N

N

Using Comp-0O to Build and Describe Component-Based
Services
Grégory Alary, Nathalie Jane Hernandez, Jean-Paul Arcangeli, Sylvie
Trouilhet, Jean-Michel Bruel

» To cite this version:

Grégory Alary, Nathalie Jane Hernandez, Jean-Paul Arcangeli, Sylvie Trouilhet, Jean-Michel Bruel.
Using Comp-O to Build and Describe Component-Based Services. Demos and Industry Tracks: From
Novel Ideas to Industrial Practice (ISWC-Posters 2020) co-located with 19th International Semantic
Web Conference, Nov 2020, virtual conference, Greece. pp.152-157. hal-03120764v2

HAL Id: hal-03120764
https://hal.science/hal-03120764v2

Submitted on 1 Apr 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

https://hal.science/hal-03120764v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Using Comp-O to Build and Describe
Component-Based Services

G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, J.-M. Bruel

Institut de Recherche en Informatique de Toulouse
University of Toulouse, France

Comp-O is an extension of OWL-S that we have proposed to describe the
semantics of component-based services. Based on a proof-of-concept prototype,
this demonstration shows how Comp-O is used to support assistance to devel-
opers of component-based services and automatically generate their descriptions
for publication and discovery purposeﬂ

1 Background and problem

Component-based software engineering [I] consists in building software as as-
semblies of reusable and versatile software components. Basically, this paradigm
emphasizes composability and reuse and fosters software flexibility. In such a
way, an application can be modified by replacing one component by another in
the assembly.

Software components [2] are runtime units that implement and provide ser-
vices that we call “component-based services”. Symmetrically, at the same level
as the services they provide, software components exhibit the services they re-
quire to be operational. Thus, since the provided and required interfaces are
explicit, they are easily composable. Composing components consists in bind-
ing the components’ required services to the provided ones to deliver composite
services with added value. In order to make a component fully operational, i.e.,
actually providing its component-based services, its required services must be
bound to (so realized by) a service that is provided by another component. As
an example, Fig. [I| represents the implementation of a component-based service
that provides the apparent temperature in Fahrenheit.

Developing composite services is a challenging task as it requires identify-
ing components and services that are compatible, binding them to implement
the service, and describing it semantically for discovery by third parties. The
semantics of a component-based service depend on the semantics of the services
that are required by the provider component. Since the latter are abstracted in
the provider component, the actual semantics depend on the semantics of the
provided services they are bound to. In a way, the semantics of a composite ser-
vice are distributed among the components. Therefore, they must be synthesized
from the semantics of the components that compose the assembly.

1 Copyright (© 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

2 G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, J.-M. Bruel

Temperature

Thermometer

Apparent
Temperature Temperature
InFarenheit InCelcius
CelsiusToFahrenheit ApparentTemperatureComputer

Wind

Anemometer
Fig. 1: Implementation of a component-based service

The problem is to describe the services provided by components that have
required services, both to enable assistance to service developers when they
assemble components and to combine such descriptions to automatically gen-
erate composite service descriptions. For that, the vocabulary used to describe
component-based services must take into account the required services, and these
atomic descriptions must be combinable. State of the art shows that considering
ontologies when describing services improves their discoverability [3] and compo-
sition [3][4]. Several ontologies and approaches exploiting them have thus been
proposed. However, existing solutions mainly consider Web services and are lim-
ited to the description and composition of provided services without considering
required services. In this work, we propose to describe component-based services
with ontologies in order to leverage the semantics of such knowledge represen-
tations regarding two issues : (i) to support a detailed description of composite
services; (ii) to support the composition of services and produce a description of
a composite service depending on the components participating in the assembly.

The next section presents the ontology we propose, called Comp-O. Then,
Section [3] introduces a proof-of-concept implementation and shows how Comp-
O supports the building of composite services and the automatic generation of
their semantic descriptions.

2 Comp-0O, an OWL-S extension for component-based
services

The development of our ontology, compliant with the NeOn methodology [5], is
detailed in [6]. The requirements of a component-based service ontology tested
against six ontologies (hRestsEL MSMEL OWL—EEl, SAREFEL SOSA/SSNH and
WSMIED motivated the reuse of OWL-S. With OWL-S, the service offered can be

2 https://lov.linkeddata.es/dataset/lov/vocabs/hr
3 https://lov.linkeddata.es/dataset/lov/vocabs/msm
* https://www.w3.org/Submission/0WL-S/

® https://ontology.tno.nl/saref/

S https://www.w3.org/TR/vocab-ssn/

" https://www.w3.org/Submission/WSML/

https://lov.linkeddata.es/dataset/lov/vocabs/hr
https://lov.linkeddata.es/dataset/lov/vocabs/msm
https://www.w3.org/Submission/OWL-S/
https://ontology.tno.nl/saref/
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/Submission/WSML/

Using Comp-O to Build and Describe Component-Based Services 3

described using the pre/post conditions that are annotated in the service profile.
The invocation of other services and the internal orchestration are described in
the service process.

Comp—qﬂ7 the extension of OWL-S we have proposed, is available on line at
https://comp-o.github.io/comp-o. It allows representing service required in-
terfaces. This representation can be exploited when defining composite services.
Comp-O consists of

— three new classes:
e comp-o:ComponentBasedService,
e comp-o:Required Perform,
e comp-o:ServiceContract,
— and one object property comp-o:requiredPerformContract.

The class comp-o:RequiredPerform is defined to describe the required inter-
faces of a component-based service. It specialises owls-process: Perform. This
control construction references a comp-o:ServiceContract represented by a ser-
vice profile that does not reference any process (a black-box). The class comp-
o:ServiceContract specialises owls-profile: Profile. It is used to define the types
of inputs and outputs and pre/post-conditions specified by a required interface.
The class comp-o:ComponentBasedService specialises owls-service:Service. 1t is
defined to describe a service that can have no or several comp-o:Required Perform
(required interface) in its process, and that is not operational until all its comp-
o:RequiredPerform are replaced with an actual perform referencing another pro-
cess.

Finally, the comp-o:required PerformContract predicate is used to link a comp-
o:RequiredPerform with the comp-o:ServiceContract it requires.

3 Using Comp-O to build composite services and
automatically generate their descriptions

To demonstrate our solution, we have developed a proof-of-concept implementa-
tion. It is available at https://github.com/comp-o/comp-o-poc. In practice,
a command line interface helps the user to select and assemble components, and
outputs its OWL-S description.

A demonstration video is available online at https://www.irit.fr/~Sylvie)
Trouilhet/demo/iswc2020.mp4. It briefly introduces the concepts of software
components and component-based services using a simple example in the field
of ambient systems. It sets out service description and discovery issues. Then,
the above example is used to illustrate what can be done using Comp-O: rely-
ing on service descriptions as inputs, the developer is assisted when building a
component-based service and its description is automatically generated.

8 The prefixes used are comp-o: https://comp-o.github.io/comp-o#, owls-
service: http://www.daml.org/services/owl-s/1.2/Service.owl#, owls-process:
http://www.daml.org/services/owl-s/1.2/Process.owl#, owls-profile: http://
www.daml.org/services/owl-s/1.2/Profile.owl#

https://comp-o.github.io/comp-o
https://github.com/comp-o/comp-o-poc
https://www.irit.fr/~Sylvie.Trouilhet/demo/iswc2020.mp4
https://www.irit.fr/~Sylvie.Trouilhet/demo/iswc2020.mp4
https://comp-o.github.io/comp-o#
http://www.daml.org/services/owl-s/1.2/Service.owl#
http://www.daml.org/services/owl-s/1.2/Process.owl#
http://www.daml.org/services/owl-s/1.2/Profile.owl#
http://www.daml.org/services/owl-s/1.2/Profile.owl#

4 G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, J.-M. Bruel

The building process is described below and summarized in Fig. 2} A list
of the available component-based services is first presented. To do this, all that
is needed is to retrieve the set of resources typed by the service:Service class.
Then, the developer must choose the “root” service, i.e., the service to imple-
ment. Comp-O helps to determine whether the component that provides it has
any required interface, i.e., if one of the control constructions of the process of
the service it provides is a comp-o:RequiredPerform. This property can be com-
prehensively checked considering OWL-S vocabulary using a SPARQL query.

If the component providing the service does not require any service, it can
be described and published as an OWL-S service. If the component has one or
more required services, the latter must be bound to external component-based
services. If so, to ease the binding decisions, it can be determined whether a
provided service matches a required one. This requires checking that the types
of the inputs and outputs, the preconditions and the post-conditions match.
This task must be repeated as long as there are unbound required services in
the assembly. Then, the component-based implementation of the chosen service
is operational, and its OWL-S description can be generated.

[.) _ For each bound
O Listing of the services | service(s) whose
— component has one or
more required service

" Choice of the ‘root” | The wmplonem providing o - : 3
- the service has one or —| Binding of required service(s)
/ more required service 4

No assembly: the service !
— = canbedescribedasa All the bound service(s)
Wab service : have no required service

The component providing
the chosen service has
no required service

Assembly

Fig. 2: Building process of a component-based service

To generate the semantic description, the first step consists in replacing ev-
ery comp-o:RequiredPerform by an owls-process:Perform referencing the process
associated in the assembly, using the owls-process:process predicate instead of
referencing a comp-o:ServiceContract via the comp-o:requiredPerformContract
predicate. The process of a component-based service can reference as variables
the inputs and outputs of a comp-o:ServiceContract it requires. For each ser-
vice, the second step is therefore to replace the references to these variables by
references to the equivalent variable of the associated service. This step can be
accomplished by processing all the owls-process:fromProcess predicates having as
object a resource of the type comp-o:ServiceContract. Once these two steps are
complete, the component-based services are then described as OWL-S services.

Using Comp-O to Build and Describe Component-Based Services 5

4 Conclusion

In this work, we have experimented Semantic Web technologies in the field
of component-based software engineering. This paper has introduced Comp-O,
an extension of OWL-S for component-based services which are services pro-
vided by software components, and the use of Comp-O to support the design
of component-based services. Our proposal contributes to the state of the art
in terms of assistance to component-based software developers and automated
description of component-based services.

In a near future, we plan to use Comp-O in an ongoing project which aims to
make user-oriented services emerge at runtime in ambient environments. There,
an intelligent engine builds on the fly component-based services from software
components that are present at the time in the environment, without having been
required by the user. As a consequence, emerging services must be semantically
described to the user [7] who can, in addition, edit them and participate to their
design while being assisted in such a task.

5 Acknowledgment

This work is part of the AILP (Assistance InteLligente et proactive en environ-
nement Professionnel) project, which is supported by the French region Occitanie
and the operational program FEDER-FSE Midi-Pyrénées et Garonne.

References

1. I. Sommerville. Component-based software engineering. In Software Engineering,
chapter 16, pages 464-489. Pearson Education, 10" edition, 2016.

2. OMG. Unified Modeling Language (OMG UML) Version 2.5.1, chapter 11.6.3.1
Components semantics. 2017.

3. M. Klusch, P. Kapahnke, S. Schulte, F. Lecue, and A. Bernstein. Semantic Web
Service Search: a Brief Survey. KI-Kunstliche Intelligenz, 30(2):139-147, 2016.

4. K. Kurniawan, F.J. Ekaputra, and P.R. Aryan. Semantic Service Description and
Compositions: A Systematic Literature Review. In ICICoS, pages 1-6, 2018.

5. M. C. Sudrez-Figueroa, A. Gémez-Pérez, and M. Ferndndez-Lépez. The NeOn
Methodology for Ontology Engineering, pages 9-34. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

6. G. Alary, N. Hernandez, J.-P. Arcangeli, S. Trouilhet, and J.-M. Bruel. Comp-O:
an OWL-S Extension for Composite Service Description. In Proc. of the 22™¢ Int.
Conf. on Knowledge Engineering and Knowledge Management (EKAW), 2020. To
appear.

7. M. Koussaifi, S. Trouilhet, J.-P. Arcangeli, and J.-M. Bruel. Automated user-
oriented description of emerging composite ambient applications. In Proc. of the
31°% Int. Conf. on Software Engineering and Knowledge Engineering (SEKE), pages
473-478, 2019.

	Using Comp-O to Build and Describe Component-Based Services

