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Abstract

The square of the Frobenius norm of a matrix A is defined as the sum of squares of all the ele-
ments of A. An important application of the norm in statistics is when A is the difference between
a target (estimated or given) covariance matrix and a parameterized covariance matrix, whose pa-
rameters are chosen to minimize the Frobenius norm. In this article, we investigate weighting
the Frobenius norm by putting more weight on the diagonal elements of A, with an application
to spatial statistics. We find the spatial random effects (SRE) model that is closest, according to
the the weighted Frobenius norm between covariance matrices, to a particular stationary Matérn
covariance model.

Keywords: condition number, Fixed Rank Kriging, Frobenius norm, Q-R decomposition,
spatial random effects model

1. Introduction1

Fundamental to all of statistics is the modeling of a mean vector and a covariance matrix. This2

article is concerned with how close two covariance matrices are to each other, for the purposes3

of model calibration or parameter estimation. In particular, we consider the Frobenius norm and4

develop a new, weighted version of it that puts more weight on the diagonal elements, hence5

giving more emphasis to variances than covariances.6

Spatial statistics has become important in many applications, particularly in the earth and7

environmental sciences. Better sensors, for example on satellites, have led to a rapid increase in8

the size n of spatial data sets. Kriging (Matheron, 1962) is an optimal method of spatial prediction9

that filters out noise and fills in gaps in the data, but the kriging equations involve the inverse of10

the n×n data covariance matrixΣ. In general, the computations to obtain the kriging predictor and11

kriging variance are not scalable, usually of O(n3). Solutions to this problem include reduced-12

dimension methods (see Wikle, 2010, for a review) and the use of sparse precision matrices13

(Lindgren et al., 2011; Nychka et al., 2015). One of the reduced-dimension methods is based14

on the spatial random effects (SRE) model, which is a spatial process given by a random linear15

combination of r known spatial basis functions, where r is fixed and relatively small (Cressie and16

Johannesson, 2006, 2008). The resulting spatial prediction, called Fixed Rank Kriging (FRK),17

has a computational complexity of just O(nr2) = O(n), for r fixed.18
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The SRE class of spatial covariance matrices is chosen to illustrate the methodology pre-19

sented in this article. One way to estimate the SRE-model parameters is via an EM algorithm,20

which requires parametric (usually Gaussian) assumptions. Alternatively, the SRE-model pa-21

rameters can be estimated via minimizing a Frobenius matrix norm (Cressie and Johannesson,22

2008) which, in this article, we generalize to a diagonally weighted Frobenius norm.23

In Section 2, we present the Frobenius norm (F-norm) and its use for estimating covariance24

parameters; then we define a diagonally weighted version, the D-norm. Section 3 reviews briefly25

the spatial random effects (SRE) model and recalls the least-F-norm estimate of its parameters. In26

Section 4, we derive new estimating equations for the least-D-norm estimate of the SRE model’s27

parameters, for which we obtain an analytic solution for estimating the covariance matrix of the28

random effects. Section 5 presents a study that investigates the effects of the extra weight added29

to the diagonal, and we obtain least-F-norm and least-D-norm fits of the covariance matrix of30

the random effects. Then we compare the two fitted spatial covariance matrices by computing31

Kullback-Leibler divergences from the given true Gaussian distribution. We also compare var-32

ious matrix norms of the difference between the true spatial covariance matrix and the fitted33

spatial covariance matrix, as well as the condition numbers of the two fitted SRE-parameter co-34

variance matrices. We finally give heuristics to choose the diagonal weights depending on the35

strength of the spatial dependence. The paper ends with a discussion in Section 6.36

2. The Frobenius norm and its diagonally weighted version37

2.1. The Frobenius norm (F-norm)38

Let tr(A) denote the trace operator that sums the diagonal elements of a square matrix A. The39

Frobenius norm (F-norm) of an n × n matrix A is defined as,40

‖A‖F ≡

 n∑
i=1

n∑
j=1

a2
i j

1/2

= (tr(A′A))1/2 . (1)

Notice that each element of A is weighted exactly the same. One way to introduce non-41

negative weights {w1, . . . ,wn} is to take the F-norm of WAW or of WA, where W is a diagonal42

matrix with {w1/2
1 , . . . ,w1/2

n } down the diagonal. For each of these options, it is not possible to put43

extra emphasis on the diagonal elements of A. In this article, we propose a way to do this and call44

it the Diagonally Weighted Frobenius norm, that we shall denote D-norm, short for DWF-norm.45

Now, suppose we wish to fit θ by minimizing the norm of the difference, Σ0−Σ(θ), where Σ046

is a target covariance matrix and Σ(θ) is a covariance matrix depending on unknown parameters47

θ. In the application given in Section 5, Σ0,i j = C(si, s j) where C is a given covariance function.48

In other settings, if Z = (Z1, . . . ,Zn)′ is an n-dimensional spatial process, then suppose we model49

cov(Z) = Σ(θ); if Z is observed independently m times, resulting in data Z1, ...,Zm, then we50

could choose for Σ0 the non-parametric estimator,51

Σ0 = Σ̂m ≡ (1/m)
m∑

k=1

(
Zk − Z̄

) (
Zk − Z̄

)′
, (2)

where Z̄ is the empirical mean, Z̄ ≡
∑m

k=1 Zk/m. For example, Sampson and Guttorp (1992) use52

replicates {Zt : t = 1 . . .m} (over time) to obtain Σ0 given by (2).53
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Suppose that the target covariance matrix Σ0 is obtained from the data, for example Σ̂m in54

(2). A least-F-norm estimator of covariance parameters, θ, is defined as:55

θ̂ ≡ arg min
θ∈Θ
‖Σ0 − Σ(θ)‖2F , (3)

where Θ is the parameter space of θ. This is a semiparametric alternative to finding a maximum56

likelihood estimator of θ or a restricted maximum likelihood estimator of θ, where typically a57

parametric assumption is made that data are distributed as a multivariate Gaussian distribution.58

If (2) is used in (3), the only distributional assumption required is the existence of the first two59

moments of the elements {Zi : i = 1, . . . , n} of Z.60

We shall now separate the variances from the covariances. Define

V(θv) ≡ diag(Σ(θ)) ,

where diag(B) is a diagonal matrix with {(B)ii : i = 1, . . . , n} down the diagonal, and θv ∈ Θv ⊂ Θ

are parameters of (var(Z1), . . . , var(Zn))′. Then, when the target covariance matrix Σ0 is obtained
from the data, a least-F-norm estimator, θ̂v, can be obtained by minimizing with respect to θv,

‖diag(Σ0) − V(θv)‖2F = tr
(
diag (Σ0 − Σ(θ))′ diag (Σ0 − Σ(θ))

)
.

That is,61

θ̂v = arg min
θv∈Θv

‖diag(Σ0) − V(θv)‖2F . (4)

2.2. A diagonally weighted Frobenius norm (D-norm)62

Motivated by (3) and (4), we introduce a diagonally weighted Frobenius norm (D-norm),63

‖A‖D, through64

‖A‖2D ≡ tr(A′A) + λ2tr
(
diag(A)′diag(A)

)
= ‖A‖2F + λ2‖diag(A)‖2F , (5)

where λ2 is fixed and, hence, the D-norm depends on it. Note that it is straightforward to show65

that ‖.‖D defined by (5) satisfies all the properties of a norm. Consequently, for λ2 > 0, ‖Σ0 −66

Σ(θ)‖2D puts more emphasis on matching the variances than the covariances. Once again, suppose67

that the target covariance matrix Σ0 is obtained from the data. Then define the least-D-norm68

estimator of θ as follows:69

θ̂(λ2) ≡ arg min
θ∈Θ
‖Σ0 − Σ(θ)‖2D , (6)

where θ̂(0) is given by (3), and θ̂(∞) is given by (4). In general, the estimator θ̂(λ2) depends on70

λ2, namely the amount of extra weight put on the diagonal elements.71

3. Minimizing the F-norm to estimate parameters of the SRE model72

We first define the spatial random effects (SRE) model and fit or estimate its covariance73

parameters by minimizing the Frobenius norm (F-norm).74
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3.1. The SRE model75

Suppose that {Z(s) : s ∈ D} are spatial data on a finite set of locations, D ≡ {si : i =

1, . . . , n} ⊂ Rd, in a d-dimensional Euclidean space. We write Z = (Z(s1), . . . ,Z(sn))′, where
now Zi defined in Section 2 has an explicit spatial index si; that is, Zi ≡ Z(si), for i = 1, . . . , n.
We posit the following decomposition for Z(·): For s ∈ D,

Z(s) = Y(s) + ε(s) , (7)
Y(s) = X(s)′β + W(s) , (8)

where X(s)′β is the large-scale spatial variation due to p covariates, X(·) ≡ (X1(·), ..., Xp(·))′, and
the terms ε(·) and W(·) represent respectively the measurement error in (7) and the small-scale
variation in (8). Here, both are assumed to have mean zero. We assume an SRE model for W(·),
which is given by (Cressie and Johannesson, 2006, 2008):

W(s) = S(s)
′

η + ξ(s) ; s ∈ D ,

where S(·) ≡ (S 1(·), ..., S r(·))′ is a vector of pre-specified, known spatial basis functions; η ≡76

(η1, ..., ηr)′ is a vector of random effects with mean zero and positive-definite covariance matrix77

K, and ξ(·) represents the fine-scale variation in the process Y(·). It is assumed that ξ(·) has mean78

zero and correlation zero at distinct locations. That is, cov(ξ(s), ξ(u)) = σ2
ξV(s)1(s = u), where79

σ2
ξ > 0 is an unknown parameter, V(·) > 0 is assumed known, and 1(·) is an indicator function.80

Finally, ξ(·) is assumed to be statistically independent of η.81

In this article, our interest is in the n×n covariance matrix cov ((Z(s) : s ∈ D)′) ≡ Σ(θ), where82

Z(·) is given by (7) and (8). Hence, we can assume that X(·) ≡ 0, since any fixed effect is ignored83

when calculating covariances. Then the model (8) reduces to84

Z(s) = S(s)
′

η + ξ(s) + ε(s); s ∈ D , (9)

which in vector form can be written as85

Z = Sη + ξ + ε , (10)

where the three vectors on the right-hand side are mutually independent. In (10), E(η) = 086

and cov(η) = K; E(ξ) = 0, and cov(ξ) = σ2
ξV, where V is a known diagonal matrix with87

V(s1), . . . ,V(sn) down the diagonal; and E(ε) = 0 and cov(ε) = σ2
εIn, where In is the n-88

dimensional identity matrix. Hence,89

Σ(θ) = SKS′ + σ2
ξV + σ2

εIn , (11)

where θ = (K, σ2
ξ). There is often an identifiability problem with estimating σ2

ξ and σ2
ε, which is90

resolved by assuming σ2
ε is known; we shall make that assumption here. In (11), parameters are91

θ = (K, σ2
ξ) ∈ Θ ≡ {(K, σ2

ξ) : K positive-definite, and σ2
ξ > 0}.92

3.2. Fitting SRE covariance parameters using the F-norm93

The covariance parameters in the SRE model are given by K and σ2
ξ in (11). For a target94

covariance matrix Σ0, we wish to fit θ = (K, σ2
ξ) by minimizing the norm of the difference,95

Σ0−Σ(θ). Without loss of generality, we simplify (11) by putting σ2
ε = 0 and V = In. Otherwise,96
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our results still hold, albeit with more complicated formulas. Hence, our goal is to find θ̂ =97

(K̂, σ̂2
ξ) ∈ Θ, by minimizing ‖Σ0−SKS′−σ2

ξIn‖F ; the restriction to the parameter space Θ means98

that K̂ is positive-definite and σ̂2
ξ > 0. Write S = QR, the Q-R decomposition of S (i.e., Q is an99

n × r orthonormal matrix, and R is a non-singular r × r upper-triangular matrix), and define the100

vec operator vec(B) ≡ (b′1b′2 . . . b
′
n)′ of the matrix B = (b1b2 . . . bn).101

The following result gives analytic, closed-form expressions for K̂ and σ̂2
ξ .102

Proposition 1. Minimum F-norm estimator.103

Recall (K̂, σ̂2
ξ) ≡ arg min

θ∈Θ
‖Σ0 − SKS′ − σ2

ξIn‖
2
F . Then104

σ̂2
ξ =

(
vec(QQ′Σ0QQ′ − Σ0)

)′ vec(QQ′ − In)
‖QQ′ − In‖

2
F

, (12)

and105

K̂ = R−1Q′(Σ0 − σ̂
2
ξIn)Q(R−1)′ , (13)

provided Σ0 − σ̂
2
ξIn is positive-definite and the right-hand side of (12) is positive.106

The proof is given in the Appendix. In practice, the first condition can be checked by verify-107

ing positive-definiteness of the r × r matrix on the right-hand side of (13).108

4. Fitting SRE covariance parameters using the D-norm109

From (5),110

‖Σ0 − Σ(θ)‖2D = ‖Σ0 − Σ(θ)‖2F + λ2‖diag(Σ0 − Σ(θ))‖2F , (14)

where recall from (11) that Σ(θ) = SKS′ +σ2
ξI, for θ = (K, σ2

ξ), K positive-definite, and σ2
ξ > 0.111

For λ2 given, a least-D-norm estimate of θ is the parameter value that minimizes (14) above.112

Let us write Q′ ≡ (Q1 . . .Qn), and let u be an n-dimensional vector. We define113

g(Q) ≡
(
vec(Q1Q′1), . . . , vec(QnQ′n)

) 
vec(Q1Q′1)′

...
vec(QnQ′n)′

 (15)

and114

h(Q,u) ≡
(
vec(Q1Q′1), . . . , vec(QnQ′n)

)
u . (16)

The matrix g defined in (15) is r2 × r2, and h(Q,u) defined in (16) is an r2-dimensional vector.115

Now, let us define the r × r matrix K̂∗ through the vec operator:116

vec(K̂∗(σ2
ξ ; λ

2)) ≡ (Ir2 + λ2g(Q))−1
{
vec(Q′(Σ0 − σ

2
ξIn)Q) + λ2h(Q, diag(Σ0 − σ

2
ξIn))

}
, (17)

and hence define117

K̂(σ2
ξ ; λ

2) ≡ R−1K̂∗(σ2
ξ ; λ

2)(R−1)′ . (18)

The following result gives analytic, closed-form expressions for K̂(λ2) and σ̂2
ξ(λ

2), for a given118

λ2. The proof is given in the Appendix.119
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Proposition 2. Minimum D-norm estimator.120

For a given λ2, θ̂(λ2) ≡ arg min
θ∈Θ
‖Σ0 − SKS′ − σ2

ξIn‖
2
D is given by121

σ̂2
ξ(λ

2) = arg min
σ2
ξ>0
‖Σ0 − SK̂(σ2

ξ ; λ
2)S′ − σ2

ξIn‖
2
D , (19)

and122

K̂(λ2) = K̂(σ̂2
ξ(λ

2); λ2) , (20)

provided Σ0 − σ̂
2
ξ(λ

2)In is positive-definite.123

Importantly, the minimization in (19) is restricted to thoseσ2
ξ > 0 that yield a positive-definite124

K̂(σ2
ξ ; λ

2). From (17), this is guaranteed by considering only those σ2
ξ > 0 such that Σ0 − σ

2
ξIn125

is positive-definite, which is the same condition given in Section 3.2 for the minimum F-norm126

estimator. Because of the closed-form expression for K̂(σ2
ξ ; λ

2), the minimization in (19) is only127

with respect to the one-dimensional parameter σ2
ξ > 0, and it can be easily obtained by a golden128

search for example.129

5. Application130

In this section, we illustrate the advantage of using the D-norm in fitting an SRE model131

(9) to the well known exponential-covariance model, which is a particular case of the Matérn132

covariance model. We consider a two-dimensional lattice D = {si j : i, j = 1, . . . ,N} with133

N = 100; that is, n = 104. We choose bisquare functions for the spatial basis functions, with134

three resolutions, the centers being regularly spaced within a resolution. The generic expression135

for these basis functions is,136

S j(l)(s) =

 1 −
‖s − c j(l)‖

rl
if ‖s − c j(l)‖ ≤ rl

0 otherwise,

where c j(l) is the jth centre point of the lth resolution, for l = 1, 2, 3, and ‖s − u‖ is the Euclidean137

distance between two locations s and u. The number of basis functions used at the three res-138

olutions are, respectively 5, 16, and 49. Consequently, the dimension of the reduced space is139

r = 70. The radius rl of the lth resolution bisquare function equals 1.5 times the shortest distance140

between center points of this resolution, allowing overlap between the basis functions.141

We want to find σ2
ξ and K that minimize the norm of the difference, Σ0−Σ(σ2

ξ ,K) , where the142

target covariance Σ0,i j = C(si, s j) is obtained from an exponential covariance function to which143

we choose to add a nugget effect. That is,144

C(u, v) = c exp
(
−
‖ u − v ‖

ϕ

)
+ a , (21)

where c is the sill, ϕ is the scale parameter, and a ≥ 0 is the nugget effect. Here we specify c = 1145

(without loss of generality), and ϕ ranges from 5 to 70, to capture weak to strong spatial depen-146

dence, respectively. We adopt this strategy because the spatial dependence in the exponential147

covariance function given by (21) is well understood. Our goal here is not parameter estimation,148

but it is to find σ2
ξ and K that approximate the given covariance model Σ0 with the “nearest” SRE149

covariance model.150
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We obtain K̂F and σ̂2
ξ,F defined in (12) and (13), by minimizing ‖Σ0 − Σ(σ2

ξ ,K)‖F ; and we151

obtain K̂D(λ2) and σ̂2
ξ,D(λ2) defined in (19) and (20), by minimizing ‖Σ0−Σ(σ2

ξ ,K)‖D, for various152

choices of λ2.153

To compare the accuracy of the fits obtained from using the F-norm and the D-norm, we154

use a number of measures. Recall the Kullback-Leibler divergence, DKL(P0|Q), where P0 is a155

Gaussian distribution with mean 0 and covariance matrix Σ0, and Q is a Gaussian distribution of156

the same dimension with mean 0 and covariance matrix ΣQ, as follows:157

DKL(P0|Q) ≡ −
1
2

log
(

detΣ0

detΣQ

)
−

n
2

+
1
2

tr
(
Σ−1

Q Σ0

)
. (22)

In our use of the Kullback-Leibler divergence in (22), ΣQ is one or other of

Σ(θ̂F) = SK̂FS′ + σ̂2
ξ,FIn , (23)

Σ(θ̂D(λ2)) = SK̂D(λ2)S′ + σ̂2
ξ,D(λ2)In . (24)

One way that the efficacy of the D-norm fit can be compared to the F-norm fit is through the158

relative Kullback-Leibler divergence,159

EKL ≡
DKL(P0|Q(θ̂F))

DKL(P0|Q(θ̂D(λ2)))
. (25)

Another way is through relative matrix norms. For example, define160

E2 ≡
‖ Σ0 − Σ̂F ‖2

‖ Σ0 − Σ̂D(λ2) ‖2
, (26)

and161

Emax ≡
‖ Σ0 − Σ̂F ‖max

‖ Σ0 − Σ̂D(λ2) ‖max
, (27)

where ‖ A ‖max≡ maxi, j |ai j| and ‖ A ‖2≡ σmax(A), the largest singular value of the matrix A.162

The following inequality holds between the norms we consider:163

‖ · ‖max ≤ ‖ · ‖2 ≤ ‖ · ‖F ≤ ‖ · ‖D . (28)

Another way to compare the D-norm to the F-norm is to examine the condition number of164

the fitted SRE covariance parameter K̂; define the relative condition number,165

EC ≡
cond(K̂F)

cond(K̂D(λ2))
, (29)

where cond(A) is the 2-norm condition number of a matrix A (the ratio of the largest singular166

value of A to the smallest). A large condition number indicates a nearly singular matrix.167

Our study that compares minimum D-norm fits to minimum F-norm fits is not a simulation;168

rather we computed the ratios EKL, E2, Emax, and EC defined in (25), (26), (27), and (29), re-169

spectively, for various values of the factors ϕ, a, and λ2 in a factorial design. The nugget effect a170

is defined in terms of proportion of the total variance; that is, a = c
p

1 − p
, where c = 1 here and171
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p ∈ {0, 1/10, 1/3, 1/2, 2/3, 9/10}. The scale parameter ϕ ∈ Φ ≡ {5, 10, 20, 30, 40, 50, 60, 70};172

as ϕ increases from 5 to 70, it induces weak to strong spatial dependence. Finally, for the weights173

on the diagonal for the D-norm, we used smaller weights, λ2 ∈ Λ1 ≡ {0.1, 10, 20, 30, . . . , 100}, ,174

and larger weights, λ2 ∈ Λ2 ≡ {100k : k = 1, 2, . . . , 10}.175

We now summarize the results obtained. First, the nugget effect does not impact the values176

of the ratios Emax, E2, EC , and only very slightly those of EKL. Hence, we choose to present the177

following results with a = 0, and we have chosen to compare results here for scale parameter178

ϕ ∈ {5, 20, 40, 70}. Plots of EKL and EC against λ2 are presented in Figure 1 and Figure 2; and179

plots of E2 and Emax against λ2 are presented in Figures 3 and 4. Figures 1 and 3 show the case180

λ2 ∈ Λ1, while Figures 2 and 4 show the case λ2 ∈ Λ2.181

When limiting the comparison to how well the original covariance matrix Σ0 is fitted, it is182

clear that the D-norm performs in a similar manner to the F-norm, since EKL and E2 remain very183

close to 1. We have 0.9598 ≤ EKL ≤ 1. The smallest value of EKL is obtained for p = 90%, ϕ =184

70, and λ2 = 1000, but we have EKL ≥ 0.984 for p ≤ 80%, regardless of the values of ϕ and λ2.185

Similarly, we always have 0.9924 ≤ E2 ≤ 1.0015.186

Now, we highlight the advantage of the D-norm with respect to the max norm, ‖ ‖̇max, and the187

condition number of the matrix K̂. The ratios of Emax increase with ϕ and with λ2. The values188

of Emax vary from 0.998 to 1.774; we have Emax ≥ 1.2 for ϕ ≥ 40 and λ2 ≥ 100, or ϕ ≥ 30 and189

λ2 ≥ 700. So, globally we can say that the D-norm performs better than the F-norm with respect190

to the matrix norm ‖ ‖̇max. Let us now consider the values of EC , which is defined in terms of the191

SRE model’s covariance-matrix parameter. As before, the ratios of EC increase with ϕ and λ2; EC192

increases from 0.9955 to 1.0621 for λ2 ∈ Λ1, and we achieve a gain of 30% for λ2 = 1000, which193

is quite important. Also, the ratio EC increases with ϕ; for instance, for λ2 = 500, EC increases194

from 0.9966 to 1.1985 for ϕ ∈ Φ and, for λ2 = 1000, EC increases from 1.0064 to 1.2967 for195

ϕ ∈ Φ. While the D-norm condition number does not improve for weak spatial dependence, it196

becomes more and more efficient to use the D-norm as the spatial dependence strengthens.197

We also conducted the same study, but with four resolutions, and a total of r = 78 basis198

functions, and we obtained similar results. We conclude that when the spatial dependence is199

moderate to strong, the D-norm should be used to fit the covariance parameters K and σ2
ξ of an200

SRE model.201

Finally, we present an empirical way of choosing λ2 in Figure 5, where we plot λ2/
√

n against202

ϕ/
√

n for different fixed ranges of EC . We choose the relative condition number EC , because the203

inverse of the matrix K is directly involved in the kriging equations, and hence, it is important204

that K not be ill-conditioned. We considered four ranges of values of EC in Figure 5, namely205

0.9 < EC < 1.12, 1.13 < EC < 1.16, 1.18 < EC < 1.22, and EC > 1.25 , resulting in “gains” of206

about 10 percent, 15 percent, 20 percent, and more than 25 percent, respectively. For each fixed207

range, we recorded for each value of ϕ/
√

n the values of λ2/
√

n ensuring that EC belongs to that208

range. Our main observation is that we need large values of λ2 when the spatial dependence is209

moderate, and we need smaller values of λ2 when the spatial dependence is strong. While no210

expression is derived linking EC , λ
2, ϕ, and n, it can be seen that λ2/

√
n ≥ (ϕ/

√
n)−2 ensures211

that EC ≥ 1.1.212

6. Discussion213

Fitting covariance parameters of the SRE model can be achieved by using the Frobenius214

matrix norm (F-norm). This paper presents a diagonally weighted Frobenius matrix norm (D-215
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Figure 1: Plots of EKL (–) and EC (.) against λ2 ∈ Λ1 on the horizontal axis, for four values of ϕ ∈ Φ.
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Figure 2: Plots of EKL (–) and EC (.) against λ2 ∈ Λ2 on the horizontal axis, for four values of ϕ ∈ Φ.
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Figure 3: Plots of E2 (–) and Emax (.) against λ2 ∈ Λ1 on the horizontal axis, for four values of ϕ ∈ Φ.
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Figure 4: Plots of E2 (–) and Emax (.) against λ2 ∈ Λ2 on the horizontal axis, for four values of ϕ ∈ Φ.
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Figure 5: Plots of EC as a function of λ2/
√

n (vertical axis) and ϕ/
√

n (horizontal axis) for four ranges of EC : 0.9 <
EC < 1.12 : +; 1.13 < EC < 1.16 : ◦; 1.18 < EC < 1.22 : ∗; EC > 1.25 : �. Here n = N2 = 104.

norm), which puts more weight on the diagonal elements. We derive exact formulas for the fitted216

SRE covariance parameters. Using a factorially designed study, we give regions of the factor217

space where the D-norm performs better than the F-norm. Specifically, it is better to use the218

D-norm, in terms of condition number, when the spatial dependence is strong.219

Appendix220

Proof of Proposition 1:221

From Cressie and Johannesson (2008), let C be any positive-definite n × n matrix that plays222

the role of a target matrix. Recall that S = QR, and define K∗ ≡ RKR′. Then SKS′ = QK∗Q′,223

and224

‖C − SKS′‖2F = ‖C −QK∗Q′‖2F = tr(C′C) + tr
(
(K∗)′K∗

)
− 2tr(Q′CQK∗) . (30)

Hence,225

∂

∂K∗
‖C −QK∗Q′‖2F = 2K∗ − 2(Q′CQ) . (31)

Putting this expression equal to the zero matrix yields K∗ = Q′CQ, which is positive-definite226

since C is positive-definite. Hence, K̂ ≡ R−1Q′CQ(R−1)′ is the estimate of K that minimizes227

‖C − SKS′‖2F . Now for a given σ2
ξ , the previous result is applied to C = Σ0 − σ

2
ξIn. We define228

K(σ2
ξ) ≡ R−1Q′(Σ0 − σ

2
ξIn)Q(R−1)′ . (32)

Then the minimum F-norm estimator of θ = (K, σ2
ξ) is given by,

σ̂2
ξ ≡ arg min

θ∈Θ
‖Σ0 − SK(σ2

ξ)S
′ − σ2

ξIn‖F , (33)

K̂ ≡K(σ̂2
ξ). (34)
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In equation(33), restriction of θ ∈ Θ means that σ2
ξ > 0 and C = Σ0−σ

2
ξIn is positive-definite.229

The minimization in (33) is only with respect to σ2
ξ and can be obtained straightforwardly. To see230

this, use (32) and S = QR to write Σ0 −SK(σ2
ξ)S
′ −σ2

ξIn ≡ G +σ2
ξH with G = Σ0 −QQ′Σ0QQ′231

and H = QQ′ − In. Then ‖G + σ2
ξH‖

2
F =

∑n
i=1

∑n
j=1(gi j + σ2

ξhi j)2, and its derivative with respect232

to σ2
ξ is 2

∑n
i=1

∑n
j=1(gi j + σ2

ξhi j)hi j; putting this equal to zero and solving for σ2
ξ , one obtains,233

σ̂2
ξ = −

∑n
i=1

∑n
j=1

(
(Σ0 −QQ′Σ0QQ′) ◦ (QQ′ − In)

)
i j

‖QQ′ − In‖
2
F

, (35)

where A ◦ B denotes the Hadamard product of two matrices A and B, that is (A ◦ B)i j = (A)i j ×234

(B)i j. Let us note here that we can’t have QQ′ − In = 0, because the rank of Q is less than or235

equal to r. The expression above in (35) is the same as (12), with the numerator expressed in236

terms of the vec operator.237

Proof of Proposition 2:238

Let us recall (14):

‖Σ0 − Σ(θ)‖2D = ‖Σ0 − Σ(θ)‖2F + λ2‖diag(Σ0 − Σ(θ))‖2F .

Since we have already evaluated (and differentiated) the first term of the right-hand side in the239

proof of Proposition 1, we turn our attention to evaluating and differentiating the second term.240

We use the notations given in the proof of Proposition 1.241

Initially, assume that σ2
ξ = 0; then,242

‖diag(Σ0 − SKS′)‖2F = tr
((

diagΣ0
) (

diagΣ0
))

+ tr
(
(diag(SKS′))(diag(SKS′))

)
− 2tr

((
diagΣ0

) (
diag(SKS′)

))
.

(36)

From the Q-R decomposition, S = QR, and recall that SKS′ = QK∗Q′, where K∗ = RKR′.243

Hence the right-hand side of (36) becomes,244

tr
((

diag(Σ0)
)2
)

+ tr
((

diag(QK∗Q′)
)2
)
− 2tr

((
diag(Σ0)

) (
diag(QK∗Q′)

))
. (37)

Our objective is to differentiate this expression with respect to K∗. Recall the expression (31),245

which we now write in terms of the vec operator. That is,246

vec
(
∂

∂k∗ab
‖C − C∗(K∗)‖2F

)
= 2vec(K∗) − 2vec(Q′CQ) , (38)

where k∗ab is the (a, b) element of the r × r matrix K∗.247

Analogously, we differentiate (37) with respect to k∗ab, for a, b = 1, . . . , r. The differential of
the first term in (37) is zero. If we write the n × r orthonormal matrix Q as (qia), the second term
in (37) is:

n∑
i=1

 r∑
a=1

r∑
b=1

qiak∗abqib

2

;
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its differential with respect to k∗ab is then,

2(q1aq1b, . . . , qnaqnb)
r∑

a′=1

r∑
b′=1


q1a′q1b′

...
qna′qnb′

 k∗a′b′

= 2
((

QiQ′i
)
ab : i = 1, . . . , n

) 
vec(Q1Q′1)′vec(K∗)

...
vec(QnQ′n)′vec(K∗)

 ,
where Q′ ≡ (Q1 . . .Qn).248

The third term in (37) is:

−2
n∑

i=1

σ0
ii

r∑
a=1

r∑
b=1

qiak∗abqib ,

where the target covariance matrix is written as Σ0 ≡ (σ0
i j), and hence diag(Σ0) has σ0

11, . . . , σ
0
nn

down its diagonal. Its differential with respect to k∗ab is:

−2
((

QiQ′i
)
ab : i = 1, . . . , n

) 
σ0

11
...
σ0

nn

 .
Now combine all three differentials, taken with respect to {k∗ab : a, b = 1, . . . , r}, to obtain:249

vec
(
∂

∂k∗ab
‖diag(Σ0 −QK∗Q′)‖2F

)
= 2

(
vec(Q1Q′1), . . . , vec(QnQ′n)

) 
vec(Q1Q′1)′

...
vec(QnQ′n)′

 vec(K∗)

− 2
(
vec(Q1Q′1), . . . , vec(QnQ′n)

) 
σ0

11
...
σ0

nn


≡ 2g(Q)vec(K∗) − 2h(Q, diag(Σ0)) ,

(39)

where g(Q) defined just above is an r2 × r2 matrix and h(Q, diag(Σ0)) defined just above is an
r2-dimensional vector. Then

vec
((

∂

∂k∗ab
‖Σ0 −QK∗Q′‖2D

))
= 2vec(K∗)−2vec(Q′Σ0Q)+λ2 (

2g(Q)vec(K∗) − 2h(Q, diag(Σ0))
)
.

Setting the right-hand side equal to the r2-dimensional zero vector, yields the minimum D-norm250

fit,251

vec(K̂∗) =
(
Ir2 + λ2g(Q)

)−1 {
vec(Q′Σ0Q) + λ2h(Q, diag(Σ0))

}
. (40)

We now use (40) to derive the required result when σ2
ξ > 0. Finally then, the minimum252

D-norm fit is, for a given λ2:253

σ̂2
ξ(λ

2) ≡ arg min
σ2
ξ>0
‖Σ0 − SK̂(σ2

ξ ; λ
2)S′ − σ2

ξIn‖
2
D , (41)

and254

K̂(λ2) ≡ K̂(σ̂2
ξ(λ

2); λ2) . (42)
13
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