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Abstract12

In the recent study of crossing numbers, drawings of graphs that can be extended to an13

arrangement of pseudolines (pseudolinear drawings) have played an important role as they are a14

natural combinatorial extension of rectilinear (or straight-line) drawings. A characterization of the15

pseudolinear drawings of Kn was found recently. We extend this characterization to all graphs, by16

describing the set of minimal forbidden subdrawings for pseudolinear drawings. Our characterization17

also leads to a polynomial-time algorithm to recognize pseudolinear drawings and construct the18

pseudolines when it is possible.19
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1 Introduction29

Since 2004, geometric methods have been used to make impressive progress for determining30

the crossing number of (certain classes of drawings of) the complete graph Kn. In particular,31

drawings that extend to straight lines, or, more generally, arrangements of pseudolines, have32

been central to this work, spurring interest in such drawings for arbitrary graphs, not just33

complete graphs [2, 4, 5, 6, 12].34

In particular, for pseudolinear drawings, it is now known that, for n ≥ 10, a pseudolinear
drawing of Kn has more than

H(n) := 1
4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
crossings [1, 14]. The number H(n) is conjectured by Harary and Hill to be the smallest35

number of crossings over all topological drawings of Kn; that is, the crossing number cr(Kn)36

is conjectured to be H(n).37

A pseudoline is the image ` of a continuous injection from the real numbers R to the38

plane R2 such that R2 \ ` is not connected. An arrangement of pseudolines is a set Σ of39
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2 Extending Drawings of Graphs to Arrangements of Pseudolines

pseudolines such that, if `, `′ are distinct elements of Σ, then |` ∩ `′| = 1 and the intersection40

is a crossing point. Informally, a crossing point or crossing is an intersection point between41

two pseudolines that locally looks like a crossing point between two non parallel lines (a42

formal definition of crossing will be given when we introduce the notion of string). More on43

pseudolines and their importance for studying geometric drawings of graphs can be found in44

[10, 11].45

A drawing D of a graph G is pseudolinear if there is an arrangment of pseudolines46

consisting of a different pseudoline `e for each edge e of G and such that D[e] ⊆ `e.47

In the study of crossing numbers, restricting the drawing to either straight lines or48

pseudolines yields the rectilinear crossing number cr(Kn) or the pseudolinear crossing number49

c̃r(Kn), respectively. Clearly cr(Kn) ≥ c̃r(Kn) and the geometric methods prove that50

c̃r(Kn) > H(n), for n ≥ 10.51

A good drawing is one where no edge self-intersects and any two edges share at most52

one point—either a crossing or a common end point— and no three edges share a common53

crossing. One somewhat surprising result is from Aichholzer et al.: a good drawing of Kn54

in the plane is homeomorphic to a pseudolinear drawing if and only if it does not contain a55

non-planar drawing of K4 whose crossing is incident with the unbounded face of the K4 [2]56

(see Figure 1). By ignoring the grey edges from Figure 1, we see that any such drawing of K457

contains a B-configuration, depicted as the third drawing of the first row of Figure 2. Based58

on our Theorem 2, Theorem 2.5.1 from [3] shows that any non-pseudolinear drawing contains59

a B-configuration. Thus, either Fig. 1 or the B-configuration can be used to characterize60

pseudolinear drawings of Kn. In [4] pseudolinear drawings of Kn are characterized as f-convex,61

and in [5] are characterized as monotone and free of a specific drawing of K4.62

Figure 1 Non-pseudolinear K4 with its crossing incident with the outer face.

Twenty-five years earlier, Thomassen [19] proved a similar theorem for a 1-planar drawing63

(that is, a drawing in which each edge is crossed at most once). The B- and W -configurations64

are shown as the third and fourth drawings in the first row of Figure 2. Thomassen’s theorem65

is: if D is a 1-planar drawing of graph G, then D is homeomorphic to a rectilinear drawing66

of G if and only if D contains no B- or W -configuration.67

Thomassen presented in [19] the clouds (first column in Figure 2) as an infinite family of68

drawings that are minimally non-pseudolinear.69

Shortly after Thomassen’s paper, Bienstock and Dean proved that if cr(G) ≤ 3, then70

cr(G) = cr(G) [7]. They also exhibited examples based on overlapping W -configurations to71

show the result fails for cr(G) = 4; such graphs can have arbitrarily large rectilinear crossing72

number.73

Despite the existence of infinitely many obstructions to pseudolinearity, we characterize74

them all.75

I Theorem 1. A good drawing of a graph G is pseudolinear if and only if it does not contain76

one of the infinitely many obstructions shown in Figure 1.77

The drawings in Figure 2 are obtained from the clouds (first column) by replacing at most78

two crossings by vertices. The formal statement of Theorem 1 is Theorem 15 in Section 6; also79

a more general version of this statement, Theorem 2, is discussed below. Our result draws a80
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Figure 2 Obstructions to pseudolinearity.

line between the class of pseudolinear drawings and the class of rectilinear drawings: Our81

result shows that recognizing pseudolinear drawings is a combinatorial/topological problem82

and implies a polynomial-time algorithm to detect pseudolinear drawings (Theorem 14).83

This contrast with the rather real algebraic geometry problem of deciding the stretchability84

of a drawing, defined as the problem of deciding whether a given drawing is homeomorphic85

to a rectilinear drawing. Mnëv [16, 17] showed that deciding the stretchability of an86

arrangement of pseudolines is ∃R-hard, implying the ∃R-hardness for the problem of deciding87

the stretchability of a graph drawing. Since NP ⊆ ∃R [15, 18, 8], this in particular shows that88

the stretchability problem is NP-hard. We refer to Matous̆ek’s survey [15] for an approachable89

introduction to the complexity class ∃R.90

The natural setting for our characterization is strings embedded in the plane. An arc σ91

is the image f([0, 1]) of the compact interval [0, 1] under a continuous map f : [0, 1]→ R2.92

Let S(σ) = {p ∈ σ : |f−1(p)| ≥ 2} be the set of self-intersections of σ. A string is an arc σ93

for which S(σ) is finite. If S(σ) = ∅, then σ is simple. If σ′ is a string and σ′ ⊆ σ, then σ′ is94

a substring of σ.95

Suppose that σ and σ′ whose intersection σ∩σ′ is a finite set and let p ∈ σ∩σ. The rotation96

at p is a cyclic sequence of substrings determined by a small neighbourhood homeomorphic97

to the plane in which p is origin and the substrings incident with p are rays emanating from98

p [13, Thm. 3.1]. The strings σ1, σ2 cross at p if they each have two substrings that alternate99

σ1 − σ2 − σ1 − σ2 in the rotation at p.100

An intersection point between of two strings σ and σ′ is ordinary if it is either an endpoint101

of σ or σ′, or is a crossing. A set Σ of strings is ordinary if Σ is finite and any two strings102

in Σ have only finitely many intersections, all of which are ordinary. All the sets of strings103

considered in this paper are ordinary.104

If Σ is an ordinary set of strings, then its planarization G(Σ) is the plane graph obtained105

from Σ by inserting vertices at each crossing between strings and also at the endpoints of106

every string in Σ. To keep track of the information given by the strings, we will always107

assume that each string Σ has a different color and that each edge in G(Σ) inherits the color108

of the string including it.109

If Σ is an ordinary set of strings, then, for a cycle C in G(Σ) (which is a simple closed110

curve in R2) the edges inside C are those drawn in the closed disk bounded by C (this111

includes the edges of C). A vertex v ∈ V (C) is a rainbow for C if all the edges incident with112

v and drawn inside C have different colours. The reader can verify that, for each drawing in113

Figure 2, if we let Σ be the edges of the drawing, then the unique cycle in G(Σ) has at most114

two rainbows. Our main result characterizes these cycles as the only possible obstructions:115
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I Theorem 2. An ordinary set of strings Σ can be extended to an arrangement of pseudolines116

if and only if every cycle C of G(Σ) has at least three rainbows.117

Henceforth, we define any cycle C in G(Σ) with at most two rainbows as an obstruction.118

A set of strings is pseudolinear if it has an extension to an arrangement of pseudolines.119

Theorem 2 is our main contribution. In the next section, we show that the presence120

of an obstruction implies the set of ordinary strings is not pseudolinear. The converse is121

proved in Section 4 by extending, one small step at a time, the strings in Σ to get closer122

to an arrangement of pseudolines. After each extension, we must show that no obstruction123

has been introduced. This involves dealing with cycles in G(Σ) that have precisely three124

rainbows (that we refer as near-obstructions). In Section 3 we show the key lemma that if G125

has two such near-obstructions that intersect nicely at a vertex v, then G has an obstruction.126

In Section 5 we present a polynomial-time algorithm for detecting obstructions and we argue127

why the proof of Theorem 2 implies a polynomial-time algorithm for extending a pseudolinear128

set of strings. Finally, in Section 6, we show how Theorem 1 follows from Theorem 2 and we129

present some concluding remarks.130

2 A set of strings with an obstruction is not extendible131

Let us start by showing the easy direction of Theorem 2:132

I Lemma 3. If the underlying graph G(Σ) of a set Σ of strings has an obstruction, then Σ133

is not pseudolinear.134

Suppose that C is a cycle of G(Σ) for some set of strings Σ. We define δ(C) as the set of135

vertices of C for which their two incident edges in C have different colours. In a set Σ of136

simple strings where no two intersect twice, |δ(C)| ≥ 3 for every cycle C of G(Σ).137

I Lemma 4. Let Σ be a set of simple strings where every pair intersect at most once. Suppose138

that C is an obstruction with |δ(C)| as small as possible. Let S = x0, x1, . . . , x` be a path of139

G(Σ) representing a substring of some string σ ∈ Σ such that x0x1 ∈ E(C), x1 ∈ δ(C) and140

x1 is not a rainbow of C. Then V (C) ∩ V (S) = {x0, x1}.141

Proof. By way of contradiction, suppose that there is a vertex xr ∈ V (C)∩V (S) with r ≥ 3.142

Assume that r ≥ 3 is as small as possible. Let P be the subpath of S connecting x1 to xr.143

The facts x0x1 ∈ E(C), x1 ∈ δ(C), and P ⊆ σ imply that x1x2 6= E(C). Because x1 is not a144

rainbow for C and no two strings tangentially intersect at x1, the edge x1x2 is drawn in the145

closed disk bounded by C. By choice of r, P is an arc connecting x1 to xr in the interior of146

C.147

Let C1 and C2 be the two cycles of C ∪ P containing P , labelled so that x0x1 ∈ E(C1).148

We shall use the minimality of |δ(C)| to show that C1 and C2 are not obstructions. Then, we149

will count rainbows in C1 and C2 to obtain the contradiction that C is not an obstruction.150

For a cycle X, let ρ(X) be the set of rainbows of X. For i = 1, 2, let Qi = V (Ci) \ V (P ).151

As the edges of S are included in the same string, we see that ρ(C1) \ Q1 ⊆ {xr} and152

ρ(C2) \Q2 ⊆ {x1, xr}. Likewise, δ(C1) \Q1 ⊆ {xr} and δ(C2) \Q2 ⊆ {x1, xr}.153

Let us show that C1 and C2 are not obstructions. Because |δ(C2)| ≥ 3 and δ(C2) \Q2 ⊆154

{x1, xr}, |δ(C) ∩Q2| ≥ 1. Since δ(C1) \Q1 ⊆ {xr} and x1 ∈ δ(C), |δ(C1)| ≤ |δ(C1) ∩Q1|+155

|{xr}| ≤ |δ(C)|−2+|{xr}| < |δ(C)|. Because |δ(C1)| ≥ 3 and |δ(C1)\Q1| ≤ 1, |δ(C)∩Q1| ≥ 2.156

Since x1 ∈ δ(C)∩ δ(C2), |δ(C2)| ≤ |δ(C)∩Q2|+ |{x1, xr}| ≤ |δ(C)| − 3 + |{x1, xr}| < |δ(C)|.157

Thus, neither C1 nor C2 is an obstruction.158
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Finally, as |ρ(C1)| ≥ 3 and |ρ(C1) \ Q1| ≤ 1, |ρ(C) ∩ Q1| = |ρ(C1) ∩ Q1| ≥ 2. Because159

|ρ(C2)| ≥ 3 and |ρ(C2) \ Q2| ≤ 2, |ρ(C) ∩ Q2| = |ρ(C2) ∩ Q2| ≥ 1. Thus |ρ(C)| ≥ 3, a160

contradiction. J161

Proof of Lemma 3. By way of contradiction, suppose that Σ is pseudolinear and that G(Σ)162

has an obstruction C.163

Consider an extension of Σ to an arrangement of pseudolines, and then cut off the two164

infinite ends of each pseudoline to obtain a set of strings Σ′ extending Σ, and in which every165

pair of strings in Σ′ cross once. In G(Σ′), there is a cycle C ′ that represents the same simple166

closed curve as C. Because every rainbow of C ′ is a rainbow of C, C ′ has fewer than three167

rainbows. Therefore, we may assume that Σ = Σ′ and C = C ′. Now, the ends of every string168

in Σ are degree-1 vertices in the outer face of G(Σ).169

As every string in Σ is simple and no two strings intersect more than once, |δ(C)| ≥ 3.170

We will assume that C is chosen to minimize |δ(C)|.171

Since C is an obstruction, there exists x1 ∈ δ(C) such that x1 is not a rainbow in C.172

Consider a neighbour x0 of x1 in C. Let S = x0, x1, . . . x` be the path obtained by traversing173

the string σ extending x0x1, such that x` is an end of σ. By Lemma 4, V (S)∩V (C) = {x0, x1},174

and because x` is in the outer face of C, the segment of σ from x1 to x` has its relative175

interior in the outer face of C.176

However, since x1 is not a rainbow, there exists a string σ′ ∈ Σ including two edges at x1177

drawn inside C. Thus, σ and σ′ tangentially intersect at x1, a contradiction. J178

3 The key lemma179

In this section we present the key lemma used in the proof of Theorem 2.180

A plane graph G is path-partitioned if for m ≥ 1, there exists a colouring χ : E(G) →181

{1, . . . ,m} such that for each i ∈ {1, . . . ,m}, the edges in χ−1(i) induce a path Pi ⊆ G where182

any two distinct paths Pi and Pj do not tangentially intersect. Indeed, every underlying183

planar graph G(Σ) of a set of simple strings Σ is path-partitioned. Moreover, every path-184

partitioned plane graph can be obtained by subdividing a planarization of an ordinary set of185

simple strings. To extend the previously introduced notation we refer to each Pi as a string.186

The concepts of rainbow and obstruction naturally extend to the context of path-partitioned187

plane graphs.188

Suppose that G is a path-partitioned plane graph. Given v ∈ V (G), a near-obstruction at189

v is a cycle C with at most three rainbows and such that v is a rainbow of C. Understanding190

how near-obstructions behave is the key ingredient needed in the proof of Theorem 2:191

I Lemma 5. Let G be a path-partitioned plane graph and let v ∈ V (G). Suppose that C1192

and C2 are two near-obstructions at v such that the union of the closed disks bounded by C1193

and C2 contains a small open ball centered at v. Suppose that one of the following two holds:194

1. no obstruction of G contains v; or195

2. the two edges of C1 incident with v are the same as the two edges of C2 incident with v.196

Then G has an obstruction not including v.197

Given a plane graph G, a cycle C ⊆ G and a vertex v ∈ V (C), the edges at v inside C are198

the edges of G incident with v drawn inside C. Consider a homeomorphism from a small199

disc neighbourhood of v to the plane so that each edge segment incident with v is a straight200

ray from the origin (which is v). Since no two strings intersect tangentially at v, we may201

assume that the rotation at v has substrings of the same colour making an angle of π at v.202
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v

Pv

u

w

Q1
out Q2

out

(a)

Pv

u

w

Q1
out Q2

out

u′

eu

Pu

(b)

Figure 3 Auxiliary figures used in the proof of Lemma 5.

The angles between rays are the angles at v and we associate to them the set of edges at v203

drawn as rays inside them. From this geometric perspective, it is obvious that, if an angle α204

is less than π, then α is rainbow. This proves the second of the following facts.205

I Useful Facts. Let G be a plane path-partitioned graph and let v ∈ V (G). Then206

1. if α, β are two angles at v with α ⊆ β and β is rainbow, then α is rainbow; and207

2. if α and β are two angles such α is not rainbow and β is a proper subangle of the208

complement α of α, then β is rainbow.209

Proof of Lemma 5. By way of contradiction, suppose that G has no obstruction not includ-210

ing v. The “small ball” hypothesis implies that v is not in the outer face of the subgraph211

C1 ∪ C2.212

We claim that |V (C1) ∩ V (C2)| ≥ 3. Suppose not. For i = 1, 2, let ei and fi be the edges213

of Ci at v and let ∆i be the closed disk bounded by Ci. From the “small ball” hypothesis it214

follows that (i) ∆1 contains the edges e2 and f2; and (ii) the points near v in the exterior of215

∆2 are contained in ∆1. These two properties imply that the path C2 − v intersects C1 at216

least twice, and because v ∈ V (C1) ∩ V (C2), |V (C1) ∩ V (C2)| ≥ 3.217

From the last paragraph we know that C1 ∪ C2 is 2-connected, and hence the outer face218

of C1 ∪ C2 is bounded by a cycle Cout. We will assume that219

(*) the cycles C1 and C2 satisfying the hypothesis of Lemma 5 are chosen so that the number220

of vertices of G in the disk bounded by Cout is minimal.221

Useful Fact 1 applied to the interior angles at vertices of Cout shows that every vertex222

that is a rainbow in Cout is also a rainbow in each of the cycles in {C1, C2} containing it.223

We can assume that Cout is not an obstruction or else we are done. We may relabel C1 and224

C2 so that two of the rainbows of Cout, say p and q, are also rainbows in C1. Neither p nor q225

is v because v /∈ V (Cout). Because C1 is a near-obstruction, p, q and v are the only rainbows226

of C1.227

Since v /∈ V (Cout), by following C1 in the two directions starting at v, we find a path228

Pv ⊆ C1 containing v in which only the ends u and w of Pv are in Cout (note that u 6= w229

because {p, q} ⊆ V (C1) ∩ V (Cout)). See Figure 3a.230

As v is in the interior face of Cout, Pv is also in the interior of Cout. Let Q1
out, Q2

out be231

the uw-paths of Cout. One of the two closed disks bounded by Pv ∪ Q1
out and Pv ∪ Q2

out232

contains C1. By symmetry, we may assume that C1 is contained in the first disk. Since233

Cout ⊆ C1 ∪ C2, this implies that Q2
out is a subpath of C2.234

Our desired contradiction will be to find three rainbows in C2 distinct from v. We235

find the first: let C1 − (Pv) be the uw-path in C1 distinct from Pv. The disk bounded by236
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(C1 − (Pv)) ∪Q2
out contains the one bounded by C1. Useful Fact 1 applied to the interior237

angles at the vertices of (C1 − (Pv)) ∪Q2
out implies that each vertex in C1 − (Pv) that is a238

rainbow in (C1 − (Pv)) ∪Q2
out is also rainbow in C1. Since C1 has at most two rainbows in239

C1 − (Pv), namely p and q, (C1 − (Pv)) ∪Q2
out has a third rainbow r1 in the interior of Q2

out240

(else (C1 − (Pv)) ∪Q2
out is an obstruction and we are done). Note that r1 is also a rainbow241

for C2.242

To find another rainbow in C2, consider the edge eu of C2 incident to u and not in Q2
out.243

We claim that either u is a rainbow in C2 or that eu is not included in the closed disk244

bounded by Pv ∪Q2
out. Seeking a contradiction, suppose that u is not a rainbow of C2 and245

that eu is included in the disk. Then Useful Fact 2 implies that u is a rainbow in C1. As p246

and q are the only rainbows of C1 in Cout, u is one of p and q. Therefore u is a rainbow in247

Cout, and hence, a rainbow in C2, a contradiction.248

If u is a rainbow in C2, then this is the desired second one. Otherwise, eu is not in the249

closed disk bounded by Pv ∪Q2
out. Let Pu ⊆ C2 be the path starting at u, continuing on eu250

and ending on the first vertex u′ in Pv that we encounter. Let Cu be the cycle consisting of251

Pu and the uu′-subpath uPvu′ of Pv. See Figure 3b.252

B Claim 6. If Pu does not have a rainbow of Cu in its interior, then either Cu is an253

obstruction not containing v or:254

(a) Cu and C2 are near-obstructions at v satisfying the same conditions as C1 and C2 in255

Lemma 5; and256

(b) the closed disk bounded by the outer cycle of Cu ∪ C2 contains fewer vertices than the257

disk bounded by Cout.258

Proof. Suppose that all the rainbows of Cu are located in uPvu′. If z is a rainbow of Cu,259

then z ∈ {u, v, u′}, as otherwise z is a rainbow of C1 distinct from p, q and v, a contradiction.260

Thus, if v /∈ V (Cu), then Cu is the desired obstruction. We may assume that v ∈ V (Cu).261

If u′ = w, then C2 = Pu ∪Q2
out, violating the assumption that v ∈ V (C2). Thus u′ 6= w.262

If u′ = v, then the rainbows of Cu are included in {u, u′}, and hence Cu is an obstruction.263

However, the existence of Cu shows that both alternatives (1) and (2) in Lemma 5 fail:264

condition (1) fails because Cu contains v and (2) fails because the edge of Pu incident with v265

is in E(C2) \ E(C1). Thus u′ 6= v.266

The previous two paragraphs show that Cu is a near-obstruction at v with rainbows u,267

v and u′. Since the interior of Cu near v is the same as the interior of C1 near v, the pair268

(Cu, C2) satisfies the “small ball” hypothesis. Thus, (a) holds.269

Let C ′out be the outer cycle of Cu ∪ C2. From the fact that Cu ∪ C2 ⊆ C1 ∪ C2 it follows270

that the disk bounded by Cout includes the disk bounded by C ′out.271

Since p, q ∈ V (Cout), p and q are in the disk bounded by Cout. If both p and q are in272

C2, then p, q and r1 are rainbows in C2, and also distinct from v, contradicting that C2 is a273

near-obstruction for v. If, say p /∈ V (C2), then p is not in the disk bounded by C ′out, which274

implies (b). J275

From Claim 6(b) and assumption (*) either Cu is the desired obstruction or Pu contains276

a rainbow r2 of C2 in its interior. We assume the latter as otherwise we are done.277

In the same way, the last rainbow r3 comes by considering the edge of C2 −Q2
out incident278

with w. It follows that v, r1, r2 and r3 are four different rainbows in C2, contradicting the279

fact that C2 is a near-obstruction. J280
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4 Proof of Theorem 2281

In this section we prove that a set of strings with no obstructions can be extended to an282

arrangement of pseudolines.283

Proof of Theorem 2. It was shown in Observation 3 that the existence of obstructions284

implies non-extendibility. For the converse, suppose that Σ is a set of strings for which G(Σ)285

has no obstructions.286

We start by reducing to the case where the point set
⋃

Σ is connected: iteratively add a287

new string in a face of
⋃

Σ connecting two connected components of
⋃

Σ. No obstruction is288

introduced at each step (obstructions are cycles), and, eventually, the obtained set
⋃

Σ is289

connected. An extension of the new set of strings contains an extension for the original set,290

thus we may assume that
⋃

Σ is connected.291

Our proof is algorithmic, and consists of repeatedly applying one of the three steps292

described below.293

Disentangling Step. If a string σ ∈ Σ has an end a with degree at least 2 in G(Σ),294

then we slightly extend the a-end of σ into one of the faces incident with a.295

Face-Escaping Step. If a string σ ∈ Σ has an end a with degree 1 in G(Σ), and is296

incident with an interior face, then we extend the a-end of σ until it intersects some point297

in the boundary of this face.298

Exterior-Meeting Step. Assuming that all the strings in Σ have their two ends in299

the outer face and these ends have degree 1 in G(Σ), we extend the ends of two disjoint300

strings so that they meet in the outer face.301

Each of these three steps either increases the number of pairs of strings that intersect, or302

increase the number crossings (recall that a crossing between σ and σ′ is a non-tangential303

intersection point in σ ∩ σ′ that is not an end of σ or σ′). Moreover, these steps can be304

performed as long as one of the next two conditions holds: (1) at least one string does not305

have an end incident with the outer face; and (2) there is a pair of strings that do not306

cross. If none of (1) and (2) hold, then our set of strings is extendible into an arrangement307

of pseudolines. Henceforth, we will show that, if performed correctly, none of these steps308

introduces an obstruction. The proof for each step can be read independently.309

I Lemma 7 (Disentangling Step). Suppose that σ ∈ Σ has an end a with degree at least 2 in310

G(Σ). Then we can extend the a-end of σ into one of the faces incident to a without creating311

an obstruction.312

Proof. A pair of different edges f and f ′ in G(Σ) incident with a are twins if they belong to313

the same string in Σ. The edge e ⊆ σ incident with a has no twin.314

The fact that no pair of strings tangentially intersect at a tells us that if (f1, f
′
1) and315

(f2, f
′
2) are pairs of twins, then f1, f2, f ′1, f ′2 occur in this cyclic order for either the clockwise316

or counterclockwise rotation at a. Thus, we may assume that the counterclockwise rotation317

at a restricted to the twins and e is e, f1, . . . , ft, f
′
1, . . . , f

′
t , where (fi, f ′i) is a twin pair for318

i = 1, . . . , t.319

To avoid tangential intersections, the extension of σ at a must be in the angle between ft320

and f ′1 not containing e. Let e1, . . . , ek be the counterclockwise ordered list of non-twin edges321

at a having an end in this angle (as depicted in Figure 4). We label e0 = ft and ek+1 = f ′1.322

If there are no twins, then let e0 = ek+1 = e.323
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e

f1

ft = e0

α0

e1

e2ek−1

ek

f ′1 = ek+1

f ′t

Figure 4 Substrings included in the disk bounded by C0.

Let us consider all the possible extensions: for i ∈ {0, . . . , k}, let Σi be the set of strings324

obtained from Σ by slightly extending the a-end of σ into the face containing the angle325

between ei and ei+1. Let αi be the new edge at a extending σ in Σi (see α0 in Figure 4).326

Seeking a contradiction, suppose that, for each i ∈ {0, ..., k}, G(Σi) contains an obstruction327

Ci. Since αi contains a degree-1 vertex, αi is not in Ci. Hence Ci is a cycle of G(Σ). Thus,328

Ci is not an obstruction in G(Σ) and becomes an obstruction in G(Σi). This conversion has329

a simple explanation: in G(Σ), Ci has exactly three rainbows, and one of them is a. After330

αi is added, a is not a rainbow in Ci (witnessed by the edges e and αi included in the new331

version of σ).332

Recall from Section 3 that a near-obstruction at a is a cycle with exactly three rainbows,333

and one of them is a. Each of C0, C1,...,Ck is a near-obstruction at a in G(Σ).334

For a cycle C ⊆ G, let ∆(C) denote the closed disk bounded by C. Both e and α0 are in335

∆(C0). Thus, either ∆(C0) ⊇ {e, f1, f2, . . . , ft, e1} (blue bidirectional arrow in Figure 4) or336

∆(C0) ⊇ {ft, e1, . . . , ek, f
′
1, f
′
2, . . . , f

′
t , e} (green bidirectional arrow). We rule out the latter337

situation as the second list contains ft and f ′t , and this would imply that a is not a rainbow338

for C0 in G(Σ).339

We just showed that {e, e0, e1} ⊆ ∆(C0). By symmetry, {ek, ek+1, e} ⊆ ∆(Ck). Consider340

the largest index i ∈ {0, 1, . . . , k − 1} for which {e, e0, . . . , ei+1} ⊆ ∆(Ci). By the choice of i,341

and because {e, αi+1} ⊆ ∆(Ci+1), {e, f ′t , . . . , f ′1, ek, . . . , ei} ⊆ ∆(Ci+1). Apply Lemma 5 to342

the pair Ci and Ci+1, where Ci, Ci+1 and a play the roles of C1, C2 and v. Condition 1 of343

Lemma 5 holds, and hence we obtain that G(Σ) has an obstruction, a contradiction. J344

I Lemma 8 (Face-Escaping Step). Suppose that there is a string σ that has an end a with345

degree 1 in G(Σ), and a is incident to an interior face F . Then there is an extension σ′ of346

σ from its a-end to a point in the boundary of F such that the set (Σ \ {σ}) ∪ {σ′} has no347

obstruction.348

Proof. Let W be the closed boundary walk (x0, e1, x1, e2, . . . , en, xn) of F such that x0 =349

xn = a and F is to the left as we traverse W (see Figure 5 for an illustration with n = 9).350

For i = 1, . . . , n we let mi be a point in the relative interior of ei, and let P be the list of351

non-necessarily distinct points m1, x1, m2, x2 . . . ,mn, which are the potential ends for all352

the different extensions. For each p ∈ P , let Σp be the set of strings obtained from Σ by353

extending the a-end of σ by adding an arc αp connecting a to p in F (see Figure 5). We354

assume that every two distinct arcs αp and αp′ are internally disjoint.355

Let fp be the edge e1 ∪ αp in G(Σp); fp has ends x1 and p. Also, let σp = σ ∪ αp. See356

Figure 6. Seeking a contradiction, suppose that each G(Σp) has an obstruction.357
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a

x1 = x8
x2

x3 = x5

x6

x4
x7

Figure 5 All possible extensions in the Face-Escaping Step.

x1
x0

F

x1
fp

F

p p

Figure 6 Transforming Σ into Σp.

B Claim 9. Let p ∈ P . Then there exists an obstruction Cp in G(Σp) including fp. Moreover,358

(1) if p ∈ σ, then Cp can be chosen so that all its edges are included in σp; and359

(2) if p /∈ σ, then every obstruction includes fp.360

Proof. First, if p ∈ σ, then the string σp self-intersects at p; thus σp has a simple close curve361

including fp. In this case let Cp be the cycle in G(Σp) representing this simple closed curve362

without rainbows, and thus (1) holds.363

Second, assume that p /∈ σ and let Cp be any obstruction of G(Σp). For (2), we will show364

that fp ∈ E(Cp).365

Seeking a contradiction, suppose that fp /∈ E(Cp).366

If p = mi for i ∈ {1, . . . , n}, since mi is the only vertex whose rotation in G(Σ) differs367

from its rotation in G(Σmi
), mi ∈ V (Cp). Consider the cycle C of G(Σ) obtained from Cp368

by replacing the subpath (xi−1, mi, xi) by the edge xi−1xi. For each vertex v ∈ V (C) the369

colors of the edges of G(Σ) at v included in the disk bounded by C are the same as in G(Σp)370

for the disk bounded by V (Cp). Thus, C is an obstruction for G(Σ), a contradiction.371

Suppose now that p is one of x1, . . . , xn−1. The only vertex in G(Σ) whose rotation is372

different in G(Σp) is p. Therefore, p is a point that is a rainbow for Cp in G(Σ), but not a373

rainbow in G(Σp), as witnessed by the two edges of σp that are incident with p and inside374

Cp. This contradicts the assumption that p /∈ σ. Hence fp ∈ E(Cp). J375

Henceforth we assume that, for p ∈ P , Cp is an obstruction in G(Σp) as in Claim 9.376

More can be said about the obstructions in G(Σp), but for this we need some terminology.377

If we orient an edge e in a plane graph, then the sides of e are either the points near e that378

are to the right of e, or the points near e to the left of e. For any cycle C of G through e,379

exactly one side of e lies inside C. This is the side of e covered by C. For the next claim380

and in the rest of the proof we will assume that for p ∈ P , fp is oriented from x1 to p.381
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x1
fp

F

p

Cp

C ′
p

(a) χ

x1

F

p

Cp

C ′
p

v

(b) χ′

Figure 7 The two edge colorings χ and χ′ discussed in the proof of Claim 10.

B Claim 10. For p ∈ P with p /∈ σ, every obstruction in G(Σp) covers the same side of fp.382

Proof. Suppose that for p ∈ P there are obstructions Cp and C ′p covering both sides of fp.383

Let G′ be the plane graph obtained from G(Σp) by subdividing fp, and let v be the new384

degree-2 vertex inside fp.385

We consider the edge-colouring χ induced by the strings in Σp. Let χ′ be a new colouring386

obtained from χ by replacing the colour of the edge vp by a new colour not used in χ387

(see Figure 7). It is immediate that (i) χ′ induces a path-partition in G′; and in the next388

paragraph we show that (ii) Cp and C ′p are near-obstructions for v with respect to χ′.389

Consider the set of edges in the rotation at p inside the disk bounded by Cp and assume390

they are colored by χ. No edge from this set (except fp) can have the same color as fp or else391

p ∈ σ, contradicting our hypothesis. Therefore, p is a rainbow in Cp in χ if and only if p is a392

rainbow in Cp in χ′. Thus, when we switch from χ to χ′, v is the only vertex of Cp switching393

identity (where the identity is to be or not to be a rainbow). As Cp is an obstruction for χ,394

then C ′p is a near obstruction at v for χ′. Likewise, C ′p is a near obstruction for χ′.395

As Condition 2 of Lemma 5 holds for C1 = Cp, C2 = C ′p and v = v with respect to396

χ′, G′ has an obstruction not containing v in χ′. However, this implies the existence of an397

obstruction in G(Σ) with respect to χ, a contradiction. J398

Recall that the boundary walk of F is W = (x0, e1, . . . , en, xn), with x0 = xn = a. Since399

x1 and xn−1 are in σ, the extreme obstructions Cx1 and Cx2 cover the right of fx1 and the400

left of fxn−1 , respectively. Thus, there are two consecutive vertices xi−1, xi in W − a, such401

that the interior of Cxi−1 covers the right of fxi−1 and the interior of Cxi
covers the left of402

fxi
. Moreover, we may assume that the interior of Cmi

includes the left of fmi
(otherwise403

we reflect our drawing).404

The next claim is the last ingredient to obtain a final contradiction. To make the notation405

simpler, we let x = xi−1 and m = mi.406

B Claim 11. Exactly one of the following holds:407

(a) x ∈ σ, m /∈ σ and G(Σm) has an obstruction covering the side of fm not covered by Cm;408

or409

(b) x /∈ σ and G(Σx) has an obstruction covering the side of fx not covered by Cx.410

Proof. By redrawing the arcs representing fx and fm, we will assume that they only intersect411

at x1. In particular this redrawing creates two copies of the edge e1.412
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x1

xi

x

fm

fx

Cx

m

(a) Case a.1.

x1

xi

x

fm

fx

m

Cx

(b) Case a.2.

Figure 8 Illustrations for Claim 11.a.

First, suppose that x ∈ σ. For (a) we have two cases depending on whether xxi is an413

edge in Cx.414

Case a.1 xxi /∈ E(Cx). See Figure 8a.415

Let C ′m be the cycle obtained from Cx by replacing the edge fx by the path P = (x1,416

fm, m, mx, x). Since x ∈ σ, by the choice of Cx (Claim 9), all the edges in Cx are in σx.417

Therefore, by Claim 9.1, all the edges in C ′m, with the possible exception of mx, are in σm.418

Thus C ′m is an obstruction in G(Σm).419

Now we show that C ′m covers the right side of fm. The disk bounded by P ∪ fx is to the420

right of fm as this side of P ∪ fx is included in the bounded face F . Since the interior of Cx421

is to the right of fx, the interior of C ′m covers the right side of fm.422

Finally, note that m /∈ σ, or else, C ′m ⊆ σm and hence by the choice of Cm, and Claim423

10, C ′m = Cm. However, this contradicts that Cm covers the left side of fm. Thus, (a) holds.424

Case a.2. xxi ∈ E(Cx). See Figure 8b.425

Let C ′m be the cycle obtained from Cx by replacing the path (x1, fx, x, xxi, xi) by (x1, fm,m,426

mxi, xi). Since x ∈ σ, by the choice of Cx (Claim 9), all the edges in Cx are in σx. Therefore427

all the edges in C ′m are in σm. Thus C ′m is an obstruction in G(Σm).428

Now we show that C ′m covers the right side of fm. The disk bounded by fx ∪ fm ∪ xm is429

to the right of fm as this side of fx ∪ fm ∪ xm is included in the bounded face F . Since the430

interior of Cx is to the right of fx, the interior of C ′m covers the right side of fm.431

Finally, as C ′m ⊆ σm and by the choice of Cm, C ′m = Cm. However, this contradicts the432

assumption that Cm covers the left side of fm. Thus, (a) holds.433

Turning to (b), let us suppose that x 6∈ σ.434

x1

xi

x

fm

fx

m

P

Cm

(a) Case b.1.

x1

xi

x

fm

fx

m

Cm

(b) Case b.2.

Figure 9 Illustrations for Claim 11.b.



Alan Arroyo, Julien Bensmail and R. Bruce Richter 13

Case b.1. x ∈ V (Cm). See Figure 9a.435

Let T be the triangle bounded by fx, fm and xm. The interior face of T is to the left of436

fx and to the right of fm. Let P be the mx-path of Cm − fm and let P ′ be the xx1-path of437

Cm −m. Since the interior face of T is a subset of F , P and P ′ are drawn in the closure of438

the exterior of T (possibly P = (m,mx, x)).439

Let C be the simple closed curve bounded by P ∪ fx ∪ fm (in other words, C is obtained440

from T by replacing xm by P ). Seeking a contradiction, suppose that xm is in the closed441

exterior of C. Then, P ′ is included inside the cycle C ′ = P + xm. Since V (C ′) ⊆ V (Cm)442

and Cm is included in the disk bounded by C ′, the number of rainbows in C ′ is at most443

the number of rainbows in Cm. Then C ′ is an obstruction in G(Σm) not containing fm,444

contradicting Claim 9.2. Thus, xm is inside C.445

Our last observation implies that P ′ is an arc connecting x1 and x in the exterior of C.446

Since the interior of Cm covers the left of fm, the interior of C ′x = P ′ + fx covers the left of447

fx. The cycle C ′x is an obstruction because V (C ′x) ⊆ V (Cm) and Cm is included inside C ′x.448

Case b.2. x /∈ V (Cm). See Figure 9b.449

In this case we let C ′x be the cycle obtained by replacing the path (x1, fm, m,mxi, xi) in450

Cm by the path P = (x1, fx, x, xxi, xi) in G(Σx). Since Cm covers the left of fm and F is451

bounded, C ′x covers the left of fx.452

To show that C ′x is an obstruction, note that Cm is inside C ′x and that V (C ′x) \ {x} ⊆453

V (Cm). Thus, all the rainbows of C ′x in V (C ′x) \ {x} are also rainbows in Cm. Since x /∈ σ,454

we see that x is a rainbow in C ′x, but is not a vertex of Cm. To compensate, we note455

that m is a rainbow in Cm that is not in V (Cx): if m is not rainbow, both fm and xxi are456

included in σ, implying that x ∈ σ. This shows that C ′x has at most as many rainbows as457

Cm. Therefore C ′x is the desired obstruction. J458

Claims 10 and 11 contradict each other, so, for some p ∈ P , G(Σp) has no obstructions.459

J460

I Lemma 12 (Exterior-Meeting Step). If all the strings in Σ have their ends on the outer461

face of G(Σ) and the ends have degree 1 in G(Σ), then we can extend a pair disjoint strings462

so that they intersect without creating an obstruction.463

Proof. First, consider a simple closed curve in the outerface of
⋃

Σ closely following the464

outerboundary of
⋃

Σ. Then, by slightly modifying this curve, we obtain a simple closed465

cuve O containing all the ends of the strings in Σ, but otherwise disjoint from
⋃

Σ. See466

Figure 10.467

O

Figure 10 Construction of the curve O.

Suppose σ1, σ2 are two disjoint strings in Σ. For i = 1, 2, let ai, bi be the ends of σi;468

since σ1 and σ2 do not cross, we may assume that these ends occur in the cyclic order a1, b1,469
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b2, a2. We extend the ai-ends of σ1 and σ2 so that they meet in a point p in the outer face,470

and so that all the ends of σ1 and σ2 remain incident with the outer face (Figure 11). Let Σ′471

be the obtained set of strings.472

O
σ1 σ2

p

a1

b1 b2

a2

∆1 ∆2 ∆3

Figure 11 Exterior-Meeting Step.

Seeking a contradiction, suppose that G(Σ′) has an obstruction C. Since G(Σ) has no473

obstruction, p ∈ V (C). Our contradiction will be to find three rainbows in C. Note that474

p is a rainbow. To obtain a second rainbow, traverse C starting from p towards a1. Let475

d1 be the first vertex during our traversal that is not in the extended σ1, and let c1 be its476

neighbour in σ1, one step before we reach d1. Since b1 has degree one, c1 6= b1.477

The strings σ1 and σ2 divide the disk bounded by O into three closed regions ∆1, ∆2,478

∆3 such that ∆1 ∩∆2 = σ1, ∆2 ∩∆3 = σ2 and ∆1 ∩∆3 = ∅ (see Figure 11).479

B Claim 13. The cycle C has a rainbow included in ∆1.480

Proof. First, suppose that d1 /∈ ∆1. In this case, c1 is a rainbow because otherwise there481

would be a string σ that tangentially intersects σ1 at c1. Thus, if d1 /∈ ∆1, then c1 is the482

desired rainbow.483

Second, suppose that d1 ∈ ∆1. Let P1 be the path of C starting at c1, continuing on the484

edge c1d1, and ending at the first vertex we encounter in σ1. Let C ′ be the cycle enclosed by485

P1 ∪ σ1. Since C ′ is not an obstruction, there is one rainbow of C ′ that is an interior vertex486

of P1; this is the desired rainbow of C. This concludes the proof of Claim 13. J487

Considering σ2 instead of σ1, Claim 13 yields a third rainbow in C inside the region ∆3488

analogous to ∆1, contradicting that C is an obstruction. Hence Lemma 12 holds. J489

We iteratively apply the Disentangling Step, Face-Escaping Step or Exterior-Meeting Step490

without creating obstructions. Each step increases the number of pairwise intersecting strings491

in Σ until we reach a stage where the strings are pairwise intersecting and all of them have492

their two ends in the unbounded face. From this we extend them into an arrangement of493

pseudolines. This concludes the proof of Theorem 2. J494

5 Finding obstructions and extending strings in polynomial time495

We start this section by describing an algorithm to detect obstructions. Henceforth, we496

assume that the input to the problem is the planarization G(Σ) of an ordinary set of s strings497

Σ. For the running-time analysis, we assume that n and m are the number of vertices and498

edges in G(Σ), respectively. Since G(Σ) is planar, m = O(n). Moreover, if Σ is pseudolinear,499

then n ≤
(
s
2
)

+ 2s =
(
s+2

2
)
− 1. At the end of this section we explain how to extend Σ (if500

possible) in polynomial time.501
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Recall that each string in Σ receives a different colour; this induces an edge-colouring on502

G(Σ) where each string is a monochromatic path. An outer-rainbow is a vertex x ∈ V (G(Σ))503

incident with the outer face and for which the edges incident with x have different colours.504

Next we describe the basic operation in our obstruction-detecting algorithm.

x

Figure 12 From Σ to Σ− x.
505

Outer-rainbow deletion. Given an outer-rainbow x ∈ V (G(Σ)), the instance G(Σ− x) is506

defined by: first, removing x and the edges incident to x; second, suppressing the degree-2507

vertices incident with edges of the same colour; and third, removing remaining degree-0508

vertices (Figure 12 illustrates this process). Edge colours are preserved.509

It is easy to verify that G(Σ− x) is the planarization of an arrangement of strings. The510

colours removed by this operation are those belonging to strings that are paths of length 1 in511

G(Σ) incident with x. Our obstruction-detecting algorithm relies on the following property:512

(**) if x is an outer-rainbow of G(Σ), then there is an obstruction in G(Σ) not including x if513

and only if there is an obstruction in G(Σ− x).514

This property holds because cycles in G(Σ)− x and in G(Σ− x) are in 1-1 correspon-515

dence: two cycles correspond to each other if they are the same simple closed curve. This516

correspondence is obstruction-preserving.517

Let us now describe the two subroutines in our algorithm. For this, we remark that an518

outer-rainbow of G(Σ) is a rainbow for any cycle containing it.519

Subroutine 1. Detecting an obstruction through two outer-rainbows x and y.520

(1) Find a cycle C through x and y whose edges are incident with the outer face of G(Σ). If521

C exists, then this cycle is unique and can be described as the outer boundary of the522

block containing x and y. If no such C exists, then output No obstruction through x and523

y. Else, go to Step 2.524

(2) Find whether there is a third outer-rainbow z ∈ V (C) \ {x, y}. If such z exists, update525

G(Σ)←− G(Σ− z) and go to Step 1. If no such z exists, output C.526

Correctness and running-time of Subroutine 1: If an obstruction through x and y exists, then527

x and y are in the same block (some authors use the term ‘biconnected component’). Since528

x and y are incident with the outer face, the outer boundary of the block containing x and y529

is the cycle C from Step 1. This C can be found by considering outer boundary walk W of530

G(Σ) and then by finding whether x and y belong to the same non-edge block of W . Finding531

W is O(m) and computing the blocks of W via a DFS takes O(m) time.532

In Step 2, if there is a third outer rainbow z in C, then no obstruction through x and y533

contains z. Property (**) justifies the update that takes O(m) time.534

A full run from Step 1 to Step 2 takes O(m). Moving from Step 2 to Step 1 occurs O(n)535

times. Thus, the total time for Subroutine 1 is O(mn) = O(n2).536

Subroutine 2. Detecting an obstruction through a single outer-rainbow x.537
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(1) Find a cycle C through x whose edges are incident with the outer face of G(Σ). If no538

such C exists, output No obstruction through x. Else, go to Step 2.539

(2) Find whether there is an outer-rainbow y in V (C) \ {x}. If no such y exists, output C.540

Else, apply Subroutine 1 to x and y; if there is an obstruction C ′ through x and y, then541

output C ′. Else, update G(Σ)←− G(Σ− y) and go to Step 1.542

Correctness and running-time of Subroutine 2: If G(Σ) has an obstruction through x, then543

there is a non-edge block in G(Σ) containing x. The outer boundary of this block is a cycle544

C through x having all edges incident with the outer face. As in Subroutine 1, Step 1 takes545

O(m) time.546

Detecting the existence of y in Step 2 is O(m) because to detect rainbows in C, each edge547

incident with a vertex in V (C) is verified at most twice. The update in Step 2 is justified548

by Property (**). Since Step 2 may use Subroutine 1, Step 2 takes O(n2) time. As moving549

from Step 2 to Step 1 occurs O(n) times, the total running-time for Subroutine 2 is O(n3).550

We are now ready for the algorithm to detect obstructions.551

Algorithm 1: Detecting obstructions in G(Σ).552

(1) Find a cycle C having all edges incident with the outer face. If no such C exists, output553

No obstruction. Else, go to step 2.554

(2) Find whether there is an outer rainbow x ∈ V (C). If not, output C. Else apply Subroutine555

2 to x; if there is an obstruction C ′ through x, output C ′. Else, update G(Σ)←− G(Σ−x)556

and go to Step 1.557

Correctness and running-time of Algorithm 1: If G(Σ) has an obstruction, then it has a558

non-trivial block whose outer boundary is a cycle C as in Step 1. As before, C and x as in559

Step 2 can be found in O(m) steps. If C has not outer rainbow x, then C is an obstruction;560

Property (**) justifies the update in Step 2.561

Since Step 2 may use Subroutine 2, a full run of Steps 1 and 2 takes O(n3) time. Since562

Step 2 goes to Step 1 O(n) times, the running-time of Algorithm 1 is O(n4).563

Algorithm 1 and the constructive proof of Theorem 2 imply the following result.564

I Theorem 14. There is a polynomial-time algorithm to recognize and extend an ordinary565

set of strings that are extendible to an arrangement of pseudolines.566

Proof. Let Σ be an ordinary set of s strings. First, note that if n = |V (G(Σ))|, m =567

|E(G(Σ))|, and Σ is extendible, then n ≤
(
s
2
)

+ 2s. Hence n,m = O(s2).568

Assume that G(Σ) has not obstructions, by first verifying that n ≤
(
s
2
)

+ 2s and then569

running Algorithm 1. For each end in each string in Σ, we keep track of whether one of the570

Disentangling, Face-Escaping or Exterior-Meeting Steps apply.571

The Disentangling and Face-Escaping Steps consist on extending one end a of a fixed572

string σ ∈ Σ in different ways to find an obstruction-free set of strings. For the Disentangling573

Step, the number of possible extensions is bounded by the maximum degree of G(Σ); for the574

Face-Escaping Step, the number of possible extensions is bounded by twice the length of the575

face containing the end that we are extending. Thus, each step lead to O(m) possibilities, and576

testing obstructions in each of them is O(n4). Thus, the Disentangling and the Face-Escaping577

Steps take O(n5) time.578

The Exterior-Meeting Step is O(m2) because for this step we just need to record the579

number of the pairwise disjoint strings in Σ and the set of strings that have ends incident580

with the outer face; if all the strings have their ends in the outer boundary, the extension is581

performed as in the proof of Lemma 12.582

As there is a total of O(s2) extending steps, extending Σ is O(s2(n5 +m2)) = O(s12). J583
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6 Concluding remarks584

In this work we characterized in Theorem 2 sets of strings that can be extended into585

arrangements of pseudolines. Moreover, we showed that the obstructions to pseudolinearity586

can be detected in O(n4) time, where n is the number of vertices in the planarization of the587

set of strings.588

An easy consequence of Theorem 2 is the following (presented before as Theorem 1).589

I Theorem 15. Let D be a non-pseudolinear good drawing of a graph H. Then there is a590

subset S of edge-arcs in {D[e] : e ∈ E(H)}, such that each σ ∈ S has a substring σ′ ⊆ σ591

for which
⋃
σ∈S σ

′ is one of the drawings represented in Figure 2.592

Proof. Take C an obstruction of the planarization associated to D. Let δ(C) ⊆ V (C) be593

the vertices that in C are incident with two different strings in Σ = {D[e] : e ∈ E(H)}. We594

choose our obstruction C so that |δ(C)| is as small as possible.595

Decompose C into a cyclic sequence of paths P0, . . . , Pm, where Pi connects two points in596

δ(C) and it is otherwise disjoint from δ(C). Using Lemma 4, one can show that P0, . . . , Pm597

belong to distinct edge-arcs σ0, . . . , σm ∈ Σ, respectively. For each Pi, we consider the string598

σ′i, obtained by slightly extending the ends of Pi that are not rainbows in C; we extend them599

along σi.600

Let x ∈ δ(C) be an end shared by Pi−1 and Pi. If x is not a rainbow for C, then x is a601

crossing between σi−1 and σi. Moreover, the arcs added to Pi−1 and Pi at x to obtain σ′i−1602

and σ′i are inside C. If x is a rainbow in C, then Pi and Pi−1 are not extended at x, and x603

acts as one of the degree-2 vertices in Figure 2. The rest of the points in δ(C) are crossings604

in
⋃m
i=0 σ

′
i facing the interior of C. Since C has at most two rainbows,

⋃m
i=0 σ

′
i is one of the605

drawings depicted in Figure 2. J606

Theorem 2 can also be applied to show that a drawing of Kn is pseudolinear if and only607

if does not contain the B-configuration (Theorem 2.5.1 in [3]). We sketch the proof of a608

specific case of this theorem in the next two paragraphs and comment on the general case609

afterwards.610

Suppose that G(Σ) is the planarization of a non-pseudolinear drawing D of Kn for which611

we would like to show that D contains a B-configuration. Consider an obstruction C of G(Σ)612

minimizing |δ(C)|, where δ(C) are vertices of C incident with edges in C having different613

colours. For illustrative purposes, let us assume that C contains two vertices from V (Kn).614

Since C is an obstruction, u and v are the only rainbows of C.615

An edge e of Kn is involved in C if C contains a subarc of D[e] (see Figure 13). By using616

Lemma 4 is not hard to show that every edge involved in C is drawn inside C. Consider all617

the vertices incident with an edge involved in C and let D′ be the drawing of the complete618

graph induced by these vertices. Then, D′ has at most two vertices in its outer boundary,619

namely u and v. Thus, the outer boundary of D′ is incident with at least one crossing. The620

K4 containing this crossing is drawn as in Figure 1 with its crossing incident with the outer621

face. This K4 contains a B-configuration.622

The proof for the general case, where C does not necessarily contains two vertices of623

Kn, is considered in full detail in [3], and uses the complete subgraph induced by the edges624

involved in C combined with the fact that |δ(C)| is minimal.625

A drawing is stretchable if it is homeomorphic to a rectilinear drawing. There are626

pseudolinear drawings that are not stretchable. For instance, consider the Non-Pappus627

configuration in Figure 14. Nevertheless, the following is an immediate consequence of628

Thomassen’s main result in [19].629
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e

u

v

C

Figure 13 An edge e involved in the obstruction C.

Figure 14 Non-Pappus configuration.

I Corollary 16. A 1-planar drawing of a graph is stretchable if and only if it is pseudolinear.630

Proof. If a drawing D is stretchable then clearly it is pseudolinear. To show the converse,631

suppose that D is pseudolinear. Then D does not contain any obstruction, and in particular,632

neither of the B- and W -configurations in Figure 2 occurs in D. This condition was shown633

in [19] to be equivalent to being stretchable. J634

One can construct more general examples of pseudolinear drawings that are not stretchable635

by considering non-strechable arrangements of pseudolines. However, such examples seem to636

inevitably have some edge with multiple crossings. This leads to a natural question.637

B Question 17. Is it true that if D is a pseudolinear drawing in which every edge is crossed638

at most twice, then D is stretchable?639

We believe that there are other instances where pseudolinearity characterizes stretchability640

of drawings. A drawing is near planar if the removal of one edge produces a planar graph.641

One instance, is the following result by Eades et al. that can be translated to the language642

of pseudolines:643

I Theorem 18. [9] A drawing of a near-planar graph is stretchable if and only if the drawing644

induced by the crossed edges is pseudolinear.645

References646

1 B. M. Ábrego and S. Fernández-Merchant. A lower bound for the rectilinear crossing number.647

Graphs and Combinatorics, 21(3):293–300, 2005.648

2 O. Aichholzer, T. Hackl, A. Pilz, G. Salazar, and B. Vogtenhuber. Deciding monotonicity649

of good drawings of the complete graph. In Proc. XVI Spanish Meeting on Computational650

Geometry (EGC 2015), pages 33–36, 2015.651

3 A. Arroyo. On Geometric Drawings of Graphs. PhD thesis, University of Waterloo, 2018.652

4 A. Arroyo, D. McQuillan, R. B. Richter, and G. Salazar. Levi’s lemma, pseudolinear drawings653

of, and empty triangles. Journal of Graph Theory, 87(4):443–459, 2018.654



Alan Arroyo, Julien Bensmail and R. Bruce Richter 19

5 M. Balko, R. Fulek, and J. Kynčl. Crossing numbers and combinatorial characterization of655

monotone drawings of Kn. Discrete & Computational Geometry, 53(1):107–143, 2015.656

6 J. Balogh, J. Leaños, S. Pan, R. B. Richter, and G. Salazar. The convex hull of every optimal657

pseudolinear drawing of Kn is a triangle. Australasian Journal of Combinatorics, 38:155, 2007.658

7 D. Bienstock and N. Dean. Bounds for rectilinear crossing numbers. Journal of Graph Theory,659

17(3):333–348, 1993.660

8 J. Cardinal. Computational geometry column 62. SIGACT News, 46(4):69–78, Dec. 2015.661

9 P. Eades, S.-H. Hong, G. Liotta, N. Katoh, and S.-H. Poon. Straight-line drawability of a662

planar graph plus an edge. arXiv preprint arXiv:1504.06540, 2015.663

10 S. Felsner. Geometric graphs and arrangements: some chapters from combinatorial geometry.664

Springer Science & Business Media, 2012.665

11 S. Felsner and J. E. Goodman. Pseudoline arrangements. In Handbook of Discrete and666

Computational Geometry, pages 125–157. Chapman and Hall/CRC, 2017.667

12 C. Hernández-Vélez, J. Leaños, and G. Salazar. On the pseudolinear crossing number. Journal668

of Graph Theory, 84(3):155–162, 2017.669

13 P. Hoffman and B. Richter. Embedding graphs in surfaces. Journal of Combinatorial Theory,670

Series B, 36(1):65 – 84, 1984.671

14 L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl. Convex quadrilaterals and k-sets.672

Contemporary Mathematics, 342:139–148, 2004.673

15 J. Matousek. Intersection graphs of segments and ∃R, 2014.674

16 N. E. Mnëv. Varieties of combinatorial types of projective configurations and convex polytopes.675

Doklady Akademii Nauk SSSR, 283(6):1312–1314, 1985.676

17 N. E. Mnëv. The universality theorems on the classification problem of configuration varieties677

and convex polytopes varieties. In Topology and geometry—Rohlin seminar, pages 527–543.678

Springer, 1988.679

18 M. Schaefer. Complexity of some geometric and topological problems. In D. Eppstein and680

E. R. Gansner, editors, Graph Drawing, pages 334–344, Berlin, Heidelberg, 2010. Springer681

Berlin Heidelberg.682

19 C. Thomassen. Rectilinear drawings of graphs. Journal of Graph Theory, 12(3):335–341, 1988.683


	Introduction
	A set of strings with an obstruction is not extendible
	The key lemma
	Proof of Theorem 2
	Finding obstructions and extending strings in polynomial time
	Concluding remarks

