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Abstract

At the heart of cyber-physical and ambient systems, the user should permanently bene�t from ap-
plications adapted to the situation and her/his needs. To do this, she/he must be able to con�gure
her/his software environment and be supported as much as possible in that task. To this end, an intel-
ligent “engine” assembles software components that are present in the ambient environment at the
time and makes unanticipated applications emerge. The problem is to put the user “in the loop”: pro-
vide adapted and intelligible descriptions of the emerging applications, and present them so that the
user can accept, modify or reject them. Besides, user feedback must be collected to feed the engine’s
learning process. Our approach relies on Model-Driven Engineering (MDE). However, di�erently
from the regular use of MDE tools and techniques by engineers to develop software and generate
code, our focus is on end-users. Models of component assemblies are represented and made editable
for them. Based on a metamodel that supports modeling and description of component-based ap-
plications, a user interface provides multi-faceted representations of the emerging applications and
captures user feedback. For that, we have developed a solution based on several domain-speci�c
languages and a transformation process, based on the established MDE tools (Gemoc studio, Eclipse
Modeling Framework, EcoreTools, Sirius, Acceleo). It works in conjunction with the intelligent en-
gine that builds the emerging applications and to which it provides learning data.
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Chapter 1

Introduction

Applications of the Internet of Things, ambient and cyber-physical systems consist of �xed or mo-
bile, connected devices. These devices host independently developed and managed software com-
ponents that may be assembled to build distributed applications. Due to mobility and separate man-
agement, devices and software components may appear and disappear without foreseeing these
dynamics. Hence, the environment is open, and its changes are out of control.
Humans are at the core of these dynamic systems where they may use applications at their disposal.
Ambient intelligence aims to o�er them a personalized environment adapted to the current situation
and their needs, i.e., to provide them the right applications at the right time, with the least e�ort
possible. User control on their environment is of the highest importance [1]: users must be able to
con�gure it and be as much as possible supported in that task.
To this end, our team is exploring and designing an intelligent solution in which software com-
ponents are dynamically and automatically assembled to build composite applications and so cus-
tomize the environment at runtime: for example, a standard interaction component present in a
smartphone (e.g., a Slider or a Speech Recognition component), a software Converter and a con-
nected Lamp can opportunely be assembled and provide the user with an ambient lighting control
service when entering a room. This intelligent solution is supported by a middleware, called Op-
portunistic Composition Engine (OCE) [2], in line with the autonomic computing principles: OCE
senses the existing components, decides and plans opportunistic assemblies of components, and �-
nally proposes them to the user. OCE only pushes application plans, i.e., models that are realized
only when the user accepts.
Such an approach is disruptive: unlike the traditional goal-directed top-down mode, applications
are built on the �y in a bottom-up manner from the components that are present and available at
the time, without the user needs to be made explicit. That way, composite applications emerge from
the environment, taking advantage of opportunities as they arise.
Here, contrary to the traditional SOA (Service-Oriented Architecture) paradigm, the user does not
specify a service or search for it in “pull mode”, but context-adapted applications are provided in
“push mode”. In the absence of prior explicit guidelines, OCE automatically learns the user’s prefer-
ences according to the situation to make relevant decisions later and maximize her/his satisfaction.
Learning is achieved online by reinforcement [3] from the inputs of the user who is put in the loop
[4]. This way, the engine assures proactivity and runtime adaptation in the context of openness,
dynamics, and unpredictability.
This report details the way we reinforce the place of the user in the engineering loop. Opportunistic
composition principles and OCE design are out of scope. The emerging applications must be pre-
sented in a useful and understandable way to assist the user e�ciently. Also, user feedback must
be collected to feed OCE’s online learning process. For that, our approach relies on Model-Driven
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Engineering (MDE). The initial idea was to be able to quickly transform composition data provided
by OCE into graphical representations of the composite applications. The additional bene�t is that,
once you get this model representation, you can: (i) provide multiple syntactic representations of the
composite application (e.g., component-based, graphical, textual); (ii) generate complementary rep-
resentations (e.g., dynamic view of the application, rule-based description); and (iii) formally capture
the user manipulations of the model. Our solution consists of a set of languages and transformation
processes. We propose an editor that allows the user to be aware of the emerging applications, to
understand their function and use, and to modify them if desired. From her/his actions, without
overloading her/him, feedback data are extracted and returned to the engine. MDE mainly targets
application designers and developers. The originality of our approach is that the models are dedi-
cated to application end-users. It brings both new advantages and new challenges that we detail in
this paper.
The remaining of this report is organized as follows. Chapter 2 brie�y introduces the principles
of component-based software engineering (CBSE), model-driven engineering (MDE), and end-user
programming (EUP). Chapter 3 analyzes the problem and the requirements. In Chapter 4, the moti-
vations for using MDE are examined, then our contribution is detailed and illustrated using an ap-
plication example. Our prototype implementation and validation are described in Chapter 5 where
other application examples are presented. Chapter 6 analyzes the related work. At last, in Chapter 7,
the contribution is summarized, and some future works are discussed.
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Chapter 2

Background

2.1 Component-Based Software Engineering (CBSE)

Software components are loosely coupled runtime entities that may provide services speci�ed by
interfaces and, in turn, may require other services [5]. Unlike objects, they bring the required services
at the same level as the provided ones. Fig. 2.1 shows a Converter component represented in UML:
provided services (here, the Convert service) are pictured by a bullet and required services (here,
the Order service) by a socket. Components, which implementation is hidden, are reusable building
blocks. To build applications, they are assembled by binding required to provided services if they
match. CBSE involves both developing components individually and building assemblies by using
or reusing components. Usually, a middleware supports component deployment and integration.

Figure 2.1: UML representation of a Converter component

2.2 Model-Driven Engineering (MDE)

MDE is a software development methodology that focuses on creating and exploiting domain models
related to a speci�c problem. Software developers (SDs) use them to create abstract descriptions of
the software, facilitating the generation of implementation code [6].
At the core of MDE, there are modeling languages (e.g., UML) that are typically de�ned as meta-
models. SDs use these languages to formalize application requirements, structures, and behaviors
within a particular domain. Formal rules can be de�ned to verify that the instances comply with the
metamodel (e.g., using Object Constraint Language – OCL). Those rules are added to the metamodel
to perform model-checking and detect and prevent many errors before code generation. Most of the
time, the abstract syntax is de�ned using metamodeling by specifying the structure of the modeled
system (e.g., building a class diagram that characterizes logical object structures). Metamodeling is
also used to de�ne the concrete syntax and customize the generated code.
A substantial bene�t of MDE sets in model transformation engines that are used to produce vari-
ous types of artifacts, such as source code, deployment descriptors, or other models. For example,
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Acceleo [7] is a model-to-text transformation tool that SDs use to generate code. Another MDE fea-
ture is the possibility to de�ne Domain-Speci�c Languages (DSLs). A DSL is a dedicated language
(could be for programming, modeling, specifying) devoted to expressing and solving problems in a
speci�c domain [8]. By de�ning the actions that can be done by SDs, it allows them to manipulate
and edit particular models. Finally, to manage models, SDs use model editors, that may be graphical
or textual depending on the DSL.

2.3 End-User Programming

End-User Programming (EUP) proposes a set of techniques that enable end-users to create their
applications for personal use [9]. EUP is part of End-User Development (EUD) that aims to involve
users in application design and development, not only at design time but also at operating time.
According to [10], which reviews di�erent projects in particular concerning mobile applications, a
possible motivation is that “regular development cycles are too slow to meet users’ fast changing
requirements”.
Depending on the solution, end-users may use natural language, visual, or simpli�ed programming
techniques e.g., “low-code” development platforms and languages such as Scratch or Blockly [11].
Conventional approaches are based on components or rules, e.g., trigger-action rules that de�ne the
action to carry out when the rule is triggered [12]. Besides, some works explore the use of MDE to
increase end-user involvement in the use of an application, for example, in application gami�cation
[13].
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Chapter 3

Problem statement and requirements

In the absence of prior speci�cation, emerging applications are unknown a priori and possibly sur-
prising. Yet, the user must be aware of them, arbitrate on them depending on she/he could bene�t
from, and provide feedback to the intelligent middleware. For that, the user must be put “in the
loop” [14].
The fundamental question is, therefore: how to realize the user in the loop and meet the corre-
sponding requirements? The rest of this chapter analyzes and sets out these requirements. The next
chapter describes our solution based on MDE.

3.1 Presentation

OCE assembles software components that are present in the ambient environment at the time and
makes applications emerge. As applications may be unknown by the user, she/he must be informed
of both the function of an emerging application and how to use it.
• [R1.1] Functional description. The function of the application must be presented to the user.
For example, “The application allows someone to light up the lamp”.
• [R1.2] Usage. The instructions on how to use the application must be presented to the user. For
example, “Press the switch to turn ON/OFF the light”.

3.2 Understandability

Depending on the user skills, presentation and assistance to her/him may be more or less e�cient.
However, a sound understanding by the user of the presented applications is critical. Both for their
acceptance and use and the quality of the user feedback. Here, we target average users that are not
necessarily familiar with programming and CBSE. For instance, the user may be the inhabitant of
a smart house or a public transport traveler in a smart city. Consider a simple assembly consisting
of a switch and a lamp. In that case, we would ideally like to tell the user something like “If you
click on the switch, the lamp will turn ON/OFF". Another question is related to the complexity of
the assembly in the number of components and services.
• [R2.1] Intelligibility. The application description must be understandable by an average user
without programming skills.
• [R2.2] Presentation scalability. The description should remain intelligible and useful even when
the application has about ten or more components.
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3.3 Automated description

The problem lies in the construction of the description of an application, i.e., its computation from
the components of the assembly that implements the application, their services and bindings, with-
out human support.
• [R3] Automation and composability. Descriptions must be automatically built by combining
unit descriptions of components.

3.4 User input and guidance

Whatever OCE decisions and the pushed applications are, application deployment must remain un-
der user control. Users should be able to customize the ambient environment by themselves, de-
pending on their needs and preferences, and be guided in this task.
• [R4.1] Input. The user must be able to accept the emerging application [R4.1.1], then it is de-
ployed, or reject it [R4.1.2], then it is canceled. According to her/his skills, the user should be able
to edit and modify an application model [R4.1.3], i.e., create, remove, or change bindings between
services.
• [R4.2] Guidance. When editing, the user must be guided, and the correctness of her/his actions
must be guaranteed.

3.5 User feedback

Relevance of the applications pushed by OCE depends on the knowledge about the user. This knowl-
edge is built by OCE at runtime and evolves dynamically. To learn from and for the user, OCE needs
her/his feedback about the applications. But the user must not be overburdened or disturbed. User
acceptance, rejection, and modi�cation are the sources of feedback that are expected by OCE about
its decisions. Note that a sound understanding by the user about the proposed application ([R2.1])
is mandatory to provide relevant feedback.
• [R5.1] Feedback generation. OCE must get feedback generated from the user’s reactions to the
emerging applications.
• [R5.2] Discretion. The provision of feedback should not overburden the user.
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Chapter 4

Putting the user in the loop with MDE

4.1 Overview

To put the user in the loop and meet the corresponding requirements, we have designed the In-
teractive Control Environment (ICE) based on MDE, which works together with the Opportunistic
Composition Engine (OCE).

Figure 4.1: The Interactive Control Environment (ICE)

Fig. 4.1 shows a screenshot of the ICE user interface. It is a graphical editor that mainly consists
of three panels. Panel 1 displays applications as UML component diagrams. Available components
that do not participate in applications are displayed too. Through this panel, the user can accept
or reject the assembly. This is an answer to [R4.1.1] and [R4.1.2] requirements. Besides, users that
are unfamiliar with component diagrams can request other views of the application: here, a UML
sequence diagram and a textual description make more explicit the function of the application and
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how to use it. This answers to [R1.1] and [R1.2]. However, depending on the user’s skills, other out-
puts are possible in speci�c languages adapted to the user as shown in the icon-based diagram. This
answers to [R2.1]. As the di�erent outputs are computed automatically without user involvement,
[R3] is met too.
Moreover, ICE supports application edition by the user. Panel 2 displays the properties of a com-
ponent or a service. Panel 3 provides a bind tool for creating bindings between services and so
components. The user can also change or delete bindings. This answers to [R4.1.3] and [R4.2] since
the editor authorizes only correct user actions. Last, to meet [R5.1], the user’s activities on the as-
sembly are captured by ICE, then transformed into feedback and sent to OCE for learning. Note that
in such a way, the user is not asked for explicit feedback, so [R5.2] is satis�ed.
ICE is part of the overall architecture (see Fig. 4.2) we have designed to put the user in the loop [14]:
ICE automatically presents emerging application descriptions and captures feedback; besides, the
user can edit the assemblies and �nally accept them.

Figure 4.2: Overall architecture with the user in the loop

4.2 Motivations for using MDE

At this point, several observations can be made:

1. Basically, OCE designs and produces models. These are models of emerging applications in
the form of assemblies of components, all conforming to the same metamodel. Such a model
consists of a set of components and a set of bindings between their services. It is prescriptive
as it speci�es the application to be created but also descriptive of the application to be accepted
and deployed [15].

2. The models provided by OCE can be transformed and presented in multiple ways: in di�er-
ent user-friendly descriptions depending on her/his understanding skills, and as component
diagrams to support component (re)composition by end-users who have programming skills.

3. As a programmer, the end-user must be supported with editing features and control rules that
prevent unauthorized bindings. Since the models are subject to user modi�cation, they can
also be quali�ed as explorative [15].
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Therefore, we have chosen MDE and the advantages it brings (see Sec. 2.2) to support ICE, i.e.,
to transform the models designed by OCE into user-oriented models, and conversely transform
user-oriented models into both data for OCE learning and deployment scripts. Using MDE for this
purpose is unusual: di�erently from the common use of MDE tools and techniques by engineers to
develop software and generate code, we focus on end-users for whom prefabricated assembly models
are transformed and represented. To develop our solution, we have used the GEMOC facilities [16],
for which our team is an active contributor. ICE consists of an Eclipse Modeling Framework [17]
project, where EcoreTools [18] is used to de�ne our metamodel and attach OCL rules to it. We have
used Sirius [19] to de�ne the DSLs and create the graphical editor, and Acceleo [7] to support model
transformations.
In the following, we expose the di�erent elements of our solution.

4.3 The assembly metamodel

Several metamodels of components and services exist in the literature [20, 21], but they both are
too complicated for our needs and do not meet our description requirements. Therefore, we have
de�ned our own (see Fig. 4.3), in line with what has been introduced in Sec. 2.1. It consists of an
Environment which contains Components. To be composable, a component has at least one service (a
RequiredService or a ProvidedService). A service has one property, boundTo, that de�nes the bindings
to other services once the assembly has been built. Also, OCL invariants describe restrictions on the
models, e.g., two required services (or two provided services) cannot be bound together. OCL rules
assure that applications are well-formed when emerging or after user input, before their description
and deployment.
The Pro�le attribute de�ned in the Service class is used to add controls on the edition process. It
ensures that: (i) only compatible services are bound together; and (ii) that the maximum number of
bindings of a service is respected.

Figure 4.3: Assembly metamodel

The assembly model is part of a more complex metamodel (see Sec. 4.7.2) we have designed to
support applications in whole and their transformations into user-oriented descriptions.

4.4 Transformation of OCE outputs to ICE models

To be presented, an OCE output must �rst be transformed into an internal manipulable and editable
form (transformation is a consequent requirement of [R1.1] and [R1.2]). By model-to-model trans-
formation, the model provided by OCE is transformed into an ICE XML-based model, both being
compliant to the assembly metamodel. Then, the ICE model can be injected into the editor, to be
then displayed and possibly modi�ed. This ICE model is also the basis for the processes listed below.
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4.5 Assembly representation via domain-speci�c visual lan-
guages

ICE models represent component assemblies that software engineers commonly draw as UML com-
ponent diagrams. To do that and provide users with UML-like representations of the emerging
assembly, we have de�ned a Domain-Speci�c Visual Language (DSVL) that complies with the UML
components notation.
At the top of Panel 1 in Fig. 4.1, there is the editable representation of the entire assembly that
achieves the ambient lighting application. For that, a visual representation of each element of the
metamodel has been de�ned. Also, pre- and post- conditions have been incorporated in the DSVL
to add control on the edition process, allowing the user to be guided and supervised when editing
applications (e.g., the user cannot connect two required services). These conditions are veri�ed on
the �y at edition time, so before the OCL rules, to prevent validation errors. This is part of the
answer to [R4.2].
Nevertheless, the average user is unfamiliar with component diagrams. In [22], S. Abrahão et. al.
claim that a box in which “Cat” is written –maybe “Lamp1” in our example– may be understood as
a “cat” for a software engineer –as a lamp for us–, but it is still a “box” for most people! To address
this problem, the above solution can easily be adapted to customize the presentation to the user by
replacing the UML representation of a component by an icon that is more explicit for the general
public. An icon-based representation of the ambient lighting application is displayed in Fig. 4.1 at
the bottom of Panel 1. Such a more intelligible description allows the average user to understand
the application better. It contributes to meet the intelligibility requirement [R2.1]. In this way, other
DSLs can be proposed that �t users’ skills. The following sections propose complementary answers
to meet [R2.1].

4.6 Transformation of ICE model into a sequence diagram

To better inform the user, we explicit how the control passes from a component to another. For that,
the ICE model with its bindings between services is transformed into a control model. This model
represents how control passes through the components. It is then presented as a UML sequence
diagram that shows which service the user directly controls, and how the services interact.
To display the sequence diagram, we coupled ICE with PlantUML editor [23], which provides graph-
ical representations of UML sequence diagrams from a text describing the sequence. First, a model-
to-text transformation builds a PlantUML-compliant textual model of the application control. Then
PlantUML editor is called by ICE to create an image of the sequence diagram (see Fig. 4.1, Panel 1).
Other types of diagrams could be produced, e.g., UML communication diagrams, to provide comple-
mentary views of the application.
With ICE, depending on her/his preferences, the user can select the type of diagram to generate and
display.

4.7 Generation of rule-based application description

Software components transform inputs into inner e�ects or outputs. Inputs take place when a pro-
vided service is required with its parameters or when an internal action or event occurs, e.g., the
user moves a slider or pushes a button, or a sensor takes a measurement. Inner e�ects are changes
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of an internal value or state of the component, e.g., a lamp lights up. Outputs are demands of exter-
nal services. These transformations are expressed by rules describing how inputs are transformed
into e�ects and outputs. Expressing them is in charge of the component providers. Then, when a
component becomes part of an assembly, its rules are combined with the rules of the components it
is connected to. For a given assembly, the set of combinations produces a set of rules that describes
how the entire application works.

4.7.1 Description using rules

We have de�ned the description language in [24]. Rules are attached to the services. In Fig. 4.4,
each of them is highlighted. For instance, for the Slider component, when the user sets a value
by moving the slider, the Sender service is called with this value. In that assembly, the Convert
service of the Converter component provides the Sender service that is required by Slider. When
needed, depending on the parameter value (more or less than 50), the required Order service may
be triggered. The principle is the same for Lamp1, but the e�ect of the Lighter service call depends
on the value of the STATE internal variable that is changed accordingly.

Figure 4.4: Description rules of the ambient lighting application

The pop-up window (in the “Description” frame of Fig. 4.4) shows a pretty-print of the combined
result, i.e., the rule-based description of the ambient lighting application that is the function and
how to use it. When two services are bound together, their respective rules are combined in pairs
to reduce them to a single rule. The latter is then combined with the rules of the next component,
and so on. The combination scheme is inspired by the cut rule in mathematical logic: from the rules
[Γ =⇒ A,∆] and [Γ

′
, A =⇒ ∆

′
], the rule [Γ,Γ

′
=⇒ ∆,∆

′
] is inferred. The combination is

conditioned by a matching between prede�ned keywords, e.g., X@OUTPUT matches Y@INPUT, X
and Y being variable names. In our example, combining the Sender rule with the two Convert rules
produces two rules. One indicates a lack of e�ect (NOP). The other, which indicates the request for
the Order service, is combined with the rule that describes Order. It is combined with those of the
Lamp1 Lighter service, producing the two rules that describe the practical e�ect on Lamp1 if the
slider has been set over 50.
Note that the ambient lighting application conforms to a particular architectural style that is called
“Pipe & Filter”. However, our solution deals with other composition styles with components that
require several services, maybe in sequence, in parallel, or conditionally, and also get and use a result
from their requests.
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4.7.2 The full metamodel

To achieve the description, the assembly metamodel has been extended to address the description
issues. The entire metamodel is shown in Fig. 4.5.

Figure 4.5: The extended metamodel

Every component and service has one description. Therefore, the Component and Service classes of
the Assembly package are composed of their respective description class of the Description package.
ComponentDescription consists of three attributes. Name and Role are strings, the latter being a free
text describing the component, e.g., Name = “Slider”, Role = “Send the speci�ed value when the
slider is moved”. As components may have an internal state, such as a lamp that is ON or OFF, States
de�nes the (maybe empty) set of the possible states, e.g., States = {“ON”,“OFF”}. ServiceDescription
consists of four attributes. Name is a string, e.g., “Sender”. Launcher is a key de�ning what activates
the service. It may refer to an external interaction coming from another component, e.g., onRequired,
or to an internal one coming from the component itself, e.g., onTriggered. For HCI components, it
may also refer to user interaction types and take di�erent values, e.g., onSliderDragged for a Slider.
IOAction represents how the service acts on other services, e.g., VAL@OUTPUT means that VAL
is given as parameter of a request. IOAction can be empty for a provided service handling only an
inner e�ect on the component, e.g., the Lighter service that only changes Lamp1 state. Last, Function
describes the service as a free text, e.g., “Turn ON/OFF”.
In addition, to generate application descriptions, a service description contains a non-empty rule-
Set, where the States value comes from the owner component description. A Rule conforms to the
ECA model [25]: Event represents what triggers the service; Condition is logical expression e.g.,
“VAL@INPUT<=50” or “STATE==OFF” (STATE is a keyword which value belongs to States); if
Condition is true, the Action which represents the rendering of the service, e.g., “@OUTPUT” or
“STATE=ON”, is carried out. Note that Event and Action can directly refer to Launcher and IOAction,
which are set in the service description.
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4.8 Model comparison for feedback generation

Once the user has accepted, modi�ed or rejected the edited assembly, feedback must be generated
and given back to OCE. This meets [R5.1] and [R5.2].
Feedback results from the comparison between two models: the initial ICE model (the emerging
application model) and the �nal ICE model (the application model after user inputs). To make this
comparison from the XML-based versions of the models, a list of similarities and di�erences (in
term of bindings between the services and components used) is extracted. This list contains: the
bindings that have been modi�ed, deleted, and added; the deleted components and those added to
the assembly.
From this list, OCE learns by reinforcement the user needs and preferences about the components,
services, and bindings [26, 4]: it updates its knowledge so that better applications can be proposed
in the future.

4.9 MDE for machine learning

Basically, machine learning [27] aims at building knowledge, i.e., models or patterns of reality. These
models are automatically and iteratively constructed in the training phase from training data and
generalize them. The goal is to improve later, in the exploitation phase, the learner’s behavior and
“performance”.
In Sec. 4.8, we have shown how model comparison supports feedback generation for OCE learning.
Here we go beyond the requirements listed in Chapter 3 and take advantage of MDE facilities to
design a complementary learning mode.
The idea is to provide OCE with ready to use assembly “plans”. The problem is to inject these
plans into OCE, which was not designed to manipulate such artifacts. For that, the principle is to
reify assembly plans when accepted by the user, i.e., generate special components called connectors.
There is no business logic in a connector. It implements the Mediator design pattern [28], and as
such, centralizes the interaction logic between the components: it routes service requests from the
caller component to the callee and the results in the opposite direction. For that, it gathers all the
provided and required services of all the components involved in the assembly. In the connector-
based equivalent assembly, the direct links between the components are replaced by links between
each component and the connector. Fig. 4.6 shows the connector-based assembly of the ambient
lighting application: it is equivalent to that of Fig. 4.1 but interaction between the components is
centralized.

Figure 4.6: Connector-based assembly of the ambient lighting application

Using the EMF model factory, a model of the connector component is generated with all of the
provided and required services involved in the entire assembly in it. If necessary, a model-to-model
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transformation can rebuild the application connector-based model as it is displayed in Fig. 4.6. In
a second step, a model-to-text transformation produces the connector implementation code (Java
code in our case) and a script for its deployment in the environment. After deployment, it is sensed
by OCE and treated as an ordinary software component.
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Chapter 5

Implementation and validation

A prototype version of ICE has been implemented. It relies on the Gemoc studio, Eclipse Modeling
Framework, EcoreTools, Sirius, and Acceleo. A stable and usable version is available on GitHub1.
ICE provides multi-view representations of applications. It allows to graphically present application
structures by means of UML-like and icon-based DSVLs. In addition, how applications work can be
described using PlantUML sequence diagrams or in the rule-based language. Besides being informed,
the user can modify, accept or reject applications. Furthermore, ICE and the intelligent engine (OCE)
have been coupled together. The resulting system is fully operational. Associated with a simulated
ambient environment, it works in a loop as shown in Fig. 4.2: applications built by OCE are given as
input to ICE, which provides user-friendly editable descriptions, extracts user feedback and supplies
it back to OCE. As ICE and OCE work together, ICE is today being used in our team to experiment
and validate the OCE solution for learning.
To validate ICE, we have experimented component-based applications arranged according to dif-
ferent architectural styles, i.e., di�erent ways to associate components: “Pipe & Filter” like in the
ambient lighting application, “Call & Return”, sequential requesting, parallel requesting, etc. For
these di�erent cases, on the basis of “test” application models, we have checked:

1. e�ectiveness and rightness of application structural description using di�erent DSVLs

2. user ability to edit and modify the structural representations

3. operationality of transformations in UML sequence diagrams and rules-based descriptions

4. correctness of user feedback extraction and delivery to OCE.

Intelligibility has been assessed with IT specialists, but so far, we have not asked average users for
their opinion. Besides, scalability of the descriptions [R2.2] has yet to be tested.
Fig. 5.1 shows another application example, which architecture mixes “Pipe & Filter” and parallel
requesting styles: here, the Duplicator component demands the Order1 and Order2 services in par-
allel. Using Duplicator, the user has composed an application that commands Lamp1 and Lamp2
in parallel by means of the Slider, so turns on/o� the two lamps at the same time. As depicted in
Fig. 5.1, in addition to the structural description, ICE allows the user to get a PlantUML sequence
diagram with the “par” operator, which expresses the parallelism, and the rule-based description
where parallelism is implicit (the default meaning is that all rules are triggered at the same time). In
the application sketched in Fig. 5.2, the Sequencer �rst requests Order1 and next Order2. To express
the sequence, the NEXT operator is used; it separates sets of rules that are triggered successively.

1https://github.com/marounkoussai�/ICE.git
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Figure 5.1: The parallel ambient lighting application

Figure 5.2: The sequential ambient lighting application

Although the forms of the descriptions are perfectible, especially the one based on rules, experi-
mentation has proven the viability of our approach to realize the “user in the loop” and meet its
requirements. MDE e�ectively supports user-oriented presentation and controlled edition of appli-
cation models, as well as unobtrusive extraction of user feedback. Model transformation techniques
provide multi-view representations of applications that emerge or that the user modi�es or builds
from scratch. MDE handles DSL de�nition and easy switching from a DSL to another, so as outputs
can be customized for the user.
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Chapter 6

Related work

6.1 Description of service- and component-based software

The main purpose of software components and services are composition and reuse. Designers use
their descriptions as documentation, which details their intent and use. When engineers specify
business processes through service composition, they describe (composite) services, too, before they
are processed more or less automatically [29]. Thus, in the traditional top-down mode, demanded
composite services are speci�ed at the beginning, so there is no need to produce descriptions after-
ward, unlike in the case of opportunistic bottom-up composition.
Service description supports automated service discovery, selection and composition [30]. In that
case, descriptions are processed by a program. Descriptions allow service location and use, as is the
case for WSDL [31] in the �eld of Web Services. Descriptions can take more or less sophisticated
forms depending on their use. They may only be purely syntactic, e.g., in object-oriented middleware
like Java RMI. [32]. Semantic descriptions may be limited to functional signatures with inputs and
outputs, possibly extended with preconditions and e�ects [33]. In addition, they may include the
expression of extra-functional properties, i.e., QoS-related properties.
As solutions for service or component descriptions are not user-oriented, they do not meet our pre-
sentation and understandability requirements. Moreover, we do not know any solution that satis�es
the automation required to build application or service descriptions from the unit descriptions of
their components.

6.2 User in-the-loop and end-user development

Even in self-adaptive systems, humans must be in the loop to cope with con�icts and improve adap-
tation strategies, and a trade-o� should be made between autonomy and human involvement [34].
In [35], the user in-the-loop can set her/his preferences to con�gure and adapt existing component-
based applications. User preferences and pro�les can be also be learned by semi-supervised rein-
forcement [36].
The AppsGate client-server system [37] empowers end-users with human-machine interfaces to
con�gure and control their smart home. Home inhabitants use visual and pseudo-natural languages
to program their ambient environment and add or remove appliances on the �y. They are both
assisted by the proposal of possible options and prevented from making errors. In conclusion, the
authors state that “it should be possible to augment EUD with machine learning"; then, the be-
havior of the inferred services must be “understood by the user and adaptable using the EUD”. In
[38], end-users are assisted in service composition by an editor that allows them to specify goals;
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here, keyword-based descriptions of available services and ontologies support generation of ad hoc
processes that can be customized by end-users.
Thus, there is little or no intelligence (and no emergence) in existing EUD solutions, which do not
o�er �exibility and customization of descriptions unlike our MDE-based solution.

6.3 Contribution of MDE

Models allow humans to abstract from low-level features and get closer to their business domain.
MDE promotes less code and an increased level of abstraction. Since its appearance, it has mainly
been used by engineers to guide and support quality software construction.
Combined with CBSE, MDE should help to master the complexity and dynamics of modern software
systems [39]. MDE can also support development, deployment and runtime adaptation. Based on
UML models and transformations, MDE4IoT [40] assists engineers when designing IoT applications,
providing them with abstraction and separation between functional and operational concerns, and
supports runtime evolution. In [41], system functionality and adaptations are modeled as a state
machine, then model-to-model and later model-to-text transformations support platform-speci�c
code generation. MDE and Models@Runtime also support the design of feedback loops and their
execution at runtime in self-adaptive software [42].
Anyway, the role of MDE in the future of IoT and smart systems is still an open question [43]. As
far as we know, existing MDE-based approaches do not target end-users as we do. However, end-
users can participate in software modeling in cooperation with software professionals, provided
they have development skills [44]. In [35], a UML pro�le allows capturing variability in a human-
readable way that is understandable by non-experts. Furthermore, MDE contribution to the design
of user interfaces and their adaptation at runtime is analyzed in [45]. In [22], S. Abrahão et. al.
introduce the concept of User eXperience (UX) for MDE: they analyze the challenges and list future
work on MDE to meet UX requirements, including identify who the users are, customize tools for
domain speci�cs, and adapt them for acceptability.
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Chapter 7

Conclusion and open issues

Ambient systems, with their dynamics and unpredictability, do not allow software design and imple-
mentation following traditional development cycles. End-user involvement enables the on-the-�y
creation of software adapted to the situation and the user’s preferences and skills. Nevertheless, this
user must be supported and helped in the development task. Hence, an intelligent system builds
and makes emerge relevant applications that the user has not explicitly asked for nor expected. This
report describes an original approach and its framework for presenting emerging applications to
the user in an intelligible and manipulable way. It shows how MDE techniques with the de�nition
of dedicated languages help to provide the user with personalized views of applications, as well as
the tools that allow them to be modi�ed or even built from scratch. Thus, MDE supports both the
controlled construction of applications and the production of descriptive material. Besides, by com-
paring and transforming models, feedback is captured and provided to the intelligent system to feed
its learning process. Therefore, our original MDE-based approach puts the end-user “in the loop”
by giving her/him direct access to the handling of internal application models.
Using MDE techniques and tools, we have implemented and experimented with a fully operational
prototype version of ICE. To strengthen our case, intelligibility and scalability of descriptions should
be assessed, in particular with average users. Depending on them, other informative views could be
provided. A possible lead would be to get closer to block languages [11]. Another, which we plan to
explore, is model animation [46].
Our prototype framework has several limitations that we intend to remove. As an illustration, let
us mention the one related to the fact that the rule-based descriptions are provided using a unique
vocabulary. We made this assumption to simplify rule combinations. Components may be provided
by di�erent suppliers who do not have a common vocabulary. For that, we are exploring the use
of ontologies to align the terms used in the rules. The �rst results are promising. More experiment
need now to be conducted both in terms of scalability and of stressing the framework with more
complex combinations of components.
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