
HAL Id: hal-03120800
https://hal.science/hal-03120800v1

Submitted on 25 Jan 2021 (v1), last revised 11 Apr 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On a List Variant of the Multiplicative 1-2-3 Conjecture
Julien Bensmail, Hervé Hocquard, Dimitri Lajou, Eric Sopena

To cite this version:
Julien Bensmail, Hervé Hocquard, Dimitri Lajou, Eric Sopena. On a List Variant of the Multiplicative
1-2-3 Conjecture. [Research Report] Université de bordeaux; Université côte d’azur. 2021. �hal-
03120800v1�

https://hal.science/hal-03120800v1
https://hal.archives-ouvertes.fr

On a List Variant of the Multiplicative 1-2-3 Conjecture

Julien Bensmail1, Hervé Hocquard2, Dimitri Lajou2, and Éric Sopena2

1Université Côte d’Azur, Inria, CNRS, I3S, France
2Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France

January 25, 2021

Abstract
The 1-2-3 Conjecture asks whether almost all graphs can be (edge-)labelled with 1, 2, 3 so

that no two adjacent vertices are incident to the same sum of labels. In the last decades, several
aspects of this problem have been studied in literature, including more general versions and
slight variations. Notable such variations include the List 1-2-3 Conjecture variant, in which
edges must be assigned labels from dedicated lists of three labels, and the Multiplicative 1-
2-3 Conjecture variant, in which labels 1, 2, 3 must be assigned to the edges so that adjacent
vertices are incident to different products of labels. Several results obtained towards these two
variants led to observe some behaviours that are distant from those of the original conjecture.

In this work, we consider the list version of the Multiplicative 1-2-3 Conjecture, proposing
the first study dedicated to this very problem. In particular, given any graph G, we wonder
about the minimum k such that G can be labelled as desired when its edges must be assigned
labels from dedicated lists of size k. Exploiting a relationship between our problem and the
List 1-2-3 Conjecture, we provide upper bounds on k when G belongs to particular classes of
graphs. We further improve some of these bounds through dedicated arguments.

Keywords: proper labelling; 1-2-3 Conjecture; product; list.

1 Introduction
Let G be a graph and ` be a k-labelling of G, i.e., an assignment ` : E(G) → {1, . . . , k} of labels
1, . . . , k to the edges of G. For every vertex v of G, one can compute, as a colour, the sum σ`(v)
of labels assigned by ` to the edges incident to v, that is

σ`(v) =
∑

w∈N(v)

`(vw).

We say that ` is s-proper if σ` is a proper vertex-colouring of G, i.e., if, for every edge uv of G, we
have σ`(u) 6= σ`(v). We denote by χΣ(G) the smallest k ≥ 1, if any, such that G admits s-proper
k-labellings. It turns out that χΣ(G) is defined, i.e., that G admits s-proper labellings, if and only
if G has no connected component isomorphic to K2. For this reason, when investigating s-proper
labellings, we generally focus on so-called nice graphs, which are those graphs with no connected
component isomorphic to K2, i.e., having their parameter χΣ being properly defined.

The 1-2-3 Conjecture, introduced in [8] by Karoński, Łuczak and Thomason in 2004, pre-
sumes that the maximum value of χΣ(G) for a nice graph G should never exceed 3; that is:

1-2-3 Conjecture. If G is a nice graph, then χΣ(G) ≤ 3.

1

Several aspects towards this conjecture have been investigated to date. For an in-depth review
of most of our knowledge on the problem, we refer the reader to the survey [14] by Seamone.
Let us mention, as notable evidence towards the 1-2-3 Conjecture, that it is known to hold for
3-colourable graphs [8], and that χΣ(G) ≤ 5 holds for every nice graph G [7].

Our investigations in this work are primarily related to two variants of the 1-2-3 Conjecture,
being its Multiplicative and List variants, which we recall in what follows.

As the name suggests, the Multiplicative variant is related to products of labels rather than to
sums of labels. The terminology is as follows. Let G be a graph and ` be a labelling of G. This
time, for every vertex v of G, we compute, as a colour, the product π`(v) of labels incident to v by
`, that is

π`(v) =
∏

w∈N(v)

`(vw).

We say that ` is p-proper if π` is a proper vertex-colouring of G, i.e., if, for every edge uv of G, we
have π`(u) 6= π`(v). Assuming G is nice, we denote by χΠ(G) the smallest k such that G admits
p-proper k-labellings.

Introduced in [15] by Skowronek-Kaziów in 2012, the Multiplicative 1-2-3 Conjecture
stands as the straight product counterpart to the original 1-2-3 Conjecture:

Multiplicative 1-2-3 Conjecture. If G is a nice graph, then χΠ(G) ≤ 3.

The Multiplicative 1-2-3 Conjecture has received, to date, much less attention than the original
1-2-3 Conjecture. Towards it, the main results we know of are that the conjecture holds for
4-colourable graphs [4], and that χΠ(G) ≤ 4 holds for every nice graph G [15].

The List variant of the 1-2-3 Conjecture is a generalisation where edges must be assigned labels
from fixed-size lists that might be different from {1, 2, 3}. This is all defined accordingly to the
following definitions. Let G be a graph and L be a k-list assignment (to the edges) of G, i.e., an
assignment of sets of k real numbers to the edges. An L-labelling ` of G is a labelling where each
edge is assigned a label from its list, i.e., `(e) ∈ L(E) for every e ∈ E(G). Note that the notion of
s-proper labellings can be extended naturally to L-labellings. Now, for a nice graph G, we define
chΣ(G) as the smallest k such that G admits an s-proper L-labelling for every k-list assignment L.

The List 1-2-3 Conjecture, introduced in 2009 by Bartnicki, Grytczuk and Niwczyk in [3],
is the straight analogue of the 1-2-3 Conjecture to the previous notions:

List 1-2-3 Conjecture. If G is a nice graph, then chΣ(G) ≤ 3.

The List 1-2-3 Conjecture is of course much stronger than the original conjecture, and, as a
matter of fact, there is still no known general constant upper bound on chΣ. To date, the best
bound we know of, is that chΣ(G) ≤ ∆(G) + 1 holds for every nice graph G [5] (where ∆(G)
denotes the maximum degree of G). Constant upper bounds were established for some classes of
graphs; see later Section 2 for more details. For now, let us just mention that most of these results
were established through an approach imagined by Bartnicki, Grytczuk and Niwczyk in [3], which
is reminiscent of the studies on choosability of graphs, which relies on attacking the problem from
an algebraic point of view. This will also be described further in a later section (Subsection 2.3),
as this is an important point behind our investigations.

This work is dedicated to investigating a new problem inspired from the previous ones above,
holding, essentially, as a List Multiplicative 1-2-3 Conjecture. Note that, for an L-labelling
of a nice graph G, the notion of p-properness adapts naturally, and from this we can define chΠ(G)
as the smallest k such that G admits a p-proper L-labelling for every k-list assignment L to its
edges. This parameter chΠ is precisely the one we study throughout this work. To the best of
our knowledge, this parameter was, to date, only discussed briefly by Seamone in his survey [14],
in which he suggests a few of its properties. This parameter is also somewhat close to other

2

studied parameters, such as the notions of product irregularity strength [2] (related to labellings
for which all vertices, not only the adjacent ones, must be incident to distinct products of labels)
and neighbour-product-distinguishing index [9] (related to labellings for which the labels assigned
to the edges must form a proper edge-colouring).

The current paper consists of two main sections. Section 2 stands as a preliminary section
in which we raise first observations on the parameter chΠ. In that section, we also explore the
connections between our problem and the List 1-2-3 Conjecture, from which we get first systematic
upper bounds on chΠ. We also get to describing the algebraic approach through which we improve
some of these first bounds. These improved bounds are gathered in Section 3, and are about both
general graphs (Subsection 3.1) and particular classes of graphs, such as trees, planar graphs with
large girth, and subcubic graphs (Subsection 3.2).

2 Preliminaries, tools, and connections with the sum variant
We here introduce all tools and preliminary materials needed to establish the results in later
Section 3. In Subsection 2.1, we first state a few easy observations on the parameter chΠ. In Sub-
section 2.2, we establish and exploit a relationship between the two parameters chΣ and chΠ, from
which we deduce first constant bounds on chΠ for several graph classes. Finally, in Subsection 2.3,
we recall algebraic tools from which improved bounds will be obtained, later in Section 3.

For transparency, let us mention that some of the results from this section, mostly from Subsec-
tion 2.1, were already suggested by Seamone in [14], in which the parameter chΠ is discussed very
briefly. To make our contribution clear, we notify properly, through what follows, every remark
also mentioned in [14].

2.1 Early remarks on the parameter chΠ

As remarked in [14], note, given an edge uv of a graph G, that if `(uv) = 0 by a labelling ` of G,
then ` cannot be p-proper, since this would imply π`(u) = π`(v) = 0. Thus, for any list assignment
L of G, a p-proper L-labelling is actually a p-proper L∗-labelling, where L∗ is the list assignment
of G verifying L∗(e) = L(e) \ {0} for every edge e ∈ E(G). Therefore, throughout this work, we
consider list assignments not assigning label 0 to the edge lists. To catch this point, we refine the
parameter chΠ(G) of a graph G to the parameter ch∗Π(G), which is the smallest k ≥ 1, if any, such
that G admits p-proper L-labellings for every k-list assignment L not assigning label 0.

By the previous remarks, obviously the following holds:

Observation 2.1. If G is a nice graph, then chΠ(G) = ch∗Π(G) + 1.

We note that if L is the 1-list assignment of G where L(e) = {1} for every edge e, then G
admits no p-proper L-labellings, since every such labelling ` would verify π`(u) = π`(v) = 1 for
every edge uv ∈ E(G). Thus:

Observation 2.2. There is no graph G verifying ch∗Π(G) = 1.

Analogous conclusions can be reached regarding graphs G with ch∗Π(G) = 2. Here, consider the
2-list assignment L of G where L(e) = {−1, 1} for every edge e. Then, by an L-labelling ` of G,
we have π`(v) ∈ {−1, 1} for every vertex v ∈ V (G). This implies that ` is p-proper if and only if
π` is a proper 2-vertex-colouring of G. In turn, this yields the following (also mentioned in [14]):

Observation 2.3. If G is a graph with ch∗Π(G) = 2, then G is bipartite.

The previous condition is not sufficient, however, as nice connected bipartite graphs G with
ch∗Π(G) = 2 must fulfil an additional property.

3

Proposition 2.4. Let G be a connected bipartite graph with bipartition (A,B). If ch∗Π(G) = 2,
then at least one of |A| and |B| must be even.

Proof. Assume the claim is wrong, and let G be a connected bipartite graph with ch∗Π(G) = 2
in which the two parts A and B are of odd size. Consider L, the 2-list assignment of G where
L(e) = {−1, 1} for every edge e ∈ E(G). As mentioned earlier, by every L-labelling ` of G, we
have π`(v) ∈ {−1, 1} for every vertex v ∈ V (G). Thus, because G is connected, for such an ` to
be p-proper we must have, say, π`(a) = −1 for every a ∈ A and π`(b) = 1 for every b ∈ B. For the
first condition to occur, for every a ∈ A there must be an odd number of incident edges labelled
−1 by `. Since |A| is odd, this means that we must have an odd number of edges of G labelled −1
by `. For the second condition to occur, for every b ∈ B there must be an even number of incident
edges labelled −1 by `. For that, we must have an even number of edges of G labelled −1 by `,
which is a contradiction.

Thus, connected graphs G with ch∗Π(G) = 2 are connected bipartite graphs with at least one
part of even cardinality. This condition is necessary but still not sufficient, however, even in simple
graph classes such as trees. To see this is true, consider the following easy remarks.

Suppose we have a graph G with a pending path wvu of length 2, where d(u) = 1 and d(v) = 2,
and suppose L is a 2-list assignment to the edges of G. Assume more particularly that L(wv) =
{1, a} for some a 6= 1. Then, note that, in any p-proper L-labelling ` of G, we cannot have
`(vw) = 1, as otherwise we would have π`(v) = π`(u) whatever `(vu) is, a contradiction. In other
words, the label of wv by a p-proper L-labelling of G is forced to a.

From this, we can construct arbitrarily many trees T with ch∗Π(T) = 3 and any wanted car-
dinality parity for the parts of its bipartition. As an illustration (which admits obvious gen-
eralisations), consider the tree T with vertex set V (T) = {v1, . . . , v8} and edge set E(T) =
{v1v2, v2v5, v3v4, v4v5, v5v6, v6v7, v7v8}, and note that T has no p-proper L-labelling for any list
assignment L where L(v6v7) = {1, a2} and L(v2v5) = L(v4v5) = {1, a} (for some a 6∈ {1,−1}).

2.2 Connections with the sum variant, and first bounds on chΠ

As suggested by Seamone in [14], there is a straight connection between the parameters chΣ and
ch∗Π, which follows from the product rule of logarithms. Despite this fact being easy to visualise,
we give a detailed proof to establish the precise relationship between the two.

Theorem 2.5. If G is a nice graph, then ch∗Π(G) ≤ 2chΣ(G)− 1.

Proof. Assume we have chΣ(G) ≤ k for some nice graph G and k ≥ 2. We prove that ch∗Π(G) ≤
2k − 1. Let L be a (2k − 1)-list assignment to the edges of G, where none of the L(e)’s contains
label 0. For every e ∈ E(G), since |L(e)| = 2k− 1, there must be S(e) ⊂ L(e) such that |S(e)| = k
and no two elements of S(e) have the same absolute value. We set X(e) = {|x| : x ∈ S(e)} and
L′(e) = {log(x) : x ∈ X(e)}1. Then L′ is a k-list assignment of G where each edge e is associated
k nonnegative values that are logarithms of values of L(e) with different absolute values.

Our original assumption chΣ(G) ≤ k implies that G admits an s-proper L′-labelling `′. We now
consider an L-labelling ` of G obtained as follows. We consider every edge e of G, and we choose,
as `(e), any label from L(e) that resulted in L′(e) containing `′(e). By how L′ was obtained, note
that, indeed, one such value belongs to L(e). Thus, ` is an L-labelling. As a result, for every
v ∈ V (G) with incident edges e1, . . . , ed, we get

σ`′(v) =

d∑
i=1

`′(ei) =

d∑
i=1

(log |`(ei)|) = log

(
d∏
i=1

|`(ei)|

)
= log(|π`(v)|).

In particular, ` is p-proper since `′ is s-proper.
1Throughout this work, any used log function can be in any fixed base.

4

The connection between chΣ and ch∗Π in Theorem 2.5 implies that, for any constant upper
bound on chΣ for some graph class, we deduce a constant upper bound on ch∗Π as well. In the
next result, we have listed some constant bounds on chΣ from the literature, together with the
bounds on ch∗Π we get as a consequence. It is worth emphasising that we do not claim this list to
be exhaustive in any way. Namely, we only list the bounds that seem the most significant to us,
and the interested reader has to be aware that more results of the sort below can be established
from results mentioned in the references below.

Corollary 2.6. Let G be a nice connected graph.
• chΣ(G) ≤ ∆(G) + 1 (see [5]); thus ch∗Π(G) ≤ 2∆(G) + 1.
• If G is complete, complete bipartite, or a tree, then chΣ(G) ≤ 3 (see [3]); thus ch∗Π(G) ≤ 5.
• If G is 2-degenerate and non-bipartite, then chΣ(G) ≤ 3 (see [17]); thus ch∗Π(G) ≤ 5.
• If G is a wheel, then chΣ(G) ≤ 3 (see [13]); thus ch∗Π(G) ≤ 5.
• If mad(G) ≤ 11

4 , then chΣ(G) ≤ 3 (see [10]); thus ch∗Π(G) ≤ 5.
• If G is outerplanar, then chΣ(G) ≤ 4 (see [13]); thus ch∗Π(G) ≤ 7.
• If ∆(G) ≤ 4, then chΣ(G) ≤ 4 (see [11]); thus ch∗Π(G) ≤ 7.
• If G is 2-connected and chordal, or a line graph, then chΣ(G) ≤ 5 (see [16]); thus ch∗Π(G) ≤ 9.
• If G is a planar graph, then chΣ(G) ≤ 7 (see [17]); thus ch∗Π(G) ≤ 13.

A consequence of the first item in Corollary 2.6, is that the List 1-2-3 Conjecture itself makes
plausible the existence of a general constant upper bound on ch∗Π. In particular, we currently have
no evidence that the following, which would be a legitimate guess, might be false:

List Multiplicative 1-2-3 Conjecture. If G is a nice graph, then ch∗Π(G) ≤ 3.

Recall that observations raised at the end of Subsection 2.1 establish that this conjecture, if
true, would actually be tight.

2.3 Algebraic tools
To improve, in next Section 3, some of the bounds from Corollary 2.6, we will adapt and employ
an algebraic approach that was first designed by Bartnicki, Grytczuk and Niwczyk to deal with
the List 1-2-3 Conjecture in [3], and which is inspired by polynomial methods developed to deal
with list colouring of graphs.

Consider a graph G with edges e1, . . . , em, and a list assignment L to the edges of G. For a
vertex u and an edge e of G, we write e ∼ u if e is incident to u. Let ~G be any orientation of G.
To each edge ei of G, we associate a variable xi. Now, we associate to G (through ~G) a polynomial
Q~G with variables x1, . . . , xm, being

Q~G(x1, . . . xm) =
∏

~uv∈A(~G)

(∑
ei∼u

xi −
∑
ei∼v

xi

)
.

It is easy to see that G has an s-proper L-labelling if and only if there are values l1 ∈ L(e1), . . . , lm ∈
L(em) such that Q~G(l1, . . . , lm) does not vanish. From this point of view, a powerful tool is the
so-called Combinatorial Nullstellensatz of Alon [1], which provides sufficient conditions, in terms
of the sizes of the lists L(e1), . . . , L(em), for such values l1, . . . , lm to be choosable.

Combinatorial Nullstellensatz. Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a
polynomial in F[x1, . . . , xn]. Suppose the total degree of f is

∑n
i=1 ti, where each ti is a nonnegative

integer, and suppose the coefficient of
∏n
i=1 x

ti
i is nonzero. If S1, . . . , Sn are subsets of F with

|Si| > ti, then there are s1 ∈ S1, . . . , sn ∈ Sn so that f(s1, . . . , sn) 6= 0.

5

Thus, bounds on chΣ(G) can be obtained via the Combinatorial Nullstellensatz through study-
ing the monomials in the expansion of Q~G, more precisely monomials with nonzero coefficient,
maximum degree, and, preferably, low exponent values. Note that all the monomials of Q~G share
the very convenient property that they are all of maximum degree m, which is one of the prerequi-
sites for the Combinatorial Nullstellensatz to work. The tricky part, actually, is about anticipating
the coefficients of the monomials of Q~G (the nonzero ones, particularly), which are far from being
obvious in general. In [3], the authors developed a very nice dedicated approach, which is based
on studying the permanent of a particular matrix representing Q~G.

A similar polynomial approach can of course be applied for deducing bounds on chΠ(G). The
main difference is that, this time, we have to consider the products of labels incident to the vertices,
instead of their sums. More precisely, the polynomial of interest is here

P~G(x1, . . . xm) =
∏

~uv∈A(~G)

(∏
ei∼u

xi −
∏
ei∼v

xi

)
.

Compared to the polynomial Q~G, a big difference is that, in the expansion of P~G, the monomials are
likely to have different degrees, which means that the Combinatorial Nullstellensatz might apply to
a few of them only. Even worse is that the degree of P~G is generally bigger than that of Q~G, and, in
particular, the exponents of the monomials generally tend to be bigger too. Note indeed that the
degree of Q~G is precisely m, while the degree of P~G can be as large as

∑
uv∈E(G) max{d(u), d(v)}

(which can be reached, e.g. when no two adjacent vertices of G have the same degree).
For these reasons, as will be seen in next Section 3, deducing bounds on ch∗Π via the Combina-

torial Nullstellensatz only, seems to be viable in particular contexts only.

3 Improved bounds on ch∗Π for some graph classes
We here improve some of the bounds on ch∗Π from Corollary 2.6. We first consider graphs in
general, in Subsection 3.1. We then focus, in Subsection 3.2, on particular classes of graphs,
including trees, planar graphs with large girth, and subcubic graphs. In the latter subsection, the
exhibited improved bounds are optimal, or close to optimal.

3.1 General graphs
The bounds on ch∗Π we establish in this section are expressed as functions of the maximum degree,
our goal being to improve the bound of the first item of Corollary 2.5. We start off by improving
that bound slightly for all nice graphs. From the bound we provide, we deduce, towards the
List Multiplicative 1-2-3 Conjecture, that the List 1-2-3 Conjecture, if verified, would imply that
ch∗Π(G) ≤ 5 holds for every nice graph G.

Theorem 3.1. If G is a nice graph, then ch∗Π(G) ≤ 2∆(G)− 1.

Proof. Let us denote by e1, . . . , em the edges of G, and, for every i ∈ {1, . . . ,m}, let xi be a variable
associated to ei. Now, let ~G be any orientation of G, and P~G be the polynomial with variables
x1, . . . , xm defined as

P~G(x1, . . . xm) =
∏

~uv∈A(~G)

(∏
ei∼u

xi −
∏
ei∼v

xi

)
.

As described in Subsection 2.3, if L is a list assignment of G, and P~G(l1, . . . , lm) 6= 0 for some
l1 ∈ L(e1), . . . , lm ∈ L(em), then clearly we deduce a p-proper L-labelling of G.

6

Let M = cxt11 . . . xtmm be a monomial of maximum degree from the expansion of P~G with
c 6= 0. Such an M has to exist, since R[x1, . . . , xm] is an integral domain. We note that for every
i ∈ {1, . . . ,m}, we have ti ≤ 2∆(G)− 1. This is because variable xi appears in at most 2∆(G)− 1
factors of P~G: once due to the edge ei, and at most 2∆(G)−2 times dues to the other edges incident
to the two ends of ei. By earlier arguments, the Combinatorial Nullstellensatz, due to the existence
of M , now implies that chΠ(G) ≤ 2∆(G), thus our conclusion on ch∗Π by Observation 2.1.

The next bound is a significant improvement over Theorem 3.1, in the case of graphs having
vertices with convenient neighbourhood properties.

Theorem 3.2. If G is a nice graph with a vertex u such that d(u) ≥ 2, N(u) is a stable set, and
ch∗Π(G− u) ≤ ∆(G− u) + 3, then ch∗Π(G) ≤ ∆(G− u) + 3.

Proof. Let L be a (∆(G− u) + 3)-list assignment to the edges of G, and let L′ be the restriction
of L to the edges of G′ = G− u. Since ch∗Π(G′) ≤ ∆(G′) + 3, there is a p-proper L′-labelling `′ of
G′. Our aim is to extend `′ to a p-proper L-labelling ` of G, by considering the edges uv1, . . . , uvd
(d ≥ 2) incident to u, and, for each one uvi of them, assigning it a label from L(uvi) so that,
eventually, no conflict arises. For every i ∈ {1, . . . , d}, we denote by zi the current product of vi
(i.e., by `′).

Because N(v) is a stable set, note that assigning a label to any uvi completely determines
the product of vi, in the sense that all edges incident to vi get labelled. Thus, when labelling
uvi, we must ensure that vi does not get in conflict with its neighbours different from u. Since
|N(vi) \ {u}| ≤ ∆(G − u), and because |L(uvi)| = ∆(G − u) + 3, there are at least three distinct
values in L(uvi) that can be assigned to uvi without causing any conflict between vi and its
neighbours different from u. For every i ∈ {1, . . . , d}, we denote by Si this subset of “safe” values
of L(uvi) for uvi. Because |Si| ≥ 3, there are in Si at least two values ai, bi such that |ai| 6= |bi|.

We will be done if we can find an assignment of ai’s and bi’s to the uvi’s for which u gets
in conflict with none of the vi’s. Such an assignment is actually guaranteed to exist by the
Combinatorial Nullstellensatz. Indeed, for every i ∈ {1, . . . , d}, let xi be a variable associated to
the edge uvi. Consider the polynomial

P (x1, . . . , xd) =

d∏
i=1

 d∏
j=1

xj − xizi

 .

For every i ∈ {1, . . . , d}, set yi = log(|xi|). Note that considering P is similar to considering

P ′(y1, . . . , yd) =

d∏
i=1

 d∑
j=1
j 6=i

yj − log(zi)

 ,

which, because the zi’s are constants, in the current context is similar to studying

P ′′(y1, . . . , yd) =

d∏
i=1

d∑
j=1
j 6=i

yj .

We remark that the monomial y1 . . . yd in the expansion of P ′′ has strictly positive coefficient.
Thus, by the Combinatorial Nullstellensatz, we can assign values to the yi’s so that P ′′ (and thus
P ′) does not vanish, assuming we have at least two possible values to choose from for each of them.
From this, we get that we can assign values to the xi’s so that P does not vanish as long as we
have at least two possible values with distinct absolute values to choose from, for each of them.
Particularly, this means that we can assign a label from {ai, bi} to every uvi, in such a way that a
p-proper L-labelling of G results.

7

Together with checking a few base cases (which is done through results in next Subsection 3.2),
Theorem 3.2 implies the following:

Corollary 3.3. If G is a nice triangle-free graph, then ch∗Π(G) ≤ ∆(G) + 3.

3.2 Particular classes of graphs
Paths and cycles

Note that Theorem 3.1 implies that the List Multiplicative 1-2-3 Conjecture holds for nice graphs
G with ∆(G) ≤ 2, i.e., paths and cycles. In such simple cases, this can actually be refined to a
tightest result. In the sequel, for an n ≥ 2 (or an n ≥ 3 in the case of a cycle), we denote by Pn
and Cn the path and cycle, respectively, of length n.

Theorem 3.4. For an n ≥ 2, we have:

• ch∗Π(Pn) = 2 if n is even or n = 3;

• ch∗Π(Pn) = 3 otherwise.

For an n ≥ 3, we have:

• ch∗Π(Cn) = 2 if n ≡ 0 mod 4;

• ch∗Π(Cn) = 3 otherwise.

Proof. We deal with cycles first. Let us denote by e0, . . . , en−1 the successive edges of Cn, and
by v0, . . . , vn−1 its successive vertices, where ei = vivi+1 for every i ∈ {0, . . . , n− 1} (where, here
and further, operations over the indexes are understood modulo n). For any two adjacent vertices
vi and vi+1, note that, in order to get π`(vi) 6= π`(vi+1) by a labelling ` of Cn, we must have
`(vi−1vi) 6= `(vi+1vi+2). Thus, for ` to be p-proper, any two edges of Cn at distance 2 apart must
be assigned different labels.

Now consider G, the graph constructed from Cn by adding one vertex vei in G for every edge
ei of Cn, and adding an edge veivej between any two vertices vei , vej of G if ei and ej are at
distance exactly 2 in Cn. By a remark above, we have ch∗Π(Cn) = ch(G) (where ch(G) refers to
the usual choice number of G). Note that G is an odd-length cycle when n is odd, an union of two
odd-length cycles when n ≡ 2 mod 4, and an union of two even-length cycles when n ≡ 0 mod 4.
Since even-length cycles have choice number 2 and odd-length cycles have choice number 3 (see
e.g. [6]), the result follows.

Regarding paths, remark first that if n ≡ 1 mod 4, then Pn is a bipartite graph in which the
two parts of the bipartition have odd cardinality. As described at the end of Subsection 2.1, we
must have ch∗Π(Pn) > 2 in such a situation, and we actually have ch∗Π(Pn) = 3 by Theorem 3.1.

Let us now consider the remaining values of n. For a given n ≥ 2, similarly as in the case
of cycles, let us denote by e1, . . . , en the successive edges of Pn, and by v1, . . . , vn+1 its vertices,
where ei = vivi+1 for every i ∈ {1, . . . , n}. Note that, contrarily to the case of cycles, labelling Pn
is not similar to colouring G, the constraint graph of the edges at distance 2 in Pn, because, when
labelling Pn, we must also guarantee that e2 and en−1 are not assigned label 1, so that v1 and v2

and not in conflict, and similarly for vn and vn+1. Note that G is here the union of two (possibly
empty) paths; the new labelling constraint is similar to forbidding one colour for each of ve2 and
ven−1

. A problem is when these two vertices are the ends of a same path of G.
Indeed, from this remark, we note that in the cases where n ≡ 3 mod 4 as well, there are

2-list assignments L of Pn such that Pn has no p-proper L-labelling. Indeed, note that the set of
edges {e2, e4, . . . , en−1} has odd cardinality due to the value of n. Recall that every two edges at
distance 2 in Pn in this set must receive distinct labels by a p-proper labelling. Then note that if
L(e2) = {1, a} for some a 6∈ {−1, 1} and L(e2k) = {a, b} for some b 6∈ {1, a} for every other edge

8

e2k 6∈ {e2, en−1}, then, depending on the value of n, for either L(en−1) = {1, a} or L(en−1) = {1, b}
label 1 must be assigned to one of e2 and en−1 by a p-proper L-labelling, which creates a conflict, a
contradiction. Then ch∗Π(Pn) > 2 for such a value of n, and we have ch∗Π(Pn) = 3 by Theorem 3.1.

Let us now consider the remaining cases, i.e., those where n = 3 or n is even. Let L be a 2-list
assignment of Pn. We deduce a p-proper L-labelling ` of Pn is the following way:

• If n = 3, then first assign to e2 a label from L(e2) different from 1, before assigning distinct
labels from L(e1) and L(e3) to e1 and e3, respectively. Clearly, ` is p-proper.

• Assume n is even. If n = 2, then, clearly, we are done when assigning labels from L(e1) and
L(e2) different from 1 to e1 and e2, respectively. So assume n ≥ 4. We first label the edges
e1, e3, . . . , en−1 with odd index with labels from their respective lists, in such a way that 1)
`(en−1) 6= 1, and that 2) no two of these edges at distance 2 are assigned the same label.
These conditions can clearly be achieved by labelling these edges one by one following the
ordering en−1, en−3, . . . , e1. We then achieve the same thing for the edges e2, e4, . . . , en with
even index, so that 1) `(e2) 6= 1, and that 2) no two of these edges at distance 2 are assigned
a same label. Again, this can be easily achieved, e.g. by labelling these edges following the
ordering e2, e4, . . . , en. By arguments above, ` is eventually p-proper.

Trees

We now prove an upper bound on ch∗Π in the case of trees. The exhibited bound is optimal in
general, due to some of the remarks at the end of Subsection 2.1. Even some paths attain the
upper bound, recall Theorem 3.4.

Theorem 3.5. If T is a nice tree, then ch∗Π(T) ≤ 3.

Proof. The proof is by induction on the number of vertices and edges of T . The base case is when
T is a path of length 2, in which situation the claim holds by Theorem 3.4. Thus, we can focus on
proving the general case. Let L be a 3-list assignment to the edges of T .

We can assume that T has no pending path of length at least 3, i.e., a path uvwx such that
d(u) = 1, d(v) = d(w) = 2, and d(x) ≥ 2. Indeed, assume T has such a path. Let T ′ = T − {u, v}.
Clearly T ′ is nice (as otherwise T would be a path, a case for which Theorem 3.4 yields the desired
conclusion), and thus T ′ admits a p-proper L′-labelling `′, where L′ denotes the restriction of L
to the edges of T ′. To extend `′ to a p-proper L-labelling of T , we have to assign to uv and vw
labels from their lists, so that no conflict arises. To that aim, we first assign to vw a label different
from 1 and from π`′(x)

`′(xw) so that w does not get in conflict with x. Note that this is possible since
|L(vw)| = 3. Note that, now, because `(vw) 6= 1, whatever label we assign to uv, we cannot get a
conflict between u and v. Thus, when labelling uv, we just need to make sure that v does not get
in conflict with w, which can easily be ensured since |L(uv)| = 3.

We may also assume that T has branching vertices, i.e., vertices with degree at least 3. Indeed,
if T has no branching vertex, then T is a path, ∆(T) = 2, and the claim follows from Theorem 3.4.
So assume that T has branching vertices. Root T at any branching vertex r. This defines the usual
root-to-leaf orientation, through which every non-root vertex has a unique parent, i.e., a neighbour
that is closer to r, and every non-leaf vertex v has sons, i.e., neighbours that are farther from r,
and, more generally, descendants, i.e., vertices for which the unique path to r goes through v.

Let u be a branching vertex of T that is at farthest distance from r. Note that we have u = r if
r is the unique branching vertex of T . By this choice, u has at least two descendants, all of which
have degree at most 2. In other words, the descendants of u form k ≥ 2 disjoint pending paths,
none of which has length more than 2, as mentioned earlier. There are then k = p+ q ≥ 2 pending
paths attached at u formed by its descendants, where p ≥ 0 of these paths have length 2, while
q ≥ 0 of them have length 1. We denote by v1, . . . , vp, w1, . . . , wq the sons of u, where v1, . . . , vp
belong to pending paths of length 2, while w1, . . . , wq are leaves. We also denote by v′1, . . . , v′p the

9

neighbour of v1, . . . , vp, respectively, different from u. Thus, the vi’s have degree 2, while the v′i’s
and the wi’s have degree 1. Lastly, we denote by t the parent of u, if it exists (recall that we have
u = r when T has only one branching vertex, in which case u has no parent).

Let T ′ = T −
{
v1, . . . , vp, v

′
1, . . . , v

′
p, w1, . . . , wq

}
. The tree T ′ is nice, because either r is a

branching vertex (case where u 6= r) or T ′ consists in only one vertex (case where u = r), and thus
T ′ admits a p-proper L′-labelling `′, where L′ denotes the restriction of L to the edges of T ′. To
extend `′ to a p-proper L-labelling of T , we just have to assign labels from their lists to the edges
incident to the descendants of u, so that no conflict arises.

We distinguish several cases, based mainly on the value of q.

• Suppose that q = 0. Label every edge uvi with i ∈ {1, . . . , p− 1} with an arbitrary label from
L(uvi) different from 1. Now, label uvp with a label from L(uvp) different from 1 so that u
does not get in conflict with t, if it exists (in case it does not, just assign any label different
from 1 to uvp). Note that this is possible since |L(uvp)| = 3. Lastly, consider every edge viv′i.
Since `(uvi) 6= 1, note that vi and v′i cannot get in conflict, whatever label from L(viv

′
i) is

assigned to viv′i. Thus, when labelling viv′i, we just need to ensure that vi and u do not get
in conflict, which can be avoided since |L(viv

′
i)| = 3.

• Suppose now that q = 1. Recall that p ≥ 1 since k = p + q ≥ 2. We start by labelling, for
every i ∈ {1, . . . , p− 1}, the edge uvi with any label different from 1, chosen from L(uvi). We
then consider uvp, and assign to this edge a label from L(uvp) different from 1 so that the
resulting partial product of u is different from 1. Note that this is possible since |L(uvp)| = 3.
Now, note that, by this choice of `(uvp), no matter what `(uw1) is, we cannot get a conflict
between u and w1. We then assign as `(uw1) a label from L(uw1) so that u does not get in
conflict with t (if it exists). Lastly, we consider every i ∈ {1, . . . , p}, and, to every edge viv′i,
we assign a value from L(viv

′
i) so that vi and u do not get in conflict. This results in ` being

p-proper. Recall, in particular, that any two vi, v′i cannot be in conflict since `(uvi) 6= 1.

Suppose now that q ≥ 2. We start by stating the following general claim:

Claim 3.6. Let S be a star with center u and q + 1 ≥ 3 leaves t, w1, . . . , wq. Assume we have a
partial labelling `′ of S where ut is the only edge being assigned a label, a, and that t has (virtual)
product π`′(t) = A. If L is a 3-list assignment to the uwi’s, then, for every i ∈ {1, . . . , q},
we can assign a label from L(uwi) to uwi, so that `′ is extended to a labelling ` of S verifying
π`(u) 6∈ {A, π`(w1), . . . , π`(wq)}.

Proof of the claim. Suppose first that q = 2. We first assign to uw1 a label from L(uw1) different
from 1/a. This way, no matter what label is assigned to uw2, note that u and w2 cannot get in
conflict. We now assign a label from L(uw2) to uw2 so that the resulting product of u is different
from A and the product of w1. This is possible since |L(uw2)| = 3.

Assume now that q ≥ 3. We distinguish the following cases:

• Assume, w.l.o.g., that the three values in L(uw1) have pairwise distinct absolute values. To
each edge uwi, we associate a variable xi, and we consider the polynomial

P (x1, . . . , xq) =

(
a

q∏
i=1

xi −A

)
·
q∏
i=1

a q∏
j=1

xj − xi

 .

For every i ∈ {1, . . . , q}, we set yi = log xi. Now the polynomial P becomes equivalent to

P ′(y1, . . . , yq) =

(
log(a) +

q∑
i=1

yi − log(A)

)
·
q∏
i=1

log(a) +

q∑
j=1

yj − yi

 .

10

Note that, in the expansion of P ′, the monomial y2
1y2 . . . yq has strictly positive coefficient.

Thus, by the Combinatorial Nullstellensatz, we can assign values to the yi’s so that P ′ does
not vanish, as long as we are given a set of at least three possible distinct values as y1, and
a set of at least two possible distinct values as each of y2, . . . , yq. In turn, this means we
can assign values to the xi’s so that P does not vanish, as long as we have a set of at least
three possible values with pairwise distinct absolute values as x1, and a set of at least two
possible values with distinct absolute values as each of x2, . . . , xq. Recall that we made the
assumption that the three values in L(uw1) have pairwise distinct absolute values, while, for
every i ∈ {2, . . . , q}, there must be at least two values in L(uwi) with distinct absolute values,
since |L(uwi)| = 3. Thus, `′ can correctly be extended to `, in the desired way.

• Now assume that every L(uwi) is of the form {αi, βi,−βi}, where αi and βi are distinct
values with the same sign. Let us start from the labelling ψ of S obtained from `′ after
setting `(uwi) = αi for every i ∈ {1, . . . , q}. We denote by s ∈ {−,+} the sign of πψ(u),
while, for every sign ε ∈ {−,+}, we denote by W ε the set of vertices wi for which the sign of
πψ(wi) (thus, of αi and βi) is ε. Note that W− and W+ partition the wi’s.
To conclude the proof, we consider two last main cases.

– Suppose that s = + and W− = ∅. We start by assigning label −β1 from L(uw1) to uw1.
Note that, as long as each uwi with i ∈ {2, . . . , q} is assigned a label from {αi, βi}, we
cannot get a conflict between u and wi due to their products having different signs. Thus,
under that convention, the only conflicts we must pay attention to, are along the edges
uw1 and, possibly, ut (in case A is negative).
We here assign a variable xi to each edge uwi with i ∈ {2, . . . , q}, and consider

P (x2, . . . , xq) =

(
−β1a

q∏
i=2

xi −A

)
·

(
−β1a

q∏
i=2

xi − β1

)
.

For every i ∈ {1, . . . , q}, we again set yi = log xi. Then P is equivalent to

P ′(y2, . . . , yq) =

(
log(−β1a) +

q∑
i=2

yi − log(A)

)
·

(
log(−β1a) +

q∑
i=2

yi − log(β1)

)
.

Recall that q ≥ 3. Then, whatever q is, in the expansion of P ′ the monomial y2y3 has
strictly positive coefficient. The Combinatorial Nullstellensatz then implies that we can
assign values to y2, . . . , yq so that P ′ does not vanish, assuming we have at least two
values to choose from for each of y2 and y3, and at least one value to choose from for
each of y4, . . . , yq. From this, we deduce that we can assign values to vw2, . . . , vwq from
{α2, β2}, {α3, β3}, {α4}, {α5}, . . . , {αq}, respectively, so that u is in conflict with none of
w1 and t. Recall that the resulting sign of π`(u) is negative, while the sign of all vertices
wi with i ∈ {2, . . . , q} is positive. Thus, these vertices also cannot be in conflict.

– Suppose that s = + andW− 6= ∅. Assume w.l.o.g. that w1 ∈W−. Recall that, as long as
u and w1 get products with different signs by a labelling, they cannot be in conflict. Thus,
we here get our conclusion through the Combinatorial Nullstellensatz, by not modelling
the possible conflict between u and w1. The precise details are as follows. For every
i ∈ {1, . . . , q}, let xi be a variable associated to uwi. We consider the polynomial

P (x1, . . . , xq) =

(
a

q∏
i=1

xi −A

)
·
q∏
i=2

a q∏
j=1

xj − xi

 .

11

For every i ∈ {1, . . . , q}, we set yi = log xi. Then P is equivalent to

P ′(y1, . . . , yq) =

(
log(a) +

q∑
i=1

yi − log(A)

)
·
q∏
i=2

log(a) +

q∑
j=1

yj − yi

 .

In the expansion of P ′, the monomial y1 . . . yq has strictly positive coefficient, and, thus,
by the Combinatorial Nullstellensatz, we can assign labels from {α1, β1}, . . . , {αq, βq} to
uw1, . . . , uwq, respectively, resulting in a labelling ` of S where u gets in conflict with
none of w2, . . . , wq, t. Proceeding that way, recall that the sign of π`(u) is positive, while
that of π`(w1) is negative. Then, also u and w1 cannot be in conflict, and ` is p-proper.

To conclude the proof, let us point out that the cases where s = − can be treated in a symmetric
way, by considering whether W+ is empty or not. �

We are now ready to conclude the proof of Theorem 3.5. Recall that we have obtained a
labelling `′ of T ′ = T −

{
v1, . . . , vp, v

′
1, . . . , v

′
p, w1, . . . , wq

}
by induction, and that we are in the

case where u is adjacent to q ≥ 2 leaves (and, possibly, p vi’s and one parent t). We start extending
`′ to T by considering every edge uvi (if such edges exist) and assigning to it a label from L(uvi)
different from 1. This is clearly possible, since |L(uvi)| = 3. We now apply Claim 3.6 to the uwi’s
to get all edges incident to u labelled, in such a way that u is not in conflict with any of t (if
it exists; if it does not, then note that the claim applies in a very close way) and the wi’s. The
main difference here, is that, though we do not have to care about possible conflict between u and
the vi’s for now, the claim must be employed with taking into consideration the contribution of
the uvi’s to the product of u. Lastly, it remains to label every viv′i with a label from L(viv

′
i) so

that vi and u do not get into conflict, which is possible since we have three possible labels. Recall
in particular that vi and v′i cannot be in conflict since `(uvi) 6= 1. Eventually, ` is p-proper, as
desired.

Planar graphs with large girth

Recall that a planar graph is a graph that can be embedded in the plane so that no two edges
cross, and that, for any graph G, the girth g(G) of G refers to the length of its shortest cycles. In
case G has no cycle, we set g(G) =∞.

Planar graphs with large enough girth are known to be 2-degenerate and to have low maximum
average degree. Thus, the third and fifth items of Corollary 2.6 establish 5 as a constant upper
bound on ch∗Π(G) when G is indeed a nice planar graph with large girth. In what follows, we
improve this upper bound down to 4 when g(G) ≥ 16, getting closer to the List Multiplicative
1-2-3 Conjecture for this class of graphs. Our proof involves arguments that are reminiscent to
those used to prove Theorem 3.5, combined together with the following structural result:

Theorem 3.7 (e.g. Nešetřil, Raspaud, Sopena [12]). If G is a planar graph with girth g(G) ≥ 5`+1
for some ` ≥ 1, then either:

• δ(G) = 1, or

• G contains an `-thread, i.e., a path uv1 . . . v`w where d(u), d(w) ≥ 2, and d(vi) = 2 for every
i ∈ {1, . . . , `}.

We are now ready to prove our result.

Theorem 3.8. If G is a nice planar graph with girth g(G) ≥ 16, then ch∗Π(G) ≤ 4.

Proof. Assume the claim is wrong, and let G be a minimal counterexample to the claim. We may
assume that G is connected, and, due to Theorems 3.4 and 3.5, that ∆(G) ≥ 3 and that G is not

12

a tree. Let L be a 4-list assignment to the edges of G. We prove the result by contradicting the
existence of G, i.e., by showing that G admits p-proper L-labellings, whatever L is.

If δ(G) ≥ 2, then, by Theorem 3.7, we can find a 3-thread uv1v2v3w in G. In that case, we
consider G′ = G−v2. Note that G′ may consist in up to two connected components, each of which
has at least two edges (since d(u), d(w) ≥ 2, by the assumption on δ(G)) and girth at least 16 (in
case there is only one connected component, G′ might be a tree; in that case, g(G′) = ∞, and
the girth condition remains true). So G′ is nice and planar, and, by minimality of G, there is a
p-proper L′-labelling `′ of G′, where L′ denotes the restriction of L to the edges of G′. To obtain
a contradiction, it now suffices to extend `′ to a p-proper L-labelling of G, and, for this, we just
have to assign labels from L(v1v2) and L(v2v3) to v1v2 and v2v3, respectively, so that no conflict
arises. This can clearly be done since |L(v1v2)| = |L(v2v3)| = 4, by first assigning to v1v2 a label
different from `′(v3w) for which v1 and u get different partial products, and then assigning to v2v3

a label so that v1 and v2 are not in conflict, and similarly for v3 and w.
We may thus assume that δ(G) = 1. Since G is not a tree, this means that, by repeatedly

removing vertices of degree 1 while there are some, we end up with a planar connected graph G−
such that δ(G−) ≥ 2 and g(G−) ≥ 16. More precisely, for every v ∈ V (G)∩V (G−), we can denote
by Tv the pending tree rooted at v in G, which, if dG(v) = dG−(v), is reduced to the single vertex
v. Then G− is obtained from G by contracting every Tv to v. For every v ∈ V (G) ∩ V (G−), we
deal, in G, with Tv through the terminology introduced in the proof of Theorem 3.5 (in particular,
the notions of parent, son, descendant and branching vertex have the exact same meaning).

Because g(G−) ≥ 16, then, by Theorem 3.7, we deduce that G− has a 3-thread P = uv1v2v3w.
Note that P also exists back in G, the difference being that v1, v2, v3 might each be the root of a
pending tree (denoted Tv1 , Tv2 , Tv3 , respectively, following our terminology) that might have edges.
In case we have V (Tvi) = {vi} for every i ∈ {1, 2, 3}, then note that P is actually a 3-thread in G,
in which case a contradiction can be obtained in the similar way as in the previous case δ(G) ≥ 2.
Thus, in what follows, we assume that some of Tv1 , Tv2 , Tv3 are not reduced to a single vertex.

By arguments similar to some used in the proof of Theorem 3.5, we may assume that none of
Tv1 , Tv2 , Tv3 has 1) a non-root branching vertex, or 2) a pending path of length at least 3 (remind,
in particular, that in the current context there is even more room for labelling extensions, due to
L being a 4-list assignment). This means that each Tvi is a subdivided star with center vi, where
the pending paths attached to vi (if any) have length 1 or 2.

We start by handling a very particular case, which is when every Tvi has only one edge viv′i,
i.e., is a star with a single edge viv′i. In this case, we consider G′ = G−v2. A p-proper L′-labelling
of G′ (where, again, L′ denotes the restriction of L to G′), which exists by minimality of G, can
then be extended to a p-proper L-labelling of G, a contradiction, by first labelling v1v2 with a label
from L(v1v2) so that no conflict between v1 and its two neighbours different from v2 arises, then
labelling v2v3 with a label from L(v2v3) so that 1) no conflict between v3 and its two neighbours
different from v2 arises, and 2) v2 gets partial product different from 1; and lastly labelling the
edge v2v

′
2 of Tv2 with a label from L(v2v

′
2) so that no conflict between v2 and its two neighbours

different from v′2 arises. Recall, in particular, that v2 and v′2 cannot be in conflict due to how v2v3

was labelled. Note also that lists of four labels are indeed sufficient to achieve this whole process.
In the more general case, let us consider the graph G′ = G − (V (Tv1) \ {v1}) − V (Tv2) −

(V (Tv3) \ {v3}) (obtained by removing the non-root vertices of Tv1 and Tv3 , and the whole of Tv2).
By arguments used earlier in the case where δ(G) ≥ 2, there is a p-proper L′-labelling `′ of G′,
where L′ denotes the restriction of L to the edges of G′. Our goal, to get a final contradiction, is
to extend `′ in a p-proper way to the edges v1v2, v2v3 and those in Tv1 , Tv2 , Tv3 , assigning labels
from their respective lists, so that a p-proper L-labelling of G results.

We start by assigning labels from L(v1v2) and L(v2v3) to v1v2 and v2v3, respectively, in such
a way that, for the resulting partial products of v1, v2, v3, 1) v2 is in conflict with none of v1 and
v3, 2) v1 is not in conflict with u, 3) v3 is not in conflict with w, and 4) none vi of v1, v2, v3 for

13

which Tvi contains only one edge, gets product 1 as a result. This is possible to achieve since
|L(v1v2)| = |L(v2v3)| = 4. More precisely, this can be achieved by labelling v1v2 first and v2v3

second if Tv1 has only one edge, or by labelling v2v3 first and v1v2 second otherwise. Recall, in
particular, that we have treated separately the case where all of Tv1 , Tv2 , Tv3 have only one edge,
so we are not in that case; the fourth condition must thus be fulfilled for at most two of the vi’s.

It now remains to label the edges from the Tvi ’s. We achieve this by considering Tv1 , Tv2 and
Tv3 in turn, so that, once every Tvi has been treated, no vertex in V (Tv1)∪ · · · ∪V (Tvi) is involved
in conflicts, and none of the vertices in V (Tvi+1

) ∪ · · · ∪ V (Tv3) had its product altered. This way,
the desired p-proper L-labelling of G will result once Tv3 has been treated. In what follows, we
focus on Tv1 , but the arguments apply similarly for Tv2 and Tv3 .

Recall that Tv1 consists of some (possibly none) pending paths of length 1 or 2 attached to v1.
Let us assume that p ≥ 0 of these paths have length 2, while q ≥ 0 of them have length 1. We
denote by b1, . . . , bp the sons of v1 that belong to the pending paths of length 2, while we denote
by c1, . . . , cq those from the pending paths of length 1. Finally, for every i ∈ {1, . . . , p}, we denote
by b′i the son of bi in Tv1 . By how v1v2 was labelled earlier, note that we already have the desired
conclusion around v1 if p = q = 0. We thus focus on the cases where p+ q > 0.

• The cases where q ∈ {0, 1} can be treated quite similarly as the cases q = 0 and q = 1 in the
proof of Theorem 3.5. Namely, we first label the edges v1b1, . . . , v1bp−1 (if such exist) with
labels different from 1 from their respective lists. If q = 0, then we label v1bp with a label
different from 1 from its list, with making sure that the resulting product of v1 is different
from that of u and v2. Otherwise, if q = 1, then we label v1bp with a label different from 1
from its list, with making sure that the resulting partial product of v1 does not get equal to 1
(if p = 0, then recall that this property is already verified at v1, due to how v1v2 and v2v3

have been labelled). Still in the case where q = 1, this guarantees that v1 and c1 cannot get
in conflict no matter how v1c1 is labelled; thus, we can label v1c1 with a label from its list so
that v1 does not in conflict with u and v2. Note that lists of size 4 are sufficient to achieve
these conditions in all cases. We lastly label every edge bib′i (if any) with a label from its list,
with making sure that bi does not get in conflict with v1. Because v1bi was assigned a label
different from 1, recall that bi and b′i cannot be in conflict.

• The cases where q = 2 can be treated quite similarly. Start by labelling every edge v1bi (if
there are some) with a label different from 1 from its list. Then, label v1c1 with a label from
its list, so that the resulting partial product of v1 does not get equal to 1. Last, label v1c2
with a label from its list, so that v1 gets in conflict with none of u, v2 and c1. Note that
this is possible, since we do not have to care about a possible conflict between v1 and c2, and
|L(v1c2)| = 4. To conclude, we can eventually label the bib′i’s just as in the previous case.

The general case is when q ≥ 3. We need a generalisation of Claim 3.6 to the current context.

Claim 3.9. Let S be a star with center u and q + 2 ≥ 5 leaves t, t′, w1, . . . , wq. Assume we have
a partial labelling `′ of S where ut and ut′ are the only edges being assigned a label, a and a′,
respectively, and that t and t′ have (virtual) product π`′(t) = A and π`′(t′) = A′. If L is a 4-list
assignment to the uwi’s, then, for every i ∈ {1, . . . , q}, we can assign a label from L(uwi) to uwi,
so that `′ is extended to a labelling ` of S verifying π`(u) 6∈ {A,A′, π`(w1), . . . , π`(wq)}.

Proof of the claim. Note that each L(uwi) contains two, three or four values with pairwise distinct
absolute values. We consider several cases based on that fact.

• Assume, w.l.o.g., that the four values in L(uw1) have pairwise distinct absolute values. To
each edge uwi, we associate a variable xi, and we consider the polynomial

P (x1, . . . , xq) =

(
aa′

q∏
i=1

xi −A

)
·

(
aa′

q∏
i=1

xi −A′
)
·
q∏
i=1

aa′ q∏
j=1

xj − xi

 .

14

For every i ∈ {1, . . . , q}, we set yi = log xi. Then P gets equivalent to

P ′(y1, . . . , yq) =

(
log(aa′) +

q∑
i=1

yi − log(A)

)
·

(
log(aa′) +

q∑
i=1

yi − log(A′)

)

·
q∏
i=1

log(aa′) +

q∑
j=1

yj − yi

 .

In the expansion of P ′, the monomial y3
1y2 . . . yq has strictly positive coefficient. Thus, by the

Combinatorial Nullstellensatz, we can assign values to the yi’s so that P ′ does not vanish, as
long as we are given a set of at least four possible distinct values as y1, and a set of at least two
possible distinct values as each of y2, . . . , yq. Regarding P , this implies we can assign values
to the xi’s so that P does not vanish, assuming we have a set of a least four possible values
with pairwise distinct absolute values as x1, and a set of at least two possible values with
distinct absolute values as each of x1, . . . , xq. This is met in the current case, since L(uw1)
is assumed to have four values with pairwise distinct absolute values, and |L(uwi)| = 4 for
every i ∈ {2, . . . , q}. Thus, `′ can be extended to ` as desired.

• Assume now that, w.l.o.g., both L(uw1) and L(uw2) include three values with pairwise distinct
absolute values. Then the same conclusion as in the previous case can be reached from
considering the monomial y2

1y
2
2y3 . . . yq in the expansion of P ′.

• We can thus assume that none of the two previous cases applies, i.e., that, w.l.o.g., L(uw1)
includes two or three values with pairwise distinct absolute values, while L(uw2), . . . , L(uwq)
include each exactly two values with pairwise distinct absolute values. In other words, we
have L(uwi) = {αi,−αi, βi,−βi} for every i ∈ {2, . . . , q}, for some distinct αi, βi, while
L(uw1) = {α1,−α1, β1,−β1} or L(uw1) = {α1,−α1, β1, γ1}, for some distinct α1, β1, γ1. To
conclude the proof, we consider a few more cases:

– Assume first that A and A′ have the same sign s ∈ {−,+}. For every i ∈ {1, . . . , q − 2},
let us assign to uwi a label with sign s from its list. Then:
∗ If s and the sign of the partial product of u are the same, then we assign to uwq−1 a

label with sign s from its list, chosen so that the partial product of u gets different
from 1. Note that this is possible, since L(uwq−1) contains two values with sign s.
This guarantees that u and wq cannot be in conflict, whatever the label of uwq is.
We then assign to uwq a label with sign −s from its list, so that all edges are labelled
and no conflict remains. In particular, u gets product with sign −s, while only wq
has this property.

∗ Otherwise, i.e., if s and the sign of the partial product of u are different, then we
assign to uwq−1 and uwq a label with sign s from their lists. As a result, no conflict
remains, since u is the only vertex with product being of sign −s.

– Now assume that A and A′ have different signs, say A is positive while A′ is negative.
We here start by assigning, for every i ∈ {1, . . . , q − 2}, a positive label to uwi from its
list L(uwi). Now:
∗ If currently u has negative product, then we assign to uwq−1 and uwq a positive label

from their respective lists, with making sure that the product of u gets different from
A′. This is possible since L(uwq−1) and L(uwq) have two positive values each. Since
only u and t′ have negative product, no conflict remains.

∗ Otherwise, i.e., u currently has positive product, then we first assign a positive label
to uwq−1 from its list, chosen so that the current product of u does not get equal to 1.
This is possible, since L(uwq−1) contains two positive values. This guarantees that u

15

and wq cannot get in conflict. We then assign to uwq a negative label from L(uwq),
chosen so that u gets product different from A′. This is possible since L(uwq) contains
two negative values. Since only A′ and the products of u and wq are negative, no
conflict remains.

In all cases, we end up with the desired labelling `, which concludes the proof. �

We can now conclude the case q ≥ 3 of the proof of Theorem 3.8, thus proving the whole
statement. We start by labelling every edge v1bi (if any) with any label different from 1 from its
list L(v1bi). We now apply Claim 3.9 to get all v1ci’s labelled with labels from their lists, so that
v1 is not in conflict with any of u, v2 and the ci’s. This can be done by applying Claim 3.9 with
v1, u and v2 playing the role of u, t and t′, respectively, π`′(u) and π`′(v2) playing the role of A
and A′, respectively, `′(uv1)

∏p
i=1 `(ubi) and `

′(v1v2) playing the role of a and a′, respectively, and
the ci’s playing the role of the wi’s. It remains to label the bib′i’s (if any), and, for each such edge
bib
′
i, it suffices to assign a label from its list so that bi and v1 do not get in conflict. Recall that

we do not have to mind about a possible conflict between bi and b′i, since `(v1bi) 6= 1.

3.2.1 Subcubic graphs

We now consider subcubic graphs, i.e., graphs with maximum degree 3. Note that, at this point,
the best upper bound we have on ch∗Π for these graphs is 5, obtained from Theorem 3.1. We get
one step closer to the List Multiplicative 1-2-3 Conjecture for this class of graphs, by lowering the
upper bound down to 4 in the next result.

Theorem 3.10. If G is a nice subcubic graph, then ch∗Π(G) ≤ 4.

Proof. Assume the claim is wrong, and consider G a minimal counterexample to the claim. Clearly,
G is connected. Let L be a 4-list assignment to the edges of G. We prove below that G admits a
p-proper L-labelling whatever L is, a contradiction. To that aim, we first show that G is cubic:

• Assume first that δ(G) = 1, and consider u a degree-1 vertex of G with unique neighbour v.

– Assume first that d(v) = 2, and let w denote the second neighbour of v. Set G′ =
G−{u, v}. We can assume that G′ is nice, as otherwise G would be the path of length 3, in
which case even ch∗Π(G) ≤ 3 holds by Theorem 3.4, a contradiction. Then, by minimality
of G, there is a p-proper L′-labelling `′ of G′, where L′ denotes the restriction of L to
the edges of G′. We extend `′ to a p-proper L-labelling of G, getting a contradiction,
by correctly assigning labels to uv and vw from their respective lists. We first label vw,
by assigning a label from L(vw) that is different from 1, and so that w does not get in
conflict with any of its at most two other neighbours different from v. Note that this is
possible since |L(vw)| = 4. We can now extend the labelling to uv by assigning a label
from L(uv) so that v does not get in conflict with w. Note that by how vw was labelled,
u and v cannot get in conflict.

– Assume now that d(v) = 3, and let w1, w2 denote the two neighbours of v different from
u. Set G′ = G − {u, v}. We can assume that G′ is nice, as otherwise either 1) one of
the wi’s is a degree-2 vertex adjacent to a 1-vertex, or 2) w1w2 exists and both w1 and
w2 have degree 2. In the former case, we fall into the previous case (where d(v) = 2) we
have handled. In the latter case, G has only four edges and the claim can be checked
by hand. So G′ is nice, and, by minimality of G, there is a p-proper L′-labelling `′ of
G′, where L′ denotes the restriction of L to the edges of G′. To extend it to one of G,
thus getting a contradiction, we proceed as follows. For every i ∈ {1, 2}, note that there
are at least two values ai, bi ∈ L(uwi) that can be assigned to vwi without causing any
conflict between wi and its at most two neighbours different from v. We assign labels to

16

vw1 and vw2 from {a1, b1} and {a2, b2}, respectively, so that the product of these two
labels is different from 1. It then suffices to assign to uv a label from L(uv) so that v gets
in conflict with none of w1 and w2, which is possible since |L(uv)| = 4. Again, u and v
cannot be in conflict due to how vw1 and vw2 have been labelled.

• Assume now that δ(G) = 2, and consider u a degree-2 vertex of G with neighbours v1, v2.
By the minimum degree assumption, each of v1 and v2 has one or two neighbours different
from u. We here consider G′ = G− u. We can assume that G′ is nice, as, because δ(G) = 2,
otherwise it would mean that v1v2 is the only other edge, thus that G is C3, the cycle of
length 3, in which case ch∗Π(G) ≤ 3 holds by Theorem 3.4, a contradiction. So G′ admits a
p-proper L′-labelling `′, where L′ is the restriction of L to the edges of G′. We show that
this p-proper labelling can be extended to uv1 and uv2 by assigning labels from their lists,
thereby getting a contradiction.
Let x1, x2 be variables associated to uv1 and uv2, respectively. Let us denote by y1, y2 the
values π`′(v1), π`′(v2), respectively. Let us now consider the polynomial

P (x1, x2) = (x1x2−x1y1)·(x1x2−x2y2)·
∏

w∈N(v1)\{u}

(x1y1−π`′(w))·
∏

w∈N(v2)\{u}

(x2y2−π`′(w)).

If x1 and x2 can be assigned values in L(uv1) and L(uv2), respectively, so that P does not
vanish, then we get a p-proper L-labelling of G. Since x1 and x2 are the only variables of P ,
it is easy to see that, in the expansion of P , the monomial M with largest degree is either
x4

1x
4
2 (when d(v1) = d(v2) = 3), x3

1x
4
2 (when d(v1) = 2 and d(v2) = 3), x4

1x
3
2 (when d(v1) = 3

and d(v2) = 2) or x3
1x

3
2 (when d(v1) = d(v2) = 2). In all case, sinceM has nonzero coefficient,

then, by the Combinatorial Nullstellensatz, desired values for x1 and x2 can be chosen from
lists of size at least 5, thus from lists of size at least 4 if we are guaranteed that they do not
include 0 (due to the first two factors of P). From this, we deduce that a p-proper L-labelling
of G can be obtained from `′, a contradiction.

Thus, from now on, G can be assumed to be cubic. Let C = u1 . . . upu1 be a smallest induced
cycle of G. For every i ∈ {1, . . . , p}, we denote by u′i the neighbour of ui which does not belong to
C. Let G′ = G−E(C). Note that G′ is nice, since the ui’s have degree 1 and are not adjacent in
G′, while all other vertices have degree 3. Thus, by minimality of G, there is a p-proper L′-labelling
`′ of G′, where L′ denotes the restriction of L to the edges of G′. Our goal is to extend it to the
edges of C in a p-proper way to an L-labelling of G, thereby getting a final contradiction.

To ease the exposition of the upcoming arguments, let us introduce some notation. For every
i ∈ {1, . . . , p}, we set Li = L(uiui+1), a′i = `′(uiu

′
i) and A′i =

π`′ (u
′
i)

a′i
(where, here and further, we

set up+1 = u1 and u0 = up). For some set X of values and λ ∈ R∗, we define λX = {λx : x ∈ X}
and λ

X =
{
λ
x : x ∈ X

}
. For two sets X and Y , we define XY = {xy : x ∈ X, y ∈ Y }.

The proof goes by distinguishing several cases depending on some lists by L and on the structure
of G. In each considered case, it is implicitly assumed that none of the previous cases applies.

1. There are i0 ∈ {1, . . . , p} and α ∈ Li0−1 such that, for all α′ ∈ Li0 , we have αα′ 6= A′i0 .
W.l.o.g., assume that i0 = 1. The assumption implies that u1 and u′1 can never be in conflict
in an extension of `′ assigning label α to upu1. Let us thus start by assigning label α to upu1.
We then consider the other edges up−1up, up−2up−1, . . . , u1u2 of C one by one, following this
exact ordering. For every edge uiui+1 considered that way, we assign a label from L(uiui+1)
chosen in the following manner:

• If i ∈ {3, . . . , p − 1}, then we assign to uiui+1 a label so that ui+1 is in conflict with
neither ui+2 nor u′i+1. Note that this is possible since |L(uiui+1)| = 4. In the case where
i = p − 1, we note that ui+2 = u1 is a vertex whose product is not fully determined

17

yet; the conflict between up and u1 will actually be taken care of in a later stage of the
extension process.

• If i = 2, then we assign to u2u3 a label so that u3 is in conflict with neither u4 not u′3,
and the resulting partial product of u2 gets different from the partial product of u1. This
is possible, since |L(u2u3)| = 4. In case p = 3 and, thus, u4 = u1, the possible conflict
between u3 and u1 will be handled during the next step of the process.
• If i = 1, the we assign to u1u2 a label so that u2 gets in conflict with neither u3 not u′2,

and u1 and up are not in conflict. Again, this is possible because |L(u1u2)| = 4. Recall
further that u1 and u2 cannot be in conflict due to the choice of the label assigned to
u2u3. Also, u1 and u′1 cannot be in conflict by the initial assumption on α.

Thus, once the whole process has been carried out, we get an L-labelling of G which is
p-proper, a contradiction.

Since Case 1 does not apply, then, throughout what follows, for every i ∈ {1, . . . , p}, we have

Li−1 =
A′i
Li

and Li =
A′i
Li−1

. (1)

2. There are i0 ∈ {1, . . . , p} and α ∈ Li0 such that, for all α′ ∈ Li0+2, we have αa′i0+1 6= α′a′i0+2.
W.l.o.g., assume that i0 = 1. The assumption implies that u2 and u3 can never be in conflict
in an extension of `′ assigning label α to u1u2. Let us thus assign label α to u1u2. We then
consider the other edges of C, and label them with labels from their respective lists so that
no conflict arises. We consider a special value of p, before considering the general case.

• Assume first that p = 3, i.e., C is a triangle. We start by assigning a label from L(u2u3)
to u2u3 so that u2 does not get in conflict with u′2, and the partial product of u3 gets
different from the partial product of u1. Note that this is possible since |L(u2u3)| = 4.
We then assign a label from L(u1u3) to u1u3 so that u1 gets in conflict with neither u′1 nor
u2, and u3 does not get in conflict with u′3. Again, such a label exists since |L(u1u3)| = 4.
Recall that u1 and u3 cannot be in conflict due to how u2u3 was labelled. Also, u2 and
u3 cannot be in conflict by the assumption on α.

• Otherwise, i.e., p ≥ 4, we start by assigning a label from L(u2u3) to u2u3 so that u2 and
u′2 do not get in conflict. We then consider the remaining edges upu1, up−1up, . . . , u3u4 of
C one by one, following this exact ordering. For every edge uiui+1 considered that way,
we assign a label from L(uiui+1) chosen in the following way:
– If i ∈ {5, . . . , p}, then we assign to uiui+1 a label chosen so that ui+1 gets in conflict

with neither ui+2 nor u′i+1. This is possible since |L(uiui+1)| = 4.
– If i = 4, then we assign to u4u5 a label chosen so that u5 gets in conflict with neither
u6 nor u′5, and the partial product of u4 does not get equal to the partial product of
u3. This is possible since |L(u4u5)| = 4.

– If i = 3, then we assign to u3u4 a label so that u4 gets in conflict with neither u5 nor
u′4, and u3 does not get in conflict with u′3. Again, this is possible since |L(u3u4)| = 4.
Recall that u4 and u3 cannot be in conflict due to how u4u5 has been labelled. Also,
u2 and u3 cannot be in conflict by the assumption on α.

Thus, in all cases, we get a p-proper L-labelling of G, a contradiction.

Since Case 2 does not apply in what follows, then, for every i ∈ {1, . . . , p}, we have

Li =
a′i+2

a′i+1

Li+2. (2)

18

3. G is K4, the complete graph on four vertices.
Here, C is a cycle u1u2u3u1 of length 3, and we have u′ = u′1 = u′2 = u′3. Also, `′ assigns labels
to the three edges incident to u′, since G′ is a star. Note that, as long as we label the edges
of C last and handle all conflicts at that point, then, prior to labelling C, we might actually
change the labels assigned to u1u

′, u2u
′, u3u

′ by `′ for other labels from their respective lists.
Note now that, for any choice of label a′3 from L(u3u

′) assigned to u3u
′, Identity (2) must

apply, i.e., we must have L1 =
a′3
a′2
L3, as otherwise previous Case 2 would apply the very

same way. This implies that |L3| ≥ 5, a contradiction, by the following arguments. Since
|L(u3u

′)| = 4, there are at least two values x, y ∈ L(u3u
′) with distinct absolute values, say

|x| < |y|. Start by assigning label x to L(u3u
′); because Identity (2) applies, we deduce that

for every α ∈ L1 we have xα ∈ L3. The other way around, we have L3 = L′3 = {xα : α ∈ L1}
and |L′3| = |L3| = 4. Now change the label of u3u

′ to y. Because |x| < |y|, we deduce that,
for an α ∈ L1 with largest absolute value, yα 6∈ L′3. This implies that L3 must contain a fifth
value not in L′3 for Identity (2) to apply with y.

4. p = 3 and C shares an edge with another triangle.
Assume u1u2 belongs to a triangle u′u1u2u

′ different from C, where u′ = u′1 = u′2 is the
common neighbour of u1 and u2 different from u3. Because we are not in Case 3, we have
u′3 6= u′, and u′ has a neighbour w 6∈ V (C). Note that, by `′, there are actually three possible
values in L(u′2u

′) that can be assigned to u′2u′ without causing u′ to be in conflict with w,
thus two such values x, y, with, say, |x| < |y|. Start by setting a′2 = y. By an application
of Identity (2) (which applies as otherwise Case 2 would), we deduce that L1 =

a′3
a′2
L3, which

reveals the exact four values in L3. Now, just as in previous Case 3, we note that by changing
the value of a′2 to x and applying Identity (2) again, we deduce that L3 must contain a fifth
value not among the previous four revealed ones. This is a contradiction.

At this point, note that if we modify the label a′i assigned to any edge uiu′i by `′, then this has
no impact on the value A′i+1 (and, symmetrically, on A′i−1). Indeed, if modifying a′i also modified
A′i+1, then this would imply that uiu′i is incident to u′i+1, thus that u′i = u′i+1. But, in this case, we
would deduce that uiui+1u

′
iui is a triangle sharing an edge with C, thereby getting a contradiction

to the fact that none of Cases 3 and 4 applies.
By manipulating Identities (1) and (2), note that we can establish the relationship

Li =
a′i+2A

′
i+2

a′i+1A
′
i+1

Li =
a′i+1A

′
i+1

a′i+2A
′
i+2

Li (3)

between any list Li and some of the a′i’s and A′i’s. For every i ∈ {1, . . . , p}, we define λi =
A′i+1

a′i+2A
′
i+2

;
then, Li = a′i+1λiLi by the above.

5. There are i ∈ {1, . . . , p} and a p-proper L-labelling ` of G′ matching `′ on all edges but possibly
ui+1u

′
i+1, and such that

∣∣`(ui+1u
′
i+1)λi

∣∣ 6= 1.
The definition of ` and the fact previous Cases 3 and 4 do not apply, imply that A′i+1, A′i+2 and
a′i+2 are the same by both `′ and `. From Identity 3, we deduce that Li = `(ui+1u

′
i+1)λiLi,

where λi is the same by both `′ and `. Now consider x0 ∈ Li; from what we have just deduced,
we now get that {

(`(ui+1u
′
i+1)λi)

jx0

}
j∈N ⊆ Li.

Because
∣∣`(ui+1u

′
i+1)λi

∣∣ 6= 1, we then deduce that the set
{

(`(ui+1u
′
i+1)λi)

jx0

}
j∈N has infinite

cardinality and is included in Li, which has size 4; a contradiction.

Note that, by `′, there are actually at least two values in L(uiu
′
i) that could be assigned to uiu′i

without breaking p-properness. This is because |L(uiu
′
i)| = 4, and, when labelling uiu′i, we only

19

have to make sure that u′i gets product different from that of its at most two neighbours different
from ui in G′ (in particular, note that we must have A′i 6= 1 by `′ so that π`′(ui) 6= π`′(u

′
i), and

thus we do not have to care about ui and u′i getting in conflict when relabelling uiu′i). Because
Case 5 does not apply, this actually implies that there are exactly two such values from every
L(uiu

′
i), and that these two values are precisely ai and −ai.

6. There exists i ∈ {1, . . . , p} such that Li 6= {α,−α, β,−β} for some distinct α, β ∈ R∗.
Let us consider the identity Li = a′i+1λiLi again. Since Case 5 does not apply, we have∣∣`′(ui+1u

′
i+1)λi

∣∣ = 1 for any possible value as `′(ui+1u
′
i+1) from L(ui+1u

′
i+1). Since u′i+1 has,

in G′, two neighbours different from ui+1, there are, in L(ui+1u
′
i+1), two possible values for

ui+1u
′
i+1 that make u′i+1 being not in conflict with these two neighbours, and these at least

two possibilities must include a′i+1 and −a′i+1. Now, by considering the p-proper L′-labelling
of G′ obtained from `′ by changing the label of ui+1u

′
i+1 to −ai+1, the same reasoning process

leads us to deduce that Li = −a′i+1λiLi. This implies that Li = −Li, a contradiction.

We are now ready to conclude the proof, by considering a few cases on the length of C. The
crucial points to keep in mind from now on, are that L verifies, for every i ∈ {1, . . . , p}, that 1)
a′i,−a′i ∈ L(uiu

′
i) and, in `′, changing the label of uiu′i from a′i to −a′i cannot raise a conflict in

G′, and that 2) there are nonzero real numbers αi, βi such that Li = {αi,−αi, βi,−βi}.

7. p is even.
For every i ∈ {1, . . . , p}, we associate a variable xi to the edge uiui+1. We consider the
polynomial

P (x1, . . . , xp) =

p∏
i=1

(xi−1xi −A′i) ,

which is equivalent to considering

P ′(y1, . . . , yp) =

p∏
i=1

(yi−1 + yi − log(A′i))

where yi = log xi for every i ∈ {1, . . . , p}. Note that the monomial y1 . . . yp has maximum
degree and nonzero coefficient in the expansion of P ′. Thus, by the Combinatorial Null-
stellensatz, we can assign values to the yi’s so that P ′ does not vanish, assuming we have
at least two possible values to choose from for each of the yi’s. This implies that we can
assign values to the xi’s so that P does not vanish, assuming we have at least two possible
values with distinct absolute values to choose from, for each of the xi’s. Particularly, since
|L(uiui+1)| = 4 for every edge uiui+1, this implies that `′ can be extended to the edges of C,
resulting in an L-labelling ` of G where π`(ui) and π`(u

′
i) have distinct absolute values for

every i ∈ {1, . . . , p}. Now, the only possible remaining conflicts are between the ui’s. Due to
all the assumptions made this far, recall, for every i ∈ {1, . . . , p}, that ` assigns label a′i to
every edge uiu′i, that −a′i ∈ L(uiu

′
i), and that switching `(uiui) from a′i to −a′i cannot raise a

conflict between u′i and its neighbours. Thus, to get a p-proper L-labelling of G, we can just
consider each of the uiu′i’s in turn, and for each uiu′i of them, switch, if necessary, its label
to −a′i so that ui gets positive product if i is, say, even, or negative product otherwise.

8. p = 3.
Because Cases 3 and 4 do not apply, recall that u′1, u′2, u′3 are pairwise different. We extend
`′ as follows. We start by assigning any label from L(u1u2) to u1u2. Next, we assign to u3u1

a label from L(u3u1) so that no conflict between u1 and u′1 arises, and the resulting partial
products of u2 and u3 have different absolute values. Note that this is possible, since L3 is
of the form {α,−α, β,−β}. We finally assign to u2u3 a label from L(u2u3) so that there is

20

no conflict between u2 and u′2, u3 and u′3, and u1 and u3. Recall that u2 and u3 cannot be
in conflict due to how u3u1 was labelled. Thus, the only potential conflict that can remain is
between u2 and u1, and, if it occurs, then we can get rid of it by simply changing the label
of u2u

′
2 from a′2 to −a′2. Recall that this cannot make u′2 get in conflict with its neighbours

different from u2, and that u2 and u′2 also cannot get in conflict unless they already were
before switching the label of u2u

′
2.

9. p is odd at least 5.
We first use the Combinatorial Nullstellensatz similarly as in Case 7, to label the edges of C
in such a way that, for certain pairs of vertices, the resulting products have distinct absolute
values. More precisely, we want to achieve this for the pairs {u1, u

′
1}, {u1, u2}, {u2, u3},

{u3, u
′
3}, {u4, u

′
4}, {u5, u

′
5}, . . . , {up−2, u

′
p−2} and {up, u′p}. We denote by S the set of those

pairs. In order to show that such an extension exists, for every i ∈ {1, . . . , p} we associate a
variable xi to the edge uiui+1, and consider the polynomial

P (x1, . . . , xp) = (xpx1 −A′1) · (xpa′1 − x2a
′
2) · (x1a

′
2 − x3a

′
3)

·

(
p−2∏
i=3

(xi−1xi −A′i)

)
·
(
xp−1xp −A′p

)
,

which, if yi = log |xi| for every i ∈ {1, . . . , p}, is the same as considering

P ′(y1, . . . , yp) = (yp + y1 − log(A′1)) · (yp + log(a′1)− y2 − log(a′2)) · (y1 + log(a′2)− y3 − log(a′3))

·

(
p−2∏
i=3

(yi−1 + yi − log(A′i))

)
·
(
yp−1 + yp − log(A′p)

)
.

It can be checked that, in the expansion of P ′, the monomial y1 . . . yp has maximum degree
and nonzero coefficient −2. Thus, by the Combinatorial Nullstellensatz we deduce that there
is a way to label the edges of C with labels from their respectives lists, so that the desired
conflicts (between the adjacent vertices in the pairs of S) are avoided. In particular, this is
possible because all these lists are of the form {α,−α, β,−β}, and, in particular, contain two
values with distinct absolute values.
The resulting labelling might be not p-proper, and, to turn it into a p-proper one, we will
switch some edges incident to the vertices in C, and, by that, we mean changing the current
label l of an edge to −l. More particularly, we will switch edges of the form uiui+1 and uiu′i;
due to some of the assumptions made this far, recall that for every such edge e with current
label l, we do have −l ∈ L(e).
We start by switching, if necessary, u2u

′
2 and up−1u

′
p−1 so that the products of u′2 and u′p−1

get positive and negative, respectively. Next, we switch u1u2, if necessary, so that the product
of u2 gets negative. Now, we consider the edges u3u4, u4u5, . . . , upu1 one by one following
this ordering, and, for every such considered edge uiui+1, we switch it, if necessary, so that
the product of ui gets negative if i is odd, and positive otherwise. Lastly, we switch u1u

′
1, if

necessary, so that the product of u1 gets negative.
We claim that the eventual labelling of G is p-proper, our final contradiction. First recall, as
mentioned earlier, that the switching operation guarantees that the resulting labelling is an
L-labelling. Its p-properness follows from the following arguments. First, for all the pairs of
adjacent vertices in S, the products are different due to distinct absolute values (preserved
under the switching operation). Regarding the two adjacent vertices in the pair {up−1, u

′
p−1},

the products have different signs and are thus different. Now, for every two adjacent vertices
in the pairs {u3, u4}, {u4, u5}, . . . , {up, u1}, the products are different due to their signs being
different.

21

4 Conclusion
In this work, we have considered a problem being a combination of the Multiplicative 1-2-3 Con-
jecture and of the List 1-2-3 Conjecture, standing as a List Multiplicative 1-2-3 Conjecture. In
particular, we have exhibited a few bounds on the parameter ch∗Π, both for graphs in general and
for more specific classes of graphs. While some of these bounds are tight, some others remain a
bit distant from what we believe should be optimal.

An interesting point stemming from our proofs, is the methods we have used to establish
our bounds. In the context of the List 1-2-3 Conjecture, the algebraic approach, through, in
particular, the polynomial method and tools such as the Combinatorial Nullstellensatz, is definitely
the best approach we know of at the moment to establish bounds on chΣ. As described notably in
Subsection 2.3, and seen throughout this work, the potential of this method is a bit less obvious
for exhibiting bounds on ch∗Π. Recall that, in the current work, we have mainly exploited the
connection between chΣ and ch∗Π established in Theorem 2.5. It might be, however, that there are
dedicated ways to better exploit the algebraic approach, and get better bounds on ch∗Π.

As a main perspective for further work on the topic, it would be nice to obtain a constant
upper bound on ch∗Π for graphs in general. Recall that, due to Theorem 2.5, this could be obtained
through establishing a constant upper bound on chΣ. This apart, it would be interesting to verify
the List Multiplicative 1-2-3 Conjecture for more classes of graphs. For instance, it would be
interesting to improve any of the upper bounds in Corollary 2.6, some of which we have already
improved in Subsection 3.2. Notably, it is worth mentioning that the arguments used to prove
Theorems 3.8 and 3.10 are tight, and, as a result, it seems that our proofs would be hard to
improve to lower the bound of 4. From this, we would be interested in having a proof of the List
Multiplicative 1-2-3 Conjecture for planar graphs with girth at least 16 or for subcubic graphs.

References
[1] N. Alon. Combinatorial Nullstellensatz. Combinatorics, Probability and Computing, 8:7-29,

1999.

[2] M. Anholcer. Product irregularity strength of graphs. Discrete Mathematics, 309(22):6434-
6439, 2009.

[3] T. Bartnicki, J. Grytczuk, S. Niwczyk. Weight choosability of graphs. Journal of Graph The-
ory, 60:242–256, 2009.

[4] J. Bensmail, H. Hocquard, D. Lajou, É. Sopena. Further Evidence Towards the Multiplicative
1-2-3 Conjecture. Preprint, 2020. Available online at https://hal.archives-ouvertes.fr/
hal-02546401.

[5] L. Ding, G.-H. Duh, G. Wang, T.-L. Wong, J. Wu, X. Yu, X. Zhu. Graphs are (1,∆ + 1)-
choosable. Discrete Mathematics, 342:279-284, 2019.

[6] P. Erdős, A.L. Rubin, H. Taylor. Choosability in graphs. Proceeding of the West Coast Con-
ference on Combinatorics, Graph Theory and Computing, Arcata. Congressus Numerantium,
26:125–157, 1979.

[7] M. Kalkowski, M. Karoński, F. Pfender. Vertex-coloring edge-weightings: towards the 1-2-3
Conjecture. Journal of Combinatorial Theory, Series B, 100:347-349, 2010.

[8] M. Karoński, T. Łuczak, A. Thomason. Edge weights and vertex colours. Journal of Combi-
natorial Theory, Series B, 91:151–157, 2004.

[9] T. Li, C. Qu, G. Wang, X. Yu. Neighbor product distinguishing total colorings. Journal of
Combinatorial Optimization, 33:237–253, 2017.

22

[10] Y.-C. Liang, T.-L. Wong, X. Zhu. Graphs with maximum average degree less than 11
4 are

(1, 3)-choosable. Discrete Mathematics, 341(10):2661-2671, 2018.

[11] Y. Lu, C. Li, Z.K. Miao. Weight Choosability of Graphs with Maximum Degree 4. Acta
Mathematica Sinica, English Series, 36(6):723-732, 2020.

[12] J. Nešetřil, A. Raspaud, É. Sopena. Colorings and girth of oriented planar graphs. Discrete
Mathematics, 165-166:519-530, 1997.

[13] H. Pan, D. Yang. On total weight choosability of graphs. Journal of Combinatorial Optimiza-
tion, 25(4):766–783, 2013.

[14] B. Seamone. The 1-2-3 Conjecture and related problems: a survey. Preprint, 2012. Available
online at http://arxiv.org/abs/1211.5122.

[15] J. Skowronek-Kaziów. Multiplicative vertex-colouring weightings of graphs. Information Pro-
cessing Letters, 112(5):191-194, 2012.

[16] T.-L. Wong. 2-connected chordal graphs and line graphs are (1, 5)-choosable. European Journal
of Combinatorics, 91:103227, 2021.

[17] T.-L. Wong, X. Zhu. Total weight choosability of d-degenerate graphs. Manuscript, 2013.

23

