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Viscosity Solutions of system of PDEs with
Interconnected Obstacles and nonlinear Neumann

Boundary Conditions

Brahim BOUFOUSSI * Saïd HAMADENE † Manal JAKANI ‡

January 25, 2021

Abstract

This paper investigates the Hamilton-Jacobi-Bellman system of equations asso-
ciated with the m-states optimal switching problem in finite horizon when the state
process lives in a connected bounded closed domain. We show existence and unique-
ness of the solution in viscosity sense of the system. We use systems of general-
ized reflected backward stochastic differential equations with oblique reflection and
the Feynman-Kac representation of their solutions in the Markovian framework.

Keywords: Generalized Reflected Backward stochastic differential equations, Viscosity solu-
tion of PDEs, Variational inequalities, Nonlinear Neumann Boundary conditions, Optimal switch-
ing.

1 Introduction

The purpose of the present paper is to provide existence and uniqueness of continuous
viscosity solution to the following system of m-variational inequalities with interconnected
obstacles and nonlinear Neumann boundary conditions: ∀i = 1, ...,m, ∀t ∈ [0,T ),

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));−∂tui(t,x)−L ui(t,x)

− fi(t,x,(uk(t,x))k=1,...,m,σ
>(x)Dxui(t,x))}= 0, x ∈ D;

∂ui

∂ l
(t,x)+ψi(t,x,ui(t,x)) = 0, x ∈ ∂D;

ui(T,x) = hi(x), x ∈ D,

(1.1)

where the operator L is given by

L =
1
2

Tr{(σσ
>)D2

xx.}+b>Dx.
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and at a point x ∈ ∂D,
∂

∂ l
= 〈Oφ(x),Dx.〉=

d

∑
i=1

∂φ

∂xi
(x)

∂

∂xi
.

This system of equations is of Hamilton-Jacobi-Bellman (HJB for short) type associated
with the optimal switching problem when the state process X , which is a diffusion with
generator L , is constrained to live in a bounded connected domain D := {φ < 0}.

Optimal switching models often arise in the analysis of industrial projects related to
investment in electricity and valuation of energy storage (see e.g. [3, 4, 5, 7, 11, 13, 14] etc).
In a standard optimal switching problem, a decision maker controls a dynamical system over
time by choosing successively its working modes from a discrete set. Therefore a switching
strategy is given by α := (τn,θn)n≥0 where τn are stopping times such that τn ≤ τn+1 and θn

is a random variable with values in J := {1, . . . ,m}. At time τn, the decision maker switches
the system from its current mode θn−1 to another one θn. When the system is in mode i at
time s and works a short period of time ds, it provides a profit fi(s,ω)ds. On the other hand,
switching the system from mode i to mode j 6= i at s costs gi j(s,ω). Therefore the problem
of the decision maker is to look for a strategy α∗ which maximizes the performance Γ(α)
which is equal to the yield provided by the system when it runs under the strategy α . This
problem turns into the solvability of a system of backward stochastic differential equations
with oblique reflection (see e.g. [15, 16, 17, 18] etc) of the following form: ∀i = 1, ...,m,
∀t ≤ T, 

Y i
t = ξ i +

∫ T
t fi(s)ds+Ki

T −Ki
t −
∫ T

t Zi
sdBs;

Y i
t >max

j 6=i
(Y j

t −gi j(t));∫ T
0 {Y i

t −max
j 6=i

(Y j
t −gi j(t))}dKi

t = 0.

Then, both optimal performance and optimal strategy are provided by~Y = (Y1, ...,Ym).
In the aforementioned works, when randomness stems from a standard diffusion process

X t,x ((t,x) ∈ [0,T ]×Rk) solution of the following standard SDE:

dX t,x
s = b(s,X t,x

s )ds+σ(s,X t,x
s )dBs, s ∈ [t,T ] and X t,x

t = x (1.2)

(i.e. fi(s,ω)= fi(s,X
t,x
s (ω)), gi j(s,ω)= gi j(s,X

t,x
s (ω)) and the bequest ξ i(ω)= hi(X

t,x
T (ω))

for any i, j) the Hamilton-Jacobi-Bellman system of equations associated with the switching
problem takes the following form: ∀i = 1, ...,m,min{ui(t,x)−max

j 6=i
(u j(t,x)−gi j(t,x));−∂tui(t,x)−L ui(t,x)− fi(t,x)}= 0;

ui(T,x) = hi(x).
(1.3)

The solution (ui)i=1,...,m is nothing but the value functions of the switching problem (see
e.g. [7, 14]). The process X t,x of (1.2) is unconstrained and roughly speaking lives in Rk.
However in real life, there are several situations where X t,x is constrained to stay in a given
bounded domain D. Let us give two examples.

The first one is related to the interest rates in economies. For instance, assume that
the process (Xt)t≤T stands for the evolution of the interest rates in several economies. The
central bank of each economy acts in such a way to keep the interest rate in some bounded
domain for the well being of the economies. Now assume there is an investor who holds a
capital which he/she invests in one of the economies and switches it, from one economy to
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another, according to the return of the investment. This return depends also on the interest
rates in these economies. Therefore the investor will make his investment strategy also
according to X t,x which is constrained to stay in a bounded domain.

Another example is related to electricity production. Indeed, consider a hydro-power
station with a dam and several working modes. Let us denote by Xt the level of water in the
dam at time t, which is obviously a stochastic process. For safety reasons the water level
should not exceed a specific level `1. On the other hand, for operational reasons this level
should not be below another level `0. Thus at each time t one should have Xt ∈ [`0, `1] by
evacuating water when Xt is prone to overlap `1 and stopping production when Xt reaches
`0. As a consequence, the working mode of the station is chosen according to parameters
which include the level of water X in the dam which is a constrained stochastic process.

To deal with switching problems which look like the previous ones is the main motiva-
tion of this article.

So assume that X t,x, instead of satisfying (1.2), satisfies the following equation:
dX t,x

s = b(X t,x
s )ds+σ(X t,x

s )dBs +∇φ(X t,x
s )dAt,x

s , s ∈ [t,T ];
X t,x

s ∈ D̄ and At,x
s =

∫ s
t χ{X t,x

r ∈∂D}dAt,x
r , s ∈ [t,T ];

X t,x
t = x, for s≤ t;

(1.4)

At,x is an increasing process and a part of the solution. The gradient ∇φ(x) coincides with
the unit normal pointing towards the interior of D := {φ < 0}. The assumptions on b, σ

and φ will be specified later. The term ∇φ(X t,x
s )dAt,x

s represents the damage faced once the
state process X t,x hits the boundary of D, otherwise, it is null as long as X t,x ∈ D.

In the case when randomness comes from this constrained Markov process X t,x solution
of (1.4), as previously highlighted, the HJB system associated with the switching problem
is the system of PDEs with Neumann boundary conditions (1.1).

To deal with the switching problem when X t,x is a solution of (1.4), we are led to study
the following system of reflected generalized BSDEs with oblique reflection:
∀i = 1, ...,m, ∀s ∈ [t,T ],

Y i,t,x
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,~Y t,x

r ,Zi,t,x
r )dr+

∫ T
s ψi(r,X

t,x
r ,Y i,t,x

r )dAt,x
r +Ki,t,x

T −Ki,t,x
s

−
∫ T

s Zi,t,x
r dBr;

Y i,t,x
s >max

j 6=i
(Y j,t,x

s −gi j(s,X
t,x
s ));∫ T

0 {Y
i,t,x
s −max

j 6=i
(Y j,t,x

s −gi j(s,X
t,x
s ))}dKi,t,x

s = 0.

(1.5)
In the above system, the quantity ψi(r,X

t,x
r ,Y i,t,x

r )dAt,x
r stands for the payoff generated

by the system when the constraint X t,x ∈ D is not satisfied.
The main contribution of our work, is to provide existence and uniqueness of continuous

viscosity solution (ui)i∈J for system (1.1). As a by-product, we obtain that for any i ∈ J and
s ∈ [t,T ], ui(s,X t,x

s ) is the optimal payoff when at time s the system is in working mode i.
The paper is organized as follows. In Section 2, we consider the following system of

reflected generalized BSDEs which is more general than the one in (1.5) since we do not
assume any particularity of randomness: ∀i = 1, ...,m, ∀t 6 T ,

Y i
t = ξ i +

∫ T
t fi(s,~Ys,Zi

s)ds+
∫ T

t ψi(s,Y i
s )dAs +Ki

T −Ki
t −
∫ T

t Zi
sdBs;

Y i
t >max

j 6=i
(Y j

t −gi j(t));∫ T
0 {Y i

t −max
j 6=i

(Y j
t −gi j(t))}dKi

t = 0.

(1.6)

3



We first show the existence of a solution (Y i,Zi,Ki)i∈J to system (1.6) using a scheme ob-
tained by Picard iterations. Then, we establish the link between the components Y i, i ∈ J,
of the solution and the value functions of the switching problem. This link will allow us to
show uniqueness of the solution of system of RGBSDEs (1.6). The last section is devoted
to study the system of PDEs (1.1). We define the notion of a viscosity solution for that sys-
tem, then provide a comparison result between its sub-solution and super-solution. Finally,
we show that there is a solution (ui)i=1,...,m of system (1.1), this solution is given by the
Feynman Kac representation, that relates the PDEs system (1.1) to the generalized RBS-
DEs system (1.6) considered in the second section, namely for any i ∈ J, Y i,t,x

s = ui(s,X t,x
s ),

∀s ∈ [t,T ].

2 System of Generalized Reflected BSDEs

2.1 Assumptions and notations

Let (Ω,F ,P) be a fixed probability space on which is defined a standard Brownian motion
B = (Bt)06t6T for a fixed finite horizon T > 0, and F = (Ft)0≤t≤T be the completed fil-
tration of (σ(Bs,0 ≤ s ≤ t))t≤T with all P−null sets of F0. Let (At)t>0 be a continuous
one-dimensional increasing Ft-progressively measurable process such that A0 = 0 . Let us
introduce the following spaces:

H 2 = {(ψt)06t6T Ft-progressively measurable process such that E[
∫ T

0 | ψt |2 dt]< ∞};

S 2 = {(ψt)06t6T Ft-progressively measurable process s.t. E[ sup
0≤t≤T

| ψt |2]< ∞};

A 2 = {(Kt)06t6T Ft-adapted continuous increasing process s.t. K0 = 0, E[K2
T ]< ∞}.

In this section, we consider the problem of existence and uniqueness of a solution for sys-
tem (2.1). For this objective, let us introduce the following assumptions:
Assumptions (A1):
Let m be a positive integer, i ∈ J and µ > 0;

(H1) ξ i is a random variable in L2(Ω,FT ,P,R), satisfying E(eµAT | ξ i |2)< ∞.

(H2) fi : [0,T ]×Ω×Rm×R1×d −→ R and ψi : [0,T ]×Ω×R−→ R s.t.

(i) fi(., .,~y,z) and ψi(., .,y) are progressively measurable.

(ii) E
∫ T

0 eµAt | fi(t,~0,0) |2 dt <+∞ and E
∫ T

0 eµAt | ψi(t,0) |2 dAt <+∞.

(iii) fi and ψi are Lipschitz continuous with respect to (~y,z) and y respectively.

(iv) ∃β < 0 such that (y− y′)(ψi(t,y)−ψi(t,y′))≤ β | y− y′ |2.

(v) For any j 6= i, fi(t,~y,z) is non-decreasing in y j, whenever the other components
are fixed.

(H3) For any i, j ∈ J, we have:
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i) gi j : [0,T ]×Ω−→ R is continuous w.r.t. t, non negative such that gii = 0.

ii) ξ i ≥max
j 6=i

(ξ j−gi j(T )).

iii) gi j satisfies the non free loop property, i.e., ∀i1, ..., ik such that i1 6= i2, i1 = ik
and card{i1, ..., ik}= k−1, we have:

gi1i2 + ...+gik−1ik > 0.

The assumptions (H1), (H2) (i)− (iv) are frequently encountered in the study of GBS-
DEs [20, 22] then carried on in the reflected version [25, 26]. The difficulties usually faced
in multidimensional Reflected BSDEs with interconnected obstacles, include the depen-
dence on the whole vector~y in the generators fi. This can be overcome with the use of the
monotonicity condition (A1) (H2) (v) first introduced in [16]. Also, hypotheses (H3) were
considered in [7, 15, 16, 17] etc. Those assumptions on the costs are actually reasonable.
In fact, the first point is necessary so that additional costs will not be charged for staying in
the same mode. (iii) reminds that if we go from a mode i, then making successive switches
all the way along back to the same mode is not free. Finally, the assumption on the terminal
values shows that there is no interest in making switches at time T .

2.2 Existence and uniqueness of the solution

The current section outlines two fundamental results of our work. It focuses on existence
and uniqueness of a solution for system (2.1).

Theorem 2.1 Assume that assumptions (A1) are fulfilled. Then the system of generalized
reflected BSDEs (2.1) below has a solution: ∀i = 1, ...,m, ∀t 6 T

Y i ∈S 2, Zi ∈H 2,d , Ki ∈A 2;
Y i

t = ξ i +
∫ T

t fi(s,~Ys,Zi
s)ds+

∫ T
t ψi(s,Y i

s )dAs +Ki
T −Ki

t −
∫ T

t Zi
sdBs;

Y i
t >max

j 6=i
(Y j

t −gi j(t));∫ T
0 {Y i

t −max
j 6=i

(Y j
t −gi j(t))}dKi

t = 0.

(2.1)

Proof: The proof extends loosely in the same direction as in [16] and requires various steps.
Step 1 : Iterative scheme.
Let us set

ξ = max
i=1,..,m

| ξ i |, f (s,y,z) = max
i=1,..,m

fi(s,y, ...,y,z), ψ(s,y) = max
i=1,..,m

ψi(s,y);

ξ = min
i=1,..,m

| ξ i |, f (s,y,z) = min
i=1,..,m

fi(s,y, ...,y,z), ψ(s,y) = min
i=1,..,m

ψi(s,y).

Consider the following standard GBSDEs: ∀t 6 T ,{
Y ∈S 2, Z ∈H 2,d ;
Y t = ξ +

∫ T
t f (s,Y s,Zs)ds+

∫ T
t ψ(s,Y s)dAs−

∫ T
t ZsdBs,

(2.2)

and {
Y ∈S 2, Z ∈H 2,d ;
Y t = ξ +

∫ T
t f (s,Y s,Zs)ds+

∫ T
t ψ(s,Y s)dAs−

∫ T
t ZsdBs.

(2.3)
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By Theorem 1.6 [22], the generalized BSDEs (2.2) and (2.3) have unique solutions.
Next, for i = 1, ...,m and n > 1, we set Y i,0 = Y and we define recursively Y i,n via the
following GRBSDEs whose solutions exist and are unique thanks to [26]:

Y i,n ∈S 2, Zi,n ∈H 2,d , Ki,n ∈A 2;
Y i,n

t = ξ i +
∫ T

t fi(s,Y
1,n−1
s , ...,Y i,n

s , ...,Y m,n−1
s ,Zi,n

s )ds+
∫ T

t ψi(s,Y
i,n
s )dAs +Ki,n

T −Ki,n
t

−
∫ T

t Zi,n
s dBs, ∀t 6 T ;

Y i,n
t >max

j 6=i
(Y j,n−1

t −gi j(t)), ∀t 6 T ;∫ T
0 {Y

i,n
t −max

j 6=i
(Y j,n−1

t −gi j(t))}dKi,n
t = 0.

(2.4)
Note that (Y ,K = 0,Z) is also a solution for the following GRBSDE:

Y t = ξ +
∫ T

t f (s,Y s,Zs)ds+
∫ T

t ψ(s,Y s)dAs +KT −Kt −
∫ T

t ZsdBs;
Y t ≥max

j 6=i
(Y t −gi j(t));∫ T

0 {Y t −max
j 6=i

(Y t −gi j(t))}dKt = 0.

(2.5)

Remark 2.1 For i = 1,2, let Y i be the unique solution of a one-dimensional generalized
reflected BSDEs with data (ξ i, f i,ψ i,Si). Note that, according to [26], Y i is obtained as an
increasing limit of a sequence of solutions of standard generalized BSDEs. Then, it is not
difficult to see that if ξ 1 ≤ ξ 2, f 1 ≤ f 2, ψ1 ≤ ψ2 and S1 ≤ S2, we get:

Y 1
t ≤ Y 2

t , ∀t ∈ [0,T ], P-a.s..

It suffices to consider the associated approximations and to apply the comparison result for
generalized BSDEs (see Theorem 1.4 [22]).

Fix i ∈ J, by Remark 2.1 and the monotonicity condition on fi, we can deduce by induction
on n, that

Y ≤ Y i,n ≤ Y i,n+1 ≤ Y . (2.6)

Then we conclude that the sequence (Y i,n)n>0 converges pointwisly to Y i.
Step 2 : We show that for any i ∈ J and n> 1,

E
(

sup
0≤t≤T

| Y i,n
s |2 +

∫ T

0
‖ Zi,n

s ‖2 ds
)
≤C. (2.7)

Let i = 1, ...,m, t 6 T and n> 1, we see that

| Y i,n
t |≤max

{
| Y t |, | Y t |

}
,

then

E
[

sup
0≤t≤T

| Y i,n
t |2

]
≤ E

[
max

{
sup

0≤t≤T
| Y t |2, sup

0≤t≤T
| Y t |2

}]
. (2.8)

So as to identify the limit, we are supposed to establish some estimates with the use of the
ones stated in Proposition 1.1 [22]. We have in particular:
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E
[

sup
0≤t≤T

| Y t |2 +
∫ T

0
| Y t |2 dAt

]
≤CE

(
| ξ |2 +

∫ T

0
| f (t,0,0) |2 dt +

∫ T

0
| ψ(t,0) |2 dAt

)
;

E
[

sup
0≤t≤T

| Y t |2 +
∫ T

0
| Y t |2 dAt

]
≤CE

(
| ξ |2 +

∫ T

0
| f (t,0,0) |2 dt +

∫ T

0
| ψ(t,0) |2 dAt

)
,

(2.9)
which implies that

E
[

sup
0≤t≤T

| Y i,n
t |2 +

∫ T

0
| Y i,n

t |2 dAt

]
≤C. (2.10)

We apply Itô’s formula to | Y i,n
t |2, we get,

| Y i,n
t |2 +

∫ T
0 ‖ Zi,n

s ‖2 ds =| ξ i |2 +2
∫ T

t Y i,n
s fi(s,Y

1,n−1
s , ...,Y i,n

s , ...,Y m,n−1
s ,Zi,n

s )ds

+2
∫ T

t Y i,n
s Ψi(s,Y

i,n
s )dAs +2

∫ T
t Y i,n

s dKi,n
s −2

∫ T
t Y i,n

s Zi,n
s dBs.

Taking the expectation in both sides yields

E
(
| Y i,n

t |2
)
+E

(∫ T

t
‖ Zi,n

s ‖2 ds
)
= E

(
| ξ i |2

)
+2E

(∫ T

t
Y i,n

s fi(s,Y 1,n−1
s , ...,Y i,n

s , ...,Y m,n−1
s ,Zi,n

s )ds
)

+2E
(∫ T

t
Y i,n

s ψi(s,Y i,n
s )dAs

)
+2E

(∫ T

t
Y i,n

s dKi,n
s

)
.

Using asumptions (i), (ii) and (iv), we get for C1,C2,C3 > 0:

E
(
| Y i,n

t |2
)
+E

(∫ T

t
‖ Zi,n

s ‖2 ds
)
≤ E

(
| ξ i |2

)
+(1+C1 +C2)E

(
sup

0≤t≤T
| Y i,n

t |2
)

+2E
(∫ T

t
M ‖ (Y 1,n−1

s , ...,Y i−1,n−1
s ,Y i,n

s ,Y i+1,n−1
s , ...,Y m,n−1

s ) ‖| Y i,n
s | ds

)
+C1E

(∫ T

t
‖ Zi,n

s ‖2 ds
)
+2E

(∫ T

t
β | Y i,n

s |2 dAs

)
+C3E

(∫ T

t
| Y i,n

s |2 dAs

)
+E
(∫ T

t
| fi(s,~0,0) |2 ds

)
+ 1

C3
E
(∫ T

t
| ψi(s,0) |2 dAs

)
+ 1

C2
E
(
| Ki,n

T −Ki,n
t |2

)
.

(2.11)

From (2.4), we have:

Ki,n
T −Ki,n

t = Y i,n
t −ξ i−

∫ T
t fi(s,Y

1,n−1
s , ...,Y i,n

s , ...,Y m,n−1
s ,Zi,n

s )ds−
∫ T

t ψi(s,Y
i,n
s )dAs

+
∫ T

t Zi,n
s dBs,

taking the expectation and using (2.10), we obtain by standard computations the follow-
ing estimate for Ki,n

T −Ki,n
t :

E
(
| Ki,n

T −Ki,n
t |2

)
≤C4

[
1+E

(∫ T

t
‖ Zi,n

s ‖2 ds
)]

.

7



where C4 > 0. Back to (2.11), we use (2.10 ) to conclude that E
(∫ T

t
‖ Zi,n

s ‖2 ds
)
≤ C,

where C does not depend on n, then the estimate (2.7) holds true.
Step 3 : Monotonic limit result.
Fix i = 1, ...,m, t 6 T and n> 1. Recall (2.6) and (2.9), then as Y i,n converges increasingly
to Y i, we have:

E
[

sup
0≤t≤T

| Y i
t |2 +

∫ T

0
| Y i

t |2 dAt

]
≤C. (2.12)

By dominated convergence we get

E
(∫ T

0
| Y i,n

t −Y i
t |2 dt

)
−→
n→∞

0. (2.13)

Also, we showed in the previous step that (Zi,n)n>1 are bounded in H 2 and so are
( fi(s,Y

1,n−1
s , ...,Y i,n

s , ...,Y m,n−1
s ,Zi,n

s ))n>1 in L2([0,T ]×Ω). In order to apply Peng’s mono-
tonic limit theorem [23], let us note that the equation satisfied by Y i,n can be rewritten as
follows:

Y i,n
t −

∫ t

0
ψi(s,Y i

s )dAs = Y i,n
0 −

∫ t

0
fi(s,Y 1,n−1

s , ...,Y i,n
s , ...,Y m,n−1

s ,Zi,n
s )ds

−
∫ t

0
{ψi(s,Y i,n

s )−ψi(s,Y i
s )}dAs−Ki,n

t +
∫ t

0
Zi,n

s dBs. (2.14)

Since ψi is non-increasing w.r.t. y, the process
∫ .

0{ψi(s,Y
i,n
s )−ψi(s,Y i

s )}dAs is increasing
for each n > 1. Hence, using the estimate (2.12) together with the properties of both fi

and ψi, we can apply Theorem 2.1 in [23] to the process Y i,n −
∫ .

0 ψi(s,Y i
s )dAs, which

converges increasingly to Y i−
∫ .

0 ψi(s,Y i
s )dAs, with Y i is càdlàg. Therefore, the limit Y i−∫ .

0 ψi(s,Y i
s )dAs has the following form:

Y i
t −

∫ t

0
ψi(s,Y i

s )dAs = Y i
0−

∫ t

0
fi(s)ds−Ki

t +
∫ t

0
Zi

sdBs, (2.15)

where Ki is càdlàg and denotes the weak limit of
∫ .

0{ψi(s,Y
i,n
s )−ψi(s,Y i

s )}dAs+Ki,n. More-
over, Zi is the weak limit of Zi,n in H 2, which also happens to be the strong limit in Lp for
p ∈ [1,2). Then we have:

E
(∫ T

0
| Zi,n

t −Zi
t |p dt

)
−→
n→∞

0, ∀p ∈ [1,2).

We can use exactly the same techniques as in the proof of Theorem 2.4 in [23] to show
that

∫ t
0 fi(s)ds =

∫ t
0 fi(s,

−→
Ys ,Zi

s)ds. Furthermore, from (2.6), (2.10) and (2.12), we get by
dominated convergence theorem applied to the sequence Y i,n

t in L2([0,T ]×Ω,dAt ×dP)

E
(∫ T

0
| Y i,n

t −Y i
t |2 dAt

)
−→
n→∞

0. (2.16)

Then the Lipschitz continuity of ψi implies

E
(∫ T

0
| ψi(t,Y

i,n
t )−ψi(t,Y i

t ) |2 dAt

)
≤ME

(∫ T

0
| Y i,n

t −Y i
t |2 dAt

)
−→
n→∞

0.

This also means that Ki is the weak limit of Ki,n. In addition, Ki inherits the following
properties from Ki,n:
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• Ki
0 = 0 and E(Ki

T
2
)<+∞,

• Ki is increasing.

It follows that Y i satisfies:Y i
t = ξ i +

∫ T
t fi(s,

−→
Ys ,Zi

s)ds+
∫ T

t ψi(s,Y i
s )dAs +Ki

T −Ki
t −
∫ T

t Zi
sdBs;

Y i
t ≥max

j 6=i
(Y j

t −gi j(t)).
(2.17)

Now consider the following system:
Ỹ i

t = ξ i +
∫ T

t fi(s,Y 1
s , ..,Ỹ

i
s , ..,Y

m
s , Z̃i

s)ds+
∫ T

t ψi(s,Ỹ i
s )dAs + K̃i

T − K̃i
t −
∫ T

t Z̃i
sdBs;

Ỹ i
t ≥max

j 6=i
(Y j

t −gi j(t));∫ T
0 [Ỹ i

t−−max(Y j
t−−gi j(t))]dK̃i

t = 0.
(2.18)

Note that the barriers in the above Generalized Reflected BSDEs are càdlàg, this is a particu-
lar case of the work by Ren-El Otmani [25]. Let (Ỹ i, Z̃i, K̃i)i=1,..,m be their unique solutions.
By the comparison result [25], we have Y i,n

t ≤ Ỹ i
t which implies that Y i

t ≤ Ỹ i
t .

We next show that Ỹ i
t ≤ Y i

t . To this end, we apply Tanaka-Meyer’s formula to the semi
martingale (Ỹ i

t −Y i
t )06t6T whose terminal value is equal to 0, we obtain:

(Ỹ i
t −Y i

t )
+ =−

∫ T
t χ{Ỹ i

s−−Y i
s−>0}d(Ỹ

i
s −Y i

s )

− Σ
t<s6T

[χ{Ỹ i
s−−Y i

s−>0}(Ỹ
i
s −Y i

s )
−+χ{Ỹ i

s−−Y i
s−60}(Ỹ

i
s −Y i

s )
+]− 1

2 L0
t .

Here, the non-negative process (L0
t )t6T stands for the local time of Ỹ i−Y i at 0. Then,

(Ỹ i
t −Y i

t )
+ ≤−

∫ T
t χ{Ỹ i

s−−Y i
s−>0}d(Ỹ

i
s −Y i

s )

=
∫ T

t χ{Ỹ i
s−−Y i

s−>0}{ fi(s,Y 1
s , ..,Ỹ

i
s , ..,Y

m
s , Z̃i

s)− fi(s,Y 1
s , ..,Y

i
s , ..,Y

m
s ,Zi

s)}ds

+
∫ T

t χ{Ỹ i
s−−Y i

s−>0}{ψi(s,Ỹ i
s )−ψi(s,Y i

s )}dAs +
∫ T

t χ{Ỹ i
s−−Y i

s−>0}d(K̃
i
s−Ki

s)

−
∫ T

t χ{Ỹ i
s−−Y i

s−>0}(Z̃
i
s−Zi

s)dBs.

The Skorokhod condition in system (2.18) shows that
∫ T

t χ{Ỹ i
s−−Y i

s−>0}d(K̃
i
s−Ki

s)≤ 0.
In fact, ∫ T

t
χ{Ỹ i

s−−Y i
s−>0}d(K̃

i
s−Ki

s) =
∫ T

t
χ{Ỹ i

s−−Y i
s−>0}dK̃i

s−
∫ T

t
χ{Ỹ i

s−−Y i
s−>0}dKi

s.

The inequality in the system (2.17), implies that Ỹ i
s− > max

j 6=i
(Y j

s− − gi j(s)) whenever Ỹ i
s− >

Y i
s− , then dK̃i

s = 0 on the set {Ỹ i
s−−Y i

s− > 0}.

From assumption (A1) (H2) (iv), one can observe that ψi(s,Ỹ i
s )−ψi(s,Y i

s ) is negative
since Ỹ i

s ≥ Y i
s , which implies that

∫ T
t χ{Ỹ i

s−−Y i
s−>0}{ψi(s,Ỹ i

s )−ψi(s,Y i
s )}dAs 6 0. Then

(Ỹ i
t −Y i

t )
+ ≤

∫ T
t χ{Ỹ i

s−−Y i
s−>0}{ fi(s,Y 1

s , ..,Ỹ
i
s , ..,Y

m
s , Z̃i

s)− fi(s,Y 1
s , ..,Y

i
s , ..,Y

m
s , Z̃i

s)
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+ fi(s,Y 1
s , ..,Y

i
s , ..,Y

m
s , Z̃i

s)− fi(s,Y 1
s , ..,Y

i
s , ..,Y

m
s ,Zi

s)}ds

−
∫ T

t χ{Ỹ i
s−−Y i

s−>0}(Z̃
i
s−Zi

s)dBs

≤
∫ T

t Mχ{Ỹ i
s−−Y i

s−>0}(Ỹ
i
s −Y i

s )
+ds

+
∫ T

t χ{Ỹ i
s−−Y i

s−>0}χ{Z̃i
s 6=Zi

s}[ fi(s,~Ys, Z̃i
s)− fi(s,~Ys,Zi

s)](Z̃
i
s−Zi

s)
−1(Z̃i

s−Zi
s)ds

−
∫ T

t χ{Ỹ i
s−−Y i

s−>0}(Z̃
i
s−Zi

s)dBs.

Set Mt =
∫ t

0 χ{Z̃i
s 6=Zi

s}[ fi(s,~Ys, Z̃i
s)− fi(s,~Ys,Zi

s)](Z̃
i
s−Zi

s)
−1dBs, t 6 T . By Girsanov’s theo-

rem, as fi is Lipschitz continuous with respect to z, the process

B̃t = Bt −
∫ t

0
χ{Z̃i

s 6=Zi
s}[ fi(s,~Ys, Z̃i

s)− fi(s,~Ys,Zi
s)](Z̃

i
s−Zi

s)
−1ds, t 6 T ;

is a Brownian motion under P̃, where dP̃ = ε(M)T dP and ε(M)t = eMt− 1
2 〈M〉t . It follows

that:

EP̃[(Ỹ i
t −Y i

t )
+]≤ EP̃[

∫ T
t Mχ{Ỹ i

s−−Y i
s−>0}(Ỹ

i
s −Y i

s )
+ds]−EP̃[

∫ T
t χ{Ỹ i

s−−Y i
s−>0}(Z̃

i
s−Zi

s)dB̃s],

≤ EP̃[
∫ T

t M(Ỹ i
s −Y i

s )
+ds].

By Gronwall’s Lemma, we have (Ỹ i
t −Y i

t )
+ = 0 P̃−a.s.. As P̃ and P are equivalent, we get

P-a.s. ∀t 6 T, Ỹ i
t ≤ Y i

t and then Ỹ i = Y i.
Then we use classic arguments to show that we have also K̃i = KiP-a.s. and Z̃i = Zi

dt×dP-a.e., which means that (Y,K,Z) satisfies the following system: ∀i= 1, ...,m, ∀t 6 T ,
Y i

t = ξ i +
∫ T

t fi(s,
−→
Ys ,Zi

s)ds+
∫ T

t ψi(s,Y i
s )dAs +Ki

T −Ki
t −
∫ T

t Zi
sdBs;

Y i
t ≥max

j−{i}
(Y j

t −gi j(t));∫ T
0 [Y i

t−−max
j 6=i

(Y j
t−−gi j(t))]dKi

t = 0.

Step 4 : Ki and Y i are continuous.
As (Ki

t )t>0 is a non-decreasing process, ∆Ki
t ≥ 0. Suppose there exists i1 such that ∆Ki1

t > 0
then ∆Y i1

t < 0. But
Y i1

t− = max
k 6=i1

(Y k
t−−gi1k(t)).

Then there exists i2 ∈ J−{i1} such that

Y i1
t− = Y i2

t−−gi1i2(t)> Y i1
t ≥max

k 6=i1
(Y k

t −gi1k(t)).

This implies that

∆Y i2
t < 0 and ∆Ki2

t > 0.

By repeating the same procedure in the finite set J, we can find a loop i1, ..., ip = i1 such
that

Y i1
t− = Y i2

t−−gi1i2(t), Y i2
t− = Y i3

t−−gi2i3(t), ..., Y ip−1
t− = Y ip=i1

t− −gip−1i1(t).
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By adding member to member in the above equations, we get
p−1
∑

k=1
gikik+1(t) = 0, which con-

tradicts the non-free loop property. Therefore, Ki are continuous and Y i as well.
As a result, we can rewrite our system by deleting the limits in Skorokhod condition:
∀i = 1, ...,m, ∀t 6 T ,

Y i
t = ξ i +

∫ T
t fi(s,

−→
Ys ,Zi

s)ds+
∫ T

t ψi(s,Y i
s )dAs +Ki

T −Ki
t −
∫ T

t Zi
sdBs,

Y i
t ≥max

j 6=i
(Y j

t −gi j(t)),∫ T
0 [Y i

t −max
j 6=i

(Y j
t −gi j(t))]dKi

t = 0.

(2.19)

We next prove uniqueness, by providing a representation for the solution of system (2.1).

Theorem 2.2 Under assumptions (A1), the solution of system (2.1) is unique .

Proof:
For µ > 0 and λ > 0, let M 2

µ,λ (A) denote the set of progressively measurable processes
(ρt)06t6T s.t.

‖ρ‖M 2
µ,λ (A)

:= E
(∫ T

0
eµt+λAt | ρt |2 dt +

∫ T

0
eµt+λAt | ρt |2 dAt

)
< ∞,

To begin with, we shall stress that Y i ∈M 2
µ,λ (A), ∀i = 1, ...,m, where (Y i)i∈J solves the

system (2.1). In fact, by assumptions (H1), (H2)(ii) and (H2)(iii), we know that Y and Y
the solutions obtained by Theorem 1.6 [22] for the generalized BSDEs (2.2) and (2.3) are
both elements of M 2

µ,λ (A), then we conclude using Y ≤ Y i ≤ Y .

Now, let ~u = (ui)i=1,...,m be an element of M 2
µ,λ (A) and consider the following system:

∀i = 1, ...,m, ∀t 6 T ,

Y u,i ∈S 2, Zu,i ∈H 2,d , Ku,i ∈A 2;
Y u,i

t = ξ i +
∫ T

t fi(s,−→us ,Z
u,i
s )ds+

∫ T
t ψi(s,ui

s)dAs +Ku,i
T −Ku,i

t −
∫ T

t Zu,i
s dBs,

Y u,i
t ≥max

j 6=i
(Y u, j

t −gi j(t)),∫ T
0 [Y u,i

t −max
j 6=i

(Y u, j
t −gi j(t))]dKu,i

t = 0.

(2.20)

A switching control α is a pair of subsequences (τn,θn)n≥0, where τn are stopping
times such that τn ≤ τn+1 and θn is a random variable with values in J := {1, . . . ,m}. If
P [τ∗n < T,∀n≥ 0] = 0, we say that α is admissible.
Let i ∈ J and t ∈ [0,T ], we define a class of admissible switching controls by:

D i
t =
{

α = ((τn)n≥0,(θn)n≥0) ∈D , θ0 = i, τ0 = 0,τ1 ≥ t and E(Gα
T )

2 < ∞
}
,

where D denotes the set of admissible switching controls and Gα
s is the cumulative switch-

ing costs up to time s, expressed by:

Gα
s = ∑

n≥1
gθn−1,θn(τn)χ[τn≤s], s < T and Gα

T = lim
s→T

Gα
s = ∑

n≥1
gθn−1,θn(τn)χ[τn<T ].
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Let α = ((τn)n≥0,(θn)n≥0) ∈D i
t and define:

ξ
α =∑

n≥0
ξ

θn χ[τn≤T<τn+1[,

fα(t,−→u ,z) =∑
n≥0

fθn(t,
−→u ,z)χ[τn≤t<τn+1[, (2.21)

ψα(t,uα) =∑
n≥0

ψθn(s,u
θn)χ[τn≤t<τn+1[.

Let us consider the following switching equation:Pα , E( sup
0≤t≤T

| Pα
t |2)< ∞ and Qα ∈H 2,d ;

Pα
t = ξ α +

∫ T
t fα(s,−→us ,Qα

s )ds+
∫ T

t ψα(s,uα
s )dAs−

∫ T
t Qα

s dBs− (Gα
T −Gα

t ), t 6 T.
(2.22)

In the above equation, ξ α , fα and ψα are respectively the reward received at time T , the
running reward received on D and the additional reward once the limit of the domain is
reached while adhering to the strategy α .
By setting up Pα

t := Pα
t −Gα

t , we get a Generalized BSDE with standard generators and
a terminal value satisfying E[(ξ α −Gα

T )
2] < ∞. All together with the adaptedness of Gα ,

there exists a unique solution (Pα ,Qα) for (2.22) thanks to [22].
We go back to System (2.20), to write the equation of Y u,i between t and τ1 :

Y u,i
t =Y u,i

τ1 +
∫

τ1

t
fi(s,−→us ,Zu,i

s )ds+Ku,i
τ1 −Ku,i

t +
∫

τ1

t
ψi(s,ui

s)dAs−
∫

τ1

t
Zu,i

s dBs

=Y u,i
τ1 χ[τ1=T ]+Y u,i

τ1 χ[τ1<T ]+
∫

τ1

t
fα(s,−→us ,Zα

s )ds+
∫

τ1

t
ψα(t,uα

s )dAs +Ku,i
τ1 −Ku,i

t

−
∫

τ1

t
Zα

s dBs,

where we have used (2.21) and by noticing that Zα
s = Zu,θ0

s χ[τ0≤s<τ1[ = Zu,i
s on [t,τ1]. Then,

as Y u,i
τ1 ≥max

j 6=i
(Y u, j

τ1 −gi j(τ1))≥ Y u,θ1
τ1 −giθ1(τ1), we get

Y u,i
s ≥ (Y u,θ1

τ1 −gi,θ1(τ1))χ[τ1<T ]+ξ i=θ0 χ[τ1=T ]+
∫

τ1
t fα(s,−→us ,Zα

s )ds+
∫

τ1
t ψα(s,uα

s )dAs

+Ku,i
τ1 −Ku,i

t −
∫

τ1
t Zα

s dBs;

≥ Y u,θ1
τ2 χ[τ1<T ]+

∫
τ2

t fα(s,−→us ,Zα
s )ds+

∫
τ2

t ψα(s,uα
s )dAs +(Ku,i

τ2 −Ku,i
τ1 )

−
∫

τ2
t Zα

s dBs−gi,θ1(τ1)χ[τ1<T ]+Ku,i
τ1 −Ku,i

t +ξ θ0 χ[τ1=T ],

where we used the equation for Y u,θ1 between [τ1,τ2]. Repeating the same procedure as
many times as necessary, we get

Y u,i
t ≥ ξ α +

∫ T
t f (s,−→us ,Zα

s )ds+
∫ T

t ψα(s,uα
s )dAs−Gα

T + K̃α
T −

∫ T
t Zα

s dBs,

where K̃α
T = Ku,i

τ1 −Ku,i
t + ∑

n≥1
(Ku,θn

τn+1 −Ku,θn
τn ), which is non negative.Thus

Y u,i
t ≥ ξ α +

∫ T
t fα(s,−→us ,Zα

s )ds+
∫ T

t ψα(s,uα
s )dAs−Gα

T −
∫ T

t Zα
s dBs.

We then use the equation satisfied by (Pα ,Qα) to get

Y u,i
t − (Pα

t −Gα
t )≥

∫ T
t [ fα(s,−→us ,Zα

s )− fα(s,−→us ,Qα
s )]ds−

∫ T
t (Zα

s −Qα
s )dBs.
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Once again, thanks to Girsanov’s Theorem there exists P̃, s.t. dP̃ = ε(M)T dP, where
ε(M)t = eMt− 1

2 〈M〉t and Mt =
∫ t

0 χ{Zα
s 6=Qα

s }[ fα(s,−→us ,Zα
s )− fα(s,−→us ,Qα

s )](Z
α
s −Qα

s )
−1dBs.

Then

Y u,i
t − (Pα

t −Gα
t )≥

∫ T
t (Zα

s −Qα
s )dB̃s,

where B̃t = Bt−
∫ t

0 χ{Zα
s 6=Qα

s }[ fα(s,−→us ,Zα
s )− fα(s,−→us ,Qα

s )](Z
α
s −Qα

s )
−1ds, t 6 T is a Brow-

nian motion under P̃. It follows that

EP̃
(

Y u,i
t − (Pα

t −Gα
t ) |Ft

)
≥ 0.

Finally, as ε(M)t is a non-negative martingale, we obtain for all α ∈D i
t

Y u,i
t ≥ Pα

t −Gα
t , P-a.s. .

Our purpose is to give a representation for Y u,i
t as follows:

Y u,i
t = esssup

α∈D i
t

(Pα
t −Gα

t ).

Consider the strategy α∗ = (τ∗n ,θ
∗
n )n≥0 defined by:

τ∗0 = 0, θ ∗0 = i,

τ∗n+1 = inf{s≥ τ∗n , Y u,θ ∗n
s = max

j 6=θ ∗n
(Y u, j

s −gθ ∗n , j(s))}∧T , θ ∗n+1 = argmax
j 6=θ ∗n

(Y u, j
τ∗n+1
−gθ ∗n , j(τ

∗
n+1));

we need to show that α∗ is an admissible strategy under which Y u,i is optimal. Let us
first prove that:

1) P [τ∗n < T,∀n≥ 0] = 0,

2) E(Gα∗
T )2 < ∞.

We proceed by contradiction assuming that P [τ∗n < T,∀n≥ 0]> 0. By definition of α∗, this
means that

P
[
Y u,θ ∗n

τ∗n+1
= Y

u,θ ∗n+1
τ∗n+1

−gθ ∗n ,θ
∗
n+1

(τ∗n+1), θ ∗n 6= θ ∗n+1, ∀n≥ 1
]
> 0.

Since J is finite, there exists a loop i0, ..., ik, ik+1 = i0 such that i1 6= i0 and a subsequence
(nq)q>1 such that

P
[
Y u,il

τ∗nq+l
= Y u,il+1

τ∗nq+l
−gil ,il+1(τ

∗
nq+l

), l = 0, ...,k, ∀q> 1, ik+1 = i0

]
> 0.

Consider now τ = lim
n
↗ τ∗n , this implies that

P
[
Y u,il

τ = Y u,il+1
τ −gil ,il+1(τ), l = 0, ...,k, , ik+1 = i0

]
> 0,

which leads to

P [gi0i1(τ)+ ....+giki0(τ) = 0]> 0,
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that contradicts the non free loop property, then P [τ∗n < T,∀n≥ 0] = 0 holds.
We turn to rewrite the equation for Y u,i under the strategy α∗ and Skorokhod Condition

which means that Ku,θ ∗n
s −Ku,θ ∗n

τ∗n
= 0 for τ∗n ≤ s≤ τ∗n+1, resulting in

Y u,i
t = ξ

α∗+
∫

τ∗n

t
fα∗(s,~us,Zα

s )ds+
∫

τ∗n

t
ψα∗(s,uα∗

s )dAs−
∫

τ∗n

t
Zα∗

s dBs−Gα∗
τ∗n
, ∀n> 1.

By taking the limit, we get

Y u,i
t = ξ

α∗+
∫ T

t
fα∗(s,~us,Zα

s )ds+
∫ T

t
ψα∗(s,uα∗

s )dAs−
∫ T

t
Zα∗

s dBs−Gα∗
T .

This implies that E(Gα∗
T )2 < ∞ since we have (~u,Y u,i,Zα∗) ∈M 2

µ,λ (A)×S 2×H 2,d . It

follows that α∗ ∈D i
t and Y u,i

t = Pα∗
t −Gα∗

t . As a conclusion, we have

Y u,i
t = esssup

α∈D i
t

(Pα
t −Gα

t ),

that gives the uniqueness of the solution for system (2.20).

Now, let us introduce the following mapping:

Φ(~u) = (Y u,i)i=1,...,m,

where ~u ∈M 2
µ,λ (A), the objective is to show that Φ is a strict contraction on M 2

µ,λ (A)
equipped with the norm ‖.‖M 2

µ,λ (A)
.

Let us set, for~u and~v in M 2
µ,λ (A):

Fi(s,z) = fi(s,~us,z)∨ fi(s,~vs,z),
Ψi(s) = ψi(s,ui

s)∨ψi(s,vi
s);

and let (Ỹ , K̃, Z̃) be the unique solution of the system below: ∀i = 1, ...,m, ∀t 6 T ,
Ỹ i

t = ξ i +
∫ T

t Fi(s, Z̃i
s)ds+

∫ T
t Ψi(s)dAs + K̃i

T − K̃i
t −
∫ T

t Z̃i
sdBs,

Ỹ i
t >max

j 6=i
(Ỹ j

t −gi j(t)),∫ T
0 {Ỹ i

t −max
j 6=i

(Ỹ j
t −gi j(t))}dK̃i

t = 0.

(2.23)

We define now the following equation of switching:

P̃α
t = ξ

α +
∫ T

t
Fα(s, Q̃α

s )ds+
∫ T

t
Ψα(s)dAs−

∫ T

t
Q̃α

s dBs− (Gα
T −Gα

t ).

We know that Ỹ i
t = esssup

α∈D i
t

(P̃α
t −Gα

t ) = P̃α∗
t −Gα∗

t , where α∗ is the optimal strategy. Next,

we use Proposition 2.1 to prove that Y u,i ≤ Ỹ i and Y v,i ≤ Ỹ i.
For α ∈D i, let (Pα ,Qα) be the unique solution for (2.22) and (P′α ,Q′α) the solution to the
same generalized BSDE with data ( fα(.,~v., .),ψα(.,vi

.)). Then we have

Pα∗−Gα∗ ≤ Y u,i ≤ Ỹ i = P̃α∗−Gα∗ and P′α
∗
−Gα∗ ≤ Y v,i ≤ Ỹ i = P̃α∗−Gα∗ .
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It yields
| Y u,i−Y v,i |≤| P̃α∗−Pα∗ |+ | P̃α∗−P′α

∗
| . (2.24)

We want to express ‖Y u,i−Y v,i ‖M 2
µ,λ (A)

in terms of ‖~u−~v ‖M 2
µ,λ (A)

. To start with, note that

(P̃α∗−Pα∗ , Q̃α∗−Qα∗) is the unique solution for the following generalized BSDE.

P̃α∗
t −Pα∗

t =
∫ T

t
[Fα∗(s, Q̃α∗

s )− fα∗(s,~us,Qα∗
s )]ds+

∫ T

t
[Ψα∗(s)−ψα∗(s,uα∗

s )]dAs

−
∫ T

t (Q̃α∗
s −Qα∗

s )dBs, ∀t 6 T.

Under the assumptions (H2)(ii) and (H2)(iii), by Theorem 1.6 [22] and the remarks therein,(∫ t
0 eµs+λAs(P̃α∗

s −Pα∗
s )(Q̃α∗

s −Qα∗
s )dBs

)
06t6T is a uniformly integrable martingale, a fact

that will be used in the sequel.
By Itô’s formula applied to eµt+λAt | P̃α∗

t −Pα∗
t |2, we have: ∀t 6 T ,

eµt+λAt | P̃α∗
t −Pα∗

t |2 +
∫ T

t eµs+λAs‖Q̃α∗
s −Qα∗

s ‖2ds

= 2
∫ T

t eµs+λAs(P̃α∗
s −Pα∗

s )[Fα∗(s, Q̃α∗
s )− fα∗(s,~us,Qα∗

s )]ds

−µ
∫ T

t eµs+λAs | P̃α∗
s −Pα∗

s |2 ds+2
∫ T

t eµs+λAs(P̃α∗
s −Pα∗

s )[Ψα∗(s)−ψα∗(s,uα∗
s )]dAs

−λ
∫ T

t eµs+λAs | P̃α∗
s −Pα∗

s |2 dAs−2
∫ T

t eµs+λAs(P̃α∗
s −Pα∗

s )(Q̃α∗
s −Qα∗

s )dBs.

Then by taking the expectation and using the fact that | x∨y−y |≤| x−y |, we obtain:∀t 6 T ,

E[eµt+λAt | P̃α∗
t −Pα∗

t |2]+E[
∫ T

t eµs+λAs‖Q̃α∗
s −Qα∗

s ‖2ds]

+µE[
∫ T

t eµs+λAs | P̃α∗
s −Pα∗

s |2 ds]+λE[
∫ T

t eµs+λAs | P̃α∗
s −Pα∗

s |2 dAs

≤ 2ME[
∫ T

t eµs+λAs(P̃α∗
s −Pα∗

s ){‖~u−~v ‖+‖Q̃α∗
s −Qα∗

s ‖}ds]

+2ME[
∫ T

t eµs+λAs | P̃α∗
s −Pα∗

s |‖~u−~v ‖ dAs].

Hence, ∀t 6 T ,

E[eµt+λAt | P̃α∗
t −Pα∗

t |2]+E[
∫ T

t eµs+λAs‖Q̃α∗
s −Qα∗

s ‖2ds]

+µE[
∫ T

t eµs+λAs | P̃α∗
s −Pα∗

s |2 ds]+λE[
∫ T

t eµs+λAs | P̃α∗
s −Pα∗

s |2 dAs

≤ E[
∫ T

t eµs+λAs | P̃α∗
s −Pα∗

s |2 ((qM2 +2M2)ds+qM2dAs)]

+1
qE[
∫ T

t eµs+λAs ‖~u−~v ‖2 (ds+dAs)]+
1
2E[
∫ T

t eµs+λAs ‖ Q̃α∗
s −Qα∗

s ‖2 ds.

As E[eµt+λAt | P̃α∗
t −Pα∗

t |2] and E[
∫ T

t eµs+λAs‖Q̃α∗
s −Qα∗

s ‖2ds] are non-negative, and by
choosing µ = 1+qM2 +2M2 and λ = 1+qM2, where q > 4 we obtain: ∀t 6 T ,

E[
∫ T

t eµs+λAs | P̃α∗
s −Pα∗

s |2 ds+
∫ T

t eµs+λAs | P̃α∗
s −Pα∗

s |2 dAs]
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≤ 1
qE[
∫ T

t eµs+λAs ‖~u−~v ‖2 ds+
∫ T

t eµs+λAs ‖~u−~v ‖2 dAs].

We proceed likewise to obtain the inequality with P̃α∗−P′α
∗
. Finally, we go back to (2.24)

and we obtain: ∀t 6 T ,

E[
∫ T

t eµs+λAs | Y u,i
s −Y v,i

s |2 ds+
∫ T

t eµs+λAs | Y u,i
s −Y v,i

s |2 dAs]

≤ 4
qE[
∫ T

t eµs+λAs ‖~u−~v ‖2 ds+
∫ T

t eµs+λAs ‖~u−~v ‖2 dAs].

We deduce that Φ is a strict contraction on M 2
µ,λ (A) provided µ > 1+ qM2 + 2M2 and

λ > 1+qM2. Hence, it has a unique fixed point which gives the uniqueness of the solution
for system of generalized reflected BSDEs (2.1).

We end this section by giving a comparison result for generalized reflected BSDEs
systems:

Proposition 2.1 Let (Y i)i∈J and (Ỹ i)i∈J be respectively the unique solutions to the general-
ized reflected BSDEs system (2.1), with respective data ((ξ i)i∈J,( fi)i∈J,(ψi)i∈J,(gi j)(i, j)∈J2)

and ((ξ̃ i)i∈J,( f̃i)i∈J,(ψ̃i)i∈J,(g̃i j)(i, j)∈J2). If for any i ∈ J, ξ i ≤ ξ̃ i, fi ≤ f̃i, ψi ≤ ψ̃i and
gi j ≥ g̃i j, then we have:

Y i
t ≤ Ỹ i

t , ∀i ∈ J, ∀t 6 T, P−a.s..

Proof: We apply Remark 2.1 to the increasing approximation schemes (2.4) which con-
verge respectively to (Y i)i∈J and (Ỹ i)i∈J . Then we deduce the comparison by taking the
limit.

3 System of PDEs with Interconnected Obstacles and nonlinear
Neumann Boundary Conditions

This section is devoted to the existence and uniqueness of solution in viscosity sense for
system of PDEs with interconnected obstacles and conditions on the boundary. To begin
with, let D be an open bounded subset of Rd , such that D= {φ > 0} and ∂D= {φ = 0}. The
function φ is in C2

b(Rd) and satisfies | ∇φ(x) |= 1 whenever x ∈ ∂D, and ∇φ(x) coincides
with the unit normal pointing towards the interior of D. Then the interior sphere condition
holds (see [22] and the references therein) i.e. there exists r > 0 such that for any x ∈ ∂D
and y ∈ D we have:

| y− x |2 +r〈∇φ(x),y− x〉 ≥ 0. (3.1)

Let (t,x) be in [0,T ]×D and (X t,x
s ,At,x

s )t6s6T the solution of the reflected SDE below:
dX t,x

s = b(X t,x
s )ds+σ(X t,x

s )dBs +∇φ(X t,x
s )dAt,x

s , s ∈ [t,T ];
At,x

s =
∫ s

t χ{X t,x
r ∈∂D}dAt,x

r , s ∈ [t,T ];

X t,x
s = x, s≤ t;

(3.2)

where At,xis increasing, the functions b : Rd −→ Rd and σ : Rd −→ Rd×d are Lipschitz.
Note that (X t,x

s ,At,x
s )t6s6T is valued in D×R+.

The following proposition is borrowed from Pardoux-Zhang [22]:
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Proposition 3.1 For each t ∈ [0,T ], there exists a constant C such that for all x,x′ ∈ D,

E[ sup
t6s6T

| X t,x
s −X t,x′

s |4]≤C | x− x′ |4,

E[ sup
t6s6T

| At,x
s −At,x′

s |4]≤C | x− x′ |4 .

Moreover, for all p> 1, there exists a constant Cp such that for all (s,x) ∈ [t,T ]×D,

E(| At,x
s |p)≤Cp(1+ t p),

and for each µ > 0, s ∈ [t,T ], there exists C(µ,s) such that for all x ∈ D,

E(eµAt,x
s )≤C(µ,s).

Suppose now that the data ((ξi)i∈J,( fi)i∈J,(ψi)i∈J,(gi j)(i, j)∈J2) of the system of GRBS-
DEs (2.1) take the following form:

ξi(ω) =hi(X
t,x
T (ω));

fi(ω,s,x,~y,z) = fi(s,X t,x
r (ω),~y,z); (3.3)

ψi(ω,s,x,y) =ψi(s,X t,x
s (ω),y);

gi j(ω,s,x) =gi j(s,X t,x
s (ω)).

The following assumptions are an adaptation of the ones introduced in the first section
once one is in the Markovian framework:
Assumptions (A2):
Let i ∈ {1, ...,m} and µ > 0,

(H1) Let fi : [0,T ]×D×Rm×R1×d −→ R and ψi : [0,T ]×D×R−→ R be such that

(i) fi(t,x,~0,0) and ψi(t,x,0) are jointly continuous.

(i) (t,x)−→ fi(t,x,~y,z) and (t,x)−→ψi(t,x,y) are uniformly continuous w.r.t. (~y,z)
and y respectively.

(iii) fi and ψi are Lipschitz continuous w.r.t. (~y,z) and y respectively.

(iv) ∃β < 0 such that (y− y′)(ψi(t,x,y)−ψi(t,x,y′))≤ β | y− y′ |2.

(v) fi(t,x,~y,z) is non-decreasing w.r.t. y j for j 6= i, whenever the other components
are fixed.

(H2) For any j ∈ {1, ...,m}, we have:

• gi j : [0,T ]×D−→ R is continuous, non-negative such that gii = 0.

• gi j satisfies the non-free loop property, i.e.,∀(t,x) ∈ [0,T ]×D, ∀i1, ..., ik such
that i1 6= i2, i1 = ik and card{i1, ..., ik}= k−1, we have:

gi1i2(t,x)+ ...+gik−1ik(t,x)> 0.
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(H3) hi : x−→ hi(x), is continuous s.t. hi(x)≥max
j 6=i

(h j(x)−gi j(T,x)), ∀x ∈ D.

These assumptions, in combination with the properties of the solution of (3.2) (see [21]),
show that Assumptions (A1) are well satisfied. Then by Theorem 2.1 and Theorem 2.2, for
any (t,x) ∈ [0,T ]×D and i ∈ J, there exists a unique solution (Y i,t,x

s ,Ki,t,x
s ,Zi,t,x

s )t6s6T to the
following system:

Y i,t,x
s = hi(X

t,x
T )+

∫ T
s fi(r,X

t,x
r ,~Y t,x

r ,Zi,t,x
r )dr+

∫ T
s ψi(r,X

t,x
r ,Y i,t,x

r )dAt,x
r +Ki,t,x

T −Ki,t,x
s

−
∫ T

s Zi,t,x
r dBr,

Y i,t,x
s >max

j 6=i
(Y j,t,x

s −gi j(s,X
t,x
s )),∫ T

0 {Y
i,t,x
s −max

j 6=i
(Y j,t,x

s −gi j(s,X
t,x
s ))}dKi,t,x

s = 0.

On the basis of the studies conducted on generalized reflected BSDEs [26], and several
works on multi-switching problems, amongst them [15], the HJB system associated with
our switching problem is the following: ∀i = 1, ...,m,

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));−∂tui(t,x)−L ui(t,x)

− fi(t,x,(uk(t,x))k=1,...,m,(σ
>Dxui)(t,x))}= 0, (t,x) ∈ [0,T ]×D;

∂ui

∂ l
(t,x)+ψi(t,x,ui(t,x)) = 0, (t,x) ∈ [0,T ]×∂D;

ui(T,x) = hi(x), x ∈ D,

(3.4)

where the operator L is defined by L = 1
2 Tr(σσ>)D2

xx.+b>Dx. , and at a point x ∈ ∂D,

∂

∂ l = 〈Oφ(x),Dx.〉=
d
∑

i=1

∂φ

∂xi
(x) ∂

∂xi
.

Since we are interested in finding a function (u1, ...,um) which solves (3.4) in viscosity
sense, we are led to recall some definitions introduced in [6].

Definition 3.1 For a locally bounded function u : [0,T ]×D→R, we define its lower semi-
continuous envelope u∗ and its upper semicontinuous enveloppe u∗ as follows:

u∗(t,x) = lim
(t ′,x′)−→(t,x)

t′<T

u(t ′,x′) and u∗(t,x) = lim
(t ′,x′)−→(t,x)

t′<T

u(t ′,x′).

Definition 3.2 (Subjets and Superjets)
(i) For a lower semi continuous (lsc) (resp. upper semi continuous (usc)) function u : [0,T ]×
D→ R, we define the parabolic subjet J2−u(t,x) (resp. superjet J2+u(t,x)) of u at (t,x) ∈
[0,T ]×D, the set of triples (p,q,M) ∈ R×Rd × Sd s.t. for any (t ′,x′) ∈ (0,T )×D, we
have:

u(t ′,x′)≥ u(t,x)+ p(t ′− t)+ 〈q,x′− x〉+ 1
2
〈x′− x,M(x′− x)〉+o(| t ′− t |+ | x′− x |2)

(resp. u(t ′,x′)≤ u(t,x)+ p(t ′−t)+〈q,x′−x〉+ 1
2
〈x′−x,M(x′−x)〉+o(| t ′−t |+ | x′−x |2)).

(ii) For (t,x) ∈ [0,T ]×D, we define the parabolic limiting subjet J2−u(t,x) (resp. the
parabolic limiting superjet J2+u(t,x)) as follows:
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J2−u(t,x) = {(p,q,M) ∈ R×Rd×Sd : ∃(tn,xn, pn,qn,Mn) ∈ [0,T ]×D×R×Rd×Sd

s.t. (pn,qn,Mn) ∈ J2−u(tn,xn) and (tn,xn, pn,qn,Mn)−→ (t,x, p,q,M) as n→ ∞},

(resp. J2+u(t,x) = {(p,q,M)∈R×Rd×Sd : ∃(tn,xn, pn,qn,Mn)∈ [0,T ]×D×R×Rd×Sd

(pn,qn,Mn) ∈ J2+u(tn,xn) and (tn,xn, pn,qn,Mn)−→ (t,x, p,q,M) as n→ ∞}),

where Sd is the set of symmetric real matrices of dimension d.

We are ready to give the definition of viscosity subsolution and supersolution that we
will adopt throughout this section.

Definition 3.3 (Viscosity solution)
(i) A function (u1, ...,um) : [0,T ]×D−→ Rm such that for any i ∈ J, ui is lsc (resp. usc), is
called a viscosity supersolution (resp. subsolution) to (3.4), if for any i ∈ J, we have:

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));

−p−b(x)>q− 1
2 Tr[σσ>(x)M]− fi(t,x,(uk(t,x))k=1,...,m,σ

>(x)q)} ≥ 0,
(t,x) ∈ [0,T )×D, (p,q,M) ∈ J2−ui(t,x);

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));−p−b(x)>q− 1
2 Tr[σσ>(x)M]

− fi(t,x,(uk(t,x))k=1,...,m,σ
>(x)q)}∨{−〈∇φ(x),q〉−ψi(t,x,ui(t,x))} ≥ 0,

(t,x) ∈ [0,T )×∂D, (p,q,M) ∈ J2−ui(t,x);

ui(T,x)≥ hi(x), x ∈ D.
(3.5)

(resp.

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));

−p−b(x)>q− 1
2 Tr[σσ>(x)M]− fi(t,x,(uk(t,x))k=1,...,m,σ

>(x)q)} ≤ 0,
(t,x) ∈ [0,T )×D, (p,q,M) ∈ J2+ui(t,x);

min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));−p−b(x)>q− 1
2 Tr[σσ>(x)M]

− fi(t,x,(uk(t,x))k=1,...,m,σ
>(x)q)}∧{−〈∇φ(x),q〉−ψi(t,x,ui(t,x))} ≤ 0,

(t,x) ∈ [0,T )×∂D, (p,q,M) ∈ J2+ui(t,x);

ui(T,x)≤ hi(x), x ∈ D.)

(3.6)

(ii) A locally bounded function (u1, ...,um) : [0,T ]×D−→ R is called a viscosity solu-
tion if (u1∗, ...,um∗) (resp. (u∗1, ...,u

∗
m)) is a viscosity supersolution (resp. subsolution).
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3.1 Uniqueness of the viscosity solution

In this paragraph, we deal with the uniqueness of the solution to system (3.4). It will be
obtained by the comparison between subsolutions and supersolutions of the PDEs system
(3.4):

Theorem 3.1 If (ui)i∈J and (vi)i∈J are respectively subsolution and supersolution of (3.1),
then for any i ∈ J

ui ≤ vi, on [0,T ]×D.

Proof: The proof will be obtained in two steps.
Step 1 : We first assume that there exists a constant λ such that λ < −m.(max

j∈J
C j

f ), (C j
f

being the Lipschitz constant of f j for j ∈ J) and verifying:
∀i ∈ J, ∀t,x,y1, ...,yi−1,yi+1, ...,ym,y,y,z, if y≥ y then

fi(t,x,y1, ...,yi−1,y,yi+1, ...,ym,z)− fi(t,x,y1, ...,yi−1,y,yi+1, ...,ym,z)≤ λ (y− y). (3.7)

Let (ui)i∈J and (vi)i∈J be respectively subsolution and supersolution to the system (3.4). We
first construct an approximation uε

i and vi
ε such that uε

i → ui and vi
ε→ vi uniformly as ε→ 0,

then we are going to show that they are respectively subsolution and supersolution for two
PDEs systems that will be given explicitly. Next, we show that uε

i ≤ vi
ε , which would permit

to conclude that ui ≤ vi. We recall the following lemma, from [6]:

Lemma 3.1 Let ν be in C(∂D,Rd) satisfying −〈∇φ(x),ν(x)〉 > 0, ∀x ∈ ∂D, then there
exists ϕ in C2(D) such that

〈ν(x),Dϕ(x)〉 ≥ 1, ∀x ∈ ∂D and ϕ ≥ 0 on D. � (3.8)

We apply the previous lemma for ν = −∇φ , then there exists ϕ ∈ C2(D), that satisfies
〈−∇φ(x),Dϕ(x)〉 ≥ 1, ∀x ∈ ∂D and ϕ is positive on D. Then put:

uε
i (t,x) = ui(t,x)− εϕ(x)−C and vi

ε(t,x) = vi(t,x)+
ε

t
+ εϕ(x)+C,

where, C is a positive constant that will be chosen later on.
Let us show that uε

i is a subsolution to a specific PDEs system. First, note that for any x∈D,
we have: uε

i (T,x)≤ ui(T,x)≤ hi(x).
Now, let (t,x) be in [0,T )×D and (pε ,qε ,Mε) ∈ J2+uε

i (t,x). If we set p = pε , q =

qε + εDϕ(x) and M = Mε + εD2ϕ(x), we can show easily that (p,q,M) ∈ J2+ui(t,x) and
we have:
min{uε

i (t,x)−max
j 6=i

(uε
j(t,x)−gi j(t,x));−pε −b(x)>qε − 1

2 Tr[σσ>(x)Mε ]

− fi(t,x,~uε(t,x),σ>(x)qε)}= min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));

−p−b(x)>q− 1
2 Tr[σσ>(x)M]− fi(t,x,~u(t,x),σ>(x)q)+b(x)>(εDϕ(x))

+1
2 Tr[σσ>(x)(εD2ϕ(x))]+ fi(t,x,~u(t,x),σ>(x)q)− fi(t,x,~uε(t,x),σ>(x)qε)}.

Since b, σ are continuous on D and ϕ ∈C2(D), there exists κ1 > 0 satisfying:

b(x)>(εDϕ(x))+
1
2

Tr[σσ
>(x)(εD2

ϕ(x))]≤ εκ1.
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Next with fi(t,x,~u(t,x),σ>(x)q)− fi(t,x,~uε(t,x),σ>(x)qε), we use a linearization proce-
dure and both assumptions (H1)(iii) and (3.7) to write:

fi(t,x,~u(t,x),σ>(x)q)− fi(t,x,~uε(t,x),σ>(x)qε)

≤max
j∈J

C j
f (m−1)(εϕ(x)+C)+λ (εϕ(x)+C)+κ2 | σ>(x)(εD2ϕ(x)) |;

≤ (m.max
j∈J

C j
f +λ )(εϕ(x)+C)−max

j∈J
C j

f (εϕ(x)+C)+κ3ε.

Recall that m.max
j∈J

C j
f +λ < 0 and ϕ > 0, then we deduce that

b(x)>(εDϕ(x))+ 1
2 Tr[σσ>(x)(εD2ϕ(x))]

+ fi(t,x,~u(t,x),σ>(x)q)− fi(t,x,~uε(t,x),σ>(x)qε)≤ εκ4−C.max
j∈J

C j
f , (3.9)

where κ4 is positive. By choosing C = εκ4/max
j∈J

C j
f , we obtain that the right hand side of

(3.9) is negative and then,

min{uε
i (t,x)−max

j 6=i
(uε

j(t,x)−gi j(t,x));−pε −b(x)>qε − 1
2 Tr[σσ>(x)Mε ]

− fi(t,x,~uε(t,x),σ>(x)qε)} ≤min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));

− p−b(x)>q− 1
2

Tr[σσ
>(x)M]− fi(t,x,~u(t,x),σ>(x)q)}. (3.10)

On the other hand, we have:
−〈∇φ(x),qε〉−ψi(t,x,uε

i (t,x))

=−〈∇φ(x),q〉−ψi(t,x,ui(t,x)−εϕ(x)−C)−ε〈−∇φ(x),Dϕ(x)〉.

As ψi is non-increasing and using Lemma 3.1, we get for x ∈ ∂D:

−〈∇φ(x),qε〉−ψi(t,x,uε
i (t,x))+ ε ≤−〈∇φ(x),q〉−ψi(t,x,ui(t,x)). (3.11)

Moreover, ui satisfies (3.6), we deduce from (3.10): ∀x ∈ D,

min{uε
i (t,x)−max

j 6=i
(uε

j(t,x)−gi j(t,x));

−pε −b(x)>qε − 1
2 Tr[σσ>(x)Mε ]− fi(t,x,~uε(t,x),σ>(x)qε)} ≤ 0,

whereas, when x ∈ ∂D, it follows from (3.10) and (3.11) that:

min{uε
i (t,x)−max

j 6=i
(uε

j(t,x)−gi j(t,x));−pε −b(x)>qε − 1
2 Tr[σσ>(x)Mε ]

− fi(t,x,~uε(t,x),σ>(x)qε)}∧{−〈∇φ(x),qε〉−ψi(t,x,uε
i (t,x))+ ε};

≤min{ui(t,x)−max
j 6=i

(u j(t,x)−gi j(t,x));−p−b(x)>q− 1
2 Tr[σσ>(x)M]
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− fi(t,x,(uk(t,x))k=1,...,m,σ
>(x)q)}∧{−〈∇φ(x),q〉−ψi(t,x,ui(t,x))} ≤ 0.

We conclude that ∀i ∈ J, uε
i satisfies the following system:

min{uε
i (t,x)−max

j 6=i
(uε

j(t,x)−gi j(t,x));

−pε −b(x)>qε − 1
2 Tr[σσ>(x)Mε ]− fi(t,x,~uε(t,x),σ>(x)qε)} ≤ 0,

(t,x) ∈ [0,T )×D, (pε ,qε ,Mε) ∈ J2+uε
i (t,x);

min{uε
i (t,x)−max

j 6=i
(uε

j(t,x)−gi j(t,x));−pε −b(x)>qε − 1
2 Tr[σσ>(x)Mε ]

− fi(t,x,~uε(t,x),σ>(x)qε)}∧{−〈∇φ(x),qε〉−ψi(t,x,uε
i (t,x))+ ε} ≤ 0,

(t,x) ∈ [0,T )×∂D, (pε ,qε ,Mε) ∈ J2+uε
i (t,x);

uε
i (T,x)≤ hi(x), x ∈ D.

(3.12)
As for vε , recall that vi satisfies (3.5). Then, with a slight modification and taking into
account of assumptions (3.7), (H2)-(v) and the fact that the mapping ψi(t,x, .) is non-
increasing, we show that ∀i ∈ J, vi

ε satisfies the following system of inequalities:

min{vi
ε(t,x)−max

j 6=i
(v j

ε(t,x)−gi j(t,x));

−pε −b(x)>qε − 1
2 Tr[σσ>(x)Mε ]− fi(t,x,~vε(t,x),σ>(x)qε)− ε

t2 } ≥ 0,
(t,x) ∈ [0,T )×D, (pε ,qε ,Mε) ∈ J2−vi

ε(t,x);

min{vi
ε(t,x)−max

j 6=i
(v j

ε(t,x)−gi j(t,x));−pε −b(x)>qε − 1
2 Tr[σσ>(x)Mε ]

− fi(t,x,~vε(t,x),σ>(x)qε)− ε

t2 }∨{−〈∇φ(x),qε〉−ψi(t,x,vi
ε(t,x))− ε} ≥ 0,

(t,x) ∈ [0,T )×∂D, (pε ,qε ,Mε) ∈ J2−vi
ε(t,x);

vi
ε(T,x)≥ hi(x), x ∈ D.

(3.13)

Now, let us show by contradiction that uε
i ≤ vi

ε , ∀i∈ J. Assume that max
[0,T ]×D

max
i∈J

(uε
i −vi

ε)> 0.

Then there exists (t,x)∈ [0,T ]×D such that

max
i∈J

(uε
i (t,x)− vi

ε(t,x))> 0.

As in [15], there exists k ∈ J̃ = { j ∈ J, uε
j(t,x)− v j

ε(t,x) = max
k∈J

(uε
k(t,x)− vk

ε(t,x))} such

that
uε

k(t,x)> max
j 6=k

(uε
j(t,x)−gk j(t,x)), (3.14)

This is obtained mainly due to the non-free loop property.
Let us fix j ∈ J̃ that satisfies (3.14) and suppose first that x ∈ ∂D. For (t,x,y) in [0,T ]×D2,
we define the following function:

Φ
j
α(t,x,y) = uε

j(t,x)− v j
ε(t,y)−Ψ

α
j (t,x,y),
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where Ψα
j (t,x,y) =

α

2 | x− y |2 −ψ j(t,x,uε
j(t,x))〈∇φ(x),x− y〉+ | x− x |4 + | t− t |2.

Let (tα ,xα ,yα) be the maximum point of Φ
j
α over [0,T ]×D2, which exists due to the

upper semicontinuity of uε
i −vi

ε and the compactness of D, and let Mα be defined as follows:

Mα = max
(t,x,y)∈[0,T ]×D×D

Φ
j
α(t,x,y).

It is clear that this supremum is achieved only if tα is in (0,T ).
Next, we can see that

Mα ≥ max
(t,x,y)∈[0,T ]×D/x=y

uε
j(t,x)− v j

ε(t,x)− | x− x |4 − | t− t |2 = uε
j(t,x)− v j

ε(t,x).

Note that Mα is non-increasing w.r.t. α . On the other hand, we have α | xα − yα |2−→
α→∞

0

(see Lemma 3.1 [6]). It follows that (xα − yα) −→
α→∞

0, then we get (tα ,xα ,yα) −→
α→∞

(t̂, x̂, x̂),
which implies that

uε
j(t,x)− v j

ε(t,x)≤ uε
j(t̂, x̂)− v j

ε(t̂, x̂),

as (t,x) is the maximum point of uε
j − v j

ε , we necessarily have

uε
j(t,x)− v j

ε(t,x) = uε
j(t̂, x̂)− v j

ε(t̂, x̂).

Thanks to the semi-continuity of the functions uε
j and v j

ε , we have
uε

j(t,x)− v j
ε(t,x)

≤ lim
α→∞

(uε
j(tα ,xα)− v j

ε(tα ,yα))≤ lim
α→∞

(uε
j(tα ,xα)− v j

ε(tα ,yα))≤ uε
j(t,x)− v j

ε(t,x).

Then lim
α→∞

uε
j(tα ,xα)− v j

ε(tα ,yα) = uε
j(t,x)− v j

ε(t,x), thus (tα ,xα) −→
α→∞

(t,x).

Also, we deduce from the results above that

lim
α→∞

uε
j(tα ,xα) = uε

j(t,x)− v j
ε(t,x)+ lim

α→∞

v j
ε(tα ,yα)≥ uε

j(t,x)≥ lim
α→∞

uε
j(tα ,xα).

It follows that (uε
j(tα ,xα),v

j
ε(tα ,yα)) −→

α→∞
(uε

j(t,x),v
j
ε(t,x)), then as (uε

j) j∈J are usc and

(gi j)(i, j)∈J2 are continuous, by (3.14) we get:

uε
j(tα ,xα)> max

k 6= j
(uε

k(tα ,xα)−g jk(tα ,xα)). (3.15)

Go back now to Ψα
j , we note that

DxΨα
j (t,x,y) = α(x− y)−ψ j(t,x,uε

j(t,x))∇φ(x)+4 | x− x |2 (x− x),

DyΨα
j (t,x,y) =−α(x− y)+ψ j(t,x,uε

j(t,x))∇φ(x) and ∂tΨ
α
j (t,x,y) = 2(t− t).

Now, recall the interior sphere condition (3.1) and we distinguish two cases. If xα ∈ ∂D, we
have:

−〈∇φ(xα),DxΨα
j (tα ,xα ,yα)〉−ψ j(tα ,xα ,uε

j(tα ,xα)) =−α〈∇φ(xα),xα − yα〉
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−4 | xα − x |2 〈∇φ(xα),xα − x〉+ψ j(t,x,uε
j(t,x))〈∇φ(x),∇φ(xα)〉−ψ j(tα ,xα ,uε

j(tα ,xα)),

≥−α

r | xα−yα |2 −4
r | xα−x |4 +ψ j(t,x,uε

j(t,x))〈∇φ(x),∇φ(xα)〉−ψ j(tα ,xα ,uε
j(tα ,xα)).

In view of the convergences above, we know that the right hand side tends to 0 as α → ∞.
Then for α large enough we deduce that

−〈∇φ(xα),DxΨ
α
j (tα ,xα ,yα)〉−ψ j(tα ,xα ,uε

j(tα ,xα))>−ε. (3.16)

Similarly, if yα ∈ ∂D, we get

−〈∇φ(yα),−DyΨα
j (tα ,xα ,yα)〉−ψ j(tα ,yα ,v

j
ε(tα ,yα))

= α〈∇φ(yα),yα −xα〉+ψ j(t,x,uε
j(t,x))〈∇φ(x),∇φ(yα)〉−ψ j(tα ,xα ,v

j
ε(tα ,yα)),

≤ α | xα − yα |2 +ψ j(t,x,uε
j(t,x))〈∇φ(x),∇φ(yα)〉−ψ j(tα ,xα ,v

j
ε(tα ,yα)),

≤α | xα−yα |2 +ψ j(t,x,uε
j(t,x))〈∇φ(x),∇φ(yα)〉−ψ j(t,x,uε

j(t,x))〈∇φ(x),∇φ(x)〉

+ψ j(t,x,v
j
ε(t,x))−ψ j(tα ,xα ,v

j
ε(tα ,yα))+ψ j(t,x,uε

j(t,x))−ψ j(t,x,v
j
ε(t,x)).

We know that

α | xα − yα |2 +ψ j(t,x,uε
j(t,x))〈∇φ(x),∇φ(yα)〉

−ψ j(t,x,uε
j(t,x))〈∇φ(x),∇φ(x)〉+ψ j(t,x,v

j
ε(t,x))−ψ j(tα ,xα ,v

j
ε(tα ,yα))→ 0,

then it can be strictly dominated by ε for α large. In addition, since ψi is non-increasing we
have ψ j(t,x,uε

j(t,x))−ψ j(t,x,v
j
ε(t,x))≤ 0. It follows that:

−〈∇φ(yα),−DyΨ
α
j (tα ,xα ,yα)〉−ψ j(tα ,yα ,v

j
ε(tα ,yα))− ε < 0. (3.17)

Remember that uε
j is a subsolution for system (3.12) and v j

ε is a supersolution for (3.13).
Then (3.16) and (3.17) lead to the following inequalities: ∀(t,x) ∈ [0,T ]× ∂D, ∀α large
enough,

−∂tΨ
α
j (tα ,xα ,yα)−b(xα)

>DxΨα
j (tα ,xα ,yα)− 1

2 Tr[σσ>(xα)Mε ]

− fi(tα ,xα ,~uε(tα ,xα),σ
>(xα)DxΨα

j (tα ,xα ,yα))≤ 0,

for (∂tΨ
α
j (tα ,xα ,yα),DxΨα

j (tα ,xα ,yα),Mε) ∈ J2+uε
j(tα ,xα);

−∂tΨ
α
j (tα ,xα ,yα)−b(yα)

>(−DyΨα
j (tα ,xα ,yα))− 1

2 Tr[σσ>(yα)Mε ]

− fi(tα ,yα ,(vk
ε(tα ,yα))k=1,...,m,σ

>(yα)(−DyΨα
j (tα ,xα ,yα)))≥ 0,

for (∂tΨ
α
j (tα ,xα ,yα),−DyΨα

j (tα ,xα ,yα),Mε) ∈ J2−v j
ε(tα ,yα);

Before we proceed, let us emphasize on the fact that if x ∈ D, the subsequence (xα ,yα)
is in D×D for α large enough, then the inequalities above hold true. Therefore, we can
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apply Crandall-Ishii-Lions’s Lemma (Theorem 3.2 [6]) with uε
j and v j

ε on (0,T )×D and

ε = 1
α

to find (pu
α ,q

u
α ,M

u
α) ∈ J2+uε

j(tα ,xα) and (pv
α ,q

v
α ,M

v
α) ∈ J2−v j

ε(tα ,xα) such that

pu
α − pv

α = ∂tΨ
α
j (tα ,xα ,yα) = 2(tα − t),

qu
α −qv

α =−(DxΨα
j (tα ,xα ,yα)−DyΨα

j (tα ,xα ,yα)),

and −(α+ ‖ A ‖)
(

I 0
0 I

)
≤
(

Mu
α 0

0 Mv
α

)
≤ A+ 1

α
A2, where A = D2

(x,y)Ψ
α
j (tα ,xα ,yα).

By replacing the latter in the above inequations, we obtain

−pu
α −b(xα)

>qu
α − 1

2 Tr[σσ>(xα)Mu
α ]− f j(tα ,xα ,~uε(tα ,xα),σ

>(xα)qu
α)≤ 0,

−pv
α −b(yα)

>qv
α − 1

2 Tr[σσ>(yα)Mv
α ]− f j(tα ,yα ,~vε(tα ,yα),σ

>(yα)qv
α)≥ 0.

Combining the two inequalities, gives

−(pu
α − pv

α)− (b(xα)
>qu

α −b(yα)
>qv

α)− 1
2 Tr[σσ>(xα)Mu

α −σσ>(yα)Mv
α ]

−{ f j(tα ,xα ,~uε(tα ,xα),σ
>(xα)qu

α)− f j(tα ,yα ,~vε(tα ,yα),σ
>(yα)qv

α)} ≤ 0.

Thanks to the uniform continuity of f j, the Lipschitz assumption on b and σ and the
above convergences, we can find some Σα such that lim

α−→∞
Σα 6 0 and

−{ f j(tα ,xα ,~uε(tα ,xα),σ
>(xα)qu

α)− f j(tα ,xα ,~vε(tα ,yα),σ
>(xα)qu

α)} ≤ Σα .

Yet again, f j is Lipschitz w.r. to~y, and as long as it verifies (3.7), we obtain

−λ (uε
j(tα ,xα)− v j

ε(tα ,yα))−∑
k 6= j

Θ
jk
α (uε

k(tα ,xα)− vk
ε(tα ,yα))≤ Σα ,

where Θ
jk
α stands for the increment rate of f j with respect to yk for k 6= j. Observe that

Θ
jk
α is nonnegative and bounded by C j

f the Lipschitz constant, thanks to the monotonicity
condition on f j, then we have:

−λ (uε
j(tα ,xα)− v j

ε(tα ,yα))≤ ∑
k 6= j

Θ
jk
α (uε

k(tα ,xα)− vk
ε(tα ,yα))

++Σα ,

≤C j
f ∑
k 6= j

(uε
k(tα ,xα)− vk

ε(tα ,yα))
++Σα .

Taking the superior limit in both sides as α → ∞, with the semicontinuity of uε
k and vk

ε , we
obtain: ∀ j ∈ J̃

−λ (uε
j(t,x)− v j

ε(t,x))≤C j
f ∑
k 6= j

(uε
k(t,x)− vk

ε(t,x))
+,

≤ (m−1)C j
f (u

ε
j(t,x)− v j

ε(t,x)),

which is contradictory since uε
j(t,x)− v j

ε(t,x)> 0 and −λ > mC j
f .
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Thus ∀i ∈ J, uε
i ≤ vi

ε on [0,T )×D. To conclude, it suffices to take the limit as ε → 0.

Step 2 : General case.
To handle the general case in which the generator f j is no longer claimed to satisfy the
assumption (3.7), we consider the following system for λ arbitrary in R and t ∈ [0,T ):

min{ũi(t,x)−max
j 6=i

(ũ j(t,x)− eλ tgi j(t,x));−∂t ũi(t,x)−L ũi(t,x)+λ ũi(t,x)

−eλ t fi(t,x,(e−λ t ũk(t,x))k=1,...,m,e−λ tσ>(x)Dxũi(t,x))}= 0, (t,x) ∈ [0,T )×D;
∂ ũi

∂ l
+ eλ tψi(t,x,e−λ t ũi(t,x)) = 0, (t,x) ∈ [0,T )×∂D;

ũi(T,x) = eλT hi(x), x ∈ D.
(3.18)

It turns out that (ũi(t,x) = eλ tui(t,x))i∈J and (ṽi(t,x) = eλ tvi(t,x))i∈J are respectively sub-
solution and supersolution to system (3.18), provided (ui)i∈J a subsolution and (vi)i∈J a
supersolution to (3.4).
By choosing λ small enough, the function Fi defined by:

Fi(t,x,~y,z) =−λyi + fi(t,x,e−λ t~y,e−λ tz), ∀i ∈ J;

satisfies (3.7) which shows thanks to the first part that ũi ≤ ṽi, then ui ≤ vi, ∀i ∈ J.

The following corollary is an immediate conclusion of the comparison between the
subsolution and supersolution of system (3.4):

Corollary 3.1 If the solution of the system of PDEs (3.4) exists, it is unique and continuous.

3.2 Existence of the viscosity solution

The only point remaining to complete our study is related to the problem of existence of
the solution for the PDEs system (3.4). It is at this stage that we are often led to recall the
connection between the system of PDEs (3.4) and the system of generalized RBSDEs (2.1).

Corollary 3.2 There exist deterministic lower semicontinuous functions (vi(t,x))i∈J such
that

∀(t,x) ∈ [0,T ]×D, ∀s ∈ [t,T ], Y i
s = vi(s,X t,x

s ). (3.19)

Proof: Back to system (2.4) whose solutions are (Y i,n)i∈J , it has been shown in the previous
section that

Y ≤ Y i,n ≤ Y i,n+1 ≤ Y . (3.20)

We know that (Y i,n)i∈J provide the solutions for the PDEs associated to the generalized
reflected BSDEs (2.4), hence we get the following constructions provided by [26]:

Y i,n
s = vi,n(s,X t,x

s ).

Then from (3.20) we obtain:
v≤ vi,n ≤ vi,n+1 ≤ v,

where v and v are both continuous solutions for two PDEs associated with GBSDEs whose
solutions are respectively Y and Y (see [22] for more details).
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Thus vi,n converges increasingly to vi and the continuity of vi,n ensures the lower semicon-
tinuity of vi. But Y i,n converges increasingly to Y i, therefore Y i

s = vi(s,X t,x
s ), ∀s ∈ [t,T ].

In what follows, we study the solvability in the viscosity sense of system of PDEs (3.4).
We show that (vi)i∈J is actually a solution of this latter system.

Theorem 3.2 The function (vi)i∈J is the unique continuous solution of the system of vari-
ational inequalities with inter-connected obstacles and non linear Neumann boundaries
(3.4).

Proof:
Part 1: Supersolution property.
First, note that ∀i ∈ J, vi is lsc, i.e. vi = vi

∗. By construction of (vi)i∈J , for any i ∈ J,
vi = lim

n→∞
vi,n, where vi,n is a viscosity solution of the following PDE:



min{vi,n(t,x)−max
j 6=i

(v j,n−1(t,x)−gi j(t,x));−∂tvi,n(t,x)−L vi,n(t,x)

− fi(t,x,(v1,n−1, ...,vi−1,n−1,vi,n,vi+1,n−1, ...,vm,n−1)(t,x),σ>(x)Dxvi,n(t,x))}= 0,
(t,x) ∈ [0,T )×D;

∂vi,n

∂ l
(t,x)+ψi(t,x,vi,n(t,x)) = 0, (t,x) ∈ [0,T )×∂D;

vi,n(T,x) = hi(x), x ∈ D.
(3.21)

Let us fix i ∈ J, (t,x) ∈ [0,T )× ∂D and (p,q,M) ∈ J2−vi(t,x). By Lemma 6.1 [6], there
exist n j→ ∞ and x j ∈ D such that

(t j,x j,vi,n j(t j,x j), p j,q j,M j)−→
j→∞

(t,x,vi(t,x), p,q,M).

Since x j is in D, we can extract a subsequence x jl which is either in ∂D or D while preserv-
ing the above convergence. We are going to show that in both cases, vi solves (3.4).
If x jl ∈ D, we recall that (t jl ,x jl ,v

i,n jl (t jl ,x jl ), p jl ,q jl ,M jl ) −→l→∞

(t,x,vi(t,x), p,q,M). Next

from the viscosity supersolution property for vi,n jl , we get:

−p jl −b(x jl )
>q jl − 1

2 Tr[σσ>(x jl )M jl ]

≥ fi(t jl ,x jl ,(v
1,n jl−1, ...,vi−1,n jl−1,vi,n jl ,vi+1,n jl−1, ...,vm,n jl−1)(t jl ,x jl ),σ

>(x jl )q jl ).

On the other hand, D is a bounded subset, and for any i ∈ J, vi,n is continuous, then there
exists a subsequence (lk)k>0 such that (vi,nlk−1(tlk ,xlk))k>0 is convergent.
As (vi,n)n>1 is increasing w.r.t. n and uniformly dominated, we get from ([2] page 91):

vi(t,x) = vi
∗(t,x) = lim

(t ′,x′)→(t,x)
l→∞

vi,l(t ′,x′).

It follows immediately that

min{vi(t,x)−max
j 6=i

(v j(t,x)−gi j(t,x));
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−p−b(x)>q− 1
2

Tr[σσ
>(x)M]− fi(t,x,(vi(t,x))i=1,...,m,σ

>(x)q)} ≥ 0.

Otherwise, (x jl )l>0 ∈ ∂D and (t jl ,x jl ,v
i,n jl (t jl ,x jl ), p jl ,q jl ,M jl )−→l→∞

(t,x,vi(t,x), p,q,M). As

vi,n jl is a viscosity supersolution to (3.21), considering now the boundary condition, we get:

{−p jl −b(x jl )
>q jl − 1

2 Tr[σσ>(x jl )M jl ]

− fi(t jl ,x jl ,(v
1,n jl−1, ...,vi−1,n jl−1,vi,n jl ,vi+1,n jl−1, ...,vm,n jl−1)(t jl ,x jl ),σ

>(x jl )q jl )}

∨{−〈∇φ(x jl ),q jl 〉−ψi(t jl ,x jl ,v
i,n jl (t jl ,x jl ))} ≥ 0.

Suppose now that,

−p jl −b(x jl )
>q jl − 1

2 Tr[σσ>(x jl )M jl ]

≥ fi(t jl ,x jl ,(v
1,n jl−1, ...,vi−1,n jl−1,vi,n jl ,vi+1,n jl−1, ...,vm,n jl−1)(t jl ,x jl ),σ

>(x jl )q jl ).

Then as previously, we obtain:

−p−b(x)>q− 1
2

Tr[σσ
>(x)M]− fi(t,x,(vi(t,x))i=1,...,m,σ

>(x)q)≥ 0.

If not, we would have

−〈∇φ(x jl ),q jl 〉−ψi(t jl ,x jl ,v
i,n jl (t jl ,x jl ))≥ 0.

By taking the limit, we get

−〈∇φ(x),q〉−ψi(t,x,vi(t,x))≥ 0.

Therefore,

min{vi(t,x)−max
j 6=i

(v j(t,x)−gi j(t,x));−p−b(x)>q− 1
2 Tr[σσ>(x)M]

− fi(t,x,(vi(t,x))i=1,...,m,σ
>(x)q)}∨{−〈∇φ(x),q〉−ψi(t,x,vi(t,x))} ≥ 0.

Finally, for the terminal value, we know that ∀x ∈ D, vi,n(T,x) = hi(x), then we simply
take the limit as n→ ∞. Therefore, vi is a viscosity supersolution for the following PDE

min{vi(t,x)−max
j 6=i

(v j(t,x)−gi j(t,x));−∂tvi(t,x)−L vi(t,x)

− fi(t,x,(v1, ...,vm)(t,x),σ>(x)Dxvi(t,x))}= 0, (t,x) ∈ [0,T )×D;
∂vi

∂ l
(t,x)+ψi(t,x,vi(t,x)) = 0, (t,x) ∈ [0,T )×∂D;

vi(T,x) = hi(x), x ∈ D.

Since i is arbitrary in J we deduce that the m-tuple (v1, ...,vm) is a viscosity supersolution
for the system (3.4).
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Part 2: Subsolution property.
We will now show that (vi∗)i∈J is a subsolution for system (3.4), namely, we should check
if the following inequalities are satisfied:

min{vi∗(t,x)−max
j 6=i

(v j∗(t,x)−gi j(t,x));−p−b(x)>q− 1
2 Tr[σσ>(x)M]

− fi(t,x,(vi∗(t,x))i=1,...,m,σ
>(x)q)} ≤ 0, (t,x) ∈ [0,T )×D, (p,q,M) ∈ J2+vi∗(t,x);

min{vi∗(t,x)−max
j 6=i

(v j∗(t,x)−gi j(t,x));−p−b(x)>q− 1
2 Tr[σσ>(x)M]

− fi(t,x,(vi∗(t,x))i=1,...,m,σ
>(x)q)}∧{−〈∇φ(x),q〉−ψi(t,x,vi∗(t,x))} ≤ 0,

(t,x) ∈ [0,T )×∂D, (p,q,M) ∈ J2+vi∗(t,x);
vi∗(T,x) = hi(x), x ∈ D.

Step 1: To begin with, we need to show that vi∗(T,x) = hi(x), ∀i ∈ J, ∀x ∈ D. For this
purpose we are going to show

min{vi∗(T,x)−hi(x);vi∗(T,x)−max
j 6=i

(v j∗(T,x)−gi j(T,x))}= 0, ∀i ∈ J, ∀x ∈ D.

Let i ∈ J, n> 1 and x ∈ D. We know that

vi∗(T,x) = lim
(t ′,x′)−→(T,x)

t′<T,x′∈D

vi(t ′,x′)≥ lim
(t ′,x′)−→(T,x)

t′<T,x′∈D

vi,n(t ′,x′),

then as vi,n is continuous, we get vi∗(T,x)≥ vi,n(T,x) = hi(x).
Besides

vi(t,x)≥max
j 6=i

(v j(t,x)−gi j(t,x)),

after passing to the limit, we get

vi∗(T,x)≥max
j 6=i

(v j∗(T,x)−gi j(T,x)),

then we obtain

min{vi∗(T,x)−hi(x);vi∗(T,x)−max
j 6=i

(v j∗(T,x)−gi j(T,x))} ≥ 0.

We now show that the left hand side cannot be strictly positive. To do so, we suppose to the
contrary, that for some x0 ∈ D, there is ε > 0 such that

min{vi∗(T,x0)−hi(x0);vi∗(T,x0)−max
j 6=i

(v j∗(T,x0)−gi j(T,x0))}= 2ε.

Let (tk,xk)k>1 be a sequence in [0,T ]×D satisfying (tk,xk) −→
k→∞

(T,x0) and vi(tk,xk) −→
k→∞

vi∗(T,x0), which exists thanks to Lemma 6.1 [6].

As vi∗ is usc on [0,T ]×D and vi,n converges increasingly to vi, we can find (Qn)n>0 a
sequence of functions in C1,2([0,T ]×D) such that Qn −→

n→∞
vi∗. In addition, we suppose that

on some neighborhood Bn of (T,x0), we have:

min{Qn(t,x)−hi(x);Qn(t,x)−max
j 6=i

(v j∗(t,x)−gi j(t,x))} ≥ ε, ∀(t,x) ∈ Bn. (3.22)
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We can assume that (3.22) holds on Bn
k = [tk,T ]×B(xk,δ

n
k )∩D, for some δ n

k ∈ (0,1) such
that Bn

k ⊂ Bn. In case xk ∈ ∂D, this means that we work only on open neighborhoods of D
near ∂D. Since vi∗ is usc on a bounded space, there exists c > 0 such that | vi∗ |≤ c on Bn.
Then, we can assume that Qn >−2c. Next define

V n
k (t,x) = Qn(t,x)+

4c | x− xk |2

δ n2

k

+
√

T − t.

Note that V n
k (t,x)≥ Qn(t,x) and (vi∗−V n

k )(t,x)≤−c, ∀(t,x) ∈ [tk,T ]×∂B(xk,δ
n
k ).

On the other hand we have,

−{∂tV n
k (t,x)+LV n

k (t,x)}

=−{∂tQn(t,x)+∂t
√

T − t +Dxb(x){DxQn(t,x)+ 8c(x−xk)

(δ n2
k )2
}

+1
2 σσ>(x){DxxQn(t,x)+ 8c

(δ n2
k )2
}}.

It is clear that 4c|x−xk|2

δ n2
k

∈C2
b and Qn ∈C1,2

b , then the derivatives are bounded, together with

∂t(
√

T − t)−→
t→T
−∞. Hence, we can choose k large enough so that:

−{∂tV n
k (t,x)+LV n

k (t,x)} ≥ 0, ∀(t,x) ∈ Bn
k .

Recall the SDE (3.2) and consider the following stopping times:

θ
k
n = inf{s≥ tk; (s,X tk,xk

s ) ∈ (Bn
k)

c}∧T,

θk = inf{s≥ tk; vi(s,X tk,xk
s ) = max

j 6=i
(v j(s,X tk,xk

s )−gi j(s,X tk,xk
s ))}∧T.

Note that on [tk,θ k
n ∧θk], ∇φ(X t,x

s )dAt,x
s vanishes in the SDE (3.2) since the support of At,x

is ∂D. Then, by Itô’s formula, we obtain:

V n
k (tk,xk) =V n

k (θ
k
n ∧θk,X

tk,xk
θ k

n∧θk
)−

∫
θ k

n∧θk
tk {∂tV n

k (r,X
tk,xk
r )+LV n

k (r,X
tk,xk
r )}dr

−
∫

θ k
n∧θk

tk σ(X tk,xk
r )DxV n

k (r,X
tk,xk
r )dBr.

Taking the expectation, we get
V n

k (tk,xk) = E[V n
k (θ

k
n ∧θk,X

tk,xk
θ k

n∧θk
)−

∫
θ k

n∧θk
tk {∂tV n

k (r,X
tk,xk
r )+LV n

k (r,X
tk,xk
r )}dr]

≥ E[V n
k (θ

k
n ,X

tk,xk
θ k

n
)χ[θ k

n≤θk]
+V n

k (θk,X
tk,xk
θk

)χ[θ k
n>θk]

]

= E[{V n
k (θ

k
n ,X

tk,xk
θ k

n
)χ[θ k

n<T ]+V n
k (T,X

tk,xk
T )χ[θ k

n=T ]}χ[θ k
n≤θk]

+V n
k (θk,X

tk,xk
θk

)χ[θ k
n>θk]

]

≥ E[{(vi∗(θ k
n ,X

tk,xk
θ k

n
)+ c)χ[θ k

n<T ]+(ε +hi(X
tk,xk
T ))χ[θ k

n=T ]}χ[θ k
n≤θk]

+(ε +max
j 6=i

(v j∗(θk,X
tk,xk
θk

)−gi j(θk,X
tk,xk
θk

)))χ[θ k
n>θk]

]

≥ E[{(vi(θ k
n ,X

tk,xk
θ k

n
)+ c)χ[θ k

n<T ]+(ε +hi(X
tk,xk
T )χ[θ k

n=T ]}χ[θ k
n≤θk]

+(ε +max
j 6=i

(v j(θk,X
tk,xk
θk

)−gi j(θk,X
tk,xk
θk

)))χ[θ k
n>θk]

]
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≥ E[vi(θ k
n ∧θk,X

tk,xk
θ k

n∧θk
)]+ c∧ ε.

Besides, recall that the process Y i = vi(.,X .) stopped at time θ k
n ∧ θk solves an explicit

GRBSDE, given by:

vi(θ k
n ∧θk,X

tk,xk
θ k

n∧θk
) = vi(tk,xk)−

∫
θ k

n∧θk
tk fi(r,X

tk,xk
r ,(vi(r,X tk,xk

r ))i∈J,Z
i,tk,xk
r )dr

−
∫

θ k
n∧θk

tk ψi(r,X
tk,xk
r ,vi(r,X tk,xk

r ))dAt,x
r − (Ki,t,x

θ k
n∧θk
−Ki,t,x

tk )+
∫

θ k
n∧θk

tk Zi,tk,xk
r dBr.

Once again, dAtk,xk = 0 on [tk,θ n
k ], also dKi,tk,xk = 0 on [tk,θk], then by taking the expec-

tation we get:

E
(

vi(θ k
n ∧θk,X

tk,xk
θ k

n∧θk
)
)
= E

(
vi(tk,xk)−

∫
θ k

n∧θk

tk
fi(r,X tk,xk

r ,(vi(r,X tk,xk
r ))i∈J,Zi,tk,xk

r )dr

)
.

Then, as D is bounded, we can show using the properties of the solution (X tk,xk
t )t6T and the

properties of fi that

lim
k−→∞

E

(∫
θ k

n∧θk

tk
fi(r,X tk,xk

r ,vi(r,X tk,xk
r )i∈J,Zi,tk,xk

r )dr

)
= 0.

Hence, lim
k→∞

V n
k (tk,xk) ≥ lim

k→∞

V n
k (tk,xk) = vi(T,x0) + c∧ ε where c∧ ε > 0, however from

the definition of V n
k (t,x) we have lim

k→∞

V n
k (tk,xk) = Qn(T,x0), which is contradictory since

Qn −→
k→∞

vi∗ . It follows that for any x ∈ D

min{vi∗(T,x)−hi(x); vi∗(T,x)−max
j 6=i

(v j∗(T,x)−gi j(T,x))}= 0.

Finally, we can use the non-free loop property of gi j following the same method as in [15]
to obtain the desired result.
Step 2: Let us show that (vi∗)i∈J is a subsolution. First, we point out that (vi,n)i∈J are
continuous and vi = lim

n→∞
vi,n, then by ([2] page 91)

vi∗(t,x) = lim
n→∞

vi,n(t,x) = lim
(t ′,x′)→(t,x)

n→∞

vi,n(t ′,x′), ∀i ∈ J, ∀(t,x) ∈ [0,T )×D.

From the construction of vi,n, we have for any i ∈ J and n> 1:

vi,n(t,x)≥max
j 6=i

(v j,n−1(t,x)−gi j(t,x)), ∀(t,x) ∈ [0,T )×D;

taking the limit as n→ ∞, we get for any i ∈ J and (t,x) ∈ [0,T )×D,

vi∗(t,x)≥max
j 6=i

(v j∗(t,x)−gi j(t,x)).

Let i∈ J and (t,x)∈ [0,T )×∂D be such that vi∗(t,x)−max
j 6=i

(v j∗(t,x)−gi j(t,x))> 0, and fix

(p,q,M) ∈ J2+vi∗(t,x). By Lemma 6.1 [6], there exist nk → ∞, xk ∈ D and (pk,qk,Mk) ∈
J2+vi,nk(tk,xk) such that

(tk,xk,vi,nk(tk,xk), pk,qk,Mk)−→
k→∞

(t,x,vi∗(t,x), p,q,M).
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In the spirit of the proof of the first part, since xk is in D, we can extract a subsequence
(xkl )l>1 which is either in ∂D or D. It suffices to check out both possibilities. If xkl ∈ D,
we recall that (tkl ,xkl ,v

i,nkl (tkl ,xkl ), pkl ,qkl ,Mkl ) −→l→∞

(t,x,vi∗(t,x), p,q,M). Next, we obtain

from the viscosity subsolution property for vi,nkl :

min{vi,nkl (tkl ,xkl )−max
j 6=i

(v j,nkl−1(tkl ,xkl )−gi j(tkl ,xkl ));−pkl−b(xkl )
>qkl− 1

2 Tr[σσ>(xkl )Mkl ]

− fi(tkl ,xkl ,(v
1,nkl−1, ...,vi−1,nkl−1,vi,nkl ,vi+1,nkl−1, ...,vm,nkl−1)(tkl ,xkl ),σ

>(xkl )qkl )} ≤ 0.

We know that vi∗(t,x)≥ lim
l→∞

vi,nkl (tkl ,xkl ), then there exists l0 > 0 s.t. ∀l ≥ l0, we have:

vi,nkl (tkl ,xkl )≥max
j 6=i

(v j,nkl (tkl ,xkl )−gi j(tkl ,xkl ))

≥max
j 6=i

(v j,nkl−1(tkl ,xkl )−gi j(tkl ,xkl )).

since vi∗(t,x)≥max
j 6=i

(v j∗(t,x)−gi j(t,x)). It follows that for l > l0,

−p−b(x)>q− 1
2 Tr[σσ>(x)M]

≤ lim
l→∞

fi(tkl ,xkl ,(v
1,nkl−1, ...,vi−1,nkl−1,vi,nkl ,vi+1,nkl−1, ...,vm,nkl−1)(tkl ,xkl ),σ

>(xkl )qkl ).

In the same manner as in Part 1, we show that for any (t,x) ∈ [0,T )× ∂D and (p,q,M) ∈
J2+vi∗(t,x), we have:

min{vi∗(t,x)−max
j 6=i

(v j∗(t,x)−gi j(t,x));

−p−b(x)>q− 1
2 Tr[σσ>(x)M]− fi(t,x,(vi∗(t,x))i=1,...,m,σ

>(x)q)} ≤ 0.

If not we can extract a subsequence xkl of xk in ∂D, such that

(tkl ,xkl ,v
i,nkl (tkl ,xkl ), pkl ,qkl ,Mkl )−→l→∞

(t,x,vi∗(t,x), p,q,M).

Then, there exists l0 > 0 s.t. ∀l > l0 and from the viscosity subsolution property of vi,nkl at
(tkl ,xkl ) ∈ [0,T )×∂D, we have:

{−pkl −b(xkl )
>qkl − 1

2 Tr[σσ>(xkl )Mkl ]

− fi(tkl ,xkl ,(v
1,nkl−1, ...,vi−1,nkl−1,vi,nkl ,vi+1,nkl−1, ...,vm,nkl−1)(tkl ,xkl ),σ

>(xkl )qkl )}

∧{−〈∇φ(xkl ),qkl 〉−ψi(tkl ,xkl ,v
i,nkl (tkl ,xkl ))} ≤ 0.

If −pkl −b(xkl )
>qkl − 1

2 Tr[σσ>(xkl )Mkl ]

≤ fi(tkl ,xkl ,(v
1,nkl−1, ...,vi−1,nkl−1,vi,nkl ,vi+1,nkl−1, ...,vm,nkl−1)(tkl ,xkl ),σ

>(xkl )qkl ),

similar computations, yield

−p−b(x)>q− 1
2

Tr[σσ
>(x)M]≤ fi(t,x,(vi∗(t,x))i=1,...,m,σ

>(x)q).
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Otherwise, the other inequality holds

−〈∇φ(xkl ),qkl 〉−ψi(tkl ,xkl ,v
i,nkl (tkl ,xkl ))≤ 0,

by taking to the limit as l→ ∞, we get

−〈∇φ(x),q〉−ψi(t,x,vi∗(t,x))≤ 0.

Before we finish the proof, we shall stress out that the inequalities in D are not difficult and
can be handled likewise. As a consequence, vi is a viscosity subsolution for the following
PDE:

min{vi(t,x)−max
j 6=i

(v j(t,x)−gi j(t,x));−∂tvi(t,x)−L vi(t,x)

− fi(t,x,(v1, ...,vm)(t,x),σ>(x)Dxvi(t,x))}= 0, (t,x) ∈ [0,T )×D;
∂vi

∂ l
(t,x)+ψi(t,x,vi(t,x)) = 0, (t,x) ∈ [0,T )×∂D;

vi(T,x) = hi(x), x ∈ D.

(3.23)

The fact that i is arbitrary in J, shows that the m-tuple (v1, ...,vm) is the unique viscosity
solution for the system (3.4).
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