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Viscosity Solutions of system of PDEs with
Interconnected Obstacles and nonlinear Neumann

Boundary Conditions

Brahim BOUFOUSSI * Saïd HAMADENE † Manal JAKANI ‡

March 1, 2022

Abstract

This paper investigates the Hamilton-Jacobi-Bellman system of equations associ-
ated with the m-states optimal switching problem in finite horizon when the state pro-
cess is constrained to live in a connected bounded closed domain. We show existence
and uniqueness of the solution in viscosity sense of the system. The main tool is the
notion of systems of generalized reflected backward stochastic differential equations
with oblique reflection and the Feynman-Kac representation of their solutions in the
Markovian framework.

Keywords:Generalized reflected backward stochastic differential equations; Viscosity solution of
PDEs;Variational inequalities; Nonlinear Neumann boundary conditions; Optimal switching.

1 Introduction
The purpose of the present paper is to provide existence and uniqueness of continuous viscosity solu-
tion to the following system of m-variational inequalities with interconnected obstacles and nonlinear
Neumann boundary conditions: ∀i = 1, ...,m, ∀t ∈ [0,T ),

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));−∂tui(t,x)−L ui(t,x)

− fi(t,x,(uk(t,x))k=1,...,m,σ
>(x)Dxui(t,x))}= 0, x ∈ D;

∂ui

∂ l
(t,x)+ψi(t,x,ui(t,x)) = 0, x ∈ ∂D;

ui(T,x) = hi(x), x ∈ D,

(1.1)

where the operator L is given by

L =
1
2

Tr{(σσ
>)D2

xx.}+b>Dx. ;
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and at a point x ∈ ∂D,
∂

∂ l
= 〈Oφ(x),Dx.〉=

d

∑
i=1

∂φ

∂xi
(x)

∂

∂xi
.

The system (1.1) is of type Hamilton-Jacobi-Bellman (HJB for short) associated with the optimal
switching problem when the state process X , which is a diffusion with generator L , is constrained
to live in a bounded connected domain D := {φ > 0}.

Optimal switching models often arise in the analysis of industrial projects related to investment
in electricity and valuation of energy storage (see e.g., [2, 3, 4, 6, 7, 9, 10] etc.). In a standard
optimal switching problem, a decision maker controls a dynamical system over time by choosing
successively its working modes from a discrete set. Therefore a switching strategy is given by
α := (τn,θn)n≥0 where τn are stopping times such that τn ≤ τn+1 and θn is a random variable with
values in J := {1, . . . ,m}. At time τn, the decision maker switches the system from its current mode
θn−1 to the next mode θn. When the system is in mode i at time s and works a short period of time
ds, it provides a profit fi(s,ω)ds. On the other hand, switching the system from mode i to mode
j 6= i at time s costs gi j(s,ω). Thus, the problem of the decision maker is to look for a strategy α∗

which maximizes the performance Γ0(α) given by:

Γ0(α) := E
[∫ T

0
fα(s)ds−Gα

T +ξ
α

]
,

where

(i) fα(s) is the instantaneous profit;

(ii) Gα
T is the total switching cost;

(iii) ξ α is the terminal profit.

It is well known that the performance sup
α

Γ0(α) is related to the following system of backward

stochastic differential equations with oblique reflection: ∀i = 1, ...,m, ∀t ≤ T,
Y i

t = ξ i +
∫ T

t fi(s)ds+Ki
T −Ki

t −
∫ T

t Zi
sdBs;

Y i
t >max

j 6=i
(Y j

t −gi j(t));∫ T
0 {Y i

t −max
j 6=i

(Y j
t −gi j(t))}dKi

t = 0.

(1.2)

Both optimal performance and optimal strategy are provided by~Y = (Y1, ...,Ym) the unique solution
of (1.2) (see e.g. [11, 12, 13, 14] etc).

In the aforementioned works, when randomness stems from a standard diffusion process X t,x

((t,x) ∈ [0,T ]×Rk) solution of the following standard SDE:

dX t,x
s = b(s,X t,x

s )ds+σ(s,X t,x
s )dBs, s ∈ [t,T ] and X t,x

t = x (1.3)

(i.e. fi(s,ω) = fi(s,X
t,x
s (ω)), gi j(s,ω) = gi j(s,X

t,x
s (ω)) and the bequest ξ i(ω) = hi(X

t,x
T (ω)) for any

i, j) the HJB system of equations associated with this switching problem takes the following form:
∀i = 1, ...,m, ∀(t,x) ∈ [0,T )×Rk,

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));−∂tui(t,x)−L ui(t,x)− fi(t,x)}= 0;

ui(T,x) = hi(x).
(1.4)

The solution (ui)i=1,...,m is nothing but the value function of the switching problem (see e.g., [6, 10]).
The process X t,x of equation (1.3) is unconstrained and roughly speaking lives in Rk. However in
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real life, there are several situations where X t,x is constrained to stay in a given bounded domain D,
i.e. has the following dynamic:

dX t,x
s = b(X t,x

s )ds+σ(X t,x
s )dBs +∇φ(X t,x

s )dAt,x
s , s ∈ [t,T ];

X t,x
s ∈ D̄ and At,x

s =
∫ s

t χ{X t,x
r ∈∂D}dAt,x

r , s ∈ [t,T ];

X t,x
t = x, for s≤ t;

(1.5)

where At,x is an increasing process and a part of the solution. The gradient ∇φ(x) coincides with the
unit normal pointing towards the interior of D := {φ > 0}. The assumptions on b, σ and φ will be
specified later. The quantity ∇φ(X t,x

s )dAt,x
s stands for the actions or efforts made in such a way to

satisfy the constraint X t,x ∈ D̄.
So let us give two examples which highlight our model. The first one is related to electricity

production. Indeed, consider a hydro-power station with a dam and several working modes. Denote
by Xs the level of water in the dam at time s, which is obviously a stochastic process. For safety
reasons the water level should not exceed a specific level `1. On the other hand, for operational
reasons this level should not be below another level `0. Thus, at each time s, one should have
Xs ∈ [`0, `1](= D̄) by evacuating water when Xs is prone to overlap `1 and stopping production when
Xs reaches `0. As a consequence, the working mode of the station is chosen according to parameters
which include the level of water X in the dam which is a constrained stochastic process. So if α is a
strategy of switching or management of the hydro-power station, then its yield from t to T is given
by:

Γt(α) := E
[∫ T

t
fα(s)ds+

∫ T

t
ψα(s)dAt,x

s −Gα
T +ξ

α

]
. (1.6)

The quantity
∫ T

t ψα(s)dAt,x
s stands for the cost of maintaining the level of the dam in the appropriate

zone.
Another example is related to the interest rates in economies. Actually, assume that the process

(Xs)s≤T stands for the evolution of the interest rates in several economies. The central bank of
each economy has the ability to control the interest rate in such a way to keep it above a minimum
threshold to avoid inflation and below a fixed ceiling to promote investments for the well being of the
economy. Therefore X t,x is constrained to stay in a bounded domain and instead of satisfying (1.3),
we would rather it satisfies equation (1.5). The quantity ∇φ(X t,x

s )dAt,x
s stands for the actions of the

central banks to keep the interest rates in appropriate levels. Consider now an investor who invests
his/her capital in the economy which provides the best yield amongst those economies. Therefore a
strategy of investment is of switching type and when a strategy α is implemented the yield is given
by the quantity (1.6). Once more

∫ T
t ψα(s)dAt,x

s is the effect of the interventions of the central banks
on the return of the investment.

We believe that switching problems which look like the previous ones are interesting applica-
tions of the model we study in this article.

In this framework of randomness which comes from this constrained Markov process X t,x solu-
tion of equation (1.5), the HJB system associated with the switching problem is the system of PDEs
with Neumann boundary conditions (1.1). According to our knowledge, this system has not been
considered yet. Therefore the novelty of this paper is to deal with this system (1.1) and to complete
the literature on this subject of switching problems and their associated HJB systems.

To deal with the switching problem when X t,x is a solution of (1.5), we are led to study the
following system of reflected generalized BSDEs with oblique reflection: ∀i = 1, ...,m, ∀s ∈ [t,T ],

Y i,t,x
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,~Y t,x

r ,Zi,t,x
r )dr+

∫ T
s ψi(r,X

t,x
r ,Y i,t,x

r )dAt,x
r +Ki,t,x

T −Ki,t,x
s

−
∫ T

s Zi,t,x
r dBr;

Y i,t,x
s >max

j 6=i
(Y j,t,x

s −gi j(s,X
t,x
s ));

∫ T
0 {Y

i,t,x
s −max

j 6=i
(Y j,t,x

s −gi j(s,X
t,x
s ))}dKi,t,x

s = 0.

(1.7)
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Note that without the term
∫ T

s ψi(r,X
t,x
r ,Y i,t,x

r )dAt,x
r , the system of reflected BSDEs with intercon-

nected obstacles has been investigated in several papers ([11, 12, 14] etc). However, to our knowl-
edge this generalized version has not been considered.

The main contribution of our work, is to provide existence and uniqueness of continuous vis-
cosity solution (ui)i∈J for system (1.1). As a by-product, we obtain that for any i ∈ J and s ∈ [t,T ],
ui(s,X t,x

s ) is the optimal payoff when at time s the system is in working mode i.
The paper is organized as follows. In Section 2, we formulate our problem in a non Markovian

setting and we consider the following system of reflected generalized BSDEs with oblique reflection
which is more general than (1.7): ∀i = 1, ...,m, ∀t 6 T ,

Y i
t = ξ i +

∫ T
t fi(s,~Ys,Zi

s)ds+
∫ T

t ψi(s,Y i
s )dAs +Ki

T −Ki
t −
∫ T

t Zi
sdBs;

Y i
t >max

j 6=i
(Y j

t −gi j(t));∫ T
0 {Y i

t −max
j 6=i

(Y j
t −gi j(t))}dKi

t = 0.

(1.8)

We first show the existence of a solution (Y i,Zi,Ki)i∈J to system (1.8) using a scheme obtained by
Picard iterations. Then, we establish the link between the components Y i, i ∈ J, of the solution and
the value functions of the switching problem, from which follows the uniqueness of the solution of
system (1.8). The last section is devoted to study the system of PDEs (1.1). We define the notion of a
viscosity solution for that system, then we provide a comparison result between its sub-solution and
super-solution. Finally, we show the existence of a solution (ui)i=1,...,m of system (1.1). This is given
by the Feynman Kac representation, that relates the PDEs system (1.1) to the generalized RBSDEs
system (1.8) considered in the second section, namely for any i ∈ J, Y i,t,x

s = ui(s,X t,x
s ), ∀s ∈ [t,T ].

2 System of Generalized Reflected BSDEs

2.1 Assumptions and notations
Let T > 0 be a finite time horizon. Let (Ω,F ,P) be a fixed probability space on which is defined a
d-dimensional Brownian motion B = (Bt)06t6T , where F = (Ft)0≤t≤T is the completed filtration
of (σ(Bs,0≤ s≤ t))t≤T with all P−null sets of F0. Let (At)t>0 be a continuous one-dimensional in-
creasing Ft -progressively measurable process such that A0 = 0. We introduce the following spaces:

H 2 = {(ψt)06t6T Ft -progressively measurable process s.t.E[
∫ T

0
| ψt |2 dt]< ∞};

S 2 = {(ψt)06t6T Ft -progressively measurable process s.t.E[ sup
0≤t≤T

| ψt |2]< ∞};

A 2 = {(Kt)06t6T Ft -adapted continuous increasing process s.t. K0 = 0,E[K2
T ]< ∞}.

Let us introduce the following assumptions:
Assumptions (A1):
Let m be a positive integer, i ∈ J and µ > 0;

(H1) ξ i is a random variable in L2(Ω,FT ,P,R), satisfying E(eµAT | ξ i |2)< ∞.

(H2) fi : [0,T ]×Ω×Rm×R1×d −→ R and ψi : [0,T ]×Ω×R−→ R s.t.

(i) fi(., .,~y,z) and ψi(., .,y) are progressively measurable;

(ii) E
∫ T

0 eµAt | fi(t,~0,0) |2 dt <+∞ and E
∫ T

0 eµAt | ψi(t,0) |2 dAt <+∞;

(iii) fi and ψi are Lipschitz continuous with respect to (~y,z) and y respectively;

(iv) ∃β < 0 such that (y− y′)(ψi(t,y)−ψi(t,y′))≤ β | y− y′ |2;
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(v) For any j 6= i, fi(t,~y,z) is non-decreasing w.r.t. y j, whenever the other components are
fixed.

(H3) For any i, j ∈ J, we have:

(i) gi j : [0,T ]×Ω−→ R is continuous w.r.t. t, non negative such that gii = 0;

(ii) ξ i ≥max
j 6=i

(ξ j−gi j(T ));

(iii) gi j satisfies the non free loop property, i.e., ∀i1, ..., ik such that i1 6= i2, i1 = ik and
card{i1, ..., ik}= k−1, we have:

gi1i2 + ...+gik−1ik > 0. (2.1)

The assumptions (H1), (H2) (i)− (iv) are frequently encountered in the study of GBSDEs (see
[16, 18]) then carried on in the reflected version by Ren et al. in [20, 21]. One of the difficulties
usually faced in multidimensional Reflected BSDEs with interconnected obstacles is the dependence
on the whole vector ~y in the generators fi. This can be overcome with the use of the monotonicity
condition (A1) (H2) (v) first introduced in [12]. The assumptions (H3) on the costs gi j considered in
[6, 11, 12, 13] are actually reasonable. In fact, the first point (H3)(i) is necessary so that additional
costs will not be charged for staying in the same mode. Hypothesis (H3)(iii) reminds that going
from a mode i, and making successive switches all the way along back to the same mode is not free.
Finally, the assumption on the terminal values (H3)(ii) shows that there is no interest in making
switches at time T .

2.2 Existence and uniqueness of the solution
This section outlines two fundamental results of our work, namely, the existence and uniqueness of
a solution for the following system of generalized reflected BSDEs with oblique reflection: ∀i =
1, ...,m, ∀t 6 T

Y i ∈S 2, Zi ∈H 2,d , Ki ∈A 2;

Y i
t = ξ i +

∫ T
t fi(s,~Ys,Zi

s)ds+
∫ T

t ψi(s,Y i
s )dAs +Ki

T −Ki
t −
∫ T

t Zi
sdBs;

Y i
t >max

j 6=i
(Y j

t −gi j(t));∫ T
0 {Y i

t −max
j 6=i

(Y j
t −gi j(t))}dKi

t = 0.

(2.2)

We first state the existence result:

Theorem 2.1 Assume that assumptions (A1) are fulfilled. Then the system of generalized reflected
BSDEs (2.2) has a solution.

Sketch of the Proof: The proof consists of several steps. First, we construct an increasing sequence
of standard generalized reflected BSDEs using the results of [18, 21]. Then, we give a priori esti-
mates for the solutions. In step 3, using Peng’s monotonic limit Theorem to show that our iterative
scheme converges to the solution that we are looking for. Finally, we show the minimal boundary
condition.
One of the tools used in this technique is the comparison theorem for generalized reflected BSDEs
that we give in the remark below:

Remark 2.1 For i = 1,2, let Y i be the unique solution of a one-dimensional generalized reflected
BSDEs with data (ξ i, f i,ψ i,Si). Note that, according to [21], Y i is obtained as an increasing limit of
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a sequence of solutions of standard generalized BSDEs. Then, it is not difficult to see that if ξ 1 ≤ ξ 2,
f 1 ≤ f 2, ψ1 ≤ ψ2 and S1 ≤ S2, we get:

Y 1
t ≤ Y 2

t , ∀t ∈ [0,T ], P-a.s.

Indeed, it suffices to consider the associated approximations and to apply the comparison result for
generalized BSDEs (see Theorem 1.4 [18]).

Proof of Theorem 2.1.
Step 1: Iterative scheme.
Let us set

ξ = max
i=1,..,m

| ξ i |, f (s,y,z) = max
i=1,..,m

fi(s,y, ...,y,z), ψ(s,y) = max
i=1,..,m

ψi(s,y);

ξ = min
i=1,..,m

| ξ i |, f (s,y,z) = min
i=1,..,m

fi(s,y, ...,y,z), ψ(s,y) = min
i=1,..,m

ψi(s,y).

Consider the following standard GBSDEs: ∀t 6 T ,
Y ∈S 2, Z ∈H 2,d ;

Y t = ξ +
∫ T

t f (s,Y s,Zs)ds+
∫ T

t ψ(s,Y s)dAs−
∫ T

t ZsdBs,
(2.3)

and 
Y ∈S 2, Z ∈H 2,d ;

Y t = ξ +
∫ T

t f (s,Y s,Zs)ds+
∫ T

t ψ(s,Y s)dAs−
∫ T

t ZsdBs.
(2.4)

By Theorem 1.6 in [18], the generalized BSDEs (2.3) and (2.4) have unique solutions.
Next, for i = 1, ...,m and n > 1, we set Y i,0 = Y and we define recursively Y i,n via the following
GRBSDEs whose solutions exist and are unique thanks to [21]:

Y i,n ∈S 2, Zi,n ∈H 2,d , Ki,n ∈A 2;

Y i,n
t = ξ i +

∫ T
t fi(s,Y

1,n−1
s , ...,Y i,n

s , ...,Y m,n−1
s ,Zi,n

s )ds+
∫ T

t ψi(s,Y
i,n
s )dAs +Ki,n

T −Ki,n
t

−
∫ T

t Zi,n
s dBs, ∀t 6 T ;

Y i,n
t >max

j 6=i
(Y j,n−1

t −gi j(t)), ∀t 6 T ;

∫ T
0 {Y

i,n
t −max

j 6=i
(Y j,n−1

t −gi j(t))}dKi,n
t = 0.

(2.5)

Note that (Y ,K = 0,Z) is also a solution for the following GRBSDE:
Y t = ξ +

∫ T
t f (s,Y s,Zs)ds+

∫ T
t ψ(s,Y s)dAs +KT −Kt −

∫ T
t ZsdBs;

Y t ≥max
j 6=i

(Y t −gi j(t));∫ T
0 {Y t −max

j 6=i
(Y t −gi j(t))}dKt = 0.

(2.6)

Fix i ∈ J, by Remark 2.1 and the monotonicity condition on fi, we can deduce by induction on n,
that

Y ≤ Y i,n ≤ Y i,n+1 ≤ Y . (2.7)

We conclude that the sequence (Y i,n)n>0 converges pointwise to Y i.
Step 2 : A priori estimates.
Let i = 1, ...,m, t 6 T and n> 1, we see that
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| Y i,n
t |≤max

{
| Y t |, | Y t |

}
,

then

E
[

sup
0≤t≤T

| Y i,n
t |2

]
≤ E

[
max

{
sup

0≤t≤T
| Y t |2, sup

0≤t≤T
| Y t |2

}]
. (2.8)

First, we should point out that both functions ψ and ψ satisfy the assumption (H2) (iv),which is a
crucial condition to apply Proposition 1.1 in [18], then the following estimates hold:

E
[

sup
0≤t≤T

| Y t |2 +
∫ T

0
| Y t |2 dAt

]
≤CE

(
| ξ |2 +

∫ T

0
| f (t,0,0) |2 dt +

∫ T

0
| ψ(t,0) |2 dAt

)
;

E
[

sup
0≤t≤T

| Y t |2 +
∫ T

0
| Y t |2 dAt

]
≤CE

(
| ξ |2 +

∫ T

0
| f (t,0,0) |2 dt +

∫ T

0
| ψ(t,0) |2 dAt

)
,

(2.9)

which implies that

E
[

sup
0≤t≤T

| Y i,n
t |2 +

∫ T

0
| Y i,n

t |2 dAt

]
≤C. (2.10)

We apply Itô’s formula to | Y i,n
t |2, we get

| Y i,n
t |2 +

∫ T

0
‖ Zi,n

s ‖2 ds =| ξ i |2 +2
∫ T

t
Y i,n

s fi(s,Y 1,n−1
s , ...,Y i,n

s , ...,Y m,n−1
s ,Zi,n

s )ds

+2
∫ T

t
Y i,n

s Ψi(s,Y i,n
s )dAs +2

∫ T

t
Y i,n

s dKi,n
s −2

∫ T

t
Y i,n

s Zi,n
s dBs.

Taking the expectation in both sides yields:

E
(
| Y i,n

t |2
)
+E

(∫ T

t
‖ Zi,n

s ‖2 ds
)
= E

(
| ξ i |2

)
+2E

(∫ T

t
Y i,n

s fi(s,Y 1,n−1
s , ...,Y i,n

s , ...,Y m,n−1
s ,Zi,n

s )ds
)

+2E
(∫ T

t
Y i,n

s ψi(s,Y i,n
s )dAs

)
+2E

(∫ T

t
Y i,n

s dKi,n
s

)
.

Next, using assumptions (i), (ii) and (iv), we get for C1,C2,C3 > 0:

E
(
| Y i,n

t |2
)
+E

(∫ T

t
‖ Zi,n

s ‖2 ds
)
≤ E

(
| ξ i |2

)
+(1+C1 +C2)E

(
sup

0≤t≤T
| Y i,n

t |2
)

+2E
(∫ T

t
M ‖ (Y 1,n−1

s , ...,Y i−1,n−1
s ,Y i,n

s ,Y i+1,n−1
s , ...,Y m,n−1

s ) ‖| Y i,n
s | ds

)
+C1E

(∫ T

t
‖ Zi,n

s ‖2 ds
)
+2E

(∫ T

t
β | Y i,n

s |2 dAs

)
+C3E

(∫ T

t
| Y i,n

s |2 dAs

)
+E

(∫ T

t
| fi(s,~0,0) |2 ds

)
+

1
C3

E
(∫ T

t
| ψi(s,0) |2 dAs

)
+

1
C2

E
(
| Ki,n

T −Ki,n
t |2

)
.

(2.11)

Now, from (2.5), we have

Ki,n
T −Ki,n

t = Y i,n
t −ξ

i−
∫ T

t
fi(s,Y 1,n−1

s , ...,Y i,n
s , ...,Y m,n−1

s ,Zi,n
s )ds−

∫ T

t
ψi(s,Y i,n

s )dAs

+
∫ T

t
Zi,n

s dBs.

Then, by taking the expectation and using (2.10), we obtain by standard computations the following
estimate for Ki,n

T −Ki,n
t :

E
(
| Ki,n

T −Ki,n
t |2

)
≤C4

[
1+E

(∫ T

t
‖ Zi,n

s ‖2 ds
)]

,
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where C4 > 0. Back to (2.11), we use (2.10) to conclude that E
(∫ T

t
‖ Zi,n

s ‖2 ds
)
≤ C, where C

does not depend on n, then for any i ∈ J and n> 1, we have:

E
(

sup
0≤t≤T

| Y i,n
t |2 +

∫ T

0
| Y i,n

t |2 dAt +
∫ T

0
‖ Zi,n

t ‖2 dt
)
≤C. (2.12)

Step 3: Monotonic limit result.
Fix i = 1, ...,m, t 6 T and n> 1. Recall (2.7) and (2.9), then as Y i,n converges increasingly to Y i, we
have:

E
[

sup
0≤t≤T

| Y i
t |2 +

∫ T

0
| Y i

t |2 dAt

]
≤C. (2.13)

By dominated convergence we get

E
(∫ T

0
| Y i,n

t −Y i
t |2 dt

)
−→
n→∞

0. (2.14)

Also, we showed in the previous step that (Zi,n)n>1 are bounded in H 2 and so are
( fi(s,Y

1,n−1
s , ...,Y i,n

s , ...,Y m,n−1
s ,Zi,n

s ))n>1 in L2([0,T ]×Ω). In order to apply Peng’s monotonic limit
theorem [19], let us note that the equation satisfied by Y i,n can be rewritten as follows:

Y i,n
t +

∫ t

0
ψi(s,Y i

s )dAs = Y i,n
0 −

∫ t

0
fi(s,Y 1,n−1

s , ...,Y i,n
s , ...,Y m,n−1

s ,Zi,n
s )ds

−
∫ t

0
{ψi(s,Y i,n

s )−ψi(s,Y i
s )}dAs−Ki,n

t +
∫ t

0
Zi,n

s dBs. (2.15)

Since ψi is non-increasing w.r.t. y, the process
∫ .

0{ψi(s,Y
i,n
s )−ψi(s,Y i

s )}dAs is increasing for each
n > 1. Hence, using the estimate (2.13) together with the properties of both fi and ψi, we can
apply Theorem 2.1 in [19] to the process Y i,n +

∫ .
0 ψi(s,Y i

s )dAs, which converges increasingly to
Y i +

∫ .
0 ψi(s,Y i

s )dAs, with Y i is càdlàg. Therefore, the limit Y i +
∫ .

0 ψi(s,Y i
s )dAs has the following

form:
Y i

t +
∫ t

0
ψi(s,Y i

s )dAs = Y i
0−

∫ t

0
fi(s)ds−Ki

t +
∫ t

0
Zi

sdBs, (2.16)

where Ki is càdlàg and denotes the weak limit of
∫ .

0{ψi(s,Y
i,n
s )−ψi(s,Y i

s )}dAs +Ki,n. Moreover, Zi

is the weak limit of Zi,n in H 2, which is also the strong limit in Lp for p ∈ [1,2). Then, we have:

E
(∫ T

0
| Zi,n

t −Zi
t |p dt

)
−→
n→∞

0, ∀p ∈ [1,2).

We can use exactly the same techniques as in the proof of Theorem 2.4 in [19] to show that∫ t
0 fi(s)ds =

∫ t
0 fi(s,

−→
Ys ,Zi

s)ds. Furthermore, from (2.7), (2.10) and (2.13), by dominated convergence
theorem applied to the sequence Y i,n

t in L2([0,T ]×Ω,dAt ×dP) we get:

E
(∫ T

0
| Y i,n

t −Y i
t |2 dAt

)
−→
n→∞

0. (2.17)

The Lipschitz continuity of ψi implies

E
(∫ T

0
| ψi(t,Y

i,n
t )−ψi(t,Y i

t ) |2 dAt

)
≤ME

(∫ T

0
| Y i,n

t −Y i
t |2 dAt

)
−→
n→∞

0.

This also means that Ki is the weak limit of Ki,n. In addition, Ki inherits the following properties
from Ki,n:

(a) Ki
0 = 0 and E(Ki

T
2
)<+∞,

(b) Ki is increasing.
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It follows that Y i satisfies:
Y i

t = ξ i +
∫ T

t fi(s,
−→
Ys ,Zi

s)ds+
∫ T

t ψi(s,Y i
s )dAs +Ki

T −Ki
t −
∫ T

t Zi
sdBs;

Y i
t ≥max

j 6=i
(Y j

t −gi j(t)).
(2.18)

Step 4: The minimal boundary condition. Consider the following system:
Ỹ i

t = ξ i +
∫ T

t fi(s,Y 1
s , ..,Ỹ

i
s , ..,Y

m
s , Z̃i

s)ds+
∫ T

t ψi(s,Ỹ i
s )dAs + K̃i

T − K̃i
t −
∫ T

t Z̃i
sdBs;

Ỹ i
t ≥max

j 6=i
(Y j

t −gi j(t));∫ T
0 [Ỹ i

t− −max(Y j
t− −gi j(t))]dK̃i

t = 0.

(2.19)

Note that given (Y i,Zi,Ki)i=1,..,m solution of (2.18), the above system consists of m generalized
reflected BSDEs where for each i = 1, ..,m only the i-th component of the generator fi depends on
the solution. Moreover, the barriers are known and càdlàg, this is a particular case of Ren-El Otmani
[20], which gives the existence and uniqueness of the solution (2.19). Let (Ỹ i, Z̃i, K̃i)i=1,..,m be their
unique solutions. By the comparison result [20], we have Y i,n

t ≤ Ỹ i
t which implies that Y i

t ≤ Ỹ i
t .

Next, we show that Ỹ i
t ≤ Y i

t . To this end, we apply Tanaka-Meyer’s formula to the semi martingale
(Ỹ i

t −Y i
t )06t6T whose terminal value is equal to 0, we obtain:

(Ỹ i
t −Y i

t )
+ =−

∫ T

t
χ{Ỹ i

s−−Y i
s−>0}d(Ỹ

i
s −Y i

s )

− Σ
t<s6T

[χ{Ỹ i
s−−Y i

s−>0}(Ỹ
i
s −Y i

s )
−+χ{Ỹ i

s−−Y i
s−60}(Ỹ

i
s −Y i

s )
+]− 1

2
L0

t .

Here, the non-negative process (L0
t )t6T stands for the local time of Ỹ i−Y i at 0. Then,

(Ỹ i
t −Y i

t )
+ ≤−

∫ T

t
χ{Ỹ i

s−−Y i
s−>0}d(Ỹ

i
s −Y i

s )

=
∫ T

t
χ{Ỹ i

s−−Y i
s−>0}{ fi(s,Y 1

s , ..,Ỹ
i
s , ..,Y

m
s , Z̃i

s)− fi(s,Y 1
s , ..,Y

i
s , ..,Y

m
s ,Zi

s)}ds

+
∫ T

t
χ{Ỹ i

s−−Y i
s−>0}{ψi(s,Ỹ i

s )−ψi(s,Y i
s )}dAs +

∫ T

t
χ{Ỹ i

s−−Y i
s−>0}d(K̃

i
s−Ki

s)

−
∫ T

t
χ{Ỹ i

s−−Y i
s−>0}(Z̃

i
s−Zi

s)dBs.

The Skorokhod condition in system (2.19) shows that
∫ T

t χ{Ỹ i
s−−Y i

s−>0}d(K̃
i
s−Ki

s)≤ 0.
In fact, we have:∫ T

t
χ{Ỹ i

s−−Y i
s−>0}d(K̃

i
s−Ki

s) =
∫ T

t
χ{Ỹ i

s−−Y i
s−>0}dK̃i

s−
∫ T

t
χ{Ỹ i

s−−Y i
s−>0}dKi

s.

The inequality in the system (2.18), implies that Ỹ i
s− > max

j 6=i
(Y j

s− −gi j(s)) whenever Ỹ i
s− > Y i

s− , then

dK̃i
s = 0 on the set {Ỹ i

s− −Y i
s− > 0}.

Now, from assumption (A1) (H2) (iv), one can observe that ψi(s,Ỹ i
s )−ψi(s,Y i

s ) is negative since

9



Ỹ i
s ≥ Y i

s , which implies that
∫ T

t χ{Ỹ i
s−−Y i

s−>0}{ψi(s,Ỹ i
s )−ψi(s,Y i

s )}dAs 6 0. Then

(Ỹ i
t −Y i

t )
+ ≤

∫ T

t
χ{Ỹ i

s−−Y i
s−>0}{ fi(s,Y 1

s , ..,Ỹ
i
s , ..,Y

m
s , Z̃i

s)− fi(s,Y 1
s , ..,Y

i
s , ..,Y

m
s , Z̃i

s)

+ fi(s,Y 1
s , ..,Y

i
s , ..,Y

m
s , Z̃i

s)− fi(s,Y 1
s , ..,Y

i
s , ..,Y

m
s ,Zi

s)}ds

−
∫ T

t
χ{Ỹ i

s−−Y i
s−>0}(Z̃

i
s−Zi

s)dBs

≤
∫ T

t
Mχ{Ỹ i

s−−Y i
s−>0}(Ỹ

i
s −Y i

s )
+ds

+
∫ T

t
χ{Ỹ i

s−−Y i
s−>0}χ{Z̃i

s 6=Zi
s}[ fi(s,~Ys, Z̃i

s)− fi(s,~Ys,Zi
s)](Z̃

i
s−Zi

s)
−1(Z̃i

s−Zi
s)ds

−
∫ T

t
χ{Ỹ i

s−−Y i
s−>0}(Z̃

i
s−Zi

s)dBs.

Set Mt =
∫ t

0 χ{Z̃i
s 6=Zi

s}[ fi(s,~Ys, Z̃i
s)− fi(s,~Ys,Zi

s)](Z̃
i
s−Zi

s)
−1dBs, t 6 T . By Girsanov’s theorem, as fi

is Lipschitz continuous with respect to z, the process

B̃t = Bt −
∫ t

0
χ{Z̃i

s 6=Zi
s}[ fi(s,~Ys, Z̃i

s)− fi(s,~Ys,Zi
s)](Z̃

i
s−Zi

s)
−1ds, t 6 T ;

is a Brownian motion under P̃, where dP̃= ε(M)T dP and ε(M)t = eMt− 1
2 〈M〉t . It follows that:

EP̃[(Ỹ i
t −Y i

t )
+]≤ EP̃[

∫ T

t
Mχ{Ỹ i

s−−Y i
s−>0}(Ỹ

i
s −Y i

s )
+ds]−

∫ T

t
χ{Ỹ i

s−−Y i
s−>0}(Z̃

i
s−Zi

s)dB̃s],

≤ EP̃[
∫ T

t
M(Ỹ i

s −Y i
s )

+ds].

Finally, by Gronwall’s Lemma, we have (Ỹ i
t −Y i

t )
+ = 0 P̃−a.s.. As P̃ and P are equivalent, we get

P-a.s. ∀t 6 T, Ỹ i
t ≤ Y i

t and then Ỹ i = Y i.
Then, by classical arguments we show that K̃i = KiP-a.s. and Z̃i = Zi dt× dP-a.e., which means
that (Y,K,Z) is a solution of (2.19).

To conclude, it suffices to show Ki and Y i are continuous.
As (Ki

t )t>0 is a non-decreasing process, ∆Ki
t ≥ 0. Suppose there exists i1 such that ∆Ki1

t > 0 then
∆Y i1

t < 0. But
Y i1

t− = max
k 6=i1

(Y k
t− −gi1k(t)).

Then there exists i2 ∈ J−{i1} such that

Y i1
t− = Y i2

t− −gi1i2(t)> Y i1
t ≥max

k 6=i1
(Y k

t −gi1k(t)).

This implies that

∆Y i2
t < 0 and ∆Ki2

t > 0.

By repeating the same procedure in the finite set J, we can find a loop i1, ..., ip = i1 such that

Y i1
t− = Y i2

t− −gi1i2(t), Y i2
t− = Y i3

t− −gi2i3(t), ..., Y
ip−1

t− = Y ip=i1
t− −gip−1i1(t).

By adding respective hand-sides in the above equations, we get
p−1
∑

k=1
gikik+1(t) = 0, which contradicts

the non-free loop property. Therefore, Ki is continuous and Y i as well. Now as i is arbitrary then the
processes Ki,Y i, i ∈ J are continuous.
As a result, we can rewrite our system (2.19) by deleting the limits. �
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In order to establish the uniqueness result, we construct a contraction with an appropriate norm.
The idea is to recall the link existing between generalized reflected BSDEs and switching problems.
More precisely, using the first existence result, we consider an initial system of generalized reflected
BSDEs with interconnected obstacles in which the data do not depend on the solution. Our goal is to
represent its solution in terms of the value functions of one dimensional switching problem, which
gives the uniqueness of the latter system. As a by-product, we obtain the contraction property thanks
to a comparison result for multidimensional generalized reflected BSDEs systems that we state in
the following proposition:

Proposition 2.1 Let (Y i)i∈J and (Ỹ i)i∈J be respectively the unique solutions to the generalized re-
flected BSDEs system (2.2), with respective data ((ξ i)i∈J ,( fi)i∈J ,(ψi)i∈J ,(gi j)(i, j)∈J2) and

((ξ̃ i)i∈J ,( f̃i)i∈J ,(ψ̃i)i∈J ,(g̃i j)(i, j)∈J2). If for any i ∈ J, ξ i ≤ ξ̃ i, fi ≤ f̃i, ψi ≤ ψ̃i and gi j ≥ g̃i j, then we
have:

Y i
t ≤ Ỹ i

t , ∀i ∈ J, ∀t 6 T, P-a.s..

Proof. We apply Remark 2.1 to the increasing approximation schemes (2.5) which converge respec-
tively to (Y i)i∈J and (Ỹ i)i∈J . We deduce the comparison by taking the limit. �

Theorem 2.2 Under assumptions (A1), the solution of system (2.2) is unique .

Proof. For µ > 0 and λ > 0, let M 2
µ,λ (A) denote the set of progressively measurable processes

(ρt)06t6T s.t.

‖ρ‖M 2
µ,λ

(A) := E
(∫ T

0
eµt+λAt | ρt |2 dt +

∫ T

0
eµt+λAt | ρt |2 dAt

)
< ∞.

Let ~u = (ui)i=1,...,m be such that ui ∈M 2
µ,λ (A), ∀i = 1, ...,m, and consider the following system:

∀i = 1, ...,m, ∀t 6 T ,

Y u,i ∈S 2, Zu,i ∈H 2,d , Ku,i ∈A 2;

Y u,i
t = ξ i +

∫ T
t fi(s,−→us ,Z

u,i
s )ds+

∫ T
t ψi(s,ui

s)dAs +Ku,i
T −Ku,i

t −
∫ T

t Zu,i
s dBs,

Y u,i
t ≥max

j 6=i
(Y u, j

t −gi j(t)),∫ T
0 [Y u,i

t −max
j 6=i

(Y u, j
t −gi j(t))]dKu,i

t = 0.

(2.20)

Let (Y u,i,Zu,i,Ku,i)i=1,...,m be a solution of system (2.20) which exists thanks to Theorem2.1. We
shall stress that for fixed ~u ∈M 2,m

µ,λ (A) the solution Y u,i ∈M 2
µ,λ (A), ∀i = 1, ...,m. In fact, by as-

sumptions (H1), (H2)(ii) and (H2)(iii), we know that Y u and Y u the solutions obtained by Theorem
1.6 in [18] for the generalized BSDEs (2.3) and (2.4) with respective data (ξ , f (.,−→u. , .),ψ(.,ui

.)) and
(ξ , f (.,−→u. , .),ψ(.,ui

.)) are both elements of M 2
µ,λ (A), then using Y u ≤ Y u,i ≤ Y u, the result follows.

Our first task, is to show that the solution of system (2.20) is unique. For this, we rely on the
connection between generalized reflected BSDE and optimal switching. Let us first recall that a
switching control α is a pair of subsequences (τn,θn)n≥0, where τn are stopping times such that
τn ≤ τn+1 and θn is a random variable with values in J := {1, . . . ,m}. If P [τ∗n < T,∀n≥ 0] = 0, we
say that α is admissible.
Let i ∈ J and t ∈ [0,T ], we define a class of admissible switching controls by:

D i
t =

{
α = ((τn)n≥0,(θn)n≥0) ∈D , θ0 = i, τ0 = 0,τ1 ≥ t and E(Gα

T )
2 < ∞

}
,

where D denotes the set of admissible switching controls and Gα
s is the cumulative switching costs

up to time s, expressed by:

Gα
s = ∑

n≥1
gθn−1,θn(τn)χ[τn≤s], s < T and Gα

T = lim
s→T

Gα
s = ∑

n≥1
gθn−1,θn(τn)χ[τn<T ].
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Let α = ((τn)n≥0,(θn)n≥0) ∈D i
t and define:

ξ
α =∑

n≥0
ξ

θn χ[τn≤T<τn+1[,

fα(t,−→u ,z) =∑
n≥0

fθn(t,
−→u ,z)χ[τn≤t<τn+1[, (2.21)

ψα(t,uα) =∑
n≥0

ψθn(t,u
θn)χ[τn≤t<τn+1[.

Let us consider the following switching equation:
Pα , E( sup

0≤t≤T
| Pα

t |2)< ∞ and Qα ∈H 2,d ;

Pα
t = ξ α +

∫ T
t fα(s,−→us ,Qα

s )ds+
∫ T

t ψα(s,uα
s )dAs−

∫ T
t Qα

s dBs− (Gα
T −Gα

t ), t 6 T.
(2.22)

In the above equation, ξ α , fα and ψα are respectively the reward received at time T , the running re-
ward received on D and the additional reward once the limit of the domain is reached while adhering
to the strategy α .
By setting Pα

t := Pα
t −Gα

t , we get a Generalized BSDE with standard generators and a terminal
value satisfying E[(ξ α −Gα

T )
2]< ∞. All together with the adaptedness of Gα , there exists a unique

solution (Pα ,Qα) for (2.22) thanks to [18].
We go back to system (2.20), to write the equation of Y u,i between t and τ1:

Y u,i
t =Y u,i

τ1 +
∫

τ1

t
fi(s,−→us ,Zu,i

s )ds+Ku,i
τ1 −Ku,i

t +
∫

τ1

t
ψi(s,ui

s)dAs−
∫

τ1

t
Zu,i

s dBs

=Y u,i
τ1 χ[τ1=T ]+Y u,i

τ1 χ[τ1<T ]+
∫

τ1

t
fα(s,−→us ,Zα

s )ds+
∫

τ1

t
ψα(t,uα

s )dAs

+Ku,i
τ1 −Ku,i

t −
∫

τ1

t
Zα

s dBs,

where we have used (2.21) together with Zα
s = Zu,θ0

s χ[τ0≤s<τ1[ = Zu,i
s on [t,τ1]. Then, as

Y u,i
τ1 ≥max

j 6=i
(Y u, j

τ1 −gi j(τ1))≥ Y u,θ1
τ1 −giθ1(τ1),

we get: ∀i = 1, ...,m, ∀s ∈ [t,τ1]

Y u,i
s ≥ (Y u,θ1

τ1 −gi,θ1(τ1))χ[τ1<T ]+ξ
i=θ0 χ[τ1=T ]+

∫
τ1

t
fα(s,−→us ,Zα

s )ds+
∫

τ1

t
ψα(s,uα

s )dAs

+Ku,i
τ1 −Ku,i

t −
∫

τ1

t
Zα

s dBs;

≥ Y u,θ1
τ2 χ[τ1<T ]+

∫
τ2

t
fα(s,−→us ,Zα

s )ds+
∫

τ2

t
ψα(s,uα

s )dAs +(Ku,i
τ2 −Ku,i

τ1 )

−
∫

τ2

t
Zα

s dBs−gi,θ1(τ1)χ[τ1<T ]+Ku,i
τ1 −Ku,i

t +ξ
θ0 χ[τ1=T ],

where we used the definition of Y u,θ1 between [τ1,τ2]. Repeating the same procedure as many times
as necessary, we obtain:

Y u,i
t ≥ ξ

α +
∫ T

t
f (s,−→us ,Zα

s )ds+
∫ T

t
ψα(s,uα

s )dAs−Gα
T + K̃α

T −
∫ T

t
Zα

s dBs.

where K̃α
T = Ku,i

τ1 −Ku,i
t + ∑

n≥1
(Ku,θn

τn+1 −Ku,θn
τn ), which is non negative.Thus

Y u,i
t ≥ ξ

α +
∫ T

t
fα(s,−→us ,Zα

s )ds+
∫ T

t
ψα(s,uα

s )dAs−Gα
T −

∫ T

t
Zα

s dBs.
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Then, we use the equation satisfied by (Pα ,Qα) and we have:

Y u,i
t − (Pα

t −Gα
t )≥

∫ T

t
[ fα(s,−→us ,Zα

s )− fα(s,−→us ,Qα
s )]ds−

∫ T

t
(Zα

s −Qα
s )dBs.

Once again, thanks to Girsanov’s Theorem there exists P̃, s.t. dP̃ = ε(M)T dP, where ε(M)t =

eMt− 1
2 〈M〉t and Mt =

∫ t
0 χ{Zα

s 6=Qα
s }[ fα(s,−→us ,Zα

s )− fα(s,−→us ,Qα
s )](Z

α
s −Qα

s )
−1dBs.

Then

Y u,i
t − (Pα

t −Gα
t )≥

∫ T

t
(Zα

s −Qα
s )dB̃s,

where B̃t = Bt−
∫ t

0 χ{Zα
s 6=Qα

s }[ fα(s,−→us ,Zα
s )− fα(s,−→us ,Qα

s )](Z
α
s −Qα

s )
−1ds, t 6 T is a Brownian mo-

tion under P̃. It follows that

EP̃
(

Y u,i
t − (Pα

t −Gα
t ) |Ft

)
≥ 0.

Finally, as ε(M)t is a non-negative martingale, we obtain: ∀α ∈D i
t ,

Y u,i
t ≥ Pα

t −Gα
t , P-a.s.

Y u,i
t = esssup

α∈D i
t

(Pα
t −Gα

t ).

Now, in order to represent (Y u,i
t )i=1,...,m as the value function of the associated switching problem,

we consider the strategy α∗ = (τ∗n ,θ
∗
n )n≥0 defined by:

τ∗0 = 0, θ ∗0 = i,

τ∗n+1 = inf{s≥ τ∗n , Y u,θ∗n
s = max

j 6=θ∗n
(Y u, j

s −gθ∗n , j(s))}∧T , θ ∗n+1 = argmax
j 6=θ∗n

(Y u, j
τ∗n+1
−gθ∗n , j(τ

∗
n+1)).

Next, we show that α∗ is an admissible strategy, that is, we need to prove that:

1. P [τ∗n < T,∀n≥ 0] = 0,

2. E(Gα∗
T )2 < ∞.

For the first equality, We proceed by contradiction assuming that P [τ∗n < T,∀n≥ 0]> 0. By defini-
tion of α∗, this means that

P
[
Y u,θ∗n

τ∗n+1
= Y

u,θ∗n+1
τ∗n+1

−gθ∗n ,θ
∗
n+1

(τ∗n+1), θ ∗n 6= θ ∗n+1, ∀n≥ 1
]
> 0.

Since J is finite, there exists a loop i0, ..., ik, ik+1 = i0 such that i1 6= i0 and a subsequence (nq)q>1
such that

P
[
Y u,il

τ∗nq+l
= Y u,il+1

τ∗nq+l
−gil ,il+1(τ

∗
nq+l

), l = 0, ...,k, ∀q> 1, ik+1 = i0

]
> 0.

Consider now τ = lim
n
↗ τ∗n , this implies that

P
[
Y u,il

τ = Y u,il+1
τ −gil ,il+1(τ), l = 0, ...,k, , ik+1 = i0

]
> 0,

which leads to

P
[
gi0i1(τ)+ ....+giki0(τ) = 0

]
> 0,
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that contradicts the non free loop property, then assertion one holds.
To show the second property, we rewrite the equation for Y u,i under the strategy α∗ and Sko-

rokhod Condition, which means that Ku,θ∗n
s −Ku,θ∗n

τ∗n
= 0 for τ∗n ≤ s≤ τ∗n+1, we get:

Y u,i
t = ξ

α∗ +
∫

τ∗n

t
fα∗(s,~us,Zα

s )ds+
∫

τ∗n

t
ψα∗(s,uα∗

s )dAs−
∫

τ∗n

t
Zα∗

s dBs−Gα∗
τ∗n
, ∀n> 1.

Next, by taking the limit w.r.t., we have: ∀t 6 T ,

Y u,i
t = ξ

α∗ +
∫ T

t
fα∗(s,~us,Zα

s )ds+
∫ T

t
ψα∗(s,uα∗

s )dAs−
∫ T

t
Zα∗

s dBs−Gα∗
T .

This implies that E(Gα∗
T )2 <∞ since (~u,Y u,i,Zα∗)∈M 2

µ,λ (A)×S 2×H 2,d . It follows that α∗ ∈D i
t

and Y u,i
t = Pα∗

t −Gα∗
t . As a conclusion, we have:

Y u,i
t = esssup

α∈D i
t

(Pα
t −Gα

t ), (2.23)

which gives the uniqueness of the solution for system (2.20).
Now, let us introduce the following mapping:

Φ(~u) = (Y u,i)i=1,...,m,

where~u ∈M 2
µ,λ (A), we show that Φ is a strict contraction on the space M 2

µ,λ (A) equipped with the
norm ‖.‖M 2

µ,λ
(A).

Let us set, for~u and~v in M 2
µ,λ (A):

Fi(s,z) = fi(s,~us,z)∨ fi(s,~vs,z),

Ψi(s) = ψi(s,ui
s)∨ψi(s,vi

s);

and let (Ỹ , K̃, Z̃) be the unique solution of the system below: ∀i = 1, ...,m, ∀t 6 T ,
Ỹ i

t = ξ i +
∫ T

t Fi(s, Z̃i
s)ds+

∫ T
t Ψi(s)dAs + K̃i

T − K̃i
t −
∫ T

t Z̃i
sdBs,

Ỹ i
t >max

j 6=i
(Ỹ j

t −gi j(t)),∫ T
0 {Ỹ i

t −max
j 6=i

(Ỹ j
t −gi j(t))}dK̃i

t = 0.

(2.24)

Moreover, as in (2.23), we have the following representation: ∀t 6 T,

Ỹ i
t = esssup

α∈D i
t

(P̃α
t −Gα

t ) = P̃α∗
t −Gα∗

t , (2.25)

where (P̃α , Q̃α) is the unique solution of the generalized BSDE (2.22) with data (Fα ,Ψα) and α∗ is
the optimal strategy.
Now, by proposition 2.1, we can get the comparison between Y u,i and Ỹ i, and the same for Y v,i and
Ỹ i. Then we get:

Y u,i ≤ Ỹ i and Y v,i ≤ Ỹ i.

This combined with (2.23) and (2.25), implies that,

Pα∗ −Gα∗ ≤ Y u,i ≤ Ỹ i = P̃α∗ −Gα∗ and P′α
∗
−Gα∗ ≤ Y v,i ≤ Ỹ i = P̃α∗ −Gα∗ ,

where (P′α ,Q′α) is the unique solution for (2.22) with data ( fα(.,~v., .),ψα(.,vi
.)). It follows that:

| Y u,i−Y v,i |≤| P̃α∗ −Pα∗ |+ | P̃α∗ −P′α
∗
| . (2.26)

14



Since both terms in the right hand side are similar, we give only the estimates for the first one. To
start with, note that (P̃α∗ −Pα∗ , Q̃α∗ −Qα∗) is the unique solution for the following generalized
BSDE.

P̃α∗
t −Pα∗

t =
∫ T

t
[Fα∗(s, Q̃α∗

s )− fα∗(s,~us,Qα∗
s )]ds+

∫ T

t
[Ψα∗(s)−ψα∗(s,uα∗

s )]dAs

−
∫ T

t
(Q̃α∗

s −Qα∗
s )dBs, ∀t 6 T.

Under the assumptions (H2)(ii) and (H2)(iii), and by Theorem 1.6 in [18] and the remarks therein,
one can see that

(∫ t
0 eµs+λAs(P̃α∗

s −Pα∗
s )(Q̃α∗

s −Qα∗
s )dBs

)
06t6T is a uniformly integrable martingale.

By Itô’s formula applied with eµt+λAt | P̃α∗
t −Pα∗

t |2, we have: ∀t 6 T ,

eµt+λAt | P̃α∗
t −Pα∗

t |2 +
∫ T

t
eµs+λAs‖Q̃α∗

s −Qα∗
s ‖2ds

= 2
∫ T

t
eµs+λAs(P̃α∗

s −Pα∗
s )[Fα∗(s, Q̃α∗

s )− fα∗(s,~us,Qα∗
s )]ds

−µ

∫ T

t
eµs+λAs | P̃α∗

s −Pα∗
s |2 ds+2

∫ T

t
eµs+λAs(P̃α∗

s −Pα∗
s )[Ψα∗(s)−ψα∗(s,uα∗

s )]dAs

−λ

∫ T

t
eµs+λAs | P̃α∗

s −Pα∗
s |2 dAs−2

∫ T

t
eµs+λAs(P̃α∗

s −Pα∗
s )(Q̃α∗

s −Qα∗
s )dBs.

By taking the expectation and using the fact that | x∨y−y |≤| x−y | for x,y ∈R, we obtain:∀t 6 T ,

E[eµt+λAt | P̃α∗
t −Pα∗

t |2]+E[
∫ T

t
eµs+λAs‖Q̃α∗

s −Qα∗
s ‖2ds]

+µE[
∫ T

t
eµs+λAs | P̃α∗

s −Pα∗
s |2 ds]+λE[

∫ T

t
eµs+λAs | P̃α∗

s −Pα∗
s |2 dAs

≤ 2ME[
∫ T

t
eµs+λAs(P̃α∗

s −Pα∗
s ){‖~u−~v ‖+‖Q̃α∗

s −Qα∗
s ‖}ds]

+2ME[
∫ T

t
eµs+λAs | P̃α∗

s −Pα∗
s |‖~u−~v ‖ dAs].

Next, using the inequality 2 | ab |6 1
q | a |

2 +q | b |2, q > 0, it follows that: ∀t 6 T ,

E[eµt+λAt | P̃α∗
t −Pα∗

t |2]+E[
∫ T

t
eµs+λAs‖Q̃α∗

s −Qα∗
s ‖2ds]

+µE[
∫ T

t
eµs+λAs | P̃α∗

s −Pα∗
s |2 ds]+λE[

∫ T

t
eµs+λAs | P̃α∗

s −Pα∗
s |2 dAs

≤ E[
∫ T

t
eµs+λAs | P̃α∗

s −Pα∗
s |2 ((qM2 +2M2)ds+qM2dAs)]

+
1
q
E[
∫ T

t
eµs+λAs ‖~u−~v ‖2 (ds+dAs)]+

1
2
E[
∫ T

t
eµs+λAs ‖ Q̃α∗

s −Qα∗
s ‖2 ds.

As E[eµt+λAt | P̃α∗
t −Pα∗

t |2] and E[
∫ T

t eµs+λAs‖Q̃α∗
s −Qα∗

s ‖2ds] are non-negative, and by choosing
µ = 1+qM2 +2M2 and λ = 1+qM2, where q > 4 we obtain: ∀t 6 T ,

E[
∫ T

t
eµs+λAs | P̃α∗

s −Pα∗
s |2ds+

∫ T

t
eµs+λAs | P̃α∗

s −Pα∗
s |2 dAs]

≤ 1
q
E[
∫ T

t
eµs+λAs ‖~u−~v ‖2 ds+

∫ T

t
eµs+λAs ‖~u−~v ‖2 dAs].

The same can be done with for the inequality with P̃α∗ −P′α
∗
. Hence, from (2.26), we obtain:
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∀t 6 T ,

E[
∫ T

t
eµs+λAs | Y u,i

s −Y v,i
s |2ds+

∫ T

t
eµs+λAs | Y u,i

s −Y v,i
s |2 dAs]

≤ 4
q
E[
∫ T

t
eµs+λAs ‖~u−~v ‖2 ds+

∫ T

t
eµs+λAs ‖~u−~v ‖2 dAs].

Then, we deduce that Φ is a strict contraction on M 2
µ,λ (A) provided µ > 1 + qM2 + 2M2 and

λ > 1+ qM2. Hence, it has a unique fixed point which gives the uniqueness of the solution for
the system of generalized reflected BSDEs (2.2). �

3 System of PDEs with Interconnected Obstacles and nonlinear
Neumann Boundary Conditions

3.1 Preliminaries
Let D be an open bounded subset of Rd , such that D = {φ > 0} and ∂D = {φ = 0}. The function
φ is in C2

b(Rd) and satisfies | ∇φ(x) |= 1 whenever x ∈ ∂D, and ∇φ(x) coincides with the unit
normal pointing towards the interior of D. Then the interior sphere condition holds (see [18] and the
references therein) i.e. there exists r > 0 such that for any x ∈ ∂D and y ∈ D we have:

| y− x |2 +r〈∇φ(x),y− x〉 ≥ 0. (3.1)

Let (t,x) be in [0,T ]×D and (X t,x
s ,At,x

s )t6s6T the solution of the reflected SDE below:
dX t,x

s = b(X t,x
s )ds+σ(X t,x

s )dBs +∇φ(X t,x
s )dAt,x

s , s ∈ [t,T ];

At,x
s =

∫ s
t χ{X t,x

r ∈∂D}dAt,x
r , s ∈ [t,T ];

X t,x
s = x, s≤ t;

(3.2)

where At,xis increasing, the functions b : Rd −→ Rd and σ : Rd −→ Rd×d are Lipschitz. Note that
(X t,x

s ,At,x
s )t6s6T is valued in D×R+.

The following proposition is borrowed from Pardoux-Zhang [18]:

Proposition 3.1 For each t ∈ [0,T ], there exists a constant C such that for all x,x′ ∈ D,

E[ sup
t6s6T

| X t,x
s −X t,x′

s |4]≤C | x− x′ |4,

E[ sup
t6s6T

| At,x
s −At,x′

s |4]≤C | x− x′ |4 .

Moreover, for each µ > 0, s ∈ [t,T ], there exists C(µ,s) such that for all x ∈ D,

E(eµAt,x
s )≤C(µ,s).

Suppose now that the data ((ξi)i∈J ,( fi)i∈J ,(ψi)i∈J ,(gi j)(i, j)∈J2) of the system of GRBSDEs (2.2)
take the following form:

ξi(ω) =hi(X
t,x
T (ω));

fi(ω,s,x,~y,z) = fi(s,X t,x
r (ω),~y,z);

ψi(ω,s,x,y) =ψi(s,X t,x
s (ω),y);

gi j(ω,s,x) =gi j(s,X t,x
s (ω)). (3.3)
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Next, we introduce the following assumptions which are an adaptation of the ones introduced in the
first section once one is in the Markovian framework:
Assumptions (A2):
Let i ∈ {1, ...,m} and µ > 0,

(H1) Let fi : [0,T ]×D×Rm×R1×d −→ R and ψi : [0,T ]×D×R−→ R be such that

(i) (t,x) −→ fi(t,x,~y,z) and (t,x) −→ ψi(t,x,y) are continuous uniformly in (~y,z) and y
respectively;

(ii) fi and ψi are Lipschitz continuous w.r.t. (~y,z) and y respectively;

(iii) ∃β < 0 such that (y− y′)(ψi(t,x,y)−ψi(t,x,y′))≤ β | y− y′ |2;

(iv) fi(t,x,~y,z) is non-decreasing w.r.t. y j for j 6= i, whenever the other components are
fixed.

(H2) For any j ∈ {1, ...,m}, we have:

(i) gi j : [0,T ]×D−→ R is continuous, non-negative such that gii = 0;

(ii) gi j satisfies the non-free loop property, i.e.,∀(t,x) ∈ [0,T ]×D, ∀i1, ..., ik such that i1 6=
i2, i1 = ik and card{i1, ..., ik}= k−1, we have:

gi1i2(t,x)+ ...+gik−1ik(t,x)> 0.

(H3) hi : D−→ hi, is continuous s.t. hi(x)≥max
j 6=i

(h j(x)−gi j(T,x)), ∀x ∈ D.

These assumptions, in combination with the properties of the solution of equation (3.2) (see [17]),
show that Assumptions (A1) are well satisfied. In this context, we consider the following Markovian
GBSDEs system with oblique reflection: ∀(t,x) ∈ [0,T ]×D, ∀i ∈ {1, ...,m},

Y i,t,x
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,~Y t,x

r ,Zi,t,x
r )dr+

∫ T
s ψi(r,X

t,x
r ,Y i,t,x

r )dAt,x
r +Ki,t,x

T −Ki,t,x
s

−
∫ T

s Zi,t,x
r dBr,

Y i,t,x
s >max

j 6=i
(Y j,t,x

s −gi j(s,X
t,x
s )),

∫ T
0 {Y

i,t,x
s −max

j 6=i
(Y j,t,x

s −gi j(s,X
t,x
s ))}dKi,t,x

s = 0.

(3.4)

Note that thanks to Theorem 2.1 and Theorem 2.2, the solution of this system exists and is unique.
On the basis of the studies conducted on generalized reflected BSDEs [21], and several works on
multi-switching problems, amongst them [11], the HJB system associated with our switching prob-
lem is the following: ∀i = 1, ...,m,

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));−∂tui(t,x)−L ui(t,x)

− fi(t,x,(uk(t,x))k=1,...,m,(σ
>Dxui)(t,x))}= 0, (t,x) ∈ [0,T ]×D;

∂ui

∂ l
(t,x)+ψi(t,x,ui(t,x)) = 0, (t,x) ∈ [0,T ]×∂D;

ui(T,x) = hi(x), x ∈ D,

(3.5)

where the operator L is defined by L = 1
2 Tr(σσ>)D2

xx.+ b>Dx. , and at a point x ∈ ∂D, ∂

∂ l =

〈Oφ(x),Dx.〉=
d
∑

i=1

∂φ

∂xi
(x) ∂

∂xi
.

Since we are interested in finding a function (u1, ...,um) which solves (3.5) in viscosity sense, we are
led to recall some definitions introduced in [5].
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Definition 3.1 For a locally bounded function u : [0,T ]×D→R, we define its lower semicontinuous
envelope u∗ and its upper semicontinuous enveloppe u∗ as follows:

u∗(t,x) = lim
(t ′,x′)−→(t,x)

t′<T

u(t ′,x′) and u∗(t,x) = lim
(t ′,x′)−→(t,x)

t′<T

u(t ′,x′).

Definition 3.2 (Subjets and Superjets)
(i) For a lower semi continuous (lsc) (resp. upper semi continuous (usc)) function u : [0,T ]×D→R,
we define the parabolic subjet J2−u(t,x) (resp. superjet J2+u(t,x)) of u at (t,x) ∈ [0,T ]×D, the set
of triples (p,q,M) ∈ R×Rd×Sd s.t. for any (t ′,x′) ∈ (0,T )×D, we have:

u(t ′,x′)≥u(t,x)+ p(t ′− t)+ 〈q,x′− x〉+ 1
2
〈x′− x,M(x′− x)〉+o(| t ′− t |+ | x′− x |2)

(resp.

u(t ′,x′)≤u(t,x)+ p(t ′− t)+ 〈q,x′− x〉+ 1
2
〈x′− x,M(x′− x)〉+o(| t ′− t |+ | x′− x |2)).

(ii) For (t,x) ∈ [0,T ]×D, we define the parabolic limiting subjet J2−u(t,x) (resp. the parabolic
limiting superjet J2+u(t,x)) as follows:

J2−u(t,x) = {(p,q,M) ∈ R×Rd×Sd : ∃(tn,xn, pn,qn,Mn) ∈ [0,T ]×D×R×Rd×Sd

s.t. (pn,qn,Mn) ∈ J2−u(tn,xn) and (tn,xn, pn,qn,Mn)−→ (t,x, p,q,M) as n→ ∞},
(resp.

J2+u(t,x) = {(p,q,M) ∈ R×Rd×Sd : ∃(tn,xn, pn,qn,Mn) ∈ [0,T ]×D×R×Rd×Sd

s.t. (pn,qn,Mn) ∈ J2+u(tn,xn) and (tn,xn, pn,qn,Mn)−→ (t,x, p,q,M) as n→ ∞}),

where Sd is the set of symmetric real matrices of dimension d.

We are ready to give the definition of viscosity subsolution and supersolution that we will adopt
throughout this section.

Definition 3.3 (Viscosity solution)
(i) A function (u1, ...,um) : [0,T ]×D−→ Rm such that for any i ∈ J, ui is lsc (resp. usc), is called a
viscosity supersolution (resp. subsolution) to (3.5), if for any i ∈ J, we have:

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));

−p−b(x)>q− 1
2 Tr[σσ>(x)M]− fi(t,x,(uk(t,x))k=1,...,m,σ

>(x)q)} ≥ 0,

(t,x) ∈ [0,T )×D, (p,q,M) ∈ J2−ui(t,x);

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));−p−b(x)>q− 1
2 Tr[σσ>(x)M]

− fi(t,x,(uk(t,x))k=1,...,m,σ
>(x)q)}∨{−〈∇φ(x),q〉−ψi(t,x,ui(t,x))} ≥ 0,

(t,x) ∈ [0,T )×∂D, (p,q,M) ∈ J2−ui(t,x);

ui(T,x)≥ hi(x), x ∈ D.

(3.6)

18



(resp.

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));

−p−b(x)>q− 1
2 Tr[σσ>(x)M]− fi(t,x,(uk(t,x))k=1,...,m,σ

>(x)q)} ≤ 0,

(t,x) ∈ [0,T )×D, (p,q,M) ∈ J2+ui(t,x);

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));−p−b(x)>q− 1
2 Tr[σσ>(x)M]

− fi(t,x,(uk(t,x))k=1,...,m,σ
>(x)q)}∧{−〈∇φ(x),q〉−ψi(t,x,ui(t,x))} ≤ 0,

(t,x) ∈ [0,T )×∂D, (p,q,M) ∈ J2+ui(t,x);

ui(T,x)≤ hi(x), x ∈ D.)

(3.7)

(ii) A locally bounded function (u1, ...,um) : [0,T ]×D −→ R is called a viscosity solution if
(u1∗, ...,um∗) (resp. (u∗1, ...,u

∗
m)) is a viscosity supersolution (resp. subsolution).

3.2 Uniqueness of the viscosity solution
In this paragraph, we deal with the issue of uniqueness of the solution for system (3.5). To do so, we
establish the comparison property between subsolutions and supersolutions of system (3.5).

Theorem 3.1 Assume (ui)i∈J and (vi)i∈J are respectively an u.s.c subsolution and l.s.c. supersolu-
tion of system (3.5). Then we have: ∀i ∈ J

ui ≤ vi, on [0,T ]×D.

Proof. The proof will be obtained by contradiction and is based on the classical maximum principle.
The main idea is to assume the existence of (t,x) such that for some i ∈ J, we have (ui− vi)(t,x) :=

max
(t,x)∈[0,T ]×D

(ui− vi)(t,x) > 0, this maximum exists since ui− vi is usc and [0,T ]×D is compact.

Then we use the doubling variable technique and Crandall-Ishii-Lions’s Lemma in order to find
elements of the subjet and the superjet of ui and vi respectively, for which the subsolution property
and the supersolution property hold. The key ingredient to finding a contradiction is the specific
monotonicity condition that will be assumed in the first step of our proof. In the second step, we
generalize our result via a transformation of the system (3.5).
Step 1: We first assume that there exists a constant λ < −m.(max

j∈J
C j

f ), (C j
f being the Lipschitz

constant of f j for j ∈ J) and verifying:
∀i ∈ J, ∀t,x,y1, ...,yi−1,yi+1, ...,ym,y,y,z, if y≥ y then

fi(t,x,y1, ...,yi−1,y,yi+1, ...,ym,z)− fi(t,x,y1, ...,yi−1,y,yi+1, ...,ym,z)≤ λ (y− y). (3.8)

Let (ui)i∈J and (vi)i∈J be respectively subsolution and supersolution to the system (3.5). The diffi-
culty of this part is that our system of PDEs involves two inequalities. In order to avoid the boundary
conditions, we produce two appropriate approximations (uε

i )i∈J and (vi
ε)i∈J such that for each i ∈ J,

uε
i → ui and vi

ε → vi uniformly as ε → 0. Next, we are going to show that they are respectively
subsolution and supersolution for two PDEs systems that will be given explicitly. Finally, we show
that uε

i ≤ vi
ε , which allows to conclude that ui ≤ vi.

In order to construct these approximations, we apply Lemma 7.6 in [5] with −∇φ , then there exists
ϕ ∈C2(D) that satisfies 〈−∇φ(x),Dϕ(x)〉 ≥ 1, ∀x ∈ ∂D and ϕ is positive on D. Then put:

uε
i (t,x) = ui(t,x)− εϕ(x)−C and vi

ε(t,x) = vi(t,x)+
ε

t
+ εϕ(x)+C,

where, C is a positive constant that will be chosen later on.
Let us show that uε

i is a subsolution to a specific PDEs system. First, note that for any x ∈ D, we
have:

uε
i (T,x)≤ ui(T,x)≤ hi(x).
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Now, let (t,x) ∈ [0,T )×D and (pε ,qε ,Mε) ∈ J2+uε
i (t,x). If we set p = pε , q = qε + εDϕ(x) and

M = Mε + εD2ϕ(x), we can show easily that (p,q,M) ∈ J2+ui(t,x) and we have:

min{uε
i (t,x)−max

j 6=i
(uε

j (t,x)−gi j(t,x));

−pε −b(x)>qε − 1
2

Tr[σσ
>(x)Mε ]− fi(t,x,~uε(t,x),σ>(x)qε)}

= min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));

−p−b(x)>q− 1
2

Tr[σσ
>(x)M]− fi(t,x,~u(t,x),σ>(x)q)+b(x)>(εDϕ(x))

+
1
2

Tr[σσ
>(x)(εD2

ϕ(x))]+ fi(t,x,~u(t,x),σ>(x)q)− fi(t,x,~uε(t,x),σ>(x)qε)}.

Since b, σ are continuous on D and ϕ ∈C2(D), there exists κ1 > 0 satisfying:

b(x)>(εDϕ(x))+
1
2

Tr[σσ
>(x)(εD2

ϕ(x))]≤ εκ1.

Next with fi(t,x,~u(t,x),σ>(x)q)− fi(t,x,~uε(t,x),σ>(x)qε), we use a linearization procedure and
both assumptions (H1)(ii) and (3.8) to write:

fi(t,x,~u(t,x),σ>(x)q)− fi(t,x,~uε(t,x),σ>(x)qε)

≤max
j∈J

C j
f (m−1)(εϕ(x)+C)+λ (εϕ(x)+C)+max

j∈J
C j

f | σ
>(x)(εD2

ϕ(x)) |,

≤ (m.max
j∈J

C j
f +λ )(εϕ(x)+C)−max

j∈J
C j

f (εϕ(x)+C)+κ2ε, for someκ2 > 0.

Recall that m.max
j∈J

C j
f +λ < 0 and ϕ > 0, then we deduce that

b(x)>(εDϕ(x))+
1
2

Tr[σσ
>(x)(εD2

ϕ(x))]+ fi(t,x,~u(t,x),σ>(x)q)

− fi(t,x,~uε(t,x),σ>(x)qε)≤ εκ3−C.max
j∈J

C j
f , (3.9)

where κ3 is positive. By choosing C = εκ3/max
j∈J

C j
f , we obtain that the right hand side of (3.9) is

negative and then,

min{uε
i (t,x)−max

j 6=i
(uε

j (t,x)−gi j(t,x));

− pε −b(x)>qε − 1
2

Tr[σσ
>(x)Mε ]− fi(t,x,~uε(t,x),σ>(x)qε)}

≤min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));

− p−b(x)>q− 1
2

Tr[σσ
>(x)M]− fi(t,x,~u(t,x),σ>(x)q)}. (3.10)

On the other hand, we have:

−〈∇φ(x),qε〉−ψi(t,x,uε
i (t,x))

=−〈∇φ(x),q〉−ψi(t,x,ui(t,x)− εϕ(x)−C)− ε〈−∇φ(x),Dϕ(x)〉.

As ψi is non-increasing and using Lemma 3.1, we get for x ∈ ∂D:

−〈∇φ(x),qε〉−ψi(t,x,uε
i (t,x))+ ε ≤−〈∇φ(x),q〉−ψi(t,x,ui(t,x)). (3.11)

Moreover, ui satisfies (3.7), we deduce from (3.10): ∀x ∈ D,

min{uε
i (t,x)−max

j 6=i
(uε

j (t,x)−gi j(t,x));

− pε −b(x)>qε − 1
2

Tr[σσ
>(x)Mε ]− fi(t,x,~uε(t,x),σ>(x)qε)} ≤ 0,
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whereas, when x ∈ ∂D, it follows from (3.10) and (3.11) that:

min{uε
i (t,x)−max

j 6=i
(uε

j (t,x)−gi j(t,x));−pε −b(x)>qε − 1
2

Tr[σσ
>(x)Mε ]

− fi(t,x,~uε(t,x),σ>(x)qε)}∧{−〈∇φ(x),qε〉−ψi(t,x,uε
i (t,x))+ ε}

≤min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));−p−b(x)>q− 1
2

Tr[σσ
>(x)M]

− fi(t,x,(uk(t,x))k=1,...,m,σ
>(x)q)}∧{−〈∇φ(x),q〉−ψi(t,x,ui(t,x))}

≤ 0.

We conclude that, ∀i ∈ J, uε
i satisfies the following system:

min{uε
i (t,x)−max

j 6=i
(uε

j (t,x)−gi j(t,x));

−pε −b(x)>qε − 1
2 Tr[σσ>(x)Mε ]− fi(t,x,~uε(t,x),σ>(x)qε)} ≤ 0,

(t,x) ∈ [0,T )×D, (pε ,qε ,Mε) ∈ J2+uε
i (t,x);

min{uε
i (t,x)−max

j 6=i
(uε

j (t,x)−gi j(t,x));−pε −b(x)>qε − 1
2 Tr[σσ>(x)Mε ]

− fi(t,x,~uε(t,x),σ>(x)qε)}∧{−〈∇φ(x),qε〉−ψi(t,x,uε
i (t,x))+ ε} ≤ 0,

(t,x) ∈ [0,T )×∂D, (pε ,qε ,Mε) ∈ J2+uε
i (t,x);

uε
i (T,x)≤ hi(x), x ∈ D.

(3.12)

Similarly, recall that the family (vi)i∈J satisfies (3.6). Then, with a slight modification and taking
into account the assumption (3.8) and the fact that the mapping ψi(t,x, .) is non-increasing, we show
that ∀i ∈ J, vi

ε satisfies the following system of inequalities:

min{vi
ε(t,x)−max

j 6=i
(v j

ε(t,x)−gi j(t,x));

−pε −b(x)>qε − 1
2 Tr[σσ>(x)Mε ]− fi(t,x,~vε(t,x),σ>(x)qε)− ε

t2 } ≥ 0,

(t,x) ∈ [0,T )×D, (pε ,qε ,Mε) ∈ J2−vi
ε(t,x);

min{vi
ε(t,x)−max

j 6=i
(v j

ε(t,x)−gi j(t,x));−pε −b(x)>qε − 1
2 Tr[σσ>(x)Mε ]

− fi(t,x,~vε(t,x),σ>(x)qε)− ε

t2 }∨{−〈∇φ(x),qε〉−ψi(t,x,vi
ε(t,x))− ε} ≥ 0,

(t,x) ∈ [0,T )×∂D, (pε ,qε ,Mε) ∈ J2−vi
ε(t,x);

vi
ε(T,x)≥ hi(x), x ∈ D.

(3.13)

Now, let us show by contradiction that uε
i ≤ vi

ε , ∀i ∈ J.
Assume that max

[0,T ]×D
max
i∈J

(uε
i − vi

ε)> 0, then there exists (t,x)∈ [0,T ]×D such that

max
i∈J

(uε
i (t,x)− vi

ε(t,x))> 0.

As in [11], there exists k ∈ J̃ = { j ∈ J, uε
j (t,x)− v j

ε(t,x) = max
k∈J

(uε
k(t,x)− vk

ε(t,x))} such that

uε
k(t,x)> max

j 6=k
(uε

j (t,x)−gk j(t,x)). (3.14)

This is obtained mainly due to the non-free loop property.
Let us fix j ∈ J̃ that satisfies (3.14) and suppose first that x ∈ ∂D. For (t,x,y) in [0,T ]×D2, we
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define the following function: ∀α > 0,

Φ
j
α(t,x,y) = uε

j (t,x)− v j
ε(t,y)−Ψ

α
j (t,x,y),

where Ψα
j (t,x,y) =

α

2 | x− y |2 −ψ j(t,x,uε
j (t,x))〈∇φ(x),x− y〉+ | x− x |4 + | t− t |2.

Let (tα ,xα ,yα) be the maximum point of Φ
j
α over [0,T ]×D2, which exists due to the upper semi-

continuity of uε
i − vi

ε and the compactness of D, and let Mα be defined as follows:

Mα = max
(t,x,y)∈[0,T ]×D×D

Φ
j
α(t,x,y).

It is clear that this supremum is achieved only if tα is in (0,T ).
Next, we can see that

Mα ≥ max
(t,x,y)∈[0,T ]×D/x=y

uε
j (t,x)− v j

ε(t,x)− | x− x |4 − | t− t |2 = uε
j (t,x)− v j

ε(t,x).

Note that Mα is non-increasing w.r.t. α . On the other hand, we have α | xα−yα |2−→
α→∞

0 (see Lemma

3.1 [5]). It follows that (xα − yα) −→
α→∞

0, then we get (tα ,xα ,yα) −→
α→∞

(t̂, x̂, x̂), which implies that

uε
j (t,x)− v j

ε(t,x)≤ uε
j (t̂, x̂)− v j

ε(t̂, x̂).

As (t,x) is the maximum point of uε
j − v j

ε , we necessarily have:

uε
j (t,x)− v j

ε(t,x) = uε
j (t̂, x̂)− v j

ε(t̂, x̂).

Thanks to the semi-continuity of the functions uε
j and v j

ε , we have:

uε
j (t,x)− v j

ε(t,x)≤ lim
α→∞

(uε
j (tα ,xα)− v j

ε(tα ,yα))

≤ lim
α→∞

(uε
j (tα ,xα)− v j

ε(tα ,yα))

≤ uε
j (t,x)− v j

ε(t,x).

Then lim
α→∞

uε
j (tα ,xα)− v j

ε(tα ,yα) = uε
j (t,x)− v j

ε(t,x), thus (tα ,xα) −→
α→∞

(t,x).
We deduce from the results above that

lim
α→∞

uε
j (tα ,xα)≥ uε

j (t,x)− v j
ε(t,x)+ lim

α→∞

v j
ε(tα ,yα)≥ uε

j (t,x)≥ lim
α→∞

uε
j (tα ,xα).

It follows that (uε
j (tα ,xα),v

j
ε(tα ,yα)) −→

α→∞
(uε

j (t,x),v
j
ε(t,x)). Then as (uε

j ) j∈J are usc and (gi j)(i, j)∈J2

are continuous, by (3.14) we get:

uε
j (tα ,xα)> max

k 6= j
(uε

k(tα ,xα)−g jk(tα ,xα)). (3.15)

Now, going back to Ψα
j and note that

DxΨ
α
j (t,x,y) = α(x− y)−ψ j(t,x,uε

j (t,x))∇φ(x)+4 | x− x |2 (x− x),

DyΨ
α
j (t,x,y) =−α(x− y)+ψ j(t,x,uε

j (t,x))∇φ(x) and ∂tΨ
α
j (t,x,y) = 2(t− t).

We recall the interior sphere condition (3.1) and we distinguish two cases. If xα ∈ ∂D, we have:

−〈∇φ(xα),DxΨ
α
j (tα ,xα ,yα)〉−ψ j(tα ,xα ,uε

j (tα ,xα))

=−α〈∇φ(xα),xα − yα〉−4 | xα − x |2 〈∇φ(xα),xα − x〉−ψ j(tα ,xα ,uε
j (tα ,xα))

+ψ j(t,x,uε
j (t,x))〈∇φ(x),∇φ(xα)〉,

≥−α

r
| xα − yα |2 −

4
r
| xα − x |4 +ψ j(t,x,uε

j (t,x))〈∇φ(x),∇φ(xα)〉

−ψ j(tα ,xα ,uε
j (tα ,xα)).
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In view of the convergences above, we know that the right hand side tends to 0 as α → ∞. Then for
α large enough we deduce that

−〈∇φ(xα),DxΨ
α
j (tα ,xα ,yα)〉−ψ j(tα ,xα ,uε

j (tα ,xα))>−ε. (3.16)

Similarly, if yα ∈ ∂D, we get:

−〈∇φ(yα),−DyΨ
α
j (tα ,xα ,yα)〉−ψ j(tα ,yα ,v

j
ε(tα ,yα))

= α〈∇φ(yα),yα − xα〉+ψ j(t,x,uε
j (t,x))〈∇φ(x),∇φ(yα)〉−ψ j(tα ,xα ,v

j
ε(tα ,yα)),

≤ α | xα − yα |2 +ψ j(t,x,uε
j (t,x))〈∇φ(x),∇φ(yα)〉−ψ j(tα ,xα ,v

j
ε(tα ,yα)),

≤ α | xα − yα |2 +ψ j(t,x,uε
j (t,x))〈∇φ(x),∇φ(yα)〉−ψ j(t,x,uε

j (t,x))〈∇φ(x),∇φ(x)〉

+ψ j(t,x,v
j
ε(t,x))−ψ j(tα ,xα ,v

j
ε(tα ,yα))+ψ j(t,x,uε

j (t,x))−ψ j(t,x,v
j
ε(t,x)).

We know that

α | xα − yα |2 +ψ j(t,x,uε
j (t,x))〈∇φ(x),∇φ(yα)〉

−ψ j(t,x,uε
j (t,x))〈∇φ(x),∇φ(x)〉+ψ j(t,x,v

j
ε(t,x))−ψ j(tα ,xα ,v

j
ε(tα ,yα))→ 0,

then it can be strictly dominated by ε for α large. In addition, since ψi is non-increasing, we have
ψ j(t,x,uε

j (t,x))−ψ j(t,x,v
j
ε(t,x))≤ 0. It follows that:

−〈∇φ(yα),−DyΨ
α
j (tα ,xα ,yα)〉−ψ j(tα ,yα ,v

j
ε(tα ,yα))− ε < 0. (3.17)

Remember that uε
j is a subsolution for system (3.12) and v j

ε is a supersolution for (3.13). Then (3.16)
and (3.17) lead to the following inequalities: ∀(t,x) ∈ [0,T ]×∂D, ∀α large enough,

−∂tΨ
α
j (tα ,xα ,yα)−b(xα)

>DxΨ
α
j (tα ,xα ,yα)−

1
2

Tr[σσ
>(xα)Mε ]

− fi(tα ,xα ,~uε(tα ,xα),σ
>(xα)DxΨ

α
j (tα ,xα ,yα))≤ 0,

for (∂tΨ
α
j (tα ,xα ,yα),DxΨ

α
j (tα ,xα ,yα),Mε) ∈ J2+uε

j (tα ,xα);

−∂tΨ
α
j (tα ,xα ,yα)−b(yα)

>(−DyΨ
α
j (tα ,xα ,yα))−

1
2

Tr[σσ
>(yα)Mε ]

− fi(tα ,yα ,(vk
ε(tα ,yα))k=1,...,m,σ

>(yα)(−DyΨ
α
j (tα ,xα ,yα)))≥ 0,

for (∂tΨ
α
j (tα ,xα ,yα),−DyΨ

α
j (tα ,xα ,yα),Mε) ∈ J2−v j

ε(tα ,yα).

Before we proceed, let us emphasize on the fact that if x ∈ D, the subsequence (xα ,yα) is in D×D
for α large enough, then the inequalities above hold true. Therefore, we can apply Crandall-Ishii-
Lions’s Lemma (Theorem 3.2 in [5]) with uε

j and v j
ε on (0,T )×D and ε = 1

α
to find (pu

α ,q
u
α ,M

u
α) ∈

J2+uε
j (tα ,xα) and (pv

α ,q
v
α ,M

v
α) ∈ J2−v j

ε(tα ,xα) such that

pu
α − pv

α = ∂tΨ
α
j (tα ,xα ,yα) = 2(tα − t),

qu
α −qv

α =−(DxΨ
α
j (tα ,xα ,yα)−DyΨ

α
j (tα ,xα ,yα))

and

−(α+ ‖ A ‖)
(

I 0
0 I

)
≤
(

Mu
α 0

0 Mv
α

)
≤ A+ 1

α
A2, where A = D2

(x,y)Ψ
α
j (tα ,xα ,yα).
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By replacing the latter in the above inequations, we obtain:

−pu
α −b(xα)

>qu
α −

1
2

Tr[σσ
>(xα)Mu

α ]− f j(tα ,xα ,~uε(tα ,xα),σ
>(xα)qu

α)≤ 0,

−pv
α −b(yα)

>qv
α −

1
2

Tr[σσ
>(yα)Mv

α ]− f j(tα ,yα ,~vε(tα ,yα),σ
>(yα)qv

α)≥ 0.

Combining these two inequalities, gives:

−(pu
α − pv

α)− (b(xα)
>qu

α −b(yα)
>qv

α)−
1
2

Tr[σσ
>(xα)Mu

α −σσ
>(yα)Mv

α ]

−{ f j(tα ,xα ,~uε(tα ,xα),σ
>(xα)qu

α)− f j(tα ,yα ,~vε(tα ,yα),σ
>(yα)qv

α)} ≤ 0.

Thanks to the uniform continuity of f j, the Lipschitz assumption on b and σ and the above conver-
gences, we can find some Σα such that lim

α−→∞
Σα 6 0 and

−{ f j(tα ,xα ,~uε(tα ,xα),σ
>(xα)qu

α)− f j(tα ,xα ,~vε(tα ,yα),σ
>(xα)qu

α)} ≤ Σα .

Yet again, f j is Lipschitz w.r.t. to~y, and as long as it verifies (3.8), we obtain:

−λ (uε
j (tα ,xα)− v j

ε(tα ,yα))−∑
k 6= j

Θ
jk
α (uε

k(tα ,xα)− vk
ε(tα ,yα))≤ Σα ,

where Θ
jk
α stands for the increment rate of f j with respect to yk for k 6= j. Observe that Θ

jk
α is

nonnegative and bounded by C j
f the Lipschitz constant, thanks to the monotonicity condition on f j,

then we have:

−λ (uε
j (tα ,xα)− v j

ε(tα ,yα))≤ ∑
k 6= j

Θ
jk
α (uε

k(tα ,xα)− vk
ε(tα ,yα))

++Σα ,

≤C j
f ∑
k 6= j

(uε
k(tα ,xα)− vk

ε(tα ,yα))
++Σα .

Taking the superior limit in both sides as α → ∞, with the semicontinuity of uε
k and vk

ε , we obtain:
∀ j ∈ J̃

−λ (uε
j (t,x)− v j

ε(t,x))≤C j
f ∑
k 6= j

(uε
k(t,x)− vk

ε(t,x))
+,

≤ (m−1)C j
f (u

ε
j (t,x)− v j

ε(t,x)),

which is contradictory since uε
j (t,x)− v j

ε(t,x)> 0 and −λ > mC j
f .

Thus ∀i ∈ J, uε
i ≤ vi

ε on [0,T )×D. By taking the limit as ε → 0, we obtain the desired result.
Step 2: Now, we deal with the general case, i.e. without assuming the assumption (3.8). Let λ be
arbitrary in R and consider the following system: ∀i = 1, ...,m,

min{ũi(t,x)−max
j 6=i

(ũ j(t,x)− eλ tgi j(t,x));−∂t ũi(t,x)−L ũi(t,x)+λ ũi(t,x)

−eλ t fi(t,x,(e−λ t ũk(t,x))k=1,...,m,e−λ tσ>(x)Dxũi(t,x))}= 0, (t,x) ∈ [0,T )×D;

∂ ũi

∂ l
+ eλ tψi(t,x,e−λ t ũi(t,x)) = 0, (t,x) ∈ [0,T )×∂D;

ũi(T,x) = eλT hi(x), x ∈ D.

(3.18)

It turns out that (ũi(t,x) = eλ tui(t,x))i∈J and (ṽi(t,x) = eλ tvi(t,x))i∈J are respectively subsolution
and supersolution to system (3.18), provided (ui)i∈J a subsolution and (vi)i∈J a supersolution to

24



system (3.5).
By choosing λ small enough, the functions Fi defined by: ∀i ∈ J

Fi(t,x,~y,z) =−λyi + fi(t,x,e−λ t~y,e−λ tz),

satisfy assumption (3.8). As a result of the first step, we obtain ũi ≤ ṽi, then ui ≤ vi, ∀i ∈ J. �

The following corollary is an immediate conclusion of the comparison between the subsolution
and supersolution of system (3.5):

Corollary 3.1 If the solution of the system of PDEs (3.5) exists, it is unique and continuous.

3.3 Existence of the viscosity solution
Now, it only remains to prove the existence of the solution for the PDEs system (3.5). To this end,
we rely on the connection existing between the system of PDEs (3.5) and the system of generalized
RBSDEs (2.2).

Corollary 3.2 Let (Y i,t,x,Ki,t,x,Zi,t,x)i=1,...,m be the unique solution of the Markovian system (3.4).
Then, there exists a family of deterministic lower semicontinuous functions (vi(t,x))i∈J such that

∀(t,x) ∈ [0,T ]×D, ∀s ∈ [t,T ], Y i,t,x
s = vi(s,X t,x

s ). (3.19)

Proof. It has been shown in the previous section that

Y t,x ≤ Y i,t,x,n ≤ Y i,t,x,n+1 ≤ Y t,x
,∀n> 1, (3.20)

where (Y i,t,x,n)i∈J is the solution of the system (2.5) in the Markovian case. Then, according to [21],
there exists a family of deterministic continuous functions (vi,n)i∈J such that:

Y i,t,x,n
s = vi,n(s,X t,x

s ), ∀n> 1.

Once more, since the setting is Markovian, there exist v and v two continuous solutions of two PDEs
associated with the GBSDEs (2.3) and (2.4) whose solutions are respectively Y t,x and Y t,x (see [18]
for more details). Then from (3.20) we obtain:

v≤ vi,n ≤ vi,n+1 ≤ v, ∀n> 1.

Thus vi,n converges increasingly to vi and the continuity of vi,n ensures the lower semicontinuity of
vi. But Y i,n converges increasingly to Y i,t,x and Y i,t,x

s = vi(s,X t,x
s ), ∀s ∈ [t,T ].�

Next, we show that (vi)i∈J is solution of the PDEs system (3.5).

Theorem 3.2 The function (vi)i∈J is the unique continuous solution of the system of variational
inequalities with inter-connected obstacles and non linear Neumann boundaries (3.5).

Proof.
Part 1: Supersolution property.
First, note that ∀i ∈ J, vi is lsc, i.e. vi = vi

∗. By construction vi = lim
n→∞

vi,n, i ∈ J, where vi,n is a
viscosity solution of the following PDE:

min{vi,n(t,x)−max
j 6=i

(v j,n−1(t,x)−gi j(t,x));−∂tvi,n(t,x)−L vi,n(t,x)

− fi(t,x,(v1,n−1, ...,vi−1,n−1,vi,n,vi+1,n−1, ...,vm,n−1)(t,x),σ>(x)Dxvi,n(t,x))}= 0,

(t,x) ∈ [0,T )×D;

∂vi,n

∂ l
(t,x)+ψi(t,x,vi,n(t,x)) = 0, (t,x) ∈ [0,T )×∂D;

vi,n(T,x) = hi(x), x ∈ D.

(3.21)
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Let us fix i ∈ J, (t,x) ∈ [0,T )× ∂D and (p,q,M) ∈ J2−vi(t,x). By Lemma 6.1 in [5], there exist
n j→ ∞ and x j ∈ D such that

(t j,x j,vi,n j(t j,x j), p j,q j,M j)−→
j→∞

(t,x,vi(t,x), p,q,M).

Since x j is in D, we can extract a subsequence x jl which is either in ∂D or D while preserving the
above convergence. We are going to show that in both cases, vi solves (3.5).
If x jl ∈ D, we recall that (t jl ,x jl ,v

i,n jl (t jl ,x jl ), p jl ,q jl ,M jl ) −→l→∞
(t,x,vi(t,x), p,q,M). Next from the

viscosity supersolution property for vi,n jl , we get:

−p jl −b(x jl )
>q jl −

1
2

Tr[σσ
>(x jl )M jl ]

≥ fi(t jl ,x jl ,(v
1,n jl−1, ...,vi−1,n jl−1,vi,n jl ,vi+1,n jl−1, ...,vm,n jl−1)(t jl ,x jl ),σ

>(x jl )q jl ).

On the other hand, D is a bounded subset, and for any i ∈ J, vi,n is continuous, then there exists a
subsequence (lk)k>0 such that (vi,nlk

−1(tlk ,xlk))k>0 is convergent.
As (vi,n)n>1 is increasing w.r.t. n and uniformly dominated, we get from ([1] page 91):

vi(t,x) = vi
∗(t,x) = lim

(t ′,x′)→(t,x)
l→∞

vi,l(t ′,x′).

It follows immediately that

min{vi(t,x)−max
j 6=i

(v j(t,x)−gi j(t,x));

− p−b(x)>q− 1
2

Tr[σσ
>(x)M]− fi(t,x,(vi(t,x))i=1,...,m,σ

>(x)q)} ≥ 0.

Otherwise, (x jl )l>0 ∈ ∂D and (t jl ,x jl ,v
i,n jl (t jl ,x jl ), p jl ,q jl ,M jl )−→l→∞

(t,x,vi(t,x), p,q,M). As vi,n jl is

a viscosity supersolution of system (3.21), by considering the boundary condition, we get:

{−p jl −b(x jl )
>q jl −

1
2

Tr[σσ
>(x jl )M jl ]

− fi(t jl ,x jl ,(v
1,n jl−1, ...,vi−1,n jl−1,vi,n jl ,vi+1,n jl−1, ...,vm,n jl−1)(t jl ,x jl ),σ

>(x jl )q jl )}

∨{−〈∇φ(x jl ),q jl 〉−ψi(t jl ,x jl ,v
i,n jl (t jl ,x jl ))} ≥ 0.

Suppose now that,

−p jl −b(x jl )
>q jl −

1
2

Tr[σσ
>(x jl )M jl ]

≥ fi(t jl ,x jl ,(v
1,n jl−1, ...,vi−1,n jl−1,vi,n jl ,vi+1,n jl−1, ...,vm,n jl−1)(t jl ,x jl ),σ

>(x jl )q jl ).

Then as previously, we obtain:

−p−b(x)>q− 1
2

Tr[σσ
>(x)M]− fi(t,x,(vi(t,x))i=1,...,m,σ

>(x)q)≥ 0.

If not, we would have

−〈∇φ(x jl ),q jl 〉−ψi(t jl ,x jl ,v
i,n jl (t jl ,x jl ))≥ 0.

By taking the limit, we get
−〈∇φ(x),q〉−ψi(t,x,vi(t,x))≥ 0.
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Therefore,

min{vi(t,x)−max
j 6=i

(v j(t,x)−gi j(t,x));−p−b(x)>q− 1
2

Tr[σσ
>(x)M]

− fi(t,x,(vi(t,x))i=1,...,m,σ
>(x)q)}∨{−〈∇φ(x),q〉−ψi(t,x,vi(t,x))} ≥ 0.

Finally, for the terminal value, we know that ∀x ∈D, vi,n(T,x) = hi(x), then we simply take the limit
as n→ ∞. Thus, vi is a viscosity supersolution for the following PDE

min{vi(t,x)−max
j 6=i

(v j(t,x)−gi j(t,x));−∂tvi(t,x)−L vi(t,x)

− fi(t,x,(v1, ...,vm)(t,x),σ>(x)Dxvi(t,x))}= 0, (t,x) ∈ [0,T )×D;

∂vi

∂ l
(t,x)+ψi(t,x,vi(t,x)) = 0, (t,x) ∈ [0,T )×∂D;

vi(T,x) = hi(x), x ∈ D.

Since i is arbitrary in J we deduce that the m-tuple (v1, ...,vm) is a viscosity supersolution of the
system (3.5).

Part 2: Subsolution property.
We will now show that (vi∗)i∈J is a subsolution for system (3.5), namely, we should check if the
following inequalities are satisfied:

min{vi∗(t,x)−max
j 6=i

(v j∗(t,x)−gi j(t,x));−p−b(x)>q− 1
2 Tr[σσ>(x)M]

− fi(t,x,(vi∗(t,x))i=1,...,m,σ
>(x)q)} ≤ 0, (t,x) ∈ [0,T )×D, (p,q,M) ∈ J2+vi∗(t,x);

min{vi∗(t,x)−max
j 6=i

(v j∗(t,x)−gi j(t,x));−p−b(x)>q− 1
2 Tr[σσ>(x)M]

− fi(t,x,(vi∗(t,x))i=1,...,m,σ
>(x)q)}∧{−〈∇φ(x),q〉−ψi(t,x,vi∗(t,x))} ≤ 0,

(t,x) ∈ [0,T )×∂D, (p,q,M) ∈ J2+vi∗(t,x);

vi∗(T,x) = hi(x), x ∈ D.

Step 1: To begin with, we need to show that vi∗(T,x) = hi(x), ∀i ∈ J, ∀x ∈ D. For this purpose we
are going to show that

min{vi∗(T,x)−hi(x);vi∗(T,x)−max
j 6=i

(v j∗(T,x)−gi j(T,x))}= 0, ∀i ∈ J, ∀x ∈ D.

Let i ∈ J, n> 1 and x ∈ D. We know that

vi∗(T,x) = lim
(t ′,x′)−→(T,x)

t′<T,x′∈D

vi(t ′,x′)≥ lim
(t ′,x′)−→(T,x)

t′<T,x′∈D

vi,n(t ′,x′),

then as vi,n is continuous, we get vi∗(T,x)≥ vi,n(T,x) = hi(x).
Besides

vi(t,x)≥max
j 6=i

(v j(t,x)−gi j(t,x)),

after passing to the limit, we get

vi∗(T,x)≥max
j 6=i

(v j∗(T,x)−gi j(T,x)),

then we obtain

min{vi∗(T,x)−hi(x);vi∗(T,x)−max
j 6=i

(v j∗(T,x)−gi j(T,x))} ≥ 0.
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We now show that the left hand side cannot be strictly positive. To do so, we suppose to the contrary,
that for some x0 ∈ D, there is ε > 0 such that

min{vi∗(T,x0)−hi(x0);vi∗(T,x0)−max
j 6=i

(v j∗(T,x0)−gi j(T,x0))}= 2ε.

Let (tk,xk)k>1 be a sequence in [0,T ]×D satisfying (tk,xk)−→
k→∞

(T,x0) and vi(tk,xk)−→
k→∞

vi∗(T,x0),

which exists thanks to Lemma 6.1 in [5]. As vi∗ is usc on [0,T ]×D and vi,n converges increasingly to
vi, we can find (Qn)n>0 a sequence of functions in C1,2([0,T ]×D) such that Qn −→

n→∞
vi∗. In addition,

we suppose that on some neighborhood Bn of (T,x0), we have:

min{Qn(t,x)−hi(x);Qn(t,x)−max
j 6=i

(v j∗(t,x)−gi j(t,x))} ≥ ε, ∀(t,x) ∈ Bn. (3.22)

We can assume that (3.22) holds on Bn
k = [tk,T ]× B(xk,δ

n
k )∩D, for some δ n

k ∈ (0,1) such that
Bn

k ⊂ Bn. In case xk ∈ ∂D, this means that we work only on open neighborhoods of D near ∂D.
Since vi∗ is usc on a bounded space, there exists c > 0 such that | vi∗ |≤ c on Bn. Then, we can
assume that Qn >−2c. Next define

V n
k (t,x) = Qn(t,x)+

4c | x− xk |2

δ n2
k

+
√

T − t.

Note that V n
k (t,x)≥ Qn(t,x) and (vi∗−V n

k )(t,x)≤−c, ∀(t,x) ∈ [tk,T ]×∂B(xk,δ
n
k ).

On the other hand we have,

−{∂tV n
k (t,x)+LV n

k (t,x)}=−{∂tQn(t,x)+∂t
√

T − t +Dxb(x){DxQn(t,x)+
8c(x− xk)

(δ n2
k )2

}

+
1
2

σσ
>(x){DxxQn(t,x)+

8c

(δ n2
k )2
}}.

It is clear that 4c|x−xk|2

δ n2
k

∈C2
b and Qn ∈C1,2

b , which implies that the derivatives are bounded. Then, as

∂t(
√

T − t)−→
t→T
−∞, we can choose k large enough so that:

−{∂tV n
k (t,x)+LV n

k (t,x)} ≥ 0, ∀(t,x) ∈ Bn
k .

Recall the SDE (3.2) and consider the following stopping times:

θ
k
n = inf{s≥ tk; (s,X tk,xk

s ) ∈ (Bn
k)

c}∧T,

θk = inf{s≥ tk; vi(s,X tk,xk
s ) = max

j 6=i
(v j(s,X tk,xk

s )−gi j(s,X tk,xk
s ))}∧T.

Note that on [tk,θ k
n ∧ θk], ∇φ(X t,x

s )dAt,x
s vanishes in the SDE (3.2) since the support of At,x is ∂D.

Then, by Itô’s formula, we obtain:

V n
k (tk,xk) =V n

k (θ
k
n ∧θk,X

tk,xk
θ k

n∧θk
)−

∫
θ k

n∧θk

tk
{∂tV n

k (r,X
tk,xk
r )+LV n

k (r,X
tk,xk
r )}dr

−
∫

θ k
n∧θk

tk
σ(X tk,xk

r )DxV n
k (r,X

tk,xk
r )dBr.
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Taking the expectation, we get

V n
k (tk,xk) = E[V n

k (θ
k
n ∧θk,X

tk,xk
θ k

n∧θk
)−

∫
θ k

n∧θk

tk
{∂tV n

k (r,X
tk,xk
r )+LV n

k (r,X
tk,xk
r )}dr]

≥ E[V n
k (θ

k
n ,X

tk,xk
θ k

n
)χ[θ k

n≤θk]
+V n

k (θk,X
tk,xk
θk

)χ[θ k
n>θk]

]

= E[(V n
k (θ

k
n ,X

tk,xk
θ k

n
)χ[θ k

n<T ]+V n
k (T,X

tk,xk
T )χ[θ k

n=T ])χ[θ k
n≤θk]

+V n
k (θk,X

tk,xk
θk

)χ[θ k
n>θk]

]

≥ E[{(vi∗(θ k
n ,X

tk,xk
θ k

n
)+ c)χ[θ k

n<T ]+(ε +hi(X
tk,xk
T ))χ[θ k

n=T ]}χ[θ k
n≤θk]

+(ε +max
j 6=i

(v j∗(θk,X
tk,xk
θk

)−gi j(θk,X
tk,xk
θk

)))χ[θ k
n>θk]

]

≥ E[{(vi(θ k
n ,X

tk,xk
θ k

n
)+ c)χ[θ k

n<T ]+(ε +hi(X
tk,xk
T )χ[θ k

n=T ]}χ[θ k
n≤θk]

+(ε +max
j 6=i

(v j(θk,X
tk,xk
θk

)−gi j(θk,X
tk,xk
θk

)))χ[θ k
n>θk]

]

≥ E[vi(θ k
n ∧θk,X

tk,xk
θ k

n∧θk
)]+ c∧ ε.

Besides, recall that the process Y i = vi(.,X .) stopped at time θ k
n ∧ θk solves an explicit GRBSDE,

given by:

vi(θ k
n ∧θk,X

tk,xk
θ k

n∧θk
) = vi(tk,xk)−

∫
θ k

n∧θk

tk
fi(r,X tk,xk

r ,(vi(r,X tk,xk
r ))i∈J ,Zi,tk,xk

r )dr

−
∫

θ k
n∧θk

tk
ψi(r,X tk,xk

r ,vi(r,X tk,xk
r ))dAt,x

r − (Ki,t,x
θ k

n∧θk
−Ki,t,x

tk )+
∫

θ k
n∧θk

tk
Zi,tk,xk

r dBr.

Once again, dAtk,xk = 0 on [tk,θ n
k ], also dKi,tk,xk = 0 on [tk,θk], then by taking the expectation we get:

E
(

vi(θ k
n ∧θk,X

tk,xk
θ k

n∧θk
)
)
= E

(
vi(tk,xk)−

∫
θ k

n∧θk

tk
fi(r,X tk,xk

r ,(vi(r,X tk,xk
r ))i∈J ,Zi,tk,xk

r )dr

)
.

Then, as D is bounded and using the properties of the solution (X tk,xk
t )t6T , the estimates (2.12) and

the properties of fi we can show that:

lim
k−→∞

E

(∫
θ k

n∧θk

tk
fi(r,X tk,xk

r ,vi(r,X tk,xk
r )i∈J ,Zi,tk,xk

r )dr

)
= 0.

Hence, lim
k→∞

V n
k (tk,xk)≥ lim

k→∞
V n

k (tk,xk)= vi(T,x0)+c∧ε where c∧ε > 0, however from the definition

of V n
k (t,x) we have lim

k→∞
V n

k (tk,xk) = Qn(T,x0), which is contradictory since Qn −→
k→∞

vi∗ . It follows

that for any x ∈ D

min{vi∗(T,x)−hi(x); vi∗(T,x)−max
j 6=i

(v j∗(T,x)−gi j(T,x))}= 0.

Finally, we can use the non-free loop property of gi j following the same method as in [11] to obtain
the desired result.

Step 2: Let us show that (vi∗)i∈J is a subsolution. First, we point out that (vi,n)i∈J are continu-
ous and vi = lim

n→∞
vi,n, then by ([1] page 91)

vi∗(t,x) = lim
n→∞

vi,n(t,x) = lim
(t ′,x′)→(t,x)

n→∞

vi,n(t ′,x′), ∀i ∈ J, ∀(t,x) ∈ [0,T )×D.
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From the construction of vi,n, we have for any i ∈ J and n> 1:

vi,n(t,x)≥max
j 6=i

(v j,n−1(t,x)−gi j(t,x)), ∀(t,x) ∈ [0,T )×D;

taking the limit as n→ ∞, we get for any i ∈ J and (t,x) ∈ [0,T )×D,

vi∗(t,x)≥max
j 6=i

(v j∗(t,x)−gi j(t,x)).

Let i ∈ J and (t,x) ∈ [0,T )× ∂D be such that vi∗(t,x)−max
j 6=i

(v j∗(t,x)− gi j(t,x)) > 0, and fix

(p,q,M) ∈ J2+vi∗(t,x). By Lemma 6.1 in [5], there exist nk → ∞, xk ∈ D and (pk,qk,Mk) ∈
J2+vi,nk(tk,xk) such that

(tk,xk,vi,nk(tk,xk), pk,qk,Mk)−→
k→∞

(t,x,vi∗(t,x), p,q,M).

In the spirit of the proof of the first part, since xk is in D, we can extract a subsequence (xkl )l>1
which is either in ∂D or D. It suffices to check out both possibilities. If xkl ∈ D, we recall that
(tkl ,xkl ,v

i,nkl (tkl ,xkl ), pkl ,qkl ,Mkl )−→l→∞
(t,x,vi∗(t,x), p,q,M). Next, we obtain from the viscosity sub-

solution property for vi,nkl :

min{vi,nkl (tkl ,xkl )−max
j 6=i

(v j,nkl
−1(tkl ,xkl )−gi j(tkl ,xkl ));−pkl −b(xkl )

>qkl

−1
2

Tr[σσ
>(xkl )Mkl ]− fi(tkl ,xkl ,(v

1,nkl
−1, ...,vi,nkl , ...,vm,nkl

−1)(tkl ,xkl ),σ
>(xkl )qkl )} ≤ 0.

We know that vi∗(t,x)≥ lim
l→∞

vi,nkl (tkl ,xkl ), then there exists l0 > 0 s.t. ∀l ≥ l0, we have:

vi,nkl (tkl ,xkl )≥max
j 6=i

(v j,nkl (tkl ,xkl )−gi j(tkl ,xkl ))

≥max
j 6=i

(v j,nkl
−1(tkl ,xkl )−gi j(tkl ,xkl )),

since vi∗(t,x)≥max
j 6=i

(v j∗(t,x)−gi j(t,x)). It follows that for l > l0,

−p−b(x)>q− 1
2

Tr[σσ
>(x)M]

≤ lim
l→∞

fi(tkl ,xkl ,(v
1,nkl

−1, ...,vi−1,nkl
−1,vi,nkl ,vi+1,nkl

−1, ...,vm,nkl
−1)(tkl ,xkl ),σ

>(xkl )qkl ).

In the same manner as in Part 1, we show that for any (t,x)∈ [0,T )×∂D and (p,q,M)∈ J2+vi∗(t,x),
we have:

min{vi∗(t,x)−max
j 6=i

(v j∗(t,x)−gi j(t,x));

− p−b(x)>q− 1
2

Tr[σσ
>(x)M]− fi(t,x,(vi∗(t,x))i=1,...,m,σ

>(x)q)} ≤ 0.

If not we can extract a subsequence xkl of xk in ∂D, such that

(tkl ,xkl ,v
i,nkl (tkl ,xkl ), pkl ,qkl ,Mkl )−→l→∞

(t,x,vi∗(t,x), p,q,M).

Then, there exists l0 > 0 s.t. ∀l > l0 and from the viscosity subsolution property of vi,nkl at (tkl ,xkl )∈
[0,T )×∂D, we have:

{−pkl −b(xkl )
>qkl −

1
2

Tr[σσ
>(xkl )Mkl ]

− fi(tkl ,xkl ,(v
1,nkl

−1, ...,vi−1,nkl
−1,vi,nkl ,vi+1,nkl

−1, ...,vm,nkl
−1)(tkl ,xkl ),σ

>(xkl )qkl )}

∧{−〈∇φ(xkl ),qkl 〉−ψi(tkl ,xkl ,v
i,nkl (tkl ,xkl ))} ≤ 0.
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If

−pkl −b(xkl )
>qkl −

1
2

Tr[σσ
>(xkl )Mkl ]

≤ fi(tkl ,xkl ,(v
1,nkl

−1, ...,vi−1,nkl
−1,vi,nkl ,vi+1,nkl

−1, ...,vm,nkl
−1)(tkl ,xkl ),σ

>(xkl )qkl )

similar computations, yield

−p−b(x)>q− 1
2

Tr[σσ
>(x)M]− fi(t,x,(vi∗(t,x))i=1,...,m,σ

>(x)q)≤ 0.

Otherwise, the other inequality holds

−〈∇φ(xkl ),qkl 〉−ψi(tkl ,xkl ,v
i,nkl (tkl ,xkl ))≤ 0,

by taking the limit as l→ ∞, we get

−〈∇φ(x),q〉−ψi(t,x,vi∗(t,x))≤ 0.

Before we finish the proof, we shall stress out that the inequalities in D are not difficult and can be
handled likewise. As a consequence, vi is a viscosity subsolution for the following PDE:

min{vi(t,x)−max
j 6=i

(v j(t,x)−gi j(t,x));−∂tvi(t,x)−L vi(t,x)

− fi(t,x,(v1, ...,vm)(t,x),σ>(x)Dxvi(t,x))}= 0, (t,x) ∈ [0,T )×D;

∂vi

∂ l
(t,x)+ψi(t,x,vi(t,x)) = 0, (t,x) ∈ [0,T )×∂D;

vi(T,x) = hi(x), x ∈ D.

(3.23)

The fact that i is arbitrary in J, shows that the m-tuple (v1, ...,vm) is the unique viscosity solution for
the system (3.5). �
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