sigma)$ incident with x. Our obstruction-detecting algorithm relies on the following property:
$\left.{ }^{(* *}\right)$ if x is an outer-rainbow of $G(\Sigma)$, then there is an obstruction in $G(\Sigma)$ not including x if and only if there is an obstruction in $G(\Sigma-x)$.

This property holds because cycles in $G(\Sigma)-x$ and in $G(\Sigma-x)$ are in 1-1 correspondence: two cycles correspond to each other if they are the same simple closed curve. This correspondence is obstruction-preserving.

Let us now describe the two subroutines in our algorithm. For this, we remark that an outer-rainbow of $G(\Sigma)$ is a rainbow for any cycle containing it.
Subroutine 1. Detecting an obstruction through two outer-rainbows x and y.
(1) Find a cycle C through x and y whose edges are incident with the outer face of $G(\Sigma)$. If C exists, then this cycle is unique and can be described as the outer boundary of the block containing x and y. If no such C exists, then output No obstruction through x and y. Else, go to Step 2.
(2) Find whether there is a third outer-rainbow $z \in V(C) \backslash\{x, y\}$. If such z exists, update $G(\Sigma) \longleftarrow G(\Sigma-z)$ and go to Step 1. If no such z exists, output C.

Correctness and running-time of Subroutine 1: If an obstruction through x and y exists, then x and y are in the same block (some authors use the term 'biconnected component'). Since x and y are incident with the outer face, the outer boundary of the block containing x and y is the cycle C from Step 1 . This C can be found by considering outer boundary walk W of $G(\Sigma)$ and then by finding whether x and y belong to the same non-edge block of W. Finding W is $O(m)$ and computing the blocks of W via a DFS takes $O(m)$ time.

In Step 2, if there is a third outer rainbow z in C, then no obstruction through x and y contains z. Property (${ }^{* *}$) justifies the update that takes $O(m)$ time.

A full run from Step 1 to Step 2 takes $O(m)$. Moving from Step 2 to Step 1 occurs $O(n)$ times. Thus, the total time for Subroutine 1 is $O(m n)=O\left(n^{2}\right)$.
Subroutine 2. Detecting an obstruction through a single outer-rainbow x.
(1) Find a cycle C through x whose edges are incident with the outer face of $G(\Sigma)$. If no such C exists, output No obstruction through x. Else, go to Step 2.
(2) Find whether there is an outer-rainbow y in $V(C) \backslash\{x\}$. If no such y exists, output C. Else, apply Subroutine 1 to x and y; if there is an obstruction C^{\prime} through x and y, then output C^{\prime}. Else, update $G(\Sigma) \longleftarrow G(\Sigma-y)$ and go to Step 1 .

Correctness and running-time of Subroutine 2: If $G(\Sigma)$ has an obstruction through x, then there is a non-edge block in $G(\Sigma)$ containing x. The outer boundary of this block is a cycle C through x having all edges incident with the outer face. As in Subroutine 1, Step 1 takes $O(m)$ time.

Detecting the existence of y in Step 2 is $O(m)$ because to detect rainbows in C, each edge incident with a vertex in $V(C)$ is verified at most twice. The update in Step 2 is justified by Property $\left(^{* *}\right)$. Since Step 2 may use Subroutine 1, Step 2 takes $O\left(n^{2}\right)$ time. As moving from Step 2 to Step 1 occurs $O(n)$ times, the total running-time for Subroutine 2 is $O\left(n^{3}\right)$.

We are now ready for the algorithm to detect obstructions.
Algorithm 1: Detecting obstructions in $G(\Sigma)$.
(1) Find a cycle C having all edges incident with the outer face. If no such C exists, output No obstruction. Else, go to step 2.
(2) Find whether there is an outer rainbow $x \in V(C)$. If not, output C. Else apply Subroutine 2 to x; if there is an obstruction C^{\prime} through x, output C^{\prime}. Else, update $G(\Sigma) \longleftarrow G(\Sigma-x)$ and go to Step 1.

Correctness and running-time of Algorithm 1: If $G(\Sigma)$ has an obstruction, then it has a non-trivial block whose outer boundary is a cycle C as in Step 1. As before, C and x as in Step 2 can be found in $O(m)$ steps. If C has not outer rainbow x, then C is an obstruction; Property $\left({ }^{* *}\right)$ justifies the update in Step 2.

Since Step 2 may use Subroutine 2, a full run of Steps 1 and 2 takes $O\left(n^{3}\right)$ time. Since Step 2 goes to Step $1 O(n)$ times, the running-time of Algorithm 1 is $O\left(n^{4}\right)$.

Algorithm 1 and the constructive proof of Theorem 2 imply the following result.

- Theorem 14. There is a polynomial-time algorithm to recognize and extend an ordinary set of strings that are extendible to an arrangement of pseudolines.

Proof. Let Σ be an ordinary set of s strings. First, note that if $n=|V(G(\Sigma))|, m=$ $|E(G(\Sigma))|$, and Σ is extendible, then $n \leq\binom{ s}{2}+2 s$. Hence $n, m=O\left(s^{2}\right)$.

Assume that $G(\Sigma)$ has not obstructions, by first verifying that $n \leq\binom{ s}{2}+2 s$ and then running Algorithm 1. For each end in each string in Σ, we keep track of whether one of the Disentangling, Face-Escaping or Exterior-Meeting Steps apply.

The Disentangling and Face-Escaping Steps consist on extending one end a of a fixed string $\sigma \in \Sigma$ in different ways to find an obstruction-free set of strings. For the Disentangling Step, the number of possible extensions is bounded by the maximum degree of $G(\Sigma)$; for the Face-Escaping Step, the number of possible extensions is bounded by twice the length of the face containing the end that we are extending. Thus, each step lead to $O(m)$ possibilities, and testing obstructions in each of them is $O\left(n^{4}\right)$. Thus, the Disentangling and the Face-Escaping Steps take $O\left(n^{5}\right)$ time.

The Exterior-Meeting Step is $O\left(m^{2}\right)$ because for this step we just need to record the number of the pairwise disjoint strings in Σ and the set of strings that have ends incident with the outer face; if all the strings have their ends in the outer boundary, the extension is performed as in the proof of Lemma 12.

As there is a total of $O\left(s^{2}\right)$ extending steps, extending Σ is $O\left(s^{2}\left(n^{5}+m^{2}\right)\right)=O\left(s^{12}\right)$.

6 Concluding remarks

In this work we characterized in Theorem 2 sets of strings that can be extended into arrangements of pseudolines. Moreover, we showed that the obstructions to pseudolinearity can be detected in $O\left(n^{4}\right)$ time, where n is the number of vertices in the planarization of the set of strings.

An easy consequence of Theorem 2 is the following (presented before as Theorem 1).

- Theorem 15. Let D be a non-pseudolinear good drawing of a graph H. Then there is a subset S of edge-arcs in $\{D[e]: e \in E(H)\}$, such that each $\sigma \in S$ has a substring $\sigma^{\prime} \subseteq \sigma$ for which $\bigcup_{\sigma \in S} \sigma^{\prime}$ is one of the drawings represented in Figure 2.

Proof. Take C an obstruction of the planarization associated to D. Let $\delta(C) \subseteq V(C)$ be the vertices that in C are incident with two different strings in $\Sigma=\{D[e]: e \in E(H)\}$. We choose our obstruction C so that $|\delta(C)|$ is as small as possible.

Decompose C into a cyclic sequence of paths P_{0}, \ldots, P_{m}, where P_{i} connects two points in $\delta(C)$ and it is otherwise disjoint from $\delta(C)$. Using Lemma 4 , one can show that P_{0}, \ldots, P_{m} belong to distinct edge-arcs $\sigma_{0}, \ldots, \sigma_{m} \in \Sigma$, respectively. For each P_{i}, we consider the string σ_{i}^{\prime}, obtained by slightly extending the ends of P_{i} that are not rainbows in C; we extend them along σ_{i}.

Let $x \in \delta(C)$ be an end shared by P_{i-1} and P_{i}. If x is not a rainbow for C, then x is a crossing between σ_{i-1} and σ_{i}. Moreover, the arcs added to P_{i-1} and P_{i} at x to obtain σ_{i-1}^{\prime} and σ_{i}^{\prime} are inside C. If x is a rainbow in C, then P_{i} and P_{i-1} are not extended at x, and x acts as one of the degree- 2 vertices in Figure 2. The rest of the points in $\delta(C)$ are crossings in $\bigcup_{i=0}^{m} \sigma_{i}^{\prime}$ facing the interior of C. Since C has at most two rainbows, $\bigcup_{i=0}^{m} \sigma_{i}^{\prime}$ is one of the drawings depicted in Figure 2.

Theorem 2 can also be applied to show that a drawing of K_{n} is pseudolinear if and only if does not contain the B-configuration (Theorem 2.5.1 in [3]). We sketch the proof of a specific case of this theorem in the next two paragraphs and comment on the general case afterwards.

Suppose that $G(\Sigma)$ is the planarization of a non-pseudolinear drawing D of K_{n} for which we would like to show that D contains a B-configuration. Consider an obstruction C of $G(\Sigma)$ minimizing $|\delta(C)|$, where $\delta(C)$ are vertices of C incident with edges in C having different colours. For illustrative purposes, let us assume that C contains two vertices from $V\left(K_{n}\right)$. Since C is an obstruction, u and v are the only rainbows of C.

An edge e of K_{n} is involved in C if C contains a subarc of $D[e]$ (see Figure 13). By using Lemma 4 is not hard to show that every edge involved in C is drawn inside C. Consider all the vertices incident with an edge involved in C and let D^{\prime} be the drawing of the complete graph induced by these vertices. Then, D^{\prime} has at most two vertices in its outer boundary, namely u and v. Thus, the outer boundary of D^{\prime} is incident with at least one crossing. The K_{4} containing this crossing is drawn as in Figure 1 with its crossing incident with the outer face. This K_{4} contains a B-configuration.

The proof for the general case, where C does not necessarily contains two vertices of K_{n}, is considered in full detail in [3], and uses the complete subgraph induced by the edges involved in C combined with the fact that $|\delta(C)|$ is minimal.

A drawing is stretchable if it is homeomorphic to a rectilinear drawing. There are pseudolinear drawings that are not stretchable. For instance, consider the Non-Pappus configuration in Figure 14. Nevertheless, the following is an immediate consequence of Thomassen's main result in [19].

Figure 13 An edge e involved in the obstruction C.

Figure 14 Non-Pappus configuration.

- Corollary 16. A 1-planar drawing of a graph is stretchable if and only if it is pseudolinear.

Proof. If a drawing D is stretchable then clearly it is pseudolinear. To show the converse, suppose that D is pseudolinear. Then D does not contain any obstruction, and in particular, neither of the B - and W-configurations in Figure 2 occurs in D. This condition was shown in [19] to be equivalent to being stretchable.

One can construct more general examples of pseudolinear drawings that are not stretchable by considering non-strechable arrangements of pseudolines. However, such examples seem to inevitably have some edge with multiple crossings. This leads to a natural question.
\triangleright Question 17. Is it true that if D is a pseudolinear drawing in which every edge is crossed at most twice, then D is stretchable?

We believe that there are other instances where pseudolinearity characterizes stretchability of drawings. A drawing is near planar if the removal of one edge produces a planar graph. One instance, is the following result by Eades et al. that can be translated to the language of pseudolines:

- Theorem 18. [9] A drawing of a near-planar graph is stretchable if and only if the drawing induced by the crossed edges is pseudolinear.

References

1 B. M. Ábrego and S. Fernández-Merchant. A lower bound for the rectilinear crossing number. Graphs and Combinatorics, 21(3):293-300, 2005.
2 O. Aichholzer, T. Hackl, A. Pilz, G. Salazar, and B. Vogtenhuber. Deciding monotonicity of good drawings of the complete graph. In Proc. XVI Spanish Meeting on Computational Geometry (EGC 2015), pages 33-36, 2015.
3 A. Arroyo. On Geometric Drawings of Graphs. PhD thesis, University of Waterloo, 2018.
4 A. Arroyo, D. McQuillan, R. B. Richter, and G. Salazar. Levi's lemma, pseudolinear drawings of, and empty triangles. Journal of Graph Theory, 87(4):443-459, 2018.

5 M. Balko, R. Fulek, and J. Kynčl. Crossing numbers and combinatorial characterization of monotone drawings of K_{n}. Discrete \& Computational Geometry, 53(1):107-143, 2015.
6 J. Balogh, J. Leaños, S. Pan, R. B. Richter, and G. Salazar. The convex hull of every optimal pseudolinear drawing of K_{n} is a triangle. Australasian Journal of Combinatorics, 38:155, 2007.
7 D. Bienstock and N. Dean. Bounds for rectilinear crossing numbers. Journal of Graph Theory, 17(3):333-348, 1993.
8 J. Cardinal. Computational geometry column 62. SIGACT News, 46(4):69-78, Dec. 2015.
9 P. Eades, S.-H. Hong, G. Liotta, N. Katoh, and S.-H. Poon. Straight-line drawability of a planar graph plus an edge. arXiv preprint arXiv:1504.06540, 2015.
10 S. Felsner. Geometric graphs and arrangements: some chapters from combinatorial geometry. Springer Science \& Business Media, 2012.
11 S. Felsner and J. E. Goodman. Pseudoline arrangements. In Handbook of Discrete and Computational Geometry, pages 125-157. Chapman and Hall/CRC, 2017.
12 C. Hernández-Vélez, J. Leaños, and G. Salazar. On the pseudolinear crossing number. Journal of Graph Theory, 84(3):155-162, 2017.
13 P. Hoffman and B. Richter. Embedding graphs in surfaces. Journal of Combinatorial Theory, Series B, 36(1):65-84, 1984.
14 L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl. Convex quadrilaterals and k-sets. Contemporary Mathematics, 342:139-148, 2004.
15 J. Matousek. Intersection graphs of segments and $\exists \mathbb{R}, 2014$.
16 N. E. Mnëv. Varieties of combinatorial types of projective configurations and convex polytopes. Doklady Akademii Nauk SSSR, 283(6):1312-1314, 1985.
17 N. E. Mnëv. The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In Topology and geometry-Rohlin seminar, pages 527-543. Springer, 1988.
18 M. Schaefer. Complexity of some geometric and topological problems. In D. Eppstein and E. R. Gansner, editors, Graph Drawing, pages 334-344, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
19 C. Thomassen. Rectilinear drawings of graphs. Journal of Graph Theory, 12(3):335-341, 1988.

