L^p-projections on subspaces and quotients of Banach spaces - Archive ouverte HAL Access content directly
Journal Articles Advances in Operator Theory Year : 2021

L^p-projections on subspaces and quotients of Banach spaces

L^p-projections sur des sous-espaces et des quotients d'espaces de Banach

Vidal Agniel
  • Function : Author
  • PersonId : 1045644

Abstract

The aim of this paper is to study $L^p$-projections, a notion introduced by Cunningham in 1953, on subspaces and quotients of complex Banach spaces. An $L^p$-projection on a Banach space $X$, for $1\leq p \leq +\infty$, is an idempotent operator $P$ satisfying $ \|f\|_X = \|( \|P(f)\|_X, \|(I-P)(f)\|_X) \|_{\ell_{p}}$ for all $f \in X$. This is an $L^p$ version of the equality $\|f\|^2=\|Q(f)\|^2 + \|(I-Q)(f)\|^2$, valid for orthogonal projections on Hilbert spaces. We study the relationships between $L^p$-projections on a Banach space $X$ and those on a subspace $F$, as well as relationships between $L^p$-projections on $X$ and those on the quotient space $X/F$. All the results in this paper are true for $1
Fichier principal
Vignette du fichier
Agniel-L^p-projections-20-01-2021.pdf (538.35 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03120770 , version 1 (25-01-2021)

Identifiers

  • HAL Id : hal-03120770 , version 1

Cite

Vidal Agniel. L^p-projections on subspaces and quotients of Banach spaces. Advances in Operator Theory, In press. ⟨hal-03120770⟩
52 View
399 Download

Share

Gmail Facebook X LinkedIn More