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In the recent study of crossing numbers, drawings of graphs that can be extended to an arrangement of pseudolines (pseudolinear drawings) have played an important role as they are a natural combinatorial extension of rectilinear (or straight-line) drawings. A characterization of the pseudolinear drawings of Kn was found recently. We extend this characterization to all graphs, by describing the set of minimal forbidden subdrawings for pseudolinear drawings. Our characterization also leads to a polynomial-time algorithm to recognize pseudolinear drawings and construct the pseudolines when it is possible.

Introduction

Since 2004, geometric methods have been used to make impressive progress for determining the crossing number of (certain classes of drawings of) the complete graph K n . In particular, drawings that extend to straight lines, or, more generally, arrangements of pseudolines, have been central to this work, spurring interest in such drawings for arbitrary graphs, not just complete graphs [START_REF] Aichholzer | Deciding monotonicity of good drawings of the complete graph[END_REF][START_REF] Arroyo | Levi's lemma, pseudolinear drawings of, and empty triangles[END_REF][START_REF] Balko | Crossing numbers and combinatorial characterization of monotone drawings of Kn[END_REF][START_REF] Balogh | The convex hull of every optimal pseudolinear drawing of Kn is a triangle[END_REF][START_REF] Hernández-Vélez | On the pseudolinear crossing number[END_REF].

In particular, for pseudolinear drawings, it is now known that, for n ≥ 10, a pseudolinear drawing of K n has more than

H(n) := 1 4 n 2 n -1 2 n -2 2 n -3 2
crossings [START_REF] Ábrego | A lower bound for the rectilinear crossing number[END_REF][START_REF] Lovász | Convex quadrilaterals and k-sets[END_REF]. The number H(n) is conjectured by Harary and Hill to be the smallest number of crossings over all topological drawings of K n ; that is, the crossing number cr(K n ) is conjectured to be H(n).

A pseudoline is the image of a continuous injection from the real numbers R to the plane R 2 such that R 2 \ is not connected. An arrangement of pseudolines is a set Σ of pseudolines such that, if , are distinct elements of Σ, then | ∩ | = 1 and the intersection is a crossing point. Informally, a crossing point or crossing is an intersection point between two pseudolines that locally looks like a crossing point between two non parallel lines (a formal definition of crossing will be given when we introduce the notion of string). More on pseudolines and their importance for studying geometric drawings of graphs can be found in [START_REF] Felsner | Geometric graphs and arrangements: some chapters from combinatorial geometry[END_REF][START_REF] Felsner | Pseudoline arrangements[END_REF].

A drawing D of a graph G is pseudolinear if there is an arrangment of pseudolines consisting of a different pseudoline e for each edge e of G and such that D[e] ⊆ e .

In the study of crossing numbers, restricting the drawing to either straight lines or pseudolines yields the rectilinear crossing number cr(K n ) or the pseudolinear crossing number cr(K n ), respectively. Clearly cr(K n ) ≥ cr(K n ) and the geometric methods prove that cr(K n ) > H(n), for n ≥ 10.

A good drawing is one where no edge self-intersects and any two edges share at most one point-either a crossing or a common end point-and no three edges share a common crossing. One somewhat surprising result is from Aichholzer et al.: a good drawing of K n in the plane is homeomorphic to a pseudolinear drawing if and only if it does not contain a non-planar drawing of K 4 whose crossing is incident with the unbounded face of the K 4 [START_REF] Aichholzer | Deciding monotonicity of good drawings of the complete graph[END_REF] (see Figure 1). By ignoring the grey edges from Figure 1, we see that any such drawing of K 4 contains a B-configuration, depicted as the third drawing of the first row of Figure 2. Based on our Theorem 2, Theorem 2.5.1 from [START_REF] Arroyo | On Geometric Drawings of Graphs[END_REF] shows that any non-pseudolinear drawing contains a B-configuration. Thus, either Fig. 1 or the B-configuration can be used to characterize pseudolinear drawings of K n . In [START_REF] Arroyo | Levi's lemma, pseudolinear drawings of, and empty triangles[END_REF] pseudolinear drawings of K n are characterized as f-convex, and in [START_REF] Balko | Crossing numbers and combinatorial characterization of monotone drawings of Kn[END_REF] are characterized as monotone and free of a specific drawing of K 4 .

Figure 1 Non-pseudolinear K4 with its crossing incident with the outer face.

Twenty-five years earlier, Thomassen [START_REF] Thomassen | Rectilinear drawings of graphs[END_REF] proved a similar theorem for a 1-planar drawing (that is, a drawing in which each edge is crossed at most once). The B-and W -configurations are shown as the third and fourth drawings in the first row of Thomassen presented in [START_REF] Thomassen | Rectilinear drawings of graphs[END_REF] the clouds (first column in Figure 2) as an infinite family of drawings that are minimally non-pseudolinear.

Shortly after Thomassen's paper, Bienstock and Dean proved that if cr(G) ≤ 3, then cr(G) = cr(G) [START_REF] Bienstock | Bounds for rectilinear crossing numbers[END_REF]. They also exhibited examples based on overlapping W -configurations to show the result fails for cr(G) = 4; such graphs can have arbitrarily large rectilinear crossing number.

Despite the existence of infinitely many obstructions to pseudolinearity, we characterize them all.

Theorem 1. A good drawing of a graph G is pseudolinear if and only if it does not contain one of the infinitely many obstructions shown in Figure 1.

The drawings in Figure 2 are obtained from the clouds (first column) by replacing at most two crossings by vertices. The formal statement of Theorem 1 is Theorem 15 in Section 6; also a more general version of this statement, Theorem 2, is discussed below. Our result draws a This contrast with the rather real algebraic geometry problem of deciding the stretchability of a drawing, defined as the problem of deciding whether a given drawing is homeomorphic to a rectilinear drawing. Mnëv [START_REF] Mnëv | Varieties of combinatorial types of projective configurations and convex polytopes[END_REF][START_REF] Mnëv | The universality theorems on the classification problem of configuration varieties and convex polytopes varieties[END_REF] showed that deciding the stretchability of an arrangement of pseudolines is ∃R-hard, implying the ∃R-hardness for the problem of deciding the stretchability of a graph drawing. Since NP ⊆ ∃R [START_REF] Matousek | Intersection graphs of segments and ∃R[END_REF][START_REF] Schaefer | Complexity of some geometric and topological problems[END_REF][START_REF]Computational geometry column 62[END_REF], this in particular shows that the stretchability problem is NP-hard. We refer to Matousek's survey [START_REF] Matousek | Intersection graphs of segments and ∃R[END_REF] for an approachable introduction to the complexity class ∃R.

The natural setting for our characterization is strings embedded in the plane. An arc σ Suppose that σ and σ whose intersection σ∩σ is a finite set and let p ∈ σ∩σ. The rotation at p is a cyclic sequence of substrings determined by a small neighbourhood homeomorphic to the plane in which p is origin and the substrings incident with p are rays emanating from p [START_REF] Hoffman | Embedding graphs in surfaces[END_REF]Thm. 3.1]. The strings σ 1 , σ 2 cross at p if they each have two substrings that alternate

is the image f ([0, 1]) of the compact interval [0, 1] under a continuous map f : [0, 1] → R 2 . Let S(σ) = {p ∈ σ : |f -1 (p)| ≥ 2}
σ 1 -σ 2 -σ 1 -σ 2 in the rotation at p.
An intersection point between of two strings σ and σ is ordinary if it is either an endpoint of σ or σ , or is a crossing. A set Σ of strings is ordinary if Σ is finite and any two strings in Σ have only finitely many intersections, all of which are ordinary. All the sets of strings considered in this paper are ordinary.

If Σ is an ordinary set of strings, then its planarization G(Σ) is the plane graph obtained from Σ by inserting vertices at each crossing between strings and also at the endpoints of every string in Σ. To keep track of the information given by the strings, we will always assume that each string Σ has a different color and that each edge in G(Σ) inherits the color of the string including it. Henceforth, we define any cycle C in G(Σ) with at most two rainbows as an obstruction.

A set of strings is pseudolinear if it has an extension to an arrangement of pseudolines.

Theorem 2 is our main contribution. In the next section, we show that the presence of an obstruction implies the set of ordinary strings is not pseudolinear. The converse is proved in Section 4 by extending, one small step at a time, the strings in Σ to get closer to an arrangement of pseudolines. After each extension, we must show that no obstruction has been introduced. This involves dealing with cycles in G(Σ) that have precisely three rainbows (that we refer as near-obstructions). In Section 3 we show the key lemma that if G has two such near-obstructions that intersect nicely at a vertex v, then G has an obstruction.

In Section 5 we present a polynomial-time algorithm for detecting obstructions and we argue why the proof of Theorem 2 implies a polynomial-time algorithm for extending a pseudolinear set of strings. Finally, in Section 6, we show how Theorem 1 follows from Theorem 2 and we present some concluding remarks.

A set of strings with an obstruction is not extendible

Let us start by showing the easy direction of Theorem 2: Lemma 4. Let Σ be a set of simple strings where every pair intersect at most once. Suppose that C is an obstruction with |δ(C)| as small as possible. Let S = x 0 , x 1 , . . . , x be a path of G(Σ) representing a substring of some string σ ∈ Σ such that x 0 x 1 ∈ E(C), x 1 ∈ δ(C) and

x 1 is not a rainbow of C. Then V (C) ∩ V (S) = {x 0 , x 1 }.
Proof. By way of contradiction, suppose that there is a vertex x r ∈ V (C) ∩ V (S) with r ≥ 3.

Assume that r ≥ 3 is as small as possible. Let P be the subpath of S connecting x 1 to x r .

The facts x 0 x 1 ∈ E(C), x 1 ∈ δ(C), and P ⊆ σ imply that x 1 x 2 = E(C). Because x 1 is not a rainbow for C and no two strings tangentially intersect at x 1 , the edge x 1 x 2 is drawn in the closed disk bounded by C. By choice of r, P is an arc connecting x 1 to x r in the interior of

C.

Let C 1 and C 2 be the two cycles of C ∪ P containing P , labelled so that x 0 x 1 ∈ E(C 1 ).

We shall use the minimality of |δ(C)| to show that C 1 and C 2 are not obstructions. Then, we will count rainbows in C 1 and C 2 to obtain the contradiction that C is not an obstruction.

For a cycle X, let ρ(X) be the set of rainbows of X.

For i = 1, 2, let Q i = V (C i ) \ V (P ).
As the edges of S are included in the same string, we see that

ρ(C 1 ) \ Q 1 ⊆ {x r } and ρ(C 2 ) \ Q 2 ⊆ {x 1 , x r }. Likewise, δ(C 1 ) \ Q 1 ⊆ {x r } and δ(C 2 ) \ Q 2 ⊆ {x 1 , x r }.
Let us show that C 1 and

C 2 are not obstructions. Because |δ(C 2 )| ≥ 3 and δ(C 2 ) \ Q 2 ⊆ {x 1 , x r }, |δ(C) ∩ Q 2 | ≥ 1. Since δ(C 1 ) \ Q 1 ⊆ {x r } and x 1 ∈ δ(C), |δ(C 1 )| ≤ |δ(C 1 ) ∩ Q 1 | + |{x r }| ≤ |δ(C)|-2+|{x r }| < |δ(C)|. Because |δ(C 1 )| ≥ 3 and |δ(C 1 )\Q 1 | ≤ 1, |δ(C)∩Q 1 | ≥ 2. Since x 1 ∈ δ(C) ∩ δ(C 2 ), |δ(C 2 )| ≤ |δ(C) ∩ Q 2 | + |{x 1 , x r }| ≤ |δ(C)| -3 + |{x 1 , x r }| < |δ(C)|.
Thus, neither C 1 nor C 2 is an obstruction.

Finally, as |ρ(C 1 )| ≥ 3 and |ρ(C

1 ) \ Q 1 | ≤ 1, |ρ(C) ∩ Q 1 | = |ρ(C 1 ) ∩ Q 1 | ≥ 2. Because |ρ(C 2 )| ≥ 3 and |ρ(C 2 ) \ Q 2 | ≤ 2, |ρ(C) ∩ Q 2 | = |ρ(C 2 ) ∩ Q 2 | ≥ 1. Thus |ρ(C)| ≥ 3, a contradiction.
Proof of Lemma 3. By way of contradiction, suppose that Σ is pseudolinear and that G(Σ)

has an obstruction C.

Consider an extension of Σ to an arrangement of pseudolines, and then cut off the two infinite ends of each pseudoline to obtain a set of strings Σ extending Σ, and in which every pair of strings in Σ cross once. In G(Σ ), there is a cycle C that represents the same simple closed curve as C. Because every rainbow of C is a rainbow of C, C has fewer than three rainbows. Therefore, we may assume that Σ = Σ and C = C . Now, the ends of every string in Σ are degree-1 vertices in the outer face of G(Σ).

As every string in Σ is simple and no two strings intersect more than once, |δ(C)| ≥ 3.

We will assume that C is chosen to minimize |δ(C)|.

Since C is an obstruction, there exists

x 1 ∈ δ(C) such that x 1 is not a rainbow in C.
Consider a neighbour x 0 of x 1 in C. Let S = x 0 , x 1 , . . . x be the path obtained by traversing the string σ extending x 0 x 1 , such that x is an end of σ. By Lemma 4, V (S)∩V (C) = {x 0 , x 1 }, and because x is in the outer face of C, the segment of σ from x 1 to x has its relative interior in the outer face of C.

However, since x 1 is not a rainbow, there exists a string σ ∈ Σ including two edges at x 1 drawn inside C. Thus, σ and σ tangentially intersect at x 1 , a contradiction.

The key lemma

In this section we present the key lemma used in the proof of Theorem 2.

A plane graph G is path-partitioned if for m ≥ 1, there exists a colouring χ : E(G) → {1, . . . , m} such that for each i ∈ {1, . . . , m}, the edges in χ -1 (i) induce a path P i ⊆ G where any two distinct paths P i and P j do not tangentially intersect. Indeed, every underlying planar graph G(Σ) of a set of simple strings Σ is path-partitioned. Moreover, every pathpartitioned plane graph can be obtained by subdividing a planarization of an ordinary set of simple strings. To extend the previously introduced notation we refer to each P i as a string.

The concepts of rainbow and obstruction naturally extend to the context of path-partitioned plane graphs.

Suppose that G is a path-partitioned plane graph. Given v ∈ V (G), a near-obstruction at v is a cycle C with at most three rainbows and such that v is a rainbow of C. Understanding how near-obstructions behave is the key ingredient needed in the proof of Theorem 2: Then G has an obstruction not including v.

Given a plane graph G, a cycle C ⊆ G and a vertex v ∈ V (C), the edges at v inside C are the edges of G incident with v drawn inside C. Consider a homeomorphism from a small disc neighbourhood of v to the plane so that each edge segment incident with v is a straight ray from the origin (which is v). Since no two strings intersect tangentially at v, we may assume that the rotation at v has substrings of the same colour making an angle of π at v.

v P v u w Q 1 out Q 2 out (a) P v u w Q 1 out Q 2 out u e u P u (b) 
Figure 3 Auxiliary figures used in the proof of Lemma 5.

The angles between rays are the angles at v and we associate to them the set of edges at v drawn as rays inside them. From this geometric perspective, it is obvious that, if an angle α is less than π, then α is rainbow. This proves the second of the following facts.

Useful Facts. Let G be a plane path-partitioned graph and let v ∈ V (G). Then 1. if α, β are two angles at v with α ⊆ β and β is rainbow, then α is rainbow; and 2. if α and β are two angles such α is not rainbow and β is a proper subangle of the complement α of α, then β is rainbow.

Proof of Lemma 5. By way of contradiction, suppose that G has no obstruction not including v. The "small ball" hypothesis implies that v is not in the outer face of the subgraph

C 1 ∪ C 2 . We claim that |V (C 1 ) ∩ V (C 2 )| ≥ 3. Suppose not. For i = 1, 2
, let e i and f i be the edges of C i at v and let ∆ i be the closed disk bounded by C i . From the "small ball" hypothesis it follows that (i) ∆ 1 contains the edges e 2 and f 2 ; and (ii) the points near v in the exterior of ∆ 2 are contained in ∆ 1 . These two properties imply that the path

C 2 -v intersects C 1 at least twice, and because v ∈ V (C 1 ) ∩ V (C 2 ), |V (C 1 ) ∩ V (C 2 )| ≥ 3.
From the last paragraph we know that C 1 ∪ C 2 is 2-connected, and hence the outer face of C 1 ∪ C 2 is bounded by a cycle C out . We will assume that (*) the cycles C 1 and C 2 satisfying the hypothesis of Lemma 5 are chosen so that the number of vertices of G in the disk bounded by C out is minimal.

Useful Fact 1 applied to the interior angles at vertices of C out shows that every vertex that is a rainbow in C out is also a rainbow in each of the cycles in {C 1 , C 2 } containing it.

We can assume that C out is not an obstruction or else we are done. We may relabel C 1 and C 2 so that two of the rainbows of C out , say p and q, are also rainbows in

C 1 . Neither p nor q is v because v / ∈ V (C out ).
Because C 1 is a near-obstruction, p, q and v are the only rainbows of C 1 .

Since v / ∈ V (C out ), by following C 1 in the two directions starting at v, we find a path

P v ⊆ C 1 containing v in which only the ends u and w of P v are in C out (note that u = w because {p, q} ⊆ V (C 1 ) ∩ V (C out )). See Figure 3a. As v is in the interior face of C out , P v is also in the interior of C out . Let Q 1 out , Q 2 out be
the uw-paths of C out . One of the two closed disks bounded by

P v ∪ Q 1 out and P v ∪ Q 2 out contains C 1 .
By symmetry, we may assume that C 1 is contained in the first disk. Since

C out ⊆ C 1 ∪ C 2 , this implies that Q 2 out is a subpath of C 2 .
Our desired contradiction will be to find three rainbows in C 2 distinct from v. We find the first: let C 1 -(P v ) be the uw-path in C 1 distinct from P v . The disk bounded by

(C 1 -(P v )) ∪ Q 2
out contains the one bounded by C 1 . Useful Fact 1 applied to the interior angles at the vertices of (C 1 -

(P v )) ∪ Q 2 out implies that each vertex in C 1 -(P v ) that is a rainbow in (C 1 -(P v )) ∪ Q 2 out is also rainbow in C 1 .
Since C 1 has at most two rainbows in

C 1 -(P v ), namely p and q, (C 1 -(P v )) ∪ Q 2 out has a third rainbow r 1 in the interior of Q 2 out (else (C 1 -(P v )) ∪ Q 2
out is an obstruction and we are done). Note that r 1 is also a rainbow for C 2 .

To find another rainbow in C 2 , consider the edge e u of C 2 incident to u and not in Q 2 out .

We claim that either u is a rainbow in C 2 or that e u is not included in the closed disk bounded by P v ∪ Q 2 out . Seeking a contradiction, suppose that u is not a rainbow of C 2 and that e u is included in the disk. Then Useful Fact 2 implies that u is a rainbow in C 1 . As p and q are the only rainbows of C 1 in C out , u is one of p and q. Therefore u is a rainbow in Proof. Suppose that all the rainbows of C u are located in uP v u . If z is a rainbow of C u , then z ∈ {u, v, u }, as otherwise z is a rainbow of C 1 distinct from p, q and v, a contradiction.

C out ,
Thus, if v / ∈ V (C u ), then C u is the desired obstruction. We may assume that v ∈ V (C u ).

If u = w, then C 2 = P u ∪ Q 2 out , violating the assumption that v ∈ V (C 2 ). Thus u = w.
If u = v, then the rainbows of C u are included in {u, u }, and hence C u is an obstruction.

However, the existence of C u shows that both alternatives (1) and (2) in Lemma 5 fail: condition (1) fails because C u contains v and (2) fails because the edge of

P u incident with v is in E(C 2 ) \ E(C 1 ). Thus u = v.
The previous two paragraphs show that C u is a near-obstruction at v with rainbows u, v and u . Since the interior of C u near v is the same as the interior of C 1 near v, the pair (C u , C 2 ) satisfies the "small ball" hypothesis. Thus, (a) holds.

Let C out be the outer cycle of

C u ∪ C 2 . From the fact that C u ∪ C 2 ⊆ C 1 ∪ C 2 it follows
that the disk bounded by C out includes the disk bounded by C out .

Since p, q ∈ V (C out ), p and q are in the disk bounded by C out . If both p and q are in C 2 , then p, q and r 1 are rainbows in C 2 , and also distinct from v, contradicting that C 2 is a near-obstruction for v. If, say p / ∈ V (C 2 ), then p is not in the disk bounded by C out , which implies (b).

From Claim 6(b) and assumption (*) either C u is the desired obstruction or P u contains a rainbow r 2 of C 2 in its interior. We assume the latter as otherwise we are done.

In the same way, the last rainbow r 3 comes by considering the edge of C 2 -Q 2 out incident with w. It follows that v, r 1 , r 2 and r 3 are four different rainbows in C 2 , contradicting the fact that C 2 is a near-obstruction. Proof of Theorem 2

In this section we prove that a set of strings with no obstructions can be extended to an arrangement of pseudolines.

Proof of Theorem 2. It was shown in Observation 3 that the existence of obstructions implies non-extendibility. For the converse, suppose that Σ is a set of strings for which G(Σ) has no obstructions.

We start by reducing to the case where the point set Σ is connected: iteratively add a new string in a face of Σ connecting two connected components of Σ. No obstruction is introduced at each step (obstructions are cycles), and, eventually, the obtained set Σ is

connected. An extension of the new set of strings contains an extension for the original set, thus we may assume that Σ is connected.

Our proof is algorithmic, and consists of repeatedly applying one of the three steps described below.

Disentangling

Step. If a string σ ∈ Σ has an end a with degree at least 2 in G(Σ), then we slightly extend the a-end of σ into one of the faces incident with a.

Face-Escaping

Step. If a string σ ∈ Σ has an end a with degree 1 in G(Σ), and is incident with an interior face, then we extend the a-end of σ until it intersects some point in the boundary of this face.

Exterior-Meeting

Step. Assuming that all the strings in Σ have their two ends in the outer face and these ends have degree 1 in G(Σ), we extend the ends of two disjoint strings so that they meet in the outer face.

Each of these three steps either increases the number of pairs of strings that intersect, or increase the number crossings (recall that a crossing between σ and σ is a non-tangential intersection point in σ ∩ σ that is not an end of σ or σ ). Moreover, these steps can be performed as long as one of the next two conditions holds: (1) at least one string does not have an end incident with the outer face; and (2) there is a pair of strings that do not cross. If none of (1) and (2) hold, then our set of strings is extendible into an arrangement of pseudolines. Henceforth, we will show that, if performed correctly, none of these steps introduces an obstruction. The proof for each step can be read independently.

Lemma 7 (Disentangling Step). Suppose that σ ∈ Σ has an end a with degree at least 2 in G(Σ). Then we can extend the a-end of σ into one of the faces incident to a without creating an obstruction.

Proof. A pair of different edges f and f in G(Σ) incident with a are twins if they belong to the same string in Σ. The edge e ⊆ σ incident with a has no twin.

The fact that no pair of strings tangentially intersect at a tells us that if (f 1 , f 1 ) and (f 2 , f 2 ) are pairs of twins, then f 1 , f 2 , f 1 , f 2 occur in this cyclic order for either the clockwise or counterclockwise rotation at a. Thus, we may assume that the counterclockwise rotation at a restricted to the twins and e is e, f 1 , . . . , f t , f 1 , . . . , f t , where (f i , f i ) is a twin pair for i = 1, . . . , t.

To avoid tangential intersections, the extension of σ at a must be in the angle between f t and f 1 not containing e. Let e 1 , . . . , e k be the counterclockwise ordered list of non-twin edges at a having an end in this angle (as depicted in Figure 4). We label e 0 = f t and e k+1 = f 1 .

If there are no twins, then let e 0 = e k+1 = e. Let us consider all the possible extensions: for i ∈ {0, . . . , k}, let Σ i be the set of strings obtained from Σ by slightly extending the a-end of σ into the face containing the angle between e i and e i+1 . Let α i be the new edge at a extending σ in Σ i (see α 0 in Figure 4).

Seeking a contradiction, suppose that, for each i ∈ {0, ..., k}, G(Σ i ) contains an obstruction

C i . Since α i contains a degree-1 vertex, α i is not in C i . Hence C i is a cycle of G(Σ).
Thus, C i is not an obstruction in G(Σ) and becomes an obstruction in G(Σ i ). This conversion has a simple explanation: in G(Σ), C i has exactly three rainbows, and one of them is a. After α i is added, a is not a rainbow in C i (witnessed by the edges e and α i included in the new version of σ).

Recall from Section 3 that a near-obstruction at a is a cycle with exactly three rainbows, and one of them is a.

Each of C 0 , C 1 ,...,C k is a near-obstruction at a in G(Σ).
For a cycle C ⊆ G, let ∆(C) denote the closed disk bounded by C. Both e and α 0 are in ∆(C 0 ). Thus, either ∆(C 0 ) ⊇ {e, f 1 , f 2 , . . . , f t , e 1 } (blue bidirectional arrow in Figure 4) or ∆(C 0 ) ⊇ {f t , e 1 , . . . , e k , f 1 , f 2 , . . . , f t , e} (green bidirectional arrow). We rule out the latter situation as the second list contains f t and f t , and this would imply that a is not a rainbow for C 0 in G(Σ).

We just showed that {e, e 0 , e 1 } ⊆ ∆(C 0 ). By symmetry, {e k , e k+1 , e} ⊆ ∆(C k ). Consider the largest index i ∈ {0, 1, . . . , k -1} for which {e, e 0 , . . . , e i+1 } ⊆ ∆(C i ). By the choice of i, and because {e, α i+1 } ⊆ ∆(C i+1 ), {e, f t , . . . , f 1 , e k , . . . , e i } ⊆ ∆(C i+1 ). Apply Lemma 5 to the pair C i and C i+1 , where C i , C i+1 and a play the roles of C 1 , C 2 and v. Condition 1 of Lemma 5 holds, and hence we obtain that G(Σ) has an obstruction, a contradiction. Lemma 8 (Face-Escaping Step). Suppose that there is a string σ that has an end a with degree 1 in G(Σ), and a is incident to an interior face F . Then there is an extension σ of σ from its a-end to a point in the boundary of F such that the set (Σ \ {σ}) ∪ {σ } has no obstruction.

Proof. Let W be the closed boundary walk (x 0 , e 1 , x 1 , e 2 , . . . , e n , x n ) of F such that x 0 =

x n = a and F is to the left as we traverse W (see Figure 5 for an illustration with n = 9). For i = 1, . . . , n we let m i be a point in the relative interior of e i , and let P be the list of non-necessarily distinct points m 1 , x 1 , m 2 , x 2 . . . , m n , which are the potential ends for all the different extensions. For each p ∈ P , let Σ p be the set of strings obtained from Σ by extending the a-end of σ by adding an arc α p connecting a to p in F (see Figure 5). We assume that every two distinct arcs α p and α p are internally disjoint.

Let f p be the edge e 1 ∪ α p in G(Σ p ); f p has ends x 1 and p. Also, let σ p = σ ∪ α p . See Henceforth we assume that, for p ∈ P , C p is an obstruction in G(Σ p ) as in Claim 9.

More can be said about the obstructions in G(Σ p ), but for this we need some terminology.

If we orient an edge e in a plane graph, then the sides of e are either the points near e that are to the right of e, or the points near e to the left of e. For any cycle C of G through e, exactly one side of e lies inside C. This is the side of e covered by C. For the next claim and in the rest of the proof we will assume that for p ∈ P , f p is oriented from x 1 to p. Proof. By redrawing the arcs representing f x and f m , we will assume that they only intersect at x 1 . In particular this redrawing creates two copies of the edge e 1 .

x Our last observation implies that P is an arc connecting x 1 and x in the exterior of C.

1 x i x f m f x C x m (a) Case a.1. x 1 x i x f m f x m C x (b) Case a.2.
Since the interior of C m covers the left of f m , the interior of C x = P + f x covers the left of

f x . The cycle C x is an obstruction because V (C x ) ⊆ V (C m ) and C m is included inside C x . Case b.2. x / ∈ V (C m ). See Figure 9b.
In this case we let C x be the cycle obtained by replacing the path (x

1 , f m , m, mx i , x i ) in C m by the path P = (x 1 , f x , x, xx i , x i ) in G(Σ x ). Since C m covers the left of f m and F is bounded, C x covers the left of f x . To show that C x is an obstruction, note that C m is inside C x and that V (C x ) \ {x} ⊆ V (C m ). Thus, all the rainbows of C x in V (C x ) \ {x} are also rainbows in C m . Since x / ∈ σ, we see that x is a rainbow in C x , but is not a vertex of C m . To compensate, we note that m is a rainbow in C m that is not in V (C x ): if m is not rainbow, both f m and xx i are
included in σ, implying that x ∈ σ. This shows that C x has at most as many rainbows as C m . Therefore C x is the desired obstruction.

Claims 10 and 11 contradict each other, so, for some p ∈ P , G(Σ p ) has no obstructions.

Lemma 12 (Exterior-Meeting Step

). If all the strings in Σ have their ends on the outer face of G(Σ) and the ends have degree 1 in G(Σ), then we can extend a pair disjoint strings so that they intersect without creating an obstruction.

Proof. First, consider a simple closed curve in the outerface of Σ closely following the outerboundary of Σ. Then, by slightly modifying this curve, we obtain a simple closed cuve O containing all the ends of the strings in Σ, but otherwise disjoint from Σ. See Suppose σ 1 , σ 2 are two disjoint strings in Σ. For i = 1, 2, let a i , b i be the ends of σ i ;

since σ 1 and σ 2 do not cross, we may assume that these ends occur in the cyclic order a 1 , b 1 , b 2 , a 2 . We extend the a i -ends of σ 1 and σ 2 so that they meet in a point p in the outer face, and so that all the ends of σ 1 and σ 2 remain incident with the outer face (Figure 11). Let Σ be the obtained set of strings.

O σ 1 σ 2 p a 1 b 1 b 2 a 2 ∆ 1 ∆ 2 ∆ 3 Figure 11 Exterior-Meeting Step.
Seeking a contradiction, suppose that G(Σ ) has an obstruction C. Since G(Σ) has no obstruction, p ∈ V (C). Our contradiction will be to find three rainbows in C. Note that p is a rainbow. To obtain a second rainbow, traverse C starting from p towards a 1 . Let d 1 be the first vertex during our traversal that is not in the extended σ 1 , and let c 1 be its neighbour in σ 1 , one step before we reach d 1 . Since b 1 has degree one, c 1 = b 1 .

The strings σ 1 and σ 2 divide the disk bounded by O into three closed regions ∆ 1 , ∆ 2 , 11).

∆ 3 such that ∆ 1 ∩ ∆ 2 = σ 1 , ∆ 2 ∩ ∆ 3 = σ 2 and ∆ 1 ∩ ∆ 3 = ∅ (see Figure
Claim 13. The cycle C has a rainbow included in ∆ 1 .

Proof. First, suppose that d 1 / ∈ ∆ 1 . In this case, c 1 is a rainbow because otherwise there would be a string σ that tangentially intersects σ 1 at c 1 . Thus, if d 1 / ∈ ∆ 1 , then c 1 is the desired rainbow.

Second, suppose that d 1 ∈ ∆ 1 . Let P 1 be the path of C starting at c 1 , continuing on the edge c 1 d 1 , and ending at the first vertex we encounter in σ 1 . Let C be the cycle enclosed by

P 1 ∪ σ 1 .
Since C is not an obstruction, there is one rainbow of C that is an interior vertex of P 1 ; this is the desired rainbow of C. This concludes the proof of Claim 13.

Considering σ 2 instead of σ 1 , Claim 13 yields a third rainbow in C inside the region ∆ 3 analogous to ∆ 1 , contradicting that C is an obstruction. Hence Lemma 12 holds.

We iteratively apply the Disentangling Step, Face-Escaping Step or Exterior-Meeting Step without creating obstructions. Each step increases the number of pairwise intersecting strings in Σ until we reach a stage where the strings are pairwise intersecting and all of them have their two ends in the unbounded face. From this we extend them into an arrangement of pseudolines. This concludes the proof of Theorem 2.

Finding obstructions and extending strings in polynomial time

We start this section by describing an algorithm to detect obstructions. Henceforth, we assume that the input to the problem is the planarization G(Σ) of an ordinary set of s strings Σ. For the running-time analysis, we assume that n and m are the number of vertices and edges in G(Σ), respectively. Since G(Σ) is planar, m = O(n). Moreover, if Σ is pseudolinear,

then n ≤ s 2 + 2s = s+2 2 -1.
At the end of this section we explain how to extend Σ (if possible) in polynomial time.

Recall that each string in Σ receives a different colour; this induces an edge-colouring on G(Σ) where each string is a monochromatic path. An outer-rainbow is a vertex x ∈ V (G(Σ))

incident with the outer face and for which the edges incident with x have different colours.

Next we describe the basic operation in our obstruction-detecting algorithm.

x Figure 12 From Σ to Σ -x.

Outer-rainbow deletion. Given an outer-rainbow x ∈ V (G(Σ)), the instance G(Σ -x) is defined by: first, removing x and the edges incident to x; second, suppressing the degree-2 vertices incident with edges of the same colour; and third, removing remaining degree-0 vertices (Figure 12 illustrates this process). Edge colours are preserved.

It is easy to verify that G(Σ -x) is the planarization of an arrangement of strings. The colours removed by this operation are those belonging to strings that are paths of length 1 in G(Σ) incident with x. Our obstruction-detecting algorithm relies on the following property:

(**) if x is an outer-rainbow of G(Σ), then there is an obstruction in G(Σ) not including x if and only if there is an obstruction in G(Σ -x).

This property holds because cycles in G(Σ) -x and in G(Σ -x) are in 1-1 correspondence: two cycles correspond to each other if they are the same simple closed curve. This correspondence is obstruction-preserving.

Let us now describe the two subroutines in our algorithm. For this, we remark that an outer-rainbow of G(Σ) is a rainbow for any cycle containing it.

Subroutine 1. Detecting an obstruction through two outer-rainbows x and y.

( ( We are now ready for the algorithm to detect obstructions.

Algorithm 1: Detecting obstructions in G(Σ).

( The Disentangling and Face-Escaping Steps consist on extending one end a of a fixed string σ ∈ Σ in different ways to find an obstruction-free set of strings. For the Disentangling

Step, the number of possible extensions is bounded by the maximum degree of G(Σ); for the Face-Escaping Step, the number of possible extensions is bounded by twice the length of the face containing the end that we are extending. Thus, each step lead to O(m) possibilities, and testing obstructions in each of them is O(n 4 ). Thus, the Disentangling and the Face-Escaping

Steps take O(n 5 ) time.

The Exterior-Meeting Step is O(m 2 ) because for this step we just need to record the number of the pairwise disjoint strings in Σ and the set of strings that have ends incident with the outer face; if all the strings have their ends in the outer boundary, the extension is performed as in the proof of Lemma 12.

As there is a total of O(s 2 ) extending steps, extending Σ is O(s 2 (n 5 + m 2 )) = O(s 12 ).

Concluding remarks

In this work we characterized in Theorem 2 sets of strings that can be extended into arrangements of pseudolines. Moreover, we showed that the obstructions to pseudolinearity can be detected in O(n 4 ) time, where n is the number of vertices in the planarization of the set of strings.

An easy consequence of Theorem 2 is the following (presented before as Theorem 1). Decompose C into a cyclic sequence of paths P 0 , . . . , P m , where P i connects two points in δ(C) and it is otherwise disjoint from δ(C). Using Lemma 4, one can show that P 0 , . . . , P m belong to distinct edge-arcs σ 0 , . . . , σ m ∈ Σ, respectively. For each P i , we consider the string σ i , obtained by slightly extending the ends of P i that are not rainbows in C; we extend them along σ i .

Let x ∈ δ(C) be an end shared by P i-1 and P i . If x is not a rainbow for C, then x is a crossing between σ i-1 and σ i . Moreover, the arcs added to P i-1 and P i at x to obtain σ i-1

and σ i are inside C. If x is a rainbow in C, then P i and P i-1 are not extended at x, and x acts as one of the degree-2 vertices in Since C is an obstruction, u and v are the only rainbows of C.

An edge e of K n is involved in C if C contains a subarc of D[e] (see Figure 13). By using Lemma 4 is not hard to show that every edge involved in C is drawn inside C. Consider all the vertices incident with an edge involved in C and let D be the drawing of the complete graph induced by these vertices. Then, D has at most two vertices in its outer boundary, namely u and v. Thus, the outer boundary of D is incident with at least one crossing. The K 4 containing this crossing is drawn as in Figure 1 with its crossing incident with the outer face. This K 4 contains a B-configuration.

The proof for the general case, where C does not necessarily contains two vertices of K n , is considered in full detail in [START_REF] Arroyo | On Geometric Drawings of Graphs[END_REF], and uses the complete subgraph induced by the edges involved in C combined with the fact that |δ(C)| is minimal.

A drawing is stretchable if it is homeomorphic to a rectilinear drawing. There are pseudolinear drawings that are not stretchable. For instance, consider the Non-Pappus configuration in Figure 14. Nevertheless, the following is an immediate consequence of Thomassen's main result in [START_REF] Thomassen | Rectilinear drawings of graphs[END_REF]. Corollary 16. A 1-planar drawing of a graph is stretchable if and only if it is pseudolinear.

Proof. If a drawing D is stretchable then clearly it is pseudolinear. To show the converse, suppose that D is pseudolinear. Then D does not contain any obstruction, and in particular, neither of the B-and W -configurations in Figure 2 occurs in D. This condition was shown in [START_REF] Thomassen | Rectilinear drawings of graphs[END_REF] to be equivalent to being stretchable.

One can construct more general examples of pseudolinear drawings that are not stretchable by considering non-strechable arrangements of pseudolines. However, such examples seem to inevitably have some edge with multiple crossings. This leads to a natural question.

Question 17. Is it true that if D is a pseudolinear drawing in which every edge is crossed at most twice, then D is stretchable?

We believe that there are other instances where pseudolinearity characterizes stretchability of drawings. A drawing is near planar if the removal of one edge produces a planar graph.

One instance, is the following result by Eades et al. that can be translated to the language of pseudolines: Theorem 18. [START_REF] Eades | Straight-line drawability of a planar graph plus an edge[END_REF] A drawing of a near-planar graph is stretchable if and only if the drawing induced by the crossed edges is pseudolinear.

Figure 2 .

 2 Thomassen's theorem is: if D is a 1-planar drawing of graph G, then D is homeomorphic to a rectilinear drawing of G if and only if D contains no B-or W -configuration.

Figure 2

 2 Figure 2 Obstructions to pseudolinearity.

  be the set of self-intersections of σ. A string is an arc σ for which S(σ) is finite. If S(σ) = ∅, then σ is simple. If σ is a string and σ ⊆ σ, then σ is a substring of σ.

If Σ is anFigure 2 ,Theorem 2 .

 22 Figure2, if we let Σ be the edges of the drawing, then the unique cycle in G(Σ) has at most two rainbows. Our main result characterizes these cycles as the only possible obstructions:

Lemma 3 .

 3 If the underlying graph G(Σ) of a set Σ of strings has an obstruction, then Σ is not pseudolinear. Suppose that C is a cycle of G(Σ) for some set of strings Σ. We define δ(C) as the set of vertices of C for which their two incident edges in C have different colours. In a set Σ of simple strings where no two intersect twice, |δ(C)| ≥ 3 for every cycle C of G(Σ).

Lemma 5 . 1 and C 2 1 and C 2 1 . 2 .

 5121212 Let G be a path-partitioned plane graph and let v ∈ V (G). Suppose that C are two near-obstructions at v such that the union of the closed disks bounded by C contains a small open ball centered at v. Suppose that one of the following two holds: no obstruction of G contains v; or the two edges of C 1 incident with v are the same as the two edges of C 2 incident with v.

  (a) C u and C 2 are near-obstructions at v satisfying the same conditions as C 1 and C 2 in Lemma 5; and (b) the closed disk bounded by the outer cycle of C u ∪ C 2 contains fewer vertices than the disk bounded by C out .

Figure 4

 4 Figure 4 Substrings included in the disk bounded by C0.

Figure 6 . 1 = x 8 x 2 x 3 = x 5 x 6 x 4 x 7 Figure 5

 6182356475 Figure 6. Seeking a contradiction, suppose that each G(Σ p ) has an obstruction.

Figure 6 Claim 9 .

 69 Figure 6 Transforming Σ into Σp.

Figure 7 Claim 11 .

 711 Figure 7The two edge colorings χ and χ discussed in the proof of Claim 10.

Figure 8

 8 Figure 8 Illustrations for Claim 11.a.

Figure 9

 9 Figure 9 Illustrations for Claim 11.b.

Figure 10 .OFigure 10

 1010 Figure 10.

( 2 )Subroutine 2 .

 22 ) Find a cycle C through x and y whose edges are incident with the outer face of G(Σ). If C exists, then this cycle is unique and can be described as the outer boundary of the block containing x and y. If no such C exists, then output No obstruction through x and y. Else, go to Step 2. Find whether there is a third outer-rainbow z ∈ V (C) \ {x, y}. If such z exists, update G(Σ) ←-G(Σ -z) and go to Step 1. If no such z exists, output C. Correctness and running-time of Subroutine 1: If an obstruction through x and y exists, then x and y are in the same block (some authors use the term 'biconnected component'). Since x and y are incident with the outer face, the outer boundary of the block containing x and y is the cycle C from Step 1. This C can be found by considering outer boundary walk W of G(Σ) and then by finding whether x and y belong to the same non-edge block of W . Finding W is O(m) and computing the blocks of W via a DFS takes O(m) time. In Step 2, if there is a third outer rainbow z in C, then no obstruction through x and y contains z. Property (**) justifies the update that takes O(m) time. A full run from Step 1 to Step 2 takes O(m). Moving from Step 2 to Step 1 occurs O(n) times. Thus, the total time for Subroutine 1 is O(mn) = O(n 2 ). Detecting an obstruction through a single outer-rainbow x.

Theorem 15 .

 15 Let D be a non-pseudolinear good drawing of a graph H. Then there is a subset S of edge-arcs in {D[e] : e ∈ E(H)}, such that each σ ∈ S has a substring σ ⊆ σ for which σ∈S σ is one of the drawings represented in Figure 2. Proof. Take C an obstruction of the planarization associated to D. Let δ(C) ⊆ V (C) be the vertices that in C are incident with two different strings in Σ = {D[e] : e ∈ E(H)}. We choose our obstruction C so that |δ(C)| is as small as possible.

Figure 2 .

 2 The rest of the points in δ(C) are crossings in m i=0 σ i facing the interior of C. Since C has at most two rainbows, m i=0 σ i is one of the drawings depicted in Figure 2.Theorem 2 can also be applied to show that a drawing of K n is pseudolinear if and only if does not contain the B-configuration (Theorem 2.5.1 in[START_REF] Arroyo | On Geometric Drawings of Graphs[END_REF]). We sketch the proof of a specific case of this theorem in the next two paragraphs and comment on the general case afterwards.Suppose that G(Σ) is the planarization of a non-pseudolinear drawingD of K n for which we would like to show that D contains a B-configuration. Consider an obstruction C of G(Σ) minimizing |δ(C)|, where δ(C) are vertices of C incident with edges in C having different colours. For illustrative purposes, let us assume that C contains two vertices from V (K n ).

Figure 13

 13 Figure[START_REF] Hoffman | Embedding graphs in surfaces[END_REF] An edge e involved in the obstruction C.

Figure 14

 14 Figure 14 Non-Pappus configuration.

  and hence, a rainbow in C 2 , a contradiction.If u is a rainbow in C 2 , then this is the desired second one. Otherwise, e u is not in the closed disk bounded by P v ∪ Q 2 out . Let P u ⊆ C 2 be the path starting at u, continuing on e

u and ending on the first vertex u in P v that we encounter. Let C u be the cycle consisting of P u and the uu -subpath uP v u of P v . See Figure

3b

. Claim 6. If P u does not have a rainbow of C u in its interior, then either C u is an obstruction not containing v or:

  1) Find a cycle C through x whose edges are incident with the outer face of G(Σ). If no such C exists, output No obstruction through x. Else, go to Step 2. (2) Find whether there is an outer-rainbow y in V (C) \ {x}. If no such y exists, output C. Else, apply Subroutine 1 to x and y; if there is an obstruction C through x and y, then output C . Else, update G(Σ) ←-G(Σ -y) and go to Step 1. Detecting the existence of y in Step 2 is O(m) because to detect rainbows in C, each edge incident with a vertex in V (C) is verified at most twice. The update in Step 2 is justified by Property (**). Since Step 2 may use Subroutine 1, Step 2 takes O(n 2 ) time. As moving from Step 2 to Step 1 occurs O(n) times, the total running-time for Subroutine 2 is O(n 3 ).

	Correctness and running-time of Subroutine 2: If G(Σ) has an obstruction through x, then
	there is a non-edge block in G(Σ) containing x. The outer boundary of this block is a cycle
	C through x having all edges incident with the outer face. As in Subroutine 1, Step 1 takes
	O(m) time.

  ) Find a cycle C having all edges incident with the outer face. If no such C exists, output No obstruction. Else, go to step 2.

(2) Find whether there is an outer rainbow x ∈ V (C). If not, output C. Else apply Subroutine 2 to x; if there is an obstruction

C through x, output C . Else, update G(Σ) ←-G(Σ-x)

and go to Step 1.

Correctness and running-time of

Algorithm 1: If G(Σ) has an obstruction, then it has a non-trivial block whose outer boundary is a cycle C as in Step 1. As before, C and x as in Step 2 can be found in O(m) steps. If C has not outer rainbow x, then C is an obstruction; Property (**) justifies the update in Step 2. Since Step 2 may use Subroutine 2, a full run of Steps 1 and 2 takes O(n 3 ) time. Since Step 2 goes to Step 1 O(n) times, the running-time of Algorithm 1 is O(n 4 ). Algorithm 1 and the constructive proof of Theorem 2 imply the following result. Theorem 14. There is a polynomial-time algorithm to recognize and extend an ordinary set of strings that are extendible to an arrangement of pseudolines. Proof. Let Σ be an ordinary set of s strings. First, note that if n = |V (G(Σ))|, m = |E(G(Σ))|, and Σ is extendible, then n ≤ s 2 + 2s. Hence n, m = O(s 2 ).

Assume that G(Σ) has not obstructions, by first verifying that n ≤ s 2 + 2s and then running Algorithm 1. For each end in each string in Σ, we keep track of whether one of the Disentangling, Face-Escaping or Exterior-Meeting Steps apply.
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