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INSA Centre Val de Loire, Université d’Orléans, Université de Tours, Laboratoire de Mécanique Gabriel Lamé, Rue de la
Chocolaterie, 41000 Blois, France

Abstract

The dynamic analysis of 2D nearly periodic structures of finite dimensions, subject to harmonic excitations,
is addressed. Such structures are often made up of slightly different locally resonant layered substructures
whose geometrical properties randomly vary in space and which are described here by means of distorted finite
element (FE) meshes. It is well known that purely periodic structures with resonant substructures possess
band gap properties, i.e., frequency bands where the vibration levels are low. The question arises whether
nearly periodic structures provide additional features, e.g., the fact that the vibrational energy remains localized
around the excitation points. Predicting the harmonic responses of such structures via efficient numerical
approaches is the motivation behind the present paper. Usually, the Craig Bampton (CB) method is used
to model the substructures in terms of reduced mass and stiffness matrices, which can be further assembled
together to model a whole structure. The issue arises because the reduced mass and stiffness matrices of the
substructures need to be computed several times — i.e., for several substructures whose properties differ to each
other —, which is computationally cumbersome. To address this issue, a strategy is proposed which involves
computing the reduced matrices of the substructures for some particular distorted FE meshes (a few number),
and interpolating these matrices between these “interpolation points” for modeling substructures with random
FE meshes. The relevance of the interpolation strategy, in terms of computational time saving and accuracy,
is highlighted through comparisons with the FE and CB methods. Three structures are analyzed, i.e., (1) a
plate with 8 × 8 substructures, (2) a plate with 15 × 15 substructures, and (3) a plate with 8 × 4 substructures
embedded in a floor panel. Results show that, at high frequencies, the vibration levels of the nearly periodic
structures undergo an overall reduction compared to the purely periodic cases.

Key words: nearly periodic structures, finite elements, dynamic substructuring, matrix interpolation.

1. Introduction

This paper aims at analyzing the dynamic behavior of 2D nearly periodic structures, of finite dimensions,
subject to harmonic excitations. Such structures can be made up, for instance, of slightly different locally
resonant substructures whose geometrical properties randomly vary in space. This topic is mostly linked to that
of resonant metamaterials which has gained a growing interest over the past years. For instance, a schematic of
a 2D nearly periodic plate with 5× 5 substructures embedded in a floor panel is shown in Fig. 1 along with the
transverse displacement field of the whole structure (plate and panel, at a certain frequency). In this case, the
substructures are multi-layered, i.e., composed of a medium layer with soft material (green part) and a heavy
core (black part) — i.e., which behave like a single or multi-DOF mass-spring system — whose dimensions
are subject to small variabilities. This yields substructures with different resonance frequencies, and therefore,
nearly periodic structures which can behave in a completely different way than purely periodic structures. The
key idea behind the present work is that the substructure variabilities are introduced by means of distorted
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FE meshes with node coordinates defined by means of deterministic space functions weighted by random
variables, e.g., trigonometric functions as shown in Fig. 1. This involves moving the nodes of a baseline
mesh (purely periodic case) to obtain substructures with different node coordinates, and therefore, different
parametrization and geometrical properties. Also, since the substructures are modeled using different random
variables, they do not share the same distorted mesh and geometrical properties. For periodic structures with
identical substructures, it is well known that locally resonant band gaps occur — i.e., frequency bands with low
displacement levels — which appear to be interesting in passive vibration control of structures. The question
which is addressed here is whether the use of nearly periodic structures provides additional features, e.g., the
fact that the vibrational energy is localized around the excitation points (as already reported in the literature
[1, 2]).

This paper does not aim at providing a comprehensive analysis neither about the band gap effect in periodic
structures nor the band gap and localization effects in nearly periodic structures. There already exist numerous
works on these topics, see for instance [3–7] for band-structure calculations in periodic structures, [1, 2, 8] for
localization effects in 1D nearly periodic structures and 1D disordered phononic crystals, and [9] for localiza-
tion effects in 1D banded structures. Instead, the present paper aims at proposing reduced models of 2D nearly
periodic structures (also applicable to purely periodic structures), of finite dimensions, which can be quickly
solved to predict their harmonic response. The problem which is tackled here is that of structures made up of
several substructures which need to be discretized with a sufficient number of nodes and degrees of freedom
(DOFs) to meet accurate results over the frequency bands analyzed, which as such yield large-sized FE models.
The proposed approach is intended to be general and could be applied, in theory, to any kind of structures
which are 2D periodic. However, for the sake of simplicity and in order to target the specific but interesting
topic of 2D metamaterials which is broadly explored nowadays, plane structures made up of “resonant” layered
substructures will be only considered (see Fig. 1).

For purely periodic structures, there exist well-suited model reduction strategies based on component modes
and reduced (mass and stiffness) matrices of the substructures. Especially, the Craig Bampton (CB) method
[10, 11] constitutes an efficient means to obtain these reduced matrices. Within this framework, a projection
vector subspace is used which is spanned by the static modes and a reduced number of fixed interface modes
of the substructures. Since the substructures are identical, they share the same component modes — i.e., the
same static modes and fixed interface modes — and, therefore, the same reduced mass and stiffness matrices.
In other words, the component modes and the reduced matrices of the substructures only need to be computed
once, regardless of the number of substructures considered. The modeling of a whole periodic structure follows
from FE assembly procedures, i.e., by assembling the reduced matrices of the substructures together to build
the global mass and stiffness matrices of the periodic structure. There exist other well-suited approaches, e.g.,
those based on Bloch waves which are good numerical means to predict the dynamic response of 2D periodic
structures which are infinite, or which are assumed to be infinite (i.e., damped with large dimensions), subject
to point forces [12, 13]. However, all these approaches invoke the periodic nature of the structures and are
therefore not suitable to handle nearly periodic structures, i.e., when the substructures are different to each
other. In this case, the component modes and the reduced matrices have to be computed as many times as the
number of substructures considered. The issue is that the computational load involved in the repetition of these
numerical tasks linearly grows as a function of the number of substructures considered, and can rapidly surpass
that involved in the assembly of the substructures, even that required by the classic FE method for modeling a
whole structure.

Several approaches can be used to circumvent the computational burden associated with the repetition of
the numerical tasks mentioned earlier. Among these approaches, one can mention the subspace enrichment
techniques that would consist in computing the component modes of the substructures for one or several par-
ticular distorted meshes, and using these component modes together with additional Ritz vectors for modeling
substructures with random FE meshes. The readers are referred to [14–17] for a general overview of these tech-
niques. A second class of approaches, which is investigated in this paper, involves interpolating the reduced
matrices of the substructures between some “interpolation points” which in the present case concern some par-
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ticular distorted meshes. The readers are referred to [18–21]. The key idea is to consider a few interpolation
points which are similar for each substructure analyzed. The computational load involved in the computation
of the reduced matrices at these few points is not high. The remaining task involves interpolating the matrices
between these points via appropriate interpolation functions, which is low-time consuming.

Interpolating the reduced mass and stiffness matrices requires a special care, however, in the sense that two
matrices computed for two particular distorted meshes can strongly differ to each other, even though the mesh
distortion is small. In [18–21], a congruence transformation is used in order to describe the reduced matrices in
coordinate systems which are compatible to each other. This can be understood as reordering and scaling the
column vectors of the reduced matrices of fixed interface modes of the substructures, computed for different
distorted meshes, in order to make them close to each other. Following the idea in [18], a strategy can be
proposed which involves considering a “common matrix” whose column range is close to those of the matrices
of fixed interface modes, and projecting this common matrix onto the matrices of fixed interface modes to define
“new” reduced matrices. In the present work, the common matrix is not exactly similar to that proposed in [18]
and is expressed by means of the matrix of fixed interface modes of the substructures without distorted meshes
(periodic case). The determination of the interpolated reduced matrices follows by considering an interpolation
scheme based on eight interpolation points and eight Serendipity interpolation functions.

The modeling of an assembly involving several substructures is carried out via FE assembly procedures.
For computational purposes, a second model reduction is considered which consists in expressing the displace-
ment vector of the substructure boundary nodes using the vibration modes of the equivalent periodic structure
(without distorted meshes).

The rest of the paper is organized as follows. The FE and CB modelings of plane structures which are 2D
periodic and 2D nearly periodic are presented in Sec. 2. The issues involved in the modeling of nearly periodic
structures are discussed. The interpolation strategy for modeling the reduced mass and stiffness matrices of
the substructures is detailed in Sec. 3. Also, the strategy to model a whole 2D nearly periodic structure, and
an assembly involving several nearly periodic and (purely) periodic structures, is presented. Numerical results
are finally proposed in Sec. 4. Three test cases are considered, i.e., (1) a plate with 8 × 8 substructures, (2)
a plate with 15 × 15 substructures, and (3) a plate with 8 × 4 substructures embedded in a floor panel. The
relevance of the interpolation strategy, in terms of computational time saving and accuracy, is discussed through
comparisons with the FE and CB methods.

Figure 1: Schematic of a nearly periodic plate (distorted meshes of the substructures) embedded in a floor panel, and related transverse
displacement field resulting from harmonic excitations.
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2. Problem description

This first part aims at presenting the strategy for modeling plane structures, which are 2D periodic or 2D
nearly periodic, using the FE method and the related CB substructuring technique. Especially, the issues raised
by the modeling of nearly periodic structures are emphasized.

Let us start with a periodic structure which can be of rectangular shape as shown in Fig. 2, consisting of a
finite number of identical square substructures with the same FE meshes which are assembled together along
two perpendicular x− and y−directions. These substructures are supposed to be linear, elastic, dissipative and
isotropic, with material properties which vary in space (x− and y−directions). For instance, a substructure
made up of three layers having different material properties is shown in Fig. 2. Since the substructures are
identical and are modeled with the same FE mesh, they share the same mass, damping and stiffness matrices
M, C and K. In this sense, the dynamic equilibrium equation of a certain substructure s can be expressed in
the frequency domain as follows:[

−ω2M + iωC + K
]
us = Fs, (1)

where us and Fs are vectors of displacements and forces (respectively), ω is the angular frequency and i is the
imaginary unit. For the sake of simplicity, assumption is made that the damping matrix C is of Rayleigh type,
i.e., it is proportional to the mass and stiffness matrices:

C = aM + bK, (2)

where a and b are two positive real constants. Thus, Eq. (1) can be rewritten as follows:[
(−ω2 + iωa)M + (iωb+ 1)K

]
us = Fs. (3)

Assume that the substructures are meshed using isoparametric elements with interpolation functions N e
j (ξ, η)

where ξ and η are parametric coordinates. For each element e, the Jacobian matrix — which expresses the
derivatives of the physical coordinates (x, y) with respect to the parametric coordinates (ξ, η) — is given by
[22]:

Je(ξ, η) =

[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
=


ne∑
j=1

∂Ne
j (ξ,η)

∂ξ xej
ne∑
j=1

∂Ne
j (ξ,η)

∂η xej

ne∑
j=1

∂Ne
j (ξ,η)

∂ξ yej
ne∑
j=1

∂Ne
j (ξ,η)

∂η yej

 , (4)

where ne is the number of nodes of the element, and (xej , y
e
j ) are the node coordinates. Let us assume that each

element has uniform material properties and constant height he. In this sense, the mass and stiffness matrices
of an element e — namely, Me and Ke — can be expressed as follows [22, 23]:

Me = ρehe
∫

Ωe
ξ

Ne(ξ, η)TNe(ξ, η) Je(ξ, η) dξdη , Ke = he
∫

Ωe
ξ

Be(ξ, η)THeBe(ξ, η) Je(ξ, η) dξdη,

(5)

where Ωe
ξ is the 2D “parametric” domain occupied by the element, ρe is the density, Ne(ξ, η) is the matrix of

interpolation functions N e
j (ξ, η), He is the matrix of elastic constants, and Je(ξ, η) = det[Je(ξ, η)]. Also,

Be(ξ, η) is a matrix whose expression depends on the type of element considered. It is expressed from the
derivatives of the interpolation functions N e

j (ξ, η) with respect to x and y, which are obtained as follows:∂Ne
j (ξ,η)

∂x
∂Ne

j (ξ,η)

∂y

 = Je(ξ, η)−T

∂Ne
j (ξ,η)

∂ξ

∂Ne
j (ξ,η)

∂η

 , (6)
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where superscript −T denotes the inverse of the transpose (superscript T ). Notice that the matrices Me and
Ke are of size N e×N e where N e is the number of degrees of freedom (DOFs) of the element, i.e., N e = ned
where d is the number of DOFs per node. Following the FE procedure, the mass and stiffness matrices of the
substructures are built by assembling the mass and stiffness matrices of the elements as follows:

M =
∑
e

(Le)TMeLe , K =
∑
e

(Le)TKeLe, (7)

where Le are the (Boolean) localization matrices of the elements. The mass and stiffness matrices of a whole
2D periodic structure (Fig. 2) are finally obtained by assembling the mass and stiffness matrices of the sub-
structures, in the same way as Eq. (7). This yields:

Mper =
∑
s

(Ls)TMLs , Kper =
∑
s

(Ls)TKLs, (8)

where Ls are the localization matrices of the substructures.
It is worth pointing out that, from the numerical point of view, the space integrals involved in Eq. (5) are

usually computed via Gauss point quadrature, while the matrix assemblies in Eqs. (7) and (8) are performed
via DOF connectivity vectors.

Figure 2: 2D periodic structure and FE mesh of a substructure (red spots highlight boundary nodes).

For computational purposes, reduced matrices M̃ and K̃ of the substructures are usually considered to
reduce the size of the global FE model. Especially, the CB substructuring technique provides an efficient
means to perform model reduction. The key steps of the CB method can be summarized as follows [11]. Let
us write the mass and stiffness matrices M and K of the substructures, as well as the displacement and force
vectors us and Fs, as follows:

M =

[
MBB MBI

MIB MII

]
, K =

[
KBB KBI

KIB KII

]
, us =

[
usB
usI

]
, Fs =

[
Fs
B

Fs
I

]
, (9)

where subscript B refers to the boundary DOFs (see red spots highlighted in Fig. 2), and subscript I refers to the
internal DOFs (i.e., those which do not belong to the boundary). Note that the mass and stiffness matrices M
and K are symmetric, which means that MT

BB = MBB, KT
BB = KBB, MT

II = MII, KT
II = KII, MT

IB = MBI

and KT
IB = KBI.

Introduce the matrix of fixed interface modes X = [χ1χ2 · · ·χNI
] where NI is the number of internal

DOFs of the substructures, and where χk (k = 1, . . . , NI) refers to the eigenvectors of the matrix pencil
(KII,MII). Those modes are usually normalized with respect to the mass matrix MII, i.e.:

χk →
χk(

χTkMIIχk
) 1

2

. (10)
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In this way, it can be shown that the modes are orthogonal with respect to the mass matrix MII, i.e., χTkMIIχl =
δkl (δkl being the Kronecker delta). Then, extract a reduced matrix of fixed interface modes from X, i.e.,
X̃ = [χ1χ2 · · ·χMI

] where MI < NI, and approximate the displacement vector usI as follows:

usI ≈ ũsI = −(KII)
−1KIBũ

s
B + X̃α̃s, (11)

where −(KII)
−1KIB is the so-called matrix of static modes — i.e., those issued by considering the static

response of a substructure when unit displacements are successively applied to the boundary DOFs, the other
being clamped —, and α̃ = [α̃1α̃2 · · · α̃MI ]

T is the so-called vector of generalized coordinates. Notice that the
size of the matrix −(KII)

−1KIB is NI ×NB where NB is the number of boundary DOFs of the substructures.
Also, in Eq. (11), ũsI and ũsB are approximates of usI and usB, i.e., the displacement vectors computed when
considering the reduced matrix X̃ instead of the full one X. Then, introduce the transformation matrix T̃,
defined such that:

us ≈ ũs =

[
ũsB
ũsI

]
= T̃

[
ũsB
α̃s

]
, (12)

where

T̃ =

[
INB 0

−(KII)
−1KIB X̃

]
. (13)

Invoking Eqs. (12) and (13) in Eq. (3), and left-multiplying the resulting equation by T̃T , yields:

[
(−ω2 + iωa)M̃ + (iωb+ 1)K̃

] [ũsB
α̃s

]
=

[
Fs
B −KBI(KII)

−1Fs
I

X̃TFs
I

]
, (14)

where

M̃ = T̃TMT̃ , K̃ = T̃TKT̃. (15)

Eq. (14) is the dynamic equilibrium equation of the substructures expressed in the subspace spanned by the
static modes and the reduced set of fixed interface modes. Within this framework, reduced mass and stiffness
matrices M̃ and K̃ are considered whose size is M ×M with M < N (where M = NB + MI and N =
NB + NI). The reduced global mass and stiffness matrices of a whole 2D periodic structure follow from
assembly procedures, by considering the displacement continuity conditions at the boundary DOFs. This yields:

M̃per =
∑
s

(L̃s)TM̃L̃s , K̃per =
∑
s

(L̃s)T K̃L̃s. (16)

The global dynamic equilibrium equation of the periodic structure follows as:[
(−ω2 + iωa)M̃per + (iωb+ 1)K̃per

] [(ũB)per
α̃per

]
= F̃per, (17)

where (ũB)per is the displacement vector of the boundary/interface nodes of the substructures, and where:

α̃per =

α̃
1

α̃2

...

 , F̃per =
∑
s

(L̃s)T

[
Fs
B −KBI(KII)

−1Fs
I

X̃TFs
I

]
. (18)
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Concerning the boundary conditions (BCs) of the periodic structure, they may be written in a general way as
follows:

YB(ũB)per + ZB(F̃B)per = Y0
B(ũB)

0
per + Z0

B(F̃B)
0
per, (19)

where (ũB)
0
per and (F̃B)

0
per are vectors of prescribed displacements and prescribed forces, respectively, and

where YB, ZB, Y0
B and Z0

B are matrices whose expressions depend on the kind of applications considered.
Here, (F̃B)per is the force vector for the boundary/interface nodes of the substructures, defined by:

(F̃B)per =
∑
s

(L̃s)TFs
B. (20)

Solving the matrix equation (17) with the BCs (19) yields the displacement vector (ũB)per and the vector of gen-
eralized coordinates α̃per. The displacement vector of the boundary nodes of a particular substructure s can be
retrieved via a localization matrix L̃sB, i.e., ũsB = L̃sB(ũB)per. Also, the displacement vector ũs = [(ũsB)

T (ũsI)
T ]T

of this substructure can be retrieved by considering Eq. (12).

The CB method is advantageous in the sense it provides mass and stiffness matrices M̃per and K̃per of
reduced size compared to the original matrices Mper and Kper. This is explained because the mass and
stiffness matrices of the substructures have a reduced size (as explained earlier). Hence, Eq. (17) can be
quickly solved numerically. The key advantage is that, for purely periodic structures, the substructures share
the same reduced matrices M̃ and K̃, which particularly means that the matrices of static modes−(KII)

−1KIB

and fixed interface modes X̃ only need to be computed once. Things are more complicated when it comes to
nearly periodic structures, i.e., when the substructures are not identical to each other. A nearly periodic structure
involving slightly perturbed substructures with distorted FE meshes is shown in Fig. 3. For each substructure s,
the distorted mesh is obtained by moving the positions of the nodes along the x− and y− directions as follows:

xsej = xej + εsxfx(xej , y
e
j ) , ysej = yej + εsyfy(x

e
j , y

e
j ), (21)

where (xsej , y
se
j ) and (xej , y

e
j ) are the node coordinates of the distorted and undistorted meshes, respectively;

εsx and εsy are uniform random variables with support [−δ , δ] where δ is a dispersion parameter; fx(x, y)
and fy(x, y) are two arbitrary deterministic functions of (x, y), identical for all the substructures, which are
supposed to cancel out on the boundary. In this way, the coupling conditions between the substructures can be
guaranteed. For instance, about the substructure displayed in Fig. 3, the functions fx(x, y) and fy(x, y) are
chosen so that they are equal to zero over the first layer (light gray color), and vary sinusoidally elsewhere.

Figure 3: 2D nearly periodic structure and distorted FE mesh of a substructure (red spots highlight boundary nodes).
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To sum up, the mass and stiffness matrices of the substructures — namely, Ms and Ks — are no more
constant, as well as the reduced matrices M̃s and K̃s. This is explained, first, because the Jacobian matrices of
the elements are different between the substructures, i.e.,

Jse(ξ, η) =


ne∑
j=1

∂Ne
j (ξ,η)

∂ξ xsej
ne∑
j=1

∂Ne
j (ξ,η)

∂η xsej

ne∑
j=1

∂Ne
j (ξ,η)

∂ξ ysej
ne∑
j=1

∂Ne
j (ξ,η)

∂η ysej

 . (22)

In this case, the Jacobian matrices Jse(ξ, η) need to be expressed independently (for each substructure consid-
ered), which also means that the mass and stiffness matrices of the elements — namely, Mse and Kse, see Eq.
(5) — are not constant between the substructures, and therefore, that they have to be assembled (see Eq. (7))
as many times as the number of substructures involved. As a second shortcoming, the fact that the mass and
stiffness matrices of the substructures Ms and Ks are not identical means that the matrices of static modes and
fixed interface modes of the substructures — namely, −(Ks

II)
−1Ks

IB and X̃s — are not constant too. Hence,
they need to be computed several times, which especially raises the issue of computing the eigensolutions of
a matrix pencil (Ks

II,M
s
II) several times, and computing the reduced matrices M̃s and K̃s several times (see

Eq. (15)). For the sake of clarity, the numerical tasks which need to be repeated, as many times as the number
of substructures considered, are listed hereafter:

(i) Computation of the Jacobian matrices Jse(ξ, η), and computation of the elementary matrices Mse and
Kse, see Eqs. (22) and (5);

(ii) Computation of the mass and stiffness matrices Ms and Ks of the substructures via assembly procedures
of the elementary matrices Mse and Kse, see Eq. (7);

(iii) Computation of the matrices of static modes and fixed interface modes −(Ks
II)

−1Ks
IB and X̃s of the

substructures, and computation of the reduced matrices M̃s and K̃s, see Eq. (15).

The computational load involved in the repetition of these numerical tasks linearly grows as a function of the
number of substructures considered, and therefore, it may rapidly surpass that involved in the remaining tasks,
i.e., (iv) assembly of the reduced mass and stiffness matrices M̃s and K̃s of the substructures together to build
the FE model of a whole nearly periodic structure (Eq. (16)), and (v) resolution of the matrix equation (17).

A strategy is proposed in the next section which circumvents the issue of repeating, many times, the pre-
vious tasks (i-iii). In brief, this consists in computing the reduced matrices M̃s and K̃s for some particular
distorted FE meshes which are obtained by considering particular “coordinates” (εx)p and (εy)p (see Eq. (21)),
and approximating the reduced matrices between the resulting “interpolation points” M̃p and K̃p via appropri-
ate interpolation functions.

3. Matrix interpolation

The proposed approach consists in computing a few number np of matrices M̃p and K̃p (p = 1, 2, . . . , np)
for some coordinates εsx = (εx)p and εsy = (εy)p, and interpolating the matrix M̃s (resp. K̃s) between the
matrices M̃p (resp. K̃p) for arbitrary εsx and εsy. The matrices M̃p and K̃p are expressed as follows, see Eqs.
(13) and (15):

M̃p = T̃T
p MpT̃p , K̃p = T̃T

p KpT̃p, (23)

where:

T̃p =

[
INB 0

−(KII)
−1
p (KIB)p X̃p

]
. (24)
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Here, −(KII)
−1
p (KIB)p and X̃p are, respectively, the matrix of static modes and the reduced matrix of fixed

interface modes obtained when εsx = (εx)p and εsy = (εy)p. The number of fixed interface modes in X̃p is MI

(see before Eq. (11)) and is supposed to be identical for all the substructures.
The interest behind this interpolation strategy is that the matrices M̃p and K̃p are identical for all the

substructures, i.e., they only need to be computed once. In other words, the previous tasks (i-iii) (see end of
Sec. 2) can be highly reduced by computing a few number of matrices M̃p and K̃p, only. The rest of the
computational load concerns the computation of M̃s and K̃s via interpolation procedures, which is low-time
consuming.

Although easy to understand, interpolating the matrix M̃s (resp. K̃s) from matrices M̃p (resp. K̃p) is
not straightforward, however. The issue is that, despite the fact that the column ranges — i.e., the subspaces
spanned by the column vectors — of the reduced matrices X̃p can be close to each other, their components may
strongly differ, i.e., these reduced matrices are unable to describe any suitable interpolated matrix. This issue
has been addressed in [18] where it is proposed to consider alternative reduced matrices X̂p which are close to
each other. This consists in considering a “common” matrix Ψ whose column range is close to those of X̃p,
and considering the projections of Ψ onto X̃p as new reduced matrices. This strategy can be understood as
reordering and scaling the column vectors of X̃p to make them close to each other. These new reduced matrices
are expressed by:

X̂p = X̃p(Ψ
T X̃p)

−1ΨTΨ. (25)

Eq. (25) can be simplified when Ψ is orthogonal, i.e., ΨTΨ = I:

X̂p = X̃p(Ψ
T X̃p)

−1. (26)

Eq. (26) holds provided that the matrices ΨT X̃p have full rank, which particularly means that the column
ranges of the matrices X̃p have to be “sufficiently close” to the column range of the matrix Ψ. This also
means that the mesh distortions of the structures should be small enough, or in other words that the dispersion
parameter δ of the random variables εsx and εsy (see Eq. (21)) has to be chosen in such a way that the matrices
ΨT X̃p have full rank.

In [18], it is proposed to consider the following Singular Value Decomposition (SVD) [X̃1X̃2 · · · X̃np ] =
UΣVT , and to define Ψ as the firstMI column vectors of U (i.e., the firstMI left singular vectors of the SVD).
The underlying assumption behind this strategy is that the matrices X̃p must be orthogonal, which is not true in
the present framework (i.e., they are orthogonal with respect to the mass matrix, but not in the usual sense, see
comments about Eq. (10)). A different strategy is proposed here which consists in considering the following
orthogonal matrix which concerns the fixed interface modes of the substructure with undistorted mesh (εsx = 0
and εsy = 0):

Ψ =
(

(M0
II)

1
2

)T
X̃0, (27)

where notations M0
II and X̃0 mean that the matrices Ms

II (see Eq. (9)) and X̃s are expressed at coordinates
εsx = 0 and εsy = 0. The fact that Ψ is an orthogonal matrix follows from Eq. (10).

By considering the new reduced matrices X̂p, this yields new transformation matrices T̂p (see Eq. (13))
and new reduced mass and stiffness matrices M̂p and K̂p, as follows:

T̂p =

[
INB 0

−(KII)
−1
p (KIB)p X̂p

]
, (28)

and

M̂p = T̂T
p MpT̂p , K̂p = T̂T

p KpT̂p. (29)
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Let us denote by M̂s and K̂s the interpolated reduced mass and stiffness matrices which result from arbitrary
values of εsx and εsy with −δ ≤ εsx ≤ δ and −δ ≤ εsy ≤ δ. They can be obtained as follows:

M̂s =

np∑
p=1

Np(ξ
s, ηs)M̂p , K̂s =

np∑
p=1

Np(ξ
s, ηs)K̂p, (30)

where Np(ξ
s, ηs) are classical interpolation functions based on polynomials, while ξs and ηs are parametric

coordinates. These can be chosen so that they are equal to −1 or 1 at “Tchebychev points” −δ/
√

2 and δ/
√

2,
i.e.:

ξs =
√

2
εsx
δ

, ηs =
√

2
εsy
δ
. (31)

Since −δ ≤ εsx ≤ δ and −δ ≤ εsy ≤ δ, one has −
√

2 ≤ ξs ≤
√

2 and −
√

2 ≤ ηs ≤
√

2.
Here, an interpolation scheme based on eight interpolation points (ξp, ηp) and eight Serendipity interpola-

tion functions [23] Np(ξ
s, ηs) is proposed, as illustrated in Fig. 4. Those interpolation points and interpolation

functions are given by:

(ξ1, η1) = (−1 , −1) , N1(ξs, ηs) = −1

4
(1− ξs)(1− ηs)(1 + ξs + ηs),

(ξ2, η2) = (1 , −1) , N2(ξs, ηs) = −1

4
(1 + ξs)(1− ηs)(1− ξs + ηs),

(ξ3, η3) = (1 , 1) , N3(ξs, ηs) = −1

4
(1 + ξs)(1 + ηs)(1− ξs − ηs),

(ξ4, η4) = (−1 , 1) , N4(ξs, ηs) = −1

4
(1− ξs)(1 + ηs)(1 + ξs − ηs), (32)

(ξ5, η5) = (0 , −1) , N5(ξs, ηs) =
1

2
(1− ξs)(1 + ξs)(1− ηs),

(ξ6, η6) = (1 , 0) , N6(ξs, ηs) =
1

2
(1 + ξs)(1− ηs)(1 + ηs),

(ξ7, η7) = (0 , 1) , N7(ξs, ηs) =
1

2
(1− ξs)(1 + ξs)(1 + ηs),

(ξ8, η8) = (−1 , 0) , N8(ξs, ηs) =
1

2
(1− ξs)(1− ηs)(1 + ηs).

The modeling of a whole nearly periodic structure, based on the interpolated matrices M̂s and K̂s, follows
as: [

(−ω2 + iωa)M̂per + (iωb+ 1)K̂per

] [(ûB)per
α̂per

]
= F̂per, (33)

where (see Eq. (16)):

M̂per =
∑
s

(L̃s)TM̂sL̃s , K̂per =
∑
s

(L̃s)T K̂sL̃s. (34)

In Eq. (33), (ûB)per is the displacement vector of the boundary/interface nodes of the substructures (i.e., that
obtained by considering the interpolated matrices) and α̂per = [(α̂1)T (α̂2)T · · · ]T is the vector of generalized
coordinates (see Eq. (18)). The force vector F̂per in Eq. (33) is expressed from the local force vectors of the
substructures which can be interpolated in the same way as M̂s and K̂s (see Eqs. (30) and (18)), i.e.:

F̂per =
∑
s

(L̃s)T F̂s, (35)
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Figure 4: Eight point interpolation scheme based on serendipity interpolation functions Np(ξ
s, ηs) (p = 1, . . . , 8).

where

F̂s =
8∑
p=1

Np(ξ
s, ηs)F̂s

p, (36)

and

F̂s
p =

[
Fs
B − (KBI)p(KII)

−1
p Fs

I

X̂T
p Fs

I

]
. (37)

The expression of F̂s can be strongly simplified when Fs
I = 0, i.e., by assuming that the internal nodes of the

substructures are free from excitations. This yields:

F̂s =

[
Fs
B

0

]
when Fs

I = 0. (38)

Solving Eq. (33) yields the displacement vector of the boundary nodes (ûB)per and the vector of generalized
coordinates α̂per. In addition, the displacement vectors of the internal nodes of the substructures — namely,
ûsI — may be easily obtained as follows:

ûsI ≈ −(K0
II)

−1K0
IBû

s
B + X̂0α̂s, (39)
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where −(K0
II)

−1K0
IB is the matrix of static modes when εsx = 0 and εsy = 0 (undistorted mesh), while matrix

X̂0 is given by X̂0 = X̃0(ΨT X̃0)−1 (see Eq. (26)). Also, ûsB denotes the displacement vectors of the boundary
nodes of the substructures, expressed by ûsB = L̃sB(ûB)per where L̃sB are the localization matrices introduced
earlier after Eq. (20).

The procedure for modeling an assembly made up of different nearly periodic structures — i.e., whose
related substructures have different material properties and are described with FE meshes whose distortions
are governed in different ways — and different (purely) periodic structures, with mass, stiffness and damping
matrices M̂u

per, K̂u
per and Ĉu

per (u = 1, 2, . . .) follows from FE assembly procedures. In this case, the mass,

stiffness and damping matrices of the assembly — namely, M̂a, K̂a and Ĉa — are obtained as follows:

M̂a =
∑
u

(L̂uper)
TM̂u

perL̂
u
per, (40)

K̂a =
∑
u

(L̂uper)
T K̂u

perL̂
u
per, (41)

and

Ĉa =
∑
u

(L̂uper)
T
(
auperM̂

u
per + buperK̂

u
per

)
L̂uper, (42)

where auper and buper are damping coefficients (see Eq. (2)), while L̂uper are localization matrices. In this case,
the dynamic equilibrium equation is written as:[

−ω2M̂a + iωĈa + K̂a

] [(ûB)a
α̂a

]
= F̂a, (43)

where (ûB)a is the displacement vector of the boundary/interface nodes of the substructures, and where α̂a =
[(α̂1

per)
T (α̂2

per)
T · · · ]T . Also, the BCs of the assembly can be expressed in the same way as Eq. (19).

The matrix system (43) is similar to that obtained with the classical CB method (i.e., same size and same
matrix structure). However, the CPU times required by the computation of the matrices M̂a, K̂a and Ĉa are
much lower with the interpolation strategy (see discussion at the end of Sec. 2). Indeed, recall that the proposed
strategy requires, for a given nearly periodic structure, the computation of eight reduced mass matrices M̂p and
eight reduced stiffness matrices K̂p, that’s it! Those are used to determine (via interpolation) the reduced mass
and stiffness matrices M̂s and K̂s of all the substructures, whatever the values of the random variables εsx and
εsy (see Eq. (21)).

A second reduced mode expansion (i.e., in addition to that considered for modeling the substructures) can
be proposed to speed up the computation of the matrix system (43). This second model reduction is detailed as
follows. Let us rewrite, first, the mass, stiffness and damping matrices of the assembly as follows:

M̂a =

[
(M̂BB)a (M̂Bα)a
(M̂αB)a (M̂αα)a

]
, K̂a =

[
(K̂BB)a (K̂Bα)a
(K̂αB)a (K̂αα)a

]
, Ĉa =

[
(ĈBB)a (ĈBα)a
(ĈαB)a (Ĉαα)a

]
. (44)

Also, let us define by M̂0
a and K̂0

a the mass and stiffness matrices obtained when εsx = 0 and εsy = 0 for all the
substructures (periodic case), and let us express the displacement vector (ûB)a as follows:

(ûB)a = X̃0
aβ̃a, (45)

where X̃0
a = [(χ0

a)1(χ0
a)2 · · · (χ0

a)Ma ] is a reduced matrix of modes (χ0
a)j (j = 1, 2, . . . ,Ma) which represent

the first Ma eigenvectors of the matrix pencil
(

(K̂BB)
0
a, (M̂BB)

0
a

)
. Notice that these modes do not depend on

the random variables εsx and εsy, i.e., they only need to be computed once.
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Then, define the transformation matrix T̃0
a, defined so that:[

(ûB)a
α̂a

]
= T̃0

a

[
β̃a

α̂a

]
, (46)

where

T̃0
a =

[
X̃0

a 0
0 I

]
. (47)

As a result, the following reduced matrix system, with reduced matrices [(T̃0
a)
TM̂aT̃

0
a], [(T̃0

a)
T ĈaT̃

0
a] and

[(T̃0
a)
T K̂aT̃

0
a], can be proposed:[

−ω2[(T̃0
a)
TM̂aT̃

0
a] + iω[(T̃0

a)
T ĈaT̃

0
a] + [(T̃0

a)
T K̂aT̃

0
a]
] [

β̃a

α̂a

]
= (T̃0

a)
T F̂a. (48)

Eventually, a last model reduction based on a reduced set of eigenvectors of
(

[(T̃0
a)
T K̂aT̃

0
a], [(T̃

0
a)
TM̂aT̃

0
a]
)

can be proposed to further reduce the size of the matrix system. This computational task is not expensive given
that the size of [(T̃0

a)
T K̂aT̃

0
a] and [(T̃0

a)
TM̂aT̃

0
a] is not large. Note that this model reduction can be used to

analyze of single nearly periodic structure. In this case, one has M̂a = M̂per and K̂a = K̂per.

4. Numerical results

4.1. Preliminary comments
The efficiency of the interpolation strategy proposed in Sec. 3 is discussed. For this purpose, three structures

are analyzed which concern: (1) a nearly periodic plate with 8× 8 substructures (Fig. 5), (2) a nearly periodic
plate with 15 × 15 substructures (Fig. 9) and (3) an assembly consisting in a nearly periodic plate with 8 × 4
substructures embedded in a floor panel (Fig. 14). Regarding the floor panel, it is modeled with homogeneous
substructures of same dimensions as those used to model the nearly periodic plates.

The first test case involves a nearly periodic plate with 64 substructures and about 230, 000 DOFs. The
second test case involves 225 substructures and more than 800, 000 DOFs, and is proposed here with a view to
demonstrating the potential of the model reduction strategy to handle moderately large-sized FE models. The
third test case involves a nearly periodic plate embedded in a floor panel and intends to highlight the dynamic
behavior of assemblies made up of regular structures (floor) coupled to resonant metamaterials (plate), which
is of interest for engineering applications.

Especially, the harmonic response of each structure is analyzed over a frequency band of [0 , 150] Hz. The
plates/substructures are meshed using eight-node isoparametric Mindlin plate elements, with three DOFs per
node, whose mass and stiffness matrices are given in Appendix (see also [24, 25]). The computation of these
matrices is performed via Gauss point quadrature using 3 × 3 Gauss points. A schematic of a substructure
with a distorted mesh is given in Fig. 3. It is of square shape with global dimensions Lx = L = 0.25 m and
Ly = L = 0.25 m (width and height), thickness of 0.005 m, and it is composed of an external layer in steel
(in gray color), a medium layer in rubber (in green color), and a core in tungsten (in black color). The related
material properties are given in Tab. 1. Also, it is meshed using 20 × 20 elements — leading to 3843 DOFs
with 480 boundary DOFs — which is supposed to be high enough to accurately describe the displacement fields
within [0 , 150] Hz. The expression of the damping matrix of the substructures follows from Eq. (2), where
a = 5× 10−3 s−1 and b = 2× 10−6 s.

The external layers of the substructures are supposed to be part of a global frame structure (in steel) whose
dimensions are fixed by design purposes and which contains several inclusions filled with rubber and tungsten
parts. In other words, these are the two parts whose geometrical properties vary between the substructures, and
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which are modeled with a distorted mesh (see Fig. 3). The latter is obtained following Eq. (21) where functions
fx(xej , y

e
j ) and fy(xej , y

e
j ) are defined such that:

fx(xej , y
e
j ) = 0 and fy(x

e
j , y

e
j ) = 0 when xej ≤ Lst , y

e
j ≤ Lst , x

e
j ≥ (L−Lst) or yej ≥ (L−Lst),

(49)

fx(xej , y
e
j ) = sin

[
4π(xej − Lst)

L− 2Lst

]
sin

[
π(yej − Lst)

L− 2Lst

]
when Lst ≤ xej ≤ (L−Lst) and Lst ≤ yej ≤ (L−Lst),

(50)

fy(x
e
j , y

e
j ) = sin

[
4π(yej − Lst)

L− 2Lst

]
sin

[
π(xej − Lst)

L− 2Lst

]
when Lst ≤ xej ≤ (L−Lst) and Lst ≤ yej ≤ (L−Lst),

(51)

where Lst = 0.025 m is the width of the external layer. The random variables used to generate the distorted
mesh are εsx and εsy (see Eq. (21)), and follow a uniform probability law with a dispersion of δ = 0.01 m. Such
a distorted mesh is shown for the substructure displayed in Fig. 3 where εsx = −0.0094 m and εsy = 0.0089 m.

Concerning the CB modeling of the substructures, a number of MI = 5 fixed interface modes — with
eigenfrequencies f1 = 46.74 Hz, f2 = 135.16 Hz, f3 = 135.16 Hz, f4 = 367.11 Hz and f5 = 374.03 Hz
— are used. The strategy for selecting these modes is classical and consists in selecting the modes whose
eigenfrequencies are below two or three times the maximum frequency of the frequency band analyzed (150
Hz here).

Table 1: Material properties of the substructures.
Density (kg.m−3) Young’s modulus (GPa) Poisson’s ratio

Steel (external layer): 7850 220 0.3
Rubber (medium layer): 950 0.15 0.48

Tungsten (core): 19, 250 340 0.27

Numerical simulations are carried out using MATLAB and in-house implementations of the proposed ap-
proaches. For each structure analyzed, the displacement solution obtained with the interpolation strategy is
compared to the result issued from the FE method. The latter involves assembling many eight-node plate el-
ements to build the global mass and stiffness matrices of the plates (and the floor). These global matrices are
sparse, and as such, they can be quickly generated via appropriate procedure. In the present case, the procedure
proposed in [26], well suited for MATLAB, is used. As for the interpolation strategy, the assembly of the mass
and stiffness matrices of the substructures is also undertaken with the procedure proposed in [26]. In order to
propose a fair comparison between the interpolation strategy and the FE method, for each structure analyzed,
a global model reduction similar to that proposed at the end of Sec. 3, based on a same number of modes, is
applied to both the interpolation-based model and the FE model.

Additional results are presented which are issued from the CB method. This involves considering the
numerical tasks (i-iii) listed at the end of Sec. 2 for every substructure considered. Especially, the computational
times involved in the CB method are highlighted and compared to those involved in the interpolation strategy
and the FE method.

Recall that the key advantage of the interpolation strategy is to overcome the issue of considering several
cumbersome numerical tasks for modeling substructures with different distorted meshes. Instead, the strategy
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requires a few “offline” tasks — i.e., the computation of reduced mass and stiffness matrices at eight interpola-
tion points — which only need to be performed once, i.e., regardless of the distorted mesh considered. These
offline tasks are cheap and, since they do not need to be repeated for modeling the substructures, they will
not be considered in the assessment of the computational times presented below. Besides, the reduced matrix
X̃0

a in Eq. (47) only needs to be computed once and for all, regardless of the distorted mesh and dispersion δ
considered; therefore, the computational time required to calculate this matrix will not be reported hereafter.

For the sake of clarity, a summary of the numerical tasks required by the FE method, the interpolation
strategy and the CB method are given hereafter:

• FE method:
(i) Structure (plate with or without floor) modeling via element assembly, and (ii) global model reduction
(reduced mass and stiffness matrices) based on the eigenvectors of the stiffness and mass matrices of the
structure (see end of Sec. 3).

• Interpolation strategy:
(i) Substructure modeling via interpolation strategy, (ii) structure modeling via substructure assembly,
(iii) model reduction based on Eq. (48), and (iv) global model reduction (see end of Sec. 3).

• CB method:
(i) Substructure modeling via element assembly and CB method, (ii) structure modeling via substructure
assembly, (iii) model reduction based on Eq. (48), and (iv) global model reduction (see end of Sec. 3).

An overview of the numerical models and computational times involved in the FE method and interpolation
strategy is given in Tab. 2.

Table 2: Overview of the numerical models and numerical results.
FE (reference) Interpolated

Plate 1 Plate 2 Plate + floor Plate 1 Plate 2 Plate + floor
(Fig. 5) (Fig. 9) (Fig. 14) (Fig. 5) (Fig. 9) (Fig. 14)

DOFs: 231, 043 811, 203 461, 763 16, 131 55, 653 31, 939
DOFs (Eq. (48)): — — — 400 + 64× 5 1100 + 225× 5 400 + 128× 5

DOFs (global reduction): 300 800 200 300 800 200
Time reduction: — — — 86% 89% 82%

4.2. Nearly periodic plate with 8× 8 substructures
A nearly periodic plate with 8 × 8 substructures, simply supported along its edges and subject to a point

harmonic force (input), is considered as shown in Fig. 5. Especially, the variation of the quadratic velocity
measured at some point (output) — defined by ω2|wout|2 where wout denotes the transverse displacement — is
assessed over the frequency band [0 , 150] Hz. The related frequency response function (FRF) ω 7→ ω2|wout|2,
computed with the FE method, is shown in Fig. 6 along with the FRF of the (purely) periodic plate, i.e.,
without distorted meshes. Also, the solution issued from the interpolation strategy, for the nearly periodic
plate, is shown in Fig. 6.

About the periodic case, two band gaps occur which represent frequency bands on which the quadratic
velocity levels are highly reduced. Band gaps are due to local resonances, within the substructures, and occur
close to the fixed interface modes of the substructures (see dotted vertical red lines in Fig. 6). It is shown that,
for frequencies less than 100 Hz and around the first band gap, the dynamic behavior of the nearly periodic
plate is roughly similar to that of the periodic plate. Differences occur at higher frequencies which show an
overall reduction of the displacement/quadratic velocity levels of the nearly periodic structure, except around
the second band gap. Notice that the FRF issued from the interpolation strategy closely matches the FE solution
over the whole frequency band, which gives credit to the proposed approach.
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Figure 5: Schematic of a nearly periodic plate with 8× 8 substructures and subject to a point harmonic force.

Figure 6: FRF (quadratic velocity) of the plate with 8 × 8 substructures. (black solid line) FE method, nearly periodic structure; (red
dotted line) interpolation strategy, nearly periodic structure; (blue dotted line) FE method, purely periodic structure.

Also, the transverse displacement field of the plate can be assessed via the interpolation strategy. This
involves computing the displacement vector of the boundary/interface nodes of the substructures by means of
Eqs. (48) and (46), and expressing the displacement vectors of the internal nodes of the substructures with Eq.
(39). Results are shown in Fig. 7 for the displacement fields of the periodic plate and the nearly periodic one, at
a frequency of 130 Hz (see dotted vertical green line in Fig. 6). These results show that, when compared to the
periodic case, the displacement field of the nearly periodic structure exhibits high levels around the excitation
point, and low levels elsewhere. This seems to be in agreement with the literature [1]. Here again, the solution
issued from the proposed approach closely matches the FE result as shown in Fig. 8.

An overview of the numerical models involved in the FE method and the interpolation strategy is given
in Tab. 2. Recall that, within the framework of the interpolation strategy, MI = 5 fixed interface modes are
used for modeling each substructure. Also, the displacement vector of the boundary/interface nodes of the
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Figure 7: Transverse displacement field (real part) of the plate with 8 × 8 substructures at 130 Hz, obtained with the interpolation
strategy. (left) Periodic case; (right) nearly periodic case.

substructures are expressed by means of Ma = 400 modes (χ0
a)j , see Eq. (45). This yields 400 + 82× 5 DOFs

for the whole model. Finally, a global model reduction with 300 modes is considered as explained in Sec. 4.1.
The choice of these numbers of modes — i.e., Ma = 400 and 300 (global reduction) — is determined through
a sensitivity analysis of the FRF(s) at high frequencies. As for the FE method, a global model reduction with
a same number of modes (300) is also considered. The computational loads required for computing the FRFs
of the plate using those global (FE-based and interpolation-based) reduced models, with 300 DOFs, are similar
and small. Actually, the main computational burden comes from the computation of the reduced models. To
achieve this task, the interpolation strategy appears to be clearly advantageous with a time reduction of 86%
compared to the FE method.

Figure 8: Transverse displacement field (real part) of the nearly periodic plate with 8 × 8 substructures at 130 Hz. (left) Interpolation
strategy; (right) FE method.

In addition, the classical CB method can be considered, as explained earlier. The related FRF (not shown
here) is similar to that obtained with the FE method. The computational burden of the CB method is mostly
linked to the modeling of the substructures (numerical tasks (i-iii) listed at the end of Sec. 2). In this case,
the time required for computing the reduced model of the plate (300 DOFs) exceeds that involved in the FE
method, and therefore, that involved in the interpolation strategy. As a second shortcoming of the CB method,
it fails to describe the displacement vectors of the internal nodes of the substructures via Eq. (39). This issue
is linked to the fact that the matrices of fixed interface modes of the substructures X̃s can strongly differ from
X̂0 (see Sec. 3 for further discussions).

4.3. Nearly periodic plate with 15× 15 substructures

To further highlight the efficiency of the interpolation strategy, a second plate with 15 × 15 substructures
is analyzed as shown in Fig. 9. Again, the plate is simply supported along its edges and is subject to a point
harmonic force. In this case, the number of DOFs involved in the full FE model of the structure is 811, 203
which is moderately high (see Tab. 2 for the DOFs involved in the interpolation strategy). The FRF (quadratic
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velocity) of the nearly periodic plate is shown in Fig. 10 along with that of the periodic plate. For the sake of
clarity, the FRFs are displayed on the frequency band [75 , 150] Hz, i.e., where differences between the periodic
and nearly periodic structures are likely to occur. Again, the displacement levels of the nearly periodic plate
undergo an overall reduction compared to the periodic case. For instance, the transverse displacement fields of
the periodic and nearly periodic plates at 125 Hz (see dotted vertical green line in Fig. 10) are shown in Fig. 11
where it is observed that the vibrational energy of the nearly periodic structure is confined around the excitation
point.

Figure 9: Schematic of a nearly periodic plate with 15× 15 substructures and subject to a point harmonic force.

Again, the FRF and the displacement field obtained by means of the interpolation strategy approximate well
the FE solutions (see Figs. 10 and 12). Here, the displacement vector of the boundary/interface nodes of the
substructures are expressed by means of Ma = 1100 modes (χ0

a)j (see Eq. (45)), leading to 1100 + 152 × 5
DOFs for the interpolation-based model. A global model reduction is also considered (see Sec. 4.1) for both
the interpolation strategy and the FE method which involves 800 modes. In this case again, the computation of
the reduced model of the nearly periodic plate is significantly sped up with the interpolation strategy, i.e., 89%
time saving compared to the FE method. In contrast, the classical CB method requires large CPU times.

Note that the interpolation strategy can be advantageously used to predict the dynamic behavior of nearly
periodic structures having spatially-varying mesh dispersion δ, i.e., which varies between the substructures
(instead of being uniform). Switching from the uniform case to the non-uniform case does not require any
new numerical task. This means: (i) computing eight reduced mass matrices M̂p and eight reduced stiffness
matrices K̂p (see Eq. (29)) for a certain maximum dispersion δmax; (ii) considering, for a given substructure s,
random variables εsx and εsy with a “reduced” support [−δs , δs] (see Eq. (21)) where δs ≤ δmax.

For instance, the dynamic response of a plate built from 4×4 randomly distorted substructures (δs = 0.01)
around the excitation point, and from undistorted substructures (δs = 0) elsewhere else, can be predicted
as shown in Fig. 13. In this case again, the vibrational energy remains confined around the excitation point.
However, in this case, the energy appears to be strictly confined/bounded to the region occupied by the distorted
substructures, while it is weak and uniformly spread everywhere else on the rest of the plate. This opens
prospects towards the design of nearly periodic structures having such interesting features, e.g., which are able
to “trap” the energy at some pre-determined positions.

4.4. Nearly periodic plate with 8× 4 substructures embedded in a floor panel

A last example is considered which concerns a nearly periodic plate with 8 × 4 substructures, embedded
in a floor panel (in steel) consisting in 96 homogeneous substructures (without distorted meshes). The whole
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Figure 10: FRF (quadratic velocity) of the plate with 15 × 15 substructures. (black solid line) FE method, nearly periodic structure;
(red dotted line) interpolation strategy, nearly periodic structure; (blue dotted line) FE method, purely periodic structure.

Figure 11: Transverse displacement field (real part) of the plate with 15 × 15 substructures at 125 Hz, obtained with the interpolation
strategy. (left) Periodic case; (right) nearly periodic case.

Figure 12: Transverse displacement field (real part) of the nearly periodic plate with 15×15 substructures at 125 Hz. (left) Interpolation
strategy; (right) FE method.
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Figure 13: Periodic plate with 15× 15 substructures including 4× 4 randomly distorted substructures around the excitation point (red
square region). (left) Schematic of the structure; (right) transverse displacement field at 125 Hz.

structure is simply supported along its edges, and it is subject to a vector of random point forces following
a standard uniform distribution (between 0 and 1) which are applied at the corners of the substructures. A
schematic of the structure is given in Fig. 14. Here, the mean value of the quadratic velocities measured at
the locations of the excitation points is assessed. The related FRFs, for the nearly periodic and periodic plates
with the floor panel, are plotted over [0 , 150] Hz as shown in Fig. 15. The FRFs tend to differ for frequencies
greater than 100 Hz in a similar way as in the previous cases. For instance, regarding the nearly periodic case
at 125 Hz, the displacement field of the structure involves localized peaks of high magnitude in the plate, and
small displacement levels in the floor (see Fig. 16). In comparison, the periodic case involves uniform (diffuse)
field in the plate, and higher displacement levels in the floor. In this sense, the nearly periodic plate appears to
be a suitable means to passively control the vibration levels of the floor.

Figure 14: Schematic of a nearly periodic plate with 8× 4 substructures with a floor panel subject to random forces.

Again, the interpolation strategy succeeds in describing the dynamic behavior of the structure, as shown in
Figs. 15 and 17. The characteristics of the numerical models involved in the interpolation strategy and the FE
method are given in Tab. 2. In this case, the interpolation strategy provides an overall time reduction of 86%
compared to the FE method.

5. Conclusion

A numerical strategy based on matrix interpolation and distorted FE meshes has been proposed for modeling
2D nearly periodic structures. Such structures are made up of locally resonant substructures whose FE meshes
differ and follow slight random variations in space. These substructures are usually modeled by means of
reduced mass and stiffness matrices which are obtained through classic FE and CB procedures. For plane
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Figure 15: FRF (mean value of the quadratic velocity) of the plate with 8 × 4 substructures with the floor panel. (black solid line)
FE method, nearly periodic structure; (red dotted line) interpolation strategy, nearly periodic structure; (blue dotted line) FE method,
purely periodic structure.

Figure 16: Transverse displacement field (real part) of the plate with 8× 4 substructures with the floor panel at 125 Hz, obtained with
the interpolation strategy. (left) Periodic case; (right) nearly periodic case.

Figure 17: Transverse displacement field (real part) of the nearly periodic plate with 8× 4 substructures with the floor panel at 125 Hz.
(left) Interpolation strategy; (right) FE method.

substructures, random variations of their geometrical parameters have been considered by perturbing the node
coordinates (xej , y

e
j ), for a given substructure s, as xej + εsxfx(xej , y

e
j ) and yej + εsyfy(x

e
j , y

e
j ) where fx(xej , y

e
j )

and fy(xej , y
e
j ) are two deterministic functions, and εsx and εsy are two random variables. Since the substructures

are different, their reduced mass and stiffness matrices have to be computed as many times as the number

21



of substructures considered, which can be highly cumbersome. The proposed strategy aims at solving this
issue. It involves computing the reduced mass and stiffness matrices of the substructures for some coordinates
εsx = (εx)p and εsy = (εy)p whose number is small, and interpolating the reduced matrices elsewhere between
these “interpolation points”. The proposed strategy has been used to analyze the harmonic behavior of three
structures with resonant layered substructures, i.e., a plate with 8 × 8 substructures, a plate with 15 × 15
substructures, and a plate with 8×4 substructures embedded in a floor panel. The relevance of the interpolation
strategy, in terms of computational load saving and accuracy, has been highlighted through comparisons with
the FE method (with a model reduction based on the global modes of the structures) and the CB method. It has
been shown that the proposed strategy is roughly 80 − 90% faster than the FE method, while the CB method
requires a high computational load. The analysis of these three structures has revealed two interesting features
about nearly periodic structures, i.e., (i) the vibrational energy is localized around the excitation sources, and
(ii) overall the vibration levels are small compared to the purely periodic cases. Follow-on works could include
the analysis of 2D nearly periodic structures made up of 3D substructures with more complex topologies.
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Appendix. Mass and stiffness matrices of isoparametric Mindlin plate elements

An eight-node isoparametric Mindlin plate element is defined by means of three DOFs per node, i.e., the
transverse displacement w along axis z and the section rotations θx and θy about axes x and y. The related
mass and stiffness matrices (size 24× 24) are expressed by:

Me = ρehe
∫ 1

ξ=−1

∫ 1

η=−1
(Ne)T IeNe Je dξdη, (A-1)

and

Ke = he
∫ 1

ξ=−1

∫ 1

η=−1
(Be

f)
THe

fB
e
f J

e dξdη + he
∫ 1

ξ=−1

∫ 1

η=−1
(Be

s)
THe

sB
e
s J

e dξdη, (A-2)
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where the dependency of matrices and scalars on the parametric coordinates (ξ, η) is not highlighted for the
sake of conciseness. The matrix Ne occurring in Eq. (A-1) is given by:

Ne =

 N e
1 0 0 N e

2 0 0 · · · 0
0 N e

1 0 0 N e
2 0 · · · 0

0 0 N e
1 0 0 N e

2 · · · N e
8

 , (A-3)

where N e
j (j = 1, . . . , 8) are the interpolation functions which are of serendipity type, see Eq. (32). Also, the

matrix Ie is defined as follows:

Ie =

1 0 0

0 (he)2

12 0

0 0 (he)2

12

 . (A-4)

The matrices Be
f and Be

s occurring in Eq. (A-2) are given by:

Be
f =


0 0

∂Ne
1

∂x 0 0
∂Ne

2
∂x · · · ∂Ne

8
∂x

0 −∂Ne
1

∂y 0 0 −∂Ne
2

∂y 0 · · · 0

0 −∂Ne
1

∂x
∂Ne

1
∂y 0 −∂Ne

2
∂x

∂Ne
2

∂y · · · ∂Ne
8

∂y

 , (A-5)

and

Be
s =

[
∂Ne

1
∂x 0 N e

1
∂Ne

2
∂x 0 N e

2 · · · N e
8

∂Ne
1

∂y −N e
1 0

∂Ne
2

∂y −N e
2 0 · · · 0

]
. (A-6)

Finally, the matrices He
f and He

s are given by:

He
f =

Ee(he)2

12 (1− (νe)2)

 1 νe 0
νe 1 0

0 0 1−νe
2

 , (A-7)

and

He
s =

Eeκ

2(1 + νe)

[
1 0
0 1

]
, (A-8)

where Ee is the Young’s modulus, νe is the Poisson’s ratio, and κ = 5/6 is the shear correction factor.
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• Dynamic analysis of 2D nearly periodic structures made up of different substructures whose

geometrical properties randomly vary in space.

• Application to 2D resonant metamaterials made up of layered substructures.

• Use of distorted FE meshes for modeling the substructures.

• Model reduction based on the interpolation of the reduced (mass and stiffness) matrices of the

substructures.

• Numerical experiments involving nearly periodic plates (Mindlin) made up of locally resonant

substructures.



Declaration of interests 

☒ The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered

as potential competing interests:




