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Abstract

Ionizing radiation interacts with the immune system in many ways with a multiplicity that 

mirrors the complexity of the immune system itself: namely the need to maintain a delicate 

balance between different compartments, cells and soluble factors that work collectively to protect, 

maintain, and restore tissue function in the face of severe challenges including radiation damage. 
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The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where 

subtle quantitative and functional effects predominate that may go unnoticed until late after 

exposure or after a second challenge reveals or exacerbates the effects. For example, low doses 

may permanently alter immune fitness and therefore accelerate immune senescence and pave 

the way for a wide spectrum of possible pathophysiological events, including early-onset of 

age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy 

displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and 

degenerative diseases. In this review, epidemiological, clinical and experimental data regarding 

the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will 

be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation 

of localized exposures such as inflammatory reactions. The central conclusion is that ionizing 

radiation fundamentally and durably reshapes the immune system. Further, the importance of 

discovery of immunological pathways for modifying radiation resilience amongst other research 

directions in this field is implied.

Keywords

Low-dose ionizing radiation; Immune system; Epidemiological data; DNA damage response; 
Inflammation

1. Introduction

The immune system is the body’s main defence mechanism able to distinguish between 

self and non-self as well as sensing danger. Its main function is to recognize and eliminate 

different pathogens and damaged or abnormal cells within the body (Fig. 1) (Murphy and 

Weaver, 2017).

Direct ionizing radiation (IR) effects on the immune system are well-documented and 

were among the first radiobiological observations made soon after the discovery of X-rays 

(Anderson and Warner, 1976; Radiation, 1972; Schaue, 2017). With the discovery of 

antibiotics and anti-inflammatory drugs, together with an increased awareness of radiation 

carcinogenesis the initial enthusiasm to treat infections and benign diseases with radiation 

subsided for the most part and was replaced with a sole focus on cancer radiotherapy 

(RT) using doses that can kill cancer cells (i.e. high doses delivered in multiple fractions, 

generally 2 Gy per daily fraction). As a result, the radiation literature tends to be dominated 

for the most part by high dose exposure studies with single doses above 1 Gy (Schaue, 

2017). Data from radiation oncology patients come with generally well-defined dosimetry 

and clinical monitoring, but the presence of a tumour is an important confounding factor 

from an immunological point of view. For instance, many patients receive fractionated local 

tumor irradiation of up to 74 Gy total dose as part of an extensive combined modality 

treatment that can include chemotherapy, surgery and/or immunotherapy (Demaria et al., 

2015). Therefore immunological alterations during cancer treatment may not necessarily be 

due to radiation effects alone. Studies based on high dose IR applied to cancer patients 

indicated that radiation had immune suppressive properties and this paradigm prevailed 

in the scientific literature for decades (Anderson and Warner, 1976; Balogh et al., 2013; 
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Hader et al., 2020; Kachikwu et al., 2011; Lumniczky and Safrany, 2015; McFarland et 

al., 2012; Merrick et al., 2005). On the other hand low (below 100 mGy) and intermediate 

dose (between 100 mGy and 1 Gy) exposure scenarios are much more relevant for the 

general population as they may have public health consequences. They are also much more 

difficult to study because toxicity and carcinogenesis are a lot less obvious while other, 

more subtle functional alterations gain in importance. DNA damage correlates with the dose 

and the probability of severe direct DNA damage after low doses and dose rates is low, 

thus other mechanisms may prevail (Mothersill and Seymour, 2014). Within the long time 

span between exposure and the onset of the clinically apparent pathologies, likely persisting 

alterations in the functional integrity of the organism as a whole must be present leading 

to the development of a pathology. Not only the DNA-damage response (DDR) related 

pathways, but also other, immune-related pathways may contribute to both cancer and 

non-cancer health outcomes from exposure to IR. Hence, a holistic approach that integrates 

these multiple mechanisms at all organizational levels is needed to understand the complex 

response system (Mavragani et al., 2016).

An accumulating amount of scientific evidence based on epidemiological and pre-clinical 

studies indicate that low dose exposures might directly impact immune functions and - 

although controversial -, these data indicate that IR may not only be immune suppressive 

(Cui et al., 2017; Hellweg, 2015; Makinodan and James, 1990; Rodel et al., 2015; Sambani 

et al., 1996; Xu et al., 1996). A comprehensive review of available data on IR effects 

on the immune system was published in the UNSCEAR 2006 report (Radiation, 2008) 

including both high and low dose effects and highlighted complex functional changes 

within the immune system in response to radiation. This was the first report released by 

an international organisation investigating radiation health effects which abandoned the 

“classical” paradigm that IR is purely immune suppressive. Actually, this report proposes to 

consider IR as an immunomodulatory agent due to the multitude and sometimes opposing 

ways it can influence the immune system depending on various parameters such as dose, 

dose rate, genetic background, age, health status, comorbidities, lifestyle, environmental 

co-stressors, etc (Radiation, 2008).

This review is part of a collection of papers summarizing discussions of the MELODI 

workshop on non-cancer effects of low dose IR, organized in Sitges, Spain, 10–12 April 

2019. Here we aim to provide an update on low dose IR effects on the human immune 

system with the goal to summarize what is “known”, what is suspected but still controversial 

and what is “not yet known” based on existing epidemiological, clinical and pre-clinical data 

(Table 1).

2. Human biomonitoring and epidemiological data on low dose radiation-

induced immunological changes

Data from genuine epidemiological studies on immune alterations in the context of low 

dose exposures remain scarce (Table 2). This may be because symptoms of immune-related 

diseases do not appear in a form or along a time course that can easily be related to radiation 

exposure apart from the well-known high radiation sensitivity of many resting lymphocytes.
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A substantial amount of data is available from different mass casualties implying acute or 

chronic exposure scenarios. Among the best studied cohorts today are A-bomb survivors and 

clean-up workers (liquidators) of the Chernobyl nuclear power plant accident, subjected to 

single dose acute exposure.

2.1. A-bomb survivors and Chernobyl clean-up workers cohorts

Data regarding radiation effects on the immune system of A-bomb survivors started to 

accumulate in the 1980’s and have been periodically updated ever since. The caveat is of 

course that there may be influences of race and life style factors. Akiyama reported from the 

Life Span Study on about 120,000 people who had been exposed to an average of 0.16 Gy 

according to the dosimetry system revised in 1986 (DS86), which includes “non-exposed” 

controls (Akiyama, 1995; Akiyama et al., 1983). Many long-term immune effects were 

observed that generally suggested a shift in the peripheral lymphocyte balance in favor 

of B cells with increased serum immunoglobulin (Ig) levels at the expense of cluster of 

differentiation 3 (CD3) + T cells which were reduced in both numbers and functionality. 

A dose-dependent drop in naïve CD4+ and CD8+ T lymphocytes was recorded, while 

memory cells were less affected (Kusunoki et al., 1998; Kusunoki et al., 2003). That T cell 

differentiation and development may be permanently altered was suggested by a rise in rare 

double negative CD4−CD8−, alpha/beta T cells (Kusunoki et al., 2003; Kyoizumi et al., 

2010). The appearance and persistence of TCR-mutant T cells was detected mostly in the 

memory CD4+ T cell compartment in a dose-dependent manner in individuals aged 20 or 

older at the time of bombing (Kusunoki et al., 2003). A relatively robust dose-dependent 

readout for TCR mutant frequency was suggested after studies on Chernobyl clean-up 

workers, even at doses of 0.25 Gy (Saenko et al., 2000). This would suggest the use of TCR 

mutation as a potential biodosimeter relevant to T cell function.

In many ways, immune changes observed in A-bomb survivors resemble those associated 

with aging. It was reported that the output of naïve T cells was reduced, the memory 

T cell pool was expanded while the TCR repertoire became limited, all of which were 

associated with low grade inflammation that involved myeloid cells known as inflammaging 

(Denkinger et al., 2015; Franceschi et al., 2019; Fulop et al., 2018; Kusunoki and Hayashi, 

2008; Kusunoki et al., 2010). Doses in the range of 0.005–0.2 Gy drove accelerated thymic 

involution, which could still be evident 30 years later when the natural, age-related process 

was well under way if not completed (Ito et al., 2017). The frequency and counts of 

monocytes were dose-dependently increased by radiation exposure and this increase was 

more pronounced after 60 years showing a possible acceleration of age-dependent clonal 

haematopoiesis (Yoshida et al., 2019). However, the response to vaccination in elderly 

atomic bomb survivors seemed not to be impaired by radiation exposure early in life 

(Hayashi et al., 2018).

The role of IR in promoting accelerated aging was further demonstrated by looking at 

telomere length in leukocytes of A-bomb survivors. Lustig et al. showed that circulating 

leukocytes in A-bomb survivors had shorter than expected telomeres, and impaired function, 

which was dependent on dose and age at exposure. It was more severe in the young than in 

the elderly, showing a significant dose-dependency in individuals younger than 12-years at 
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exposure. The authors concluded that because this was measurable in the progeny decades 

later, the initial lesion was the likely source. The association of telomere shortening with 

circulating biomarkers for aging, such as cytokine production and peripheral blood cell 

counts were lost in irradiated individuals indicating that radiation effects override those of 

aging. The authors hypothesized that the resultant functional defects may not necessarily be 

a disadvantage as myeloid cells may produce fewer inflammatory cytokines, whereas this 

argument is difficult to make for reduced T cell function (Lustig et al., 2016). Of special 

interest to the discussion here might be the observation by Yoshida el al. who showed a 

biphasic alteration of CD4+ telomere length with irradiation dose: longer telomeres after low 

dose exposure and progressively decreasing telomere length with doses above 0.5 Gy which 

correlated with the individual metabolic status (Yoshida et al., 2016).

Further low-dose IR induced quantitative and functional alterations in immune parameters 

in Chernobyl clean-up workers were reported by Ilienko et al., who investigated cellular 

immune parameters of 235 individuals exposed to doses between 0.1 and 3500 mSv. They 

found decreased CD4+/CD8+ ratios and increased Tregs in 56% of the studied clean-up 

workers, especially in those exposed to low doses. Interestingly, the authors showed that 

the decrease in the level of B cells and activated T cells correlated with the increase in 

interleukin (IL)-1β levels in individuals exposed to doses below 100 mSv (Ilienko et al., 

2018). Oradovskaia et al. studied a cohort of clean-up workers who developed different 

malignant diseases and identified typical immune parameter changes in these people 1–3 

years before the manifestation of cancer. These changes include reduced CD3+ CD4+ T cell 

levels, increased CD8+ T cell levels and hence a reduced CD4/CD8 ratio, and a prevalence 

for natural killer T (NKT) cells over conventional natural killer (NK) cells (Oradovskaia et 

al., 2011b) confirming previous data of increased NKT cells in clean-up workers (Kuzmenok 

et al., 2003). Though these markers seem to indicate a risk for cancer development, it is not 

clear to what extent these alterations were specific for radiation exposed individuals rather 

than the general population developing cancer at later times.

2.2. Environmental or occupational radiation exposures

Other exposure scenarios of interest are long-term chronic exposures affecting either 

residents living in regions with increased background radiation (natural or human-made) 

or workers occupationally exposed to radiation. Studies investigating individuals living 

in Ramsar, Iran at natural high background radioactivity of up to 260 mSv per year 

showed mild immunological alterations manifested in increased Ig levels (in particular 

IgE), increased levels of activated CD4+ cells and a tendency towards T helper 2 

(Th2) polarization without changes in innate immune parameters (in terms of neutrophil 

chemotaxis), while results relating to cytogenetic damage in blood lymphocytes were 

contradictory (Attar et al., 2007; Borzoueisileh et al., 2013; Ghiassi-nejad et al., 2002; 

Ghiassi-Nejad et al., 2004; Molaie et al., 2012). Studies investigating residents living in the 

Yangjian high background radiation area (with cumulative doses up to 249 mSv) showed an 

increased tendency of both CD4+ and CD8+ T cells in the peripheral blood mononuclear 

cells (PBMCs), the latter correlating with dose. Moreover, multiple inflammation-related 

cytokines and blood proteins were significantly increased, such as soluble IL-6 receptor 

(sIL-6R), interferon (IFN)-γ, monocyte chemoattractant protein-1 (MCP-1) and C-reactive 
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protein (CRP) (Li et al., 2019). Chang et al investigated home environments giving off on 

average 169 mSv gamma radiation from building materials to 196 individuals over 2–13 

years. They found a change in lymphocyte subsets in favour of CD8+ T cells while CD4+ 

T cell numbers and CD4/CD8 ratio negatively correlated with dose when compared to 55 

non-exposed close relatives (Chang et al., 1999a). Despite the fact that the cited studies 

focused on different immune parameters their conclusions were quite convergent, showing 

increased activity in the adaptive immune response and the presence of pro-inflammatory 

factors. A recent study on gene expression profiles of PBMCs from inhabitants of the high 

level background radioactivity area in Kerala, India found that immune response pathways 

were among the radiation-affected over-represented pathways (Jain and Das, 2017).

Immune markers were investigated in people living in radiation-contaminated areas such as 

around the Mayak nuclear complex, including the Techa River in the Russian Federation. 

Akleyev et al. showed that the innate immune system, NKT cells, and neutrophils in 

particular, might be activated by chronic exposure to approx. 0.9 Gy in a dose and dose-

rate dependent manner in residents of Techa River (Akleyev et al., 2019). Another study 

indicated a dose-dependent decrease in the concentration of T helper cells, reduced IFN-γ 
levels, increased NKT lymphocyte numbers as well as transforming growth factor beta 

(TGF-β), matrix metalloproteinase 9 (MMP-9), IgA and IgM levels in Mayak workers 

exposed to external gamma rays with or without internal alpha radiation. Authors concluded 

that changes detected in the immune parameters of the investigated individuals favoured the 

maintenance of a chronic inflammatory status, which could contribute to the development of 

radiation-related late pathologies such as cardiovascular and malignant diseases (Rybkina 

et al., 2014). Very similar conclusions were reached by Kiselev et al., who reviewed 

immunological changes in radiation workers at a Siberian chemical complex (over 4000 

workers), at the Mayak nuclear facility and at the Chepetsk chemical and metallurgical 

plant. The common characteristic of these facilities was the presence of a mixed-type 

exposure (external gamma rays and internal alpha radiation due to incorporated uranium). 

Importantly, the study recorded not only basic laboratory changes in immune parameters 

but also clinically relevant symptomatic immune dysfunctions such as infections, allergies, 

autoimmunity and immunoproliferative diseases and found an increased risk for immune 

deficiency leading to an infectious syndrome in nuclear industry workers compared to 

controls. Significantly elevated IgE levels in a certain group of workers in the absence of 

a relevant allergic anamnesis was also reported, which might indicate a low dose radiation 

induced imbalance in humoral immunity (Kiselev et al., 2017). Gyuleva et al. basically 

confirmed most of these findings in Bulgarian nuclear power plant workers with additional 

details on individual lymphocyte subpopulations and their activation status. Namely, they 

showed a subtle but significant decrease in the proportion of naïve CD4+62L+ cells, 

CD4+CD25+ activated/regulator T cells and an increase in activated CD8+CD28+ cytotoxic 

T cells, along with an increase in NKT cells in persons receiving doses below 200 mSv. 

Thus, they hypothesised a possible shift from a Th1 to Th2 response at doses above 200 

mSv. The main added value of this study compared to the previous ones was that a) it 

took into account confounding factors such as smoking and alcohol consumption and b) 

it discussed the influence of aging as another confounding factor on immune parameters, 

which can overlap with certain changes seen following radiation. Though, they also showed 
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that most of the changes in the measured parameters remained within the normal reference 

values illustrating the discrete effects of low doses (Gyuleva et al., 2018; Gyuleva et al., 

2015a; Gyuleva et al., 2015b). Other occupational data are from interventional cardiologists, 

radiologists and radiation workers. These studies generally report exposure doses well 

below those found in nuclear industry workers mentioned above. At doses of 8.14 ± 7.81 

mSv/year for at least 5 years, i.e. below 50 mSv in cumulative dose, drastic fluctuations 

in circulating immune cells are unlikely to occur, however more subtle changes such as 

priming the immune system towards stronger Th1 response upon a secondary challenge 

were reported (Ahmad et al., 2016; Karimi et al., 2017; Zakeri et al., 2010). Occasional 

quantitative changes in the cellular and humoral immune system components have been 

reported even at standard annual dose levels below 3.5 mSv/year with smoking being an 

important confounder (Godekmerdan et al., 2004; Klucinski et al., 2014; Rees et al., 2004). 

High variability amongst “normal” individuals is an important limitation, especially as 

pre-exposure levels are rarely if ever known in immune epidemiological studies. Diurnal 

rhythm has a pronounced effect that is impossible to control and individual variation in 

lymphocyte radiosensitivity is also large.

2.3. Studies on radiation-exposed children

There is a limited number of studies investigating immune changes in children exposed 

to chronic low dose exposures. In general, as reviewed in the UNSCEAR 2013 report, 

children might be more at risk for a number of radiation-induced late effects both of 

stochastic and deterministic nature. This is true for the incidence of certain tumors such 

as leukaemias, skin, brain and thyroid cancer as well as deterministic health effects such 

as cognitive defects, cataracts and thyroid nodules (Radiation, 2014). For this reason and 

also for the fact that the immune system maturation in children is still ongoing and damage 

at this state might lead to different consequences in immune function than in adults or 

older individuals with various degrees of immune senescence, we considered discussing 

studies of radiation-exposed children separately from those targeting adults. Chronic low 

dose exposure in children of kindergarden-age can have long-lasting effects on peripheral 

blood cell counts. Children exposed to 21–85 mSv gamma radiation over a 1–2 year period 

experienced a drop in total leukocyte and neutrophil counts and an increase in eosinophils 

that lasted as long as 5–7 years after the end of exposure, with total lymphocyte numbers not 

affected when compared to children exposed to 2–5 mSv (Chang et al., 1999). Alterations in 

T cell immunity were detected in children 6–13 year old living within a 40–75 km radius of 

radiation-contaminated areas around Chernobyl in North Ukraine and exposed to persistent 

low level radiation. These children had lower CD4 + T cell counts and a shift in the immune 

balance towards cytotoxic T cell and NK cell subsets especially in vulnerable populations 

such as those who developed recurrent respiratory problems (Vykhovanets et al., 2000). 

The effects were more pronounced at doses above 1 mSv but were also seen below that 

dose (Chernyshov et al., 1997), although confounding factors such as general health status, 

individual immunogenetic make-up and exposure to pathogens make radiation dose response 

patterns difficult to ascertain. Though in children with irritable bowel disease living in the 

Chernobyl contaminated area no association with radiation was found (Sheikh Sajjadieh et 

al., 2012).
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The link between childhood radiation exposure and thyroid cancer was firmly established 

in the aftermath of the Chernobyl accident in 1986 (Pacini et al., 1997), with non-cancer 

thyroid diseases including autoimmune thyroid disorders emerging a few years after the 

accident. This was less of a research focus in the A-bomb survivor cohorts, although thyroid 

pathologies were studied in middle aged adults from the Hiroshima and Nagasaki cohorts 

who were exposed in utero, with a mean maternal uterine dose of 0.256 Gy (range 0.005 Gy 

to 1 Gy). It was determined that they had similar risk estimates as those in the Chernobyl 

study but there was no significant linear dose response for thyroid nodules or autoimmune 

thyroid disease (Imaizumi et al., 2008). Similarly, thyroid nodules tended to be much 

more prevalent in the radiation-exposed Marshallese population, but without correlating to 

abnormal thyroid function (Takahashi et al., 1999). A comprehensive review on the initial 

epidemiological studies is provided by Saenko et al., who concluded that the frequencies 

of abnormal haematological parameters and thyroid autoimmunity did not correlate with 

dose (Saenko et al., 2011). According to long-term studies, the rise in autoantibodies is 

very common even at lower doses but it can be transient and does not necessarily yield 

clinical thyroid autoimmune disease or thyroid dysfunction although well-designed long-

term investigations are still needed (Agate et al., 2008; Eheman et al., 2003; Kasatkina et 

al., 1997; Ron and Brenner, 2010). The disconnection between the rise in autoantibodies 

and the lack of clinical disease might be due to a radiation damage-driven release of thyroid 

antigen without subsequent lymphocytic infiltration. One explanation is the possibility of 

a transient autoimmune reaction (Agate et al., 2008). It is also important to consider the 

dietary iodine uptake. However, determining the association between low dose exposures 

and their clinical significance in terms of benign thyroid diseases is not without challenges, 

which include limited sample size, inadequate dose estimates, prevalence in healthy subsets, 

gender differences and technical problems that relate to the variety of antibodies that can be 

studied (Eheman et al., 2003).

Overall, epidemiological studies on long-term low dose irradiation effects on the immune 

system indicate a) a consensus regarding persistent alterations in CD4+ T cell numbers and 

function; b) a shift towards humoral immunity; c) contradictory conclusions on cytotoxic 

CD8+ T cell numbers and innate immunity, most probably with a shift towards activation of 

certain NK cell compartments; d) limited knowledge on changes in granulocytes; e) likely 

accelerated immune aging (Table 3). Overall, there are big gaps in our understanding of 

functional alterations in immune parameters which are of particular interest at this dose 

range.

Results from the diverse epidemiological or human biomonitoring studies are difficult 

to compare mainly due to gross heterogeneities in the studied cohorts in terms of age 

(both in terms of age at exposure and time elapsed from exposure), doses received, 

irradiation scenarios (acute or chronic, external, internal or mixed exposures), presence of 

confounding factors (lifestyle, comorbidities, genetic background) and studied endpoints. 

A major drawback to almost all of these studies is their purely descriptive nature without 

much effort to link these to specific pathological conditions or diseases. Studies investigating 

immune alterations in A-bomb survivors suggested a correlation between radiation-induced 

chronic inflammation and increased incidence of chronic degenerative-type conditions (e.g. 

cardiovascular diseases, metabolic alterations). The few observations pointing to an increase 
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in the incidence or susceptibility to infections or towards an increased predisposition for 

autoimmune disorders await confirmation by further studies. So far, it has been difficult to 

discriminate between immune alterations that are within the normal resilience capacity of an 

individual versus those that fall outside that range and might link directly to certain diseases. 

The fact that immune system alterations are part of many if not all pathophysiological 

processes leading to chronic diseases not traditionally considered as bona fide immune 

diseases (e.g. heart conditions) only adds further to the complexity of the issue. A meta-

analysis of all epidemiological and biomonitoring studies would be useful to evaluate 

relevant correlations between radiation effects, immune system changes and related health 

consequences. A better characterisation of the control group and the study design (including 

the statistical analysis used), categorisation of the measured endpoints and reported health 

outcomes would help identifying the most informative studies.

3. Experimental and pre-clinical data on low dose ionizing radiation 

effects on the immune system

The number of in vitro and in vivo data about low dose IR effects on the immune 

system is increasing in parallel with a progressively increasing concern of the medical 

and scientific community regarding long-term biological effects of low doses. These 

experimental evidences often confirm epidemiological observations and shed light on the 

mechanisms how IR interacts with the immune system. In the following paragraphs, we will 

review the most pertinent experimental findings which complement epidemiological data, 

focusing on the link between basic molecular mechanisms targeted by IR and the immune 

system, as well as direct low dose effects on quantitative and functional changes in the 

different immune compartments. Finally, we will present regulation of the inflammatory 

response as an example of the differential mechanisms and outputs initiated by low-dose 

versus high-dose irradiation.

3.1. Association between DNA damage response and immune response at low doses of 
radiation

DNA damage is considered a primary consequence of IR and the activation of the DDR 

pathway is a key factor in determining long-term cell fate after irradiation. IR at low doses 

already may induce a variety of lesions like double-strand beaks (DSBs) accompanied by 

single-strand breaks (SSBs) and/or oxidized bases in a bistranded or unistranded form. 

Manning et al showed increased frequency of micronucleated erythrocytes in the blood of 

mice treated in vivo with either external low dose X rays or with PET scan associated 

internal exposure with the radioisotope 18F-FDG (Manning et al., 2014). Rothkamm et 

al reported that quantification of γH2AX foci in the leukocytes of patients subjected to 

CT scans could reliably estimate the level of radiation exposure (Rothkamm et al., 2007). 

DNA damage after such low doses is not sufficiently severe to induce cells death but can 

initiate danger signalling (Mavragani et al., 2016; Mavragani et al., 2017). Interestingly, 

both in vitro and in vivo studies have shown a remarkable persistence of the DSBs (as 

evidenced by the slow resolution kinetics of γH2AX foci) even after doses in the range 

of computed tomography (CT) scans, well below 100 mGy. These changes were first 

detected and extensively studied in fibroblasts (Grudzenski et al., 2010; Lobrich et al., 
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2005; Rothkamm and Lobrich, 2003) but actually more recent investigations showed a 

similar persistence and delayed repair kinetics of DNA damage in lymphocytes as well 

(Beels et al., 2010; Lassmann et al., 2010). Plenty of evidence suggests a strong crosstalk 

between DDR activation and inflammatory response triggering primarily innate immune 

responses (Ermolaeva and Schumacher, 2013; Pateras et al., 2015) also in case of deficient 

DNA repair or persistent DNA damage (Karakasilioti et al., 2013). Damaged cells can 

release a variety of stress or danger signals called damage associated molecular patterns 

(DAMPs) which act as mediators of innate immune responses (Heil and Land, 2014). 

These endogenous molecules released from damaged, stressed or dying cells, in analogy 

to the pathogen-associated molecular patterns - are recognised by the pattern recognition 

receptors located within and on innate immune system cells and instigate inflammatory 

responses. DAMPs can be different cytokines, DNA, RNA, ATP, intra-cellular proteins or 

protein fragments, etc. It is remarkable, that this feature of stress response is common with 

variations across organisms of different complexity and evolutionary phylogeny i.e. from 

plants to mammals (Land, 2015; Pavlopoulou et al., 2019).

3.2. Systemic and abscopal effects of local radiotherapy

Although typical fraction doses for RT are 2 Gy to the tumor, neighboring tissues can 

receive a wide range of low to medium doses up to 0.5 Gy (Pouget et al., 2018). In 

many cases of RT, biological and clinical systemic immune and inflammatory responses 

were found to be similar to responses of the irradiated tissues reflected in changes of key 

modulators of the immune system like cytokines or chemokines. For example, in a study 

by Mathias et al differential anti- and pro-inflammatory responses were detected in the 

heart after local heart irradiation with low and high doses and these differential responses 

were partly reflected at systemic level, in the plasma as well (Mathias et al., 2015). 

Several studies in human patients undergoing RT support a time- and treatment-dependent 

modulation of specific cytokines at systemic level, which in some cases can persist up to 

several years post-treatment, indicating a definite systemic response to radiation mediated by 

inflammatory pathways (Marconi et al., 2019). These systemic phenomena have also been 

observed in animals as reviewed in (Mavragani et al., 2017). Of course, these excessive 

immune responses not only contribute to chronic inflammation and tissue damage but also to 

clearance of damaged cells and tissue remodeling/regeneration (Ermolaeva and Schumacher, 

2014).

Thus, local RT can cause changes in tissues and organs outside the field of irradiation. 

This is called the abscopal effect (Siva et al., 2015) where it can cause damage to 

unirradiated normal tissues, or to a distant, non-irradiated tumor. Clinically, such effects 

are well recognised, as patients often suffer from fatigue, diarrhea and weight loss during 

local RT. Reports of spontaneous anti-tumour abscopal responses are rare, since an immune 

tolerant state has already been established in the patient; Abuodeh et al reported 35 cases 

over 45 years, out of millions of RT patients treated during this period (Abuodeh et al., 

2016). Since the first report by Demaria et al that the immune system was an integral 

component of the abscopal response (Demaria et al., 2004), there have been studies reported, 

in which activation of the immune system, commonly using checkpoint inhibitors against 

cytotoxic T lymphocyte antigen 4 (CTLA-4), programmed cell death protein 1 (PD-1) 
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and OX40 in combination with local RT, was able to induce growth suppression in the 

second unirradiated primary tumor (Esposito et al., 2015). On the other hand, under optimal 

conditions (eg targeting a hypoxic core of the tumour with ablative RT), the anti-tumor effect 

can be achieved with RT alone (Tubin et al., 2019). Exposure of blood and normal tissues 

surrounding the tumor, including the bone marrow and thymus, to low-dose scatter radiation, 

may play a role in the abscopal effects affecting normal non-irradiated tissues. After both 

external beam- and radionuclide RT, persistent and statistically significant increased DNA 

damage was observed in circulating PBMCs, and their repair capacity was affected (Denoyer 

et al., 2015; Yin et al., 2019). This could be explained by protracted induction of DNA 

damage by abscopal effects in susceptible progenitor cells that is revealed later as increased 

unrepaired damage in PMBCs.

3.3. Low dose radiation induced quantitative and functional changes in immune 
parameters

Lymphocytes are very sensitive to high dose irradiation. Though, a more in-depth analysis 

reveals significant differences in the radiosensitivity of the different immune cell subsets 

even after high doses with B and CD8+ T lymphocytes being more radiosensitive 

while dendritic cells (DCs), monocytes, macrophages and regulatory T cells being more 

radioresistant (Heylmann et al., 2014). Radiosensitivity of NK cells is controversial, with 

some studies reporting that NK cells are more radioresistant than CD3+ cells (Bogdandi et 

al., 2010; Swanson et al., 2020), while others reporting the opposite (Falcke et al., 2018).

Low dose radiation elicits a more heterogeneous immune response to radiation. Using 

murine models, it was shown that single low doses (up to 100 mGy) induced mild and 

transient (up to 21 days post irradiation) decrease in the pool of all the above mentioned 

splenic subpopulations (Bogdandi et al., 2010; Gridley et al., 2009). If similar doses were 

delivered chronically over a period of 1–17 weeks, no changes were detected in the short-

term (Shin et al., 2010) but a long-lasting increase in T and B cell numbers were registered 

in mice after antigen stimulation (Ina and Sakai, 2005). Much lower doses (100 mGy/year) 

on the other hand did not impact on T or B cell pools, indicating these doses were too 

low to induce immune effects (Courtade et al., 2001). TCR repertoire profiling in mice 

showed that acute low/intermediate exposure could promote premature immune aging called 

immunosenescence. Exposure to a single dose of radiation was found to accelerate ageing 

of the peripheral TCR repertoire. The consequences of exposure were already visible after 

1 month and lasted for 6 months. Interestingly, they were more pronounced in animals 

exposed to 0.1 Gy than in those exposed to 1 Gy, where they were partially corrected with 

time, indicating that they can be reversed/attenuated. Of note, some of these effects were due 

to radiation-induced impairment of hematopoietic stem cells (Candeias et al., 2017).

Chronic low dose rate irradiation of mice induced a) stimulation of innate immunity by 

enhancing the cytotoxicity of pre-stimulated NK cells (Sonn et al., 2012; Yang et al., 

2014), b) myeloid cell differentiation and activation, c) suppression of pro-inflammatory 

responses (Shin et al., 2010) and d) a shift towards a Th2-type T cell phenotype (Shin 

et al., 2010) due in part to radiation-induced gene expression alterations in CD4+ T cells 

(Cho et al., 2018). Low dose effects on DCs are less well characterized. Persa et al. 
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showed that low and high dose acute irradiation induced qualitatively different functional 

changes in murine splenic DCs in vivo. By this, low doses stimulated antigen uptake 

and lowered antigen presentation while high doses did not influence these parameters, on 

the other hand high doses increased the expression of T cell costimulatory markers and 

enhanced the production of pro-inflammatory cytokines (Persa et al., 2018). Other groups 

performing in vitro irradiation with doses ranging from 0.05 to 5 Gy of DC-precursors or 

mature DCs stimulated by lipopolysaccharide (LPS) reported no influence of irradiation 

on surface marker (CD80, CD83, CD86), cytokine expression or the capacity of the 

DCs to stimulate T-cell proliferation (Jahns et al., 2011). Moreover, a co-incubation of 

bone marrow-derived DCs with supernatant of LPS stimulated and irradiated macrophages 

resulted in a diminished CD40 expression but did not impact on the DC-derived induction of 

T-cell proliferation (Wunderlich et al., 2019).

Toll-like receptors (TLR), appearing on innate immune cells induced DC maturation which 

primed T-cells. In the presence of costimulatory elements, cytokine release was established 

which lead to macrophage activation (Ratikan et al., 2015). Low dose fractionated 

irradiation of mice lead to increased phagocytic activity of macrophages and increased 

CD8+ T cell cytotoxicity (Pandey et al., 2005). Another pathway important in radiation 

response from the immune system is through nucleotide binding oligomerisation domain 

(NOD)-like receptors. These are inflammasomes, which are important in case of damage 

from IR or from viruses. The redox status of cells may work as a rheostat, which may lead 

to a vicious circle of harm in case of excess oxidation, or may calm down the inflammation 

in reduced conditions. TLR agonists like LPS (especially for TLR4), may influence the 

response to ionizing radiation (Ratikan et al., 2015).

As previously mentioned, RT can induce long lasting systemic changes in immune/

inflammatory parameters (Marconi et al., 2019). These changes may appear gradually 

during the course of the treatment (Manning et al., 2017), and even further evolve in 

the weeks following its completion (Balazs et al., 2019; Frey et al., 2020). Hence, the 

modulation of the expression of some inflammatory (ARG1, BCL2L1, MYC) genes in 

blood cells was not apparent after the first two fractions but became significant after the 

25th in patients treated for endometrial cancer. Of note, RT did not modulate these same 

genes as strongly in head and neck patients (Manning et al., 2017). This difference may be 

due to different volumes of blood being exposed at each fraction in endometrial and head 

and neck patients, or to different effects of the different tumour entities on the immune 

system. The presence of a carcinoma in the head and neck area have indeed been shown 

to promote an immunosuppressive state in patients, which is even accentuated (increase in 

Tregs, increased expression of checkpoint molecules on CD4+ T cells), during and after RT 

(Balazs et al., 2019). Systemic modulation of cellular and humoral immune parameters can 

also depend on the mode of radiation delivery (Frey et al., 2020). However, most of these 

studies addressed changes occurring after repeated localized exposure, and it is therefore 

difficult to assess the exact role of low dose in these observations. Radiation-induced gene 

expression changes were also investigated in peripheral blood cells of RT-treated prostate 

cancer patients (El-Saghire et al., 2014) 18–24 hours after the first fraction (2.09 Gy), 

resulting in an equivalent total body blood dose of around 31 mGy. Gene set enrichment 

analysis showed the activation of several pathways involved in immune signaling: IFN 
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secretion, CD28 stimulation, antigen processing and presentation, B-cell receptor (BCR) 

and TCR activation, inflammasomes, transcription factor nuclear factor kappa B (NF-κB), 

TLR and cytokine signalling indicating that local high dose resulted in systemic activation 

of pathways involved in immune processes. Interestingly, the comparison of the response 

elicited in whole human blood exposed in vitro to 0.05 or 1 Gy suggested that low 

dose radiation rather induced pro-survival/anti-apoptotic and immune response pathways, 

whereas high dose exposure rather induced p53-dependent signaling pathways (El-Saghire 

et al., 2013b). A similar dichotomy was found for the response to low and high dose 

radiation of purified human monocytes exposed in vitro (El-Saghire et al., 2013a). Low, but 

not high dose exposure induced the transcription of genes involved in TLR signaling, with 

a concomitant activation of NF-κB, p38, extracellular-signal-regulated kinase (ERK) and 

c-Jun N-terminal kinase (JNK). In contrast, exposure to 1 Gy induced phosphorylation of 

p53 and transcription of p53-dependent genes (El-Saghire et al., 2013b). In vitro exposure 

of human PBMCs obtained from healthy donors to 0.05 Gy of X rays or 12C ions did not 

induce significant changes in the proportion of T or NK cells 24 h later. Both types of 

radiation induced the transcription and the secretion of IL-2, IFN-γ and TNF-α, and an 

increase in the cytotoxic activity of the irradiated PBMCs. These effects appeared stronger 

with high than with low LET radiation (Chen et al., 2010).

Altogether, experimental data do not indicate a linear dose response relationship of 

immunological parameters modulation. IR may have qualitatively different effects at 

different doses/dose ranges. However, some responses/endpoints display discontinuous 

characteristics shared with non (DNA)-targeted properties of IR (Mothersill and Seymour, 

2011). The molecular mechanisms responsible for these non-linear dose response 

relationships, however, remain elusive and may be associated with a connexion of multiple 

pathways initiated at different threshold doses and following different kinetics (Mothersill 

and Seymour, 2011; Rodel et al., 2012). There is growing evidence for a mechanistic link 

between transcription factor activity including p53 protein, activating protein 1 (AP-1), 

and NF-κB in the regulation of the DDR and that of immune response (Habraken and 

Piette, 2006; Magne et al., 2006; Prasad et al., 1995). For example, a dose-dependent 

biphasic transcriptional activity of NF-κB has been shown in endothelial cells (ECs) and 

macrophages (Rodel et al., 2004; Wunderlich et al., 2015).

3.4. Initiation of anti-inflammatory vs pro-inflammatory processes by IR

Functional changes in immune parameters after low dose exposure show a significant 

degree of heterogeneity and are often qualitatively different from changes induced by high 

doses. Inflammatory response is the best studied immune mechanism which is regulated 

differentially by low/medium dose and high dose irradiation. In the next paragraphs we 

summarize the current knowledge on the regulation of inflammatory processes by low versus 

high dose irradiation (Fig. 2).

3.4.1. Modulation of basic inflammatory mechanisms by low/medium dose 
radiation exposure—Inflammation is a basic immunological effector process in response 

to harmful stimuli, such as pathogens, damaged cells or irritants (Murphy and Weaver, 2017) 
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and is regulated by complex interactions between a variety of immune components and 

soluble mediators.

Among the initial step in the inflammatory pathways is the recruitment of leukocytes to 

the site of damaged tissue mediated by local adhesion to the endothelium. By analysing 

PBMC and polymorphonuclear (PMN: granulocytes) cell attachment to cytokine TNF-α 
activated endothelium a significant reduction of adhesion in the dose range of 0.3–0.7 Gy 

was among the first mechanisms reported to contribute to an anti-inflammatory effects 

of intermediate dose exposure (Hildebrandt et al., 2002; Kern et al., 2000; Roedel et al., 

2002). These findings functionally coincide with secretion of the anti-inflammatory cytokine 

TGF-β1 from ECs, both in vitro and in a murine model (Arenas et al., 2006; Roedel et 

al., 2002). Subsequent studies further indicate an impaired adhesion to be associated with a 

non-linear production of reactive oxygen species (ROS) in ECs, which is functionally based 

on a modulation of the transcription factor nuclear factor E2-related factor 2 (Nrf2) and 

anti-oxidative enzymes such as superoxide dismutase, catalase and glutathione peroxidase 

(Large et al., 2015). Further, clearance of apoptotic cells by macrophages is reported to 

result in non– or even anti-inflammatory responses (Gaipl et al., 2005; Voll et al., 1997). In 

line with that, a discontinuous appearance of apoptosis was observed in PBMCs following 

0.1–0.3 Gy irradiation (Kern et al., 1999), which may foster a reduced adhesion. This is 

enhanced by a diminished surface expression of the adhesion molecule E-selectin on ECs 

(Hildebrandt et al., 2002; Roedel et al., 2002) or by the proteolytic cleavage of L-selectin 

from apoptotic PBMCs (Kern et al., 1999).

A key mechanism in the subsequent effector phase of inflammation covers the accumulation 

of monocytes and their differentiation into DCs and inflammatory macrophages (Valledor 

et al., 2010). The latter support the local inflammatory process by a variety of functions 

such as phagocytosis, presentation of antigens, cytotoxic activity and secretion of cytokines, 

ROS and nitric oxide (NO) (Fujiwara and Kobayashi, 2005). NO in turn impacts on vascular 

permeability, promotes tissue oedema and is involved in the development of inflammatory 

pain (Holthusen, 1997). Notably, irradiation at 0.3–1.25 Gy of activated macrophages 

resulted in decreased expression of the enzyme inducible nitric oxide synthase (iNOS) 

and NO production (Hildebrandt et al., 1998) in line with a hampered release of ROS and 

superoxide production (Schaue et al., 2002) that have mechanistically been linked to the 

anti-inflammatory and analgesic effects of low-dose exposure. In addition, irradiation with 

doses up to 2 Gy significantly decreased major histocompatibility (MHC) II expression and 

transmigration of macrophages (Wunderlich et al., 2019) but fostered chemotaxis of LPS 

activated macrophages without impacting viability and phagocytic functions (Wunderlich et 

al., 2015).

In order to establish experimental conditions mimicking as close as possible the patients 

situation, a human TNF-α transgenic mouse model was adopted to investigate the 

therapeutic and cellular effects of low dose irradiation. These animals overexpress 

the cytokine during their lifetime and develop a polyarthritis with joint swelling and 

deformation, synovial inflammation, cartilage damage, and bone erosion comparable to the 

human situation (Keffer et al., 1991). Irradiation of these mice with five times 0.5 Gy at 

early stages (4–6 weeks) revealed significantly reduced paw swelling and increased grip 
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strength (Frey et al., 2009). More recent findings further indicate a significant reduction 

of inflammatory and erosive areas with a lowered detection of bone-resorbing osteoclasts 

and neutrophils. In addition, starting at a dose of 0.5 Gy, proliferation and expression of 

receptor activator of NF-kB ligand (RANK-L) in fibroblast-like synoviocytes decreased, 

numbers of differentiated osteoclasts and their bone resorbing activity also diminished in 

line with a discontinuous dose response relationship in osteoblast-induced mineralization 

(Deloch et al., 2018a). By contrast, irradiation with a single dose of 0.5 Gy displayed no 

harmful effects on cells in healthy joints (Deloch et al., 2018b). Thus, one can conclude 

that in this dose range irradiation may also act via osteo-immunological mechanism with 

the anti-inflammatory properties depending on the initial inflammatory status (Candeias 

and Testard, 2015; Frey et al., 2017). In conclusion, recent experimental in vitro data have 

characterized mechanisms and factors that may contribute to the anti-inflammatory effect of 

a low to medium dose exposure while in vivo models have confirmed improvements in a 

variety of clinical symptoms and parameters.

First clinical studies of patients that had been exposed to very low doses of high linear 

energy transfer (LET) radon gas (0.3 mSv) gave first hints that even here systemic immune 

modulations took place. Especially, activation status of immune cells was influenced as 

well as levels of TGF-β (Cucu et al., 2017; Kullmann et al., 2019; Ruhle et al., 2017). 

One of the most compelling observations in this patient population was a long-term shift 

within the CD4+ T cell compartment towards a higher proportion of circulating Tregs along 

with a fall in CD8+ T cells after cumulative doses of around 0.3 mSv (Cucu et al., 2017). 

Decreased levels of lymphocytes expressing the activation marker CD69 and a temporary 

rise in systemic TGF-β and higher IL-18 serum levels were found to directly relate to better 

pain control in patients after radon spa treatment (Kullmann et al., 2019).

3.4.2. Lung injury during radiotherapy – A clinical example of radiation-
induced pro-inflammatory pathology—The lung is one of the most radiosensitive 

organs, and RT-associated lung tissue inflammation can occur early (radiation pneumonitis, 

within 6 months) and late (chronic lung fibrosis, later than 6 months) after RT (Giridhar et 

al., 2015). Currently, radiation pneumonitis develops in about 30% of patients and is fatal 

in 2% (Palma et al., 2013). It is the main dose-limiting toxicity and can limit quality of 

life of cancer survivors. Genetic factors contribute to the severity of the radiation-induced 

pneumonitis and fibrosis (Gatti, 2001). Pathophysiology, molecular and cellular mechanisms 

of these injuries have been described (Giridhar et al., 2015; Huang et al., 2017), however 

still remain not fully understood.

After irradiation, as a consequence of radiation-induced oxidative stress the DDR is 

dysregulated in lung, resulting in a population of cells with unrepaired DNA damage. 

This in turn leads to destruction of alveolar epithelial and vascular ECs inducing tissue 

hypoxia. Oxidative stress and tissue hypoxia are important regulators of cellular signalling 

pathways controlling the production of various factors involved in the development of 

radiation-induced lung injury such as secretion of pro-inflammatory and pro-fibrogenic 

cytokines, growth factors and pro-teases that destroy the extracellular matrix and the barrier 

of lung tissue. Hypoxia-inducible factor 1α (HIF-1α) protein is an important transcription 

factor involved in the development of radiation-induced lung injury, which is expressed 
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early after irradiation as a consequence of oxidative stress and tissue hypoxia and its 

expression progressively increases for months thereafter. Once induced, it regulates the 

expression of a series of genes involved in pathways like inflammation, oxidative stress 

response, proliferation, differentiation or angiogenesis (Imtiyaz and Simon, 2010; Jackson 

et al., 2012; Rabbani et al., 2010). Blood vessel dilation and increased permeability allows 

for accumulation of inflammatory cells (with macrophages being the most prominent cell 

types) at the site of irradiated tissue and in the alveolar cavity and cause a strong immune 

response. This acute inflammatory response may lead to radiation pneumonitis that induces 

a vicious circle of further inflammation and finally fibrosis induction. IR leads to release 

of cytokines as well. A first wave of cytokine release settles within two weeks. The second 

wave starts around 6–8 weeks post-irradiation (Rube et al., 2004) and is associated with 

accumulation of oxidative DNA damage, ROS or reactive nitrogen species (RNS), hypoxia, 

TGF-β expression, and decreased lung perfusion. TGF-β, in particular, TGF-β1, is mainly 

generated by activated macrophages and is a key player in development of fibrosis. It 

triggers proliferation and conversion of fibroblasts to myofibroblasts. Myofibroblasts in 

turn produce excessive collagen and other extracellular matrix components, and secrete 

angiotensin and hydrogen peroxide, which induce apoptosis in alveolar epithelial cells. 

Activin A is induced by TGF-β1 and it also stimulates production of collagen (Forrester 

et al., 2017). Fibrosis induces hypoxia and consequent release of pro-fibrotic and pro-

angiogenic factors like TGF-β1 (Vujaskovic et al., 2001). These cycles are the basis of 

RT-induced chronic inflammatory lung disease.

Clinical predictors have been identified in an effort to minimize radiation pneumonitis. 

Since the inflammatory response underlies RT-related lung toxicities, immunological factors 

involved in this response may provide potential biomarkers to predict individual response 

to RT. Lierova et al. recently reviewed 56 articles that have evaluated the association 

between serum cytokines and pneumonitis in irradiated lung cancer patients, most of them 

receiving around 60 Gy (Lierova et al., 2018). Serum IL-6 and TGF-β1 tended to stand 

out in predicting susceptibility to subacute pneumonitis, whereas circulating IL-4 and IL-13 

appeared more critical for delayed effects such as chronic inflammation and fibrosis. Higher 

grade pulmonary toxicity in lung cancer patients was associated with early changes during 

RT treatment in plasma levels of IP-10, MCP-1, eotaxin, IL-6, and tissue inhibitor of matrix 

metalloproteinase 1 (TIMP1) (Siva et al., 2016; Siva et al., 2014). The expression levels of 

follistatin, the member of TGF-β superfamily, fibrillin-2, which stores the latent form of 

TGF-β in extracellular matrix and inhibits its activation, and dermatopontin, which increases 

cellular response to TGF-β, predicted lung radiosensitivity manifested as radiation-induced 

fibrosis (Forrester et al., 2014). Vascular endothelial growth factor, E-selectin, I-selectin, 

basic fibroblast growth factor (bFGF), IL-1, IL-6, IL-8, IL-10, IL-12 and IL-18 have also 

been suggested as possible predictive biomarkers (Sprung et al., 2015).

Chronic inflammatory responses as predictors of radiation toxicity have also been described 

in patients treated with RT for other malignancies than lung cancer. A recent review by 

Marconi et al. included 15 publications from the last 5 years on breast cancer patients 

receiving RT, many with conventionally fractionated regimens to a total dose of 50 Gy. 

Some radiation-driven changes in cytokine levels persisted in these patients for months, 

such as IFN-γ and TGF-β. Similarly to lung, both IL-6 and TGF-β correlated with 
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radiation toxicity, although tumour stage and timing were important factors, too (Marconi 

et al., 2019). Moreover, in 37 patients with prostate cancer receiving RT, cytokines were 

reported to appear in recurring waves with pro-inflammatory IL-1 and macrophage colony-

stimulating factor (M-CSF) preceding TGF-β1 but more importantly the magnitude of these 

waves correlated with doses up to 9 Gy given in daily 1.8 Gy fractions (Kovacs et al., 2003).

Altogether, these clinical observations indicate that chronic inflammatory reactions are key 

players in the pathophysiology of high dose irradiation-induced normal tissue toxicity.

Although not directly linked to the topic of the paper, we would like to briefly mention that 

a cancer developing in an inflammatory microenvironment is in general more radioresistant 

compared to a cancer where chronic inflammation is not present. The link between local 

inflammation and cancer radioresistance is thoroughly investigated and several excellent 

reviews exist on this topic (Aggarwal et al., 2009; Jarosz-Biej et al., 2019; Multhoff and 

Radons, 2012; Woodward et al., 2010).

An important point to consider when comparing inflammatory responses after cancer RT 

with low dose radiation treatment of benign diseases is the different initial temporal and 

spatial states of the immune system. Many cancer patients have a more immune-suppressive 

tumor microenvironment, in contrast to the chronic inflammatory state in benign disease; 

both of which are far from the more balanced, neutral set-point in healthy people. As the 

baseline immune balance has shifted, the effect of radiation will shift also.

3.5. The role of genetic background in the variability of radiation effects on the immune 
system

Individual variation in response to IR is well documented in cancer patients receiving RT 

and radiosensitive patients can present therapy-related side effects such as fibrosis, necrosis, 

dermatitis, esophagitis, neuropathological disorders, inflammation and vascular damage, 

among others (Pavlopoulou et al., 2017). The mechanism of inflammation and fibrosis 

developing in lung after RT has been described in the previous chapter and it is evident 

that many of the adverse effects involve processes of the immune system. Heritability 

studies suggest that 58–82% of the individual variation in sensitivity to radiation and in the 

development of RT-related toxicity can be attributed to genetic factors (West and Barnett, 

2011). Currently the role of the genetic background in individual radiosensitivity has almost 

exclusively been investigated for high doses and practically no data exist in the literature 

regarding low dose effects. We aim to provide a short summary of the data available 

regarding the role of the genetic background in the immune system changes influencing 

individual radiation response.

Several studies with murine models have shown genotype-dependent inflammatory-type 

responses after whole-body irradiation. For example, macrophages from CBA/Ca mice 

exhibited a pro-inflammatory phenotype, whereas those from C57BL/6 showed an anti-

inflammatory phenotype after irradiation with 4 Gy (Coates et al., 2008; Rastogi et 

al., 2013). Moreover, different immune-related outputs were obtained after doses below 

100 mGy in two mouse strains with different sensitivity to radiation-induced mammary 

carcinoma: the sensitive strain but not the resistant one showed transcriptional signatures 
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of macrophage activation, pattern recognition receptor signalling, NK cell and TGF-β 
signalling. While changes in immune gene signatures were transient, activation of various 

cancer pathways in the sensitive strain after irradiation was a durable effect (Snijders et al., 

2012). This would confirm the importance of genetic background in low dose IR-induced 

effects.

It is well known that rare mutations in DNA DSB repair genes can cause heritable 

syndromes, such as ataxia telangiectasia, that show extreme radiosensitivity. However, 

radiosensitivity is now considered not to rely only on a single rare gene mutation but to 

be an inherited complex trait that depends on the interaction of common risk alleles in a 

large number of genes (Andreassen et al., 2002). The different responses to RT in patients 

treated with the same radiation doses and not affected by one of the above-mentioned 

heritable syndromes, support the consensus of the involvement of common genetic factors in 

radiosensitivity (Guo et al., 2015).

The degree of the association between specific genes and pathways and sensitivity to 

radiation probably depends on the specific tissue involved and the particular endpoint 

analysed (Andreassen et al., 2002). Focusing on the immune system, some genetic variants 

(mainly single nucleotide polymorphisms (SNPs)) have been found to be associated with 

inflammation and fibrosis after radiation and in particular after RT (Table 4). For example, in 

early studies with relatively small sample sizes, polymorphisms in glutathione S-transferase 

alpha1 (GSTA1), glutathione S-transferase pi1 (GSTP1), TGF-β1, thioredoxin reductase 2 

(TXNRD2), and X-ray repair cross-complementing 1 (XRCC1) genes were found to be 

significantly associated with radiation-induced fibrosis in breast cancer patients. On the 

other hand, polymorphisms in ataxia telangiectasia mutated (ATM), ERCC excision repair 

5, endonuclease (ERCC5), mouse double minute 2 (MDM2), XRCC1 and XRCC3 were 

associated with fibrosis in naso-pharyngeal cancer patients. This would agree with the 

tissue-specificity of the associations in some cases. However, some studies failed to replicate 

the initial associations for TGF-β1, XRCC1 and XRCC3 (see Table 4 for references).

Later, more-powered studies were carried out (and some are still ongoing) in collaborative 

projects with thousands of patients, e.g. RadGenomics (Iwakawa et al., 2002), GENEPI 

(Baumann et al., 2003), Gene-PARE (Ho et al., 2006), RAPPER (Burnet et al., 2013), 

and REQUITE (Seibold et al., 2019; West et al., 2014). These collaborative projects have 

successfully identified association of alleles from the MHC III region with fibrosis in 2036 

breast cancer patients and of ribonuclease L (RNASEL) gene with IL-6 levels in 2550 

prostate cancer patients (Meyer et al., 2010; Talbot et al., 2012). However, a large study 

with 2782 patients reported no association of a SNP in TGF-β1 gene with RT-induced breast 

fibrosis (Barnett et al., 2012). Similarly, results from Zhu et al. with 2926 patients with 

several cancer types failed to find a correlation between TGF-β1 SNPs and fibrosis after RT 

(Zhu et al., 2013).

All these studies were focused on candidate genes suspected to be causally related to 

radiation toxicity, such as DNA damage recognition and repair, free radical scavenging 

or anti-inflammatory response. Besides the candidate-gene approach, few genome-wide 

association studies (GWAS) have been carried out to unravel genes important in 
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radiosensitivity unbiasedly (Barnett et al., 2014; Fachal et al., 2014; Kerns et al., 2016; 

Kerns et al., 2010; Kerns et al., 2013a; Kerns et al., 2013b; Kerns et al., 2013c). Most 

of these GWAS provided evidence for associations of polymorphisms with overall toxicity 

after RT or with individual endpoints other than inflammation or fibrosis, so candidate 

gene approach studies previously mentioned (Table 3) could not be confirmed or refuted. 

However, some GWAS identified genetic variants that may underlie the variability of 

radiation effects on the immune system, specifically in prostate cancer patients treated with 

RT and who presented rectal bleeding, which could be caused by proctitis or inflammation 

of the rectum (Kerns et al., 2016; Kerns et al., 2013c). Recently, Kerns et al. performed 

a meta-analysis with 3871 prostate cancer patients and identified one SNP significantly 

associated with rectal bleeding (Kerns et al., 2020).

In conclusion the role of genetic background in shaping the individual immune response 

after high doses is well demonstrated even in the absence of identified consensus on 

the identity of the gene(s) or gene cluster(s) responsible for this effect. While studies 

investigating the role of genetic background in individual immune parameters to low 

dose IR are very scarce in the literature there is no doubt that an individual genetic 

signature is crucial in low dose response as well, especially taking into account the high 

inter-individual variability of low dose effects, which are most probably governed by genetic 

(and epigenetic) factors. This highlights the future need to focused research deciphering the 

role of genetic background in low dose regulated immune responses.

4. Conclusions

There is a wealth of scientific evidence based on epidemiological data from various cohorts 

exposed to different radiation doses, dose rates and radiation qualities as well as clinical 

studies and experimental in vitro and in vivo data, all collectively supporting the notion that 

low dose IR affects the immune system in multiple ways.

The most important of these findings can be summarized as follows:

1. Both studies on human subjects and experimental data indicate low dose 

radiation-induced damage on T cell immunity, especially CD4+ T cells. There is 

a fair amount of consensus in the literature on low dose radiation doses driving 

changes in the functional profile of CD4+ T cells, most often a shift towards a 

Th2 phenotype. CD8+ damage (both quantitative and functional) is also reported 

in most studies but there are discrepancies as to their radiosensitivity and 

their functional impairment depending on whether acute or long term chronic 

exposures were performed. It is also known that T cell activation can drive 

radioresistancy, which may explain some of these discrepancies.

2. Data regarding low dose radiation effects on humoral immunity mostly arise 

from epidemiological observations and relatively few experimental studies have 

focused on this component of the immune system. While most studies show 

some degree of humoral immune enhancement, these are in contradiction 

with sporadic reports on an increased proneness to bacterial infections among 

radiation exposed individuals, although this may vary with the infectious agent.
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3. Within the innate immune system, NK cells are perhaps the best studied lineage 

and there is a relative consensus both in epidemiological and experimental data 

on the role of low dose radiation in stimulating certain types of NK cells. Reports 

about low dose radiation effects on other components of the innate immune 

system are either contradictory (DCs) or are too few (polymorphonuclear cells) 

to allow for any pertinent conclusion regarding their behaviour post exposure.

4. There is an interesting dichotomy when it comes to inflammatory responses in 

the context of low dose radiation. We can surely state that low-to-moderate doses 

of low and high LET radiation have anti-inflammatory effects on individuals 

with local inflammatory conditions and may result in improvement in a variety 

of clinical symptoms and parameters. On the other hand long-term observations 

of cohorts exposed to very low doses of radiation (acute or chronic) indicate a 

pro-inflammatory immune profile, which might contribute to increased incidence 

of chronic degenerative diseases with an inflammatory component.

5. Epidemiological studies were the first to raise the possibility of a radiation-

induced acceleration of immune aging as well as radiation-induced metabolic 

perturbations in immune cells. Recently experimental data seem to validate these 

observations, though low dose studies in these topics are extremely few.

5. Recommendations for future research

Despite all the data presented here, there are still some research gaps that need to be filled 

and we present some recommendations for future studies:

1. Dysregulation of the immune system is thought to play a key role in many 

adverse health outcomes following exposure to IR. These can be cancerous or 

non-cancerous, such as cardiovascular, neuro-cognitive and metabolic diseases, 

as described by Tapio et al. in another paper of this special issue. Clearly one 

of the greatest gaps in epidemiological studies is that immune changes identified 

in different cohorts are not linked to changes in the incidence of particular 

diseases. These are intricately linked and need to be studied together, i.e. the 

role of the immune system in radiation-induced chronic non-cancer diseases such 

as cardiovascular, neuro-cognitive, metabolic diseases or autoimmune disorders. 

A better understanding of the mechanisms would allow us to develop effective 

countermeasures and to identify predictive biomarkers. Given the nature of the 

immune system, immune parameters considered to be in the normal range show 

very high variability in the population at large but are relatively constant at 

an individual level. Hence, looking at population means might easily mask 

individual changes. Ideally, in order to correctly evaluate individual changes 

they should be compared to pre-exposure values of the particular individual if 

possible, in addition to mean values of control population. Since most immune 

monitoring is performed on blood samples, future epidemiological studies should 

aim to include data from pre-exposure blood samples as well as include potential 

covariates/confounders such as additional stressors, lifestyle factors and genetic 

background.
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2. Most evidence indicates that the relationship between IR exposure and 

immunological changes is anything but linear. In some instances, low, 

intermediate and high IR doses of different radiation qualities and applied in 

different dose rates induce discontinuous or biphasic effects on the immune 

system. However experimental data also show that low/intermediate versus 

high doses (or dose ranges) induce qualitatively different shifts in immune 

responses (e. g. the shift from Th1 to Th2 profile of T helper cells or a shift 

from a pro-inflammatory towards an anti-inflammatory response or vice versa). 

The effects of low/intermediate doses may depend on the initial inflammatory 

state of the irradiated tissue, the dose rate and quality of radiation. Big gaps 

exist in our knowledge of the molecular events responsible for these different 

response patterns. A better understanding of these mechanisms would enable 

a better control of radiation-induced immune changes. In line with that, one 

major characteristics of the immune system is a high degree of cellular motility 

and interaction dynamics of the different components to activate host-protective 

activities and to terminate immune responses to counteract chronic and harmful 

activation. Thus, multiple sampling and the usage of multiplexed, high-resolution 

in situ examination is recommended to unravel the complexity of immune 

interactions.

3. Syngenic animal studies and image guided irradiation of distinct locations in 

animals can greatly help in understanding radiation-induced immune changes. 

However, emphasis should be placed on long-term follow-up studies to identify 

persistent rather than transient immune changes. Currently available animal 

experiments are mostly investigating acute or short-term changes which are 

not really relevant for identifying late occurring pathological immune-related 

alterations.

4. It might be useful to take into account the state of the art in other fields in the 

study of the effects of IR on the immune system. Firstly, the immune system has 

a vast but limited number of mechanisms to respond to stressors. Commonalities 

of the mechanisms induced by stressors not related to IR can be expected and 

useful to elucidate radiation-related mechanisms. Secondly, immune responses 

in other organisms (including invertebrates and plants) may be one of the 

synergetic fields of research between radiobiologists and radioecologists. Third, 

as combined stressors reflect better the reality than exposure to IR alone, an 

exposome research approach considering the effects of environmental pollutants, 

nutrition, lifestyle factors as suggested above might be needed to reveal a more 

realistic effect of IR.

5. Concerning the medical applications of low dose IR, there is a need to further 

explore the immunomodulatory effect of both low and high LET radiation. For 

example for radon, the development of suitable in vivo platforms and basic 

models in line with extended translational and clinical research is seriously 

needed.
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Fig. 1. Schematic representation of the structure of the immune system and its major functional 
features.
A molecule that is recognized by the immune system is called an antigen, which can 

be both self and non-self in origin. The immune system can be divided in two main 

compartments: the innate immune system and the adaptive immune system. The innate 

immune system is composed of a cellular compartment consisting of mononuclear cells 

(monocytes/macrophages, mast cells), polymorphonuclear cells (neutrophils, basophils, 

eosinophils), dendritic cells (DCs), innate immune cells (e.g. natural killer or NK cells) and 

the humoral complement system (Artis and Spits, 2015). Innate immune cells see danger 

through their germline-encoded pattern recognition receptors (PRRs), which recognize 

specific molecular structures present on pathogens (so-called pathogen-associated molecular 

patterns or PAMPs) or produced by damaged cells (so-called damage-associated molecular 

patterns or DAMPs) (Amarante-Mendes et al., 2018). Forming our first-line of defense, this 

recognition is relatively non-specific and quick, reaching its maximal intensity shortly after 

antigen encounter without yielding specific immunological memory. Phagocytosis is one 

of the main mechanisms for antigen elimination by innate immune cells. During danger 

recognition and antigen processing innate immune cells mature and release various soluble 

immune mediators called cytokines and chemokines, which drive inflammation and attract 

adaptive immune cells (Commins et al., 2010). In fact, an important role of the innate 

immune system is the activation of the adaptive arm. Macrophages and DCs in particular 
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are professional antigen presenting cells with the unique ability to activate naïve cells of 

the adaptive immune system by displaying components of the processed antigens within the 

major histocompatibility complex (MHC) on their surface and present them to lymphocytes 

in the presence of necessary co-stimulatory signals (Wynn et al., 2013). Cells of the adaptive 

immune system include T lymphocytes (such as CD4 + helper, CD8 + cytotoxic and Foxp3 

+ regulatory) and B lymphocytes. T cells are responsible for cell-mediated immune response 

while B cells play role in humoral immune response (mediated by antibodies). In contrast 

to the innate immune system, the major features of the adaptive immune response are: 

high antigen specificity, latency of maximal response and development of immunological 

memory exemplified by faster and qualitatively different recall responses (Santana and 

Esquivel-Guadarrama, 2006). The first step in the activation of the adaptive immune system 

is antigen recognition by CD4 + or CD8 + cells through their highly antigen-specific 

T-cell receptors (TCRs). Professional antigen presenting cells present antigenic peptides 

conjugated either to MHCII, inducing CD4 + activation or to MHCI, contributing to CD8 + 

activation. Activated CD8 + T cells kill the antigen-presenting cells through the release of 

cytotoxic agents stored in intracellular granules, or directly by cell-to-cell contact engaging 

death receptors, or through the production of cytokines that trigger apoptosis. B cells, on the 

other hand, recognize extracellular antigens via their antigen-specific B cell receptor, which 

are essentially antibodies bound on the cell membrane forming a transmembrane receptor. 

Once activated with help from CD4 + T cells, B cells start to divide and differentiate 

into plasma cells which secrete huge numbers of soluble antibodies similar to the one that 

recognized the antigen in the first place (Hardy and Hayakawa, 2001). Circulating antibodies 

bind to their specific antigens and these antigen–antibody complexes induce activation of 

the complement system, which in turn leads to a rapid neutralisation by the proteolytic 

activity of the complement system and further phagocytosis by innate cells, i.e. antibody-

dependent cellular cytotoxicity. Most of the intercellular communication in the immune 

system is guided through a complex system of chemokines, cytokines and interferons that 

affect trafficking, activation, differentiation and functional maturation (Turner et al., 2014). 

To prevent tissue damage from excessive immune activation multiple control mechanisms 

are in place that act through cell-to-cell contact or cytokines, involving among others 

regulatory T cells (Tregs) (Persa et al., 2015). Finally, to mount an effective response, 

immune components must circulate between the blood and lymph nodes, recognize antigens 

upon contact with presenting cells, and differentiate to effector T cells and plasma cells. 

Moreover, these cells must extravasate the lymph nodes, migrate to affected tissue to secure 

host-protective activities and to recircle to blood to counteract chronic activation (Germain 

et al., 2012). Accordingly, one has to consider a high degree of cellular motility and 

interaction dynamics of the immune system.
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Fig. 2. 
Schematic representation of the most important immune- and inflammation-related 

processes developing after low, intermediate and high dose irradiation based on available 

epidemiological, clinical and experimental data.
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Table 1

Doses and dose ranges and main type of studies related to the relevant dose ranges

Low doses Intermediate doses High doses

Dose range <100 mGy 100 mGy–1 Gy >1 Gy

Studies
a Epidemiological Experimental Epidemiological Clinical (LD-RT) Experimental Clinical (RT) Experimental

a
principal type of studies discussed in this review addressing this dose range.

RT: radiotherapy; LD-RT: low-dose radiotherapy.
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Table 3

Summary of described immune effects by radiation exposure.

Radiation effect Possible immune marker

Imbalance of peripheral blood mononuclear cells Changes in B cell count
Changes in T cell count
Changes in T cell subpopulations
Changes in NKT count

Acceleration of immunoaging Reduction of naive T cells
Expansion of memory T cells
Thymus involution
Reduction of telomere length of leukocytes

Humoral immune response Changes in immunoglobulin level (IgA, IgM, IgG, IgE)

Inflammation Pro-inflammatory response by cytokines
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Table 4

List of genes reported to be significantly associated with immune-associated endpoints after radiotherapy. 

Only studies with >100 samples were included.

Endpoint Tumor 
type*

Genes associated with 
the endpoint

Genes with 
contradictory 
results

References

Dermatitis BC ABCA1, IL12RB2 (Isomura et al., 2008)

HNC GSK3B, MDM2, 
XRCC1

(Borchiellini et al., 2017; Chen et al., 2017; Yu et al., 2016)

Esophagitis LC BLM HSPB1, PRKCE, 
TGFB1, TNFSF7

(Guerra et al., 2012; Lopez Guerra et al., 2011; Pu et al., 2014; 
Zhao et al., 2016)

Fibrosis BC ATM (lung fibrosis), 
Class III MHC region, 
GSTA1, GSTP1, 
TXNRD2

TGFB1, XRCC1 (Barnett et al., 2010; Barnett et al., 2012; Edvardsen et al., 2013; 
Edvardsen et al., 2007; Giotopoulos et al., 2007; Grossberg et 
al., 2018; Quarmby et al., 2003; Seibold et al., 2015; Talbot et 
al., 2012; Terrazzino et al., 2012)

HNC ATM, ERCC5, HDM2, 
XRCC1

XRCC3 (Alsbeih et al., 2014; Borchiellini et al., 2017; Cheuk et al., 
2014)

Several 
cancers

ATM (Zhang et al., 2016)

IL6 levels PC RNASEL (Meyer et al., 2010)

Mucositis HNC APC, ATG10, 
ATG16L2, EDN1, 
NBN

XRCC1 (Chen et al., 2017; Ma et al., 2017; Pratesi et al., 2011; 
Venkatesh et al., 2014; Yang and Liu, 2019; Yu et al., 2016)

Pneumonitis LC AKT2, ATG16L2, 
BMP2, DDX58, 
ERCC1, GSTP1, 
HIPK2, IL4, IL8, 
LIN28B, MTHFR, 
MUS81, NEIL1, 
NFKBIA, PI3CA, 
RAD51, SP-D, TNF, 
TOPBP1, TP53

APEX, ATM, 
CBLB, HSPB1, 
IL1A, IL13, LIG4, 
MIF, NOS3, 
TGFB1, 
TNFRSF1B, 
VEGF, XRCC1

(Chen et al., 2013; Du et al., 2018a; Du et al., 2018b; 
Hildebrandt et al., 2010; Li et al., 2014; Li et al., 2016; Mak 
et al., 2012; Niu et al., 2012; Pang et al., 2013; Pu et al., 2014; 
Tang et al., 2016; Tang et al., 2019; Tang et al., 2020; Voets et 
al., 2012; Wang and Bi, 2010; Wen et al., 2018; Wen et al., 2014; 
Xiong et al., 2013; Xu et al., 2019; Yang et al., 2017; Yang et al., 
2011; Yin et al., 2011a; Yin et al., 2011b; Yin et al., 2012a; Yin 
et al., 2012b; Yuan et al., 2009; Zhang et al., 2010; Zhao et al., 
2016)

*
BC, breast cancer; HNC, head and neck cancer; LC, lung cancer; PC, prostate cancer.
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