

Divalent cations influence the dimerization mode of murine S100A9 protein by modulating its disulfide bond pattern

Luca Signor, Theo Paris, Caroline Mas, Adrien Picard, Georges Lutfalla, Elisabetta Boeri Erba, Laure Yatime

▶ To cite this version:

Luca Signor, Theo Paris, Caroline Mas, Adrien Picard, Georges Lutfalla, et al.. Divalent cations influence the dimerization mode of murine S100A9 protein by modulating its disulfide bond pattern. Journal of Structural Biology, 2021, 213 (1), pp.107689. 10.1016/j.jsb.2020.107689. hal-03120644

HAL Id: hal-03120644 https://hal.science/hal-03120644v1

Submitted on 7 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Divalent cations influence the dimerization mode of murine S100A9 protein by
2	modulating its disulfide bond pattern
3	
4	Author names
5	Luca Signor ¹ , Theo Paris ² , Caroline Mas ³ , Adrien Picard ² , Georges Lutfalla ² , Elisabetta Boeri
6	Erba ^{1,*} , Laure Yatime ^{4,*}
7	Author affiliations
8	¹ Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
9	² LPHI UMR5235, Univ. Montpellier, CNRS, F-34095 Montpellier, France
10	³ ISBG UMS 3518, CNRS, CEA, Univ. Grenoble Alpes, EMBL, F-38000 Grenoble, France
11	⁴ LPHI UMR5235, Univ. Montpellier, CNRS, INSERM, F-34095 Montpellier, France
12	
13	* Correspondence to:
14	Dr. Laure Yatime; laure.yatime@inserm.fr or Dr. Elisabetta Boeri Erba; elisabetta.boeri-
15	erba@ibs.fr
16	
17	Highlights
18	The crystallographic structure of mS100A9 bound to calcium and zinc is reported
19	A novel Zn-binding site and a disulfide bridge rigidify mS100A9 C-terminus
20	In solution, mS100A9 exists both as non-covalent and disulfide-crosslinked homodimers
21	Divalent cations modulate the relative proportion of the different mS100A9 homodimers

22 Abstract

23 S100A9, with its congener S100A8, belongs to the S100 family of calcium-binding proteins found 24 exclusively in vertebrates. These two proteins are major constituents of neutrophils. In response to 25 a pathological condition, they can be released extracellularly and become alarmins that induce both pro- and anti-inflammatory signals, through specific cell surface receptors. They also act as 26 27 antimicrobial agents, mainly as a S100A8/A9 heterocomplex, through metal sequestration. The 28 mechanisms whereby divalent cations modulate the extracellular functions of S100A8 and S100A9 29 are still unclear. Importantly, it has been proposed that these ions may affect both the ternary and 30 quaternary structure of these proteins, thereby influencing their physiological properties. In the 31 present study, we report the crystal structures of WT and C80A murine S100A9 (mS100A9), 32 determined at 1.45 and 2.35 Å resolution, respectively, in the presence of calcium and zinc. These 33 structures reveal a canonical homodimeric form for the protein. They also unravel an 34 intramolecular disulfide bridge that stabilizes the C-terminal tail in a rigid conformation, thus 35 shaping a second Zn-binding site per S100A9 protomer. In solution, mS100A9 apparently binds 36 only two zinc ions per homodimer, with an affinity in the micromolar range, and aggregates in the 37 presence of excess zinc. Using mass spectrometry, we demonstrate that mS100A9 can form both 38 non-covalent and covalent homodimers with distinct disulfide bond patterns. Interestingly, 39 calcium and zinc seem to affect differentially the relative proportion of these forms. We discuss 40 how the metal-dependent interconversion between mS100A9 homodimers may explain the 41 versatility of physiological functions attributed to the protein.

42

43 Keywords

44 S100 proteins; divalent cations; disulfide bridges; X-ray crystallography; mass spectrometry.

45 Abbreviations

46	alk: alkylation; ACN: acetonitrile; DTT: dithiothreitol; HPLC: high performance liquid
47	chromatography; IAA: iodoacetamide; hS100A9: human S100A9; ICP-MS: Inductively-coupled
48	plasma mass spectrometry; LC/ESI-TOF-MS: liquid chromatography/electrospray ionization
49	time-of-flight mass spectrometry; MPD: 2-Methyl-2,4-pentanediol; MR: molecular replacement;
50	mS100A9: murine S100A9; RAGE: receptor for advanced glycation end-products; r.m.s.d.: root
51	mean square deviation; SEC: size exclusion chromatography; TFA: trifluoroacetic acid; TLR:
52	Toll-like receptor; WT: wild-type.
53	
54	
55	
56	
50	
57	
58	
59	
60	
61	
62	
<u> </u>	
63	
64	
65	

66 **1. Introduction**

S100 proteins are a group of small Ca²⁺-binding proteins expressed exclusively in vertebrates (Marenholz et al., 2004; Donato et al., 2013; Gonzalez et al., 2020). Several members of this family also exist extracellularly where they act as alarmins and thereby play a crucial role in the modulation of inflammatory responses in various disease contexts, through their interactions with cell surface receptors such as the receptor for advanced glycation end-products (RAGE), Toll-like receptors (TLRs) or various cluster of differentiation molecules (Leclerc et al., 2011; Roh et al., 2018; Gonzalez et al., 2020).

74 S100A9, also known as calgranulin B or migration inhibitory factor-related protein 14 (MRP14), is 75 one of the most well-studied members among this large family of proteins encoded by up to thirty 76 genes (Kraemer et al., 2008; Gonzalez et al., 2020). In vivo, S100A9 is mostly present as a 77 heterodimer with its congener S100A8 (aka calgranulin A or MRP8) (Longbottom et al., 1992). The 78 extracellular form of this heterodimer is known as calprotectin. Homodimers of both proteins are 79 also detected to some extent, but they seem to be much less stable than the heterodimeric form 80 (Hunter et al., 1998; Kallberg et al., 2018; Wang et al., 2018b; Giudice et al., 2019). S100A8 and 81 S100A9 are highly expressed in circulating neutrophils, as well as in monocytes (Lagasse et al., 82 1992; Striz et al., 2004). They can constitute up to 45% of the total cytosolic pool of proteins in these 83 cells, being found either in the cytoplasm or associated with the plasma membrane (Striz et al., 2004; Wang et al., 2018b). Intracellularly, S100A8/A9 act as Ca²⁺-sensors. In response to an increase in 84 85 calcium levels, they regulate various processes including cytoskeleton rearrangement, cell migration, 86 phagocytosis, exocytosis, and respiratory burst, the latter through the delivery of arachidonic acid to 87 the membrane-bound NADPH oxidase (Goebeler et al., 1995; Kerkhoff et al., 2005; Wang et al., 88 2018b). In a pathological context, S100A8/A9 can be released in the extracellular space by

89 infiltrating leukocytes or following cell necrosis. Once these S100 proteins are outside the cells, their 90 functions change dramatically: they mainly act as damage-associated molecular patterns (DAMPs), 91 promoting leukocyte recruitment through chemotaxis and massive production of pro-inflammatory 92 cytokines via their interactions with specific cell surface receptors. These processes participate in the 93 maintenance of a high inflammatory state which aggravates the underlying pathology that led to 94 S100 protein release (Wang et al., 2018b; Gonzalez et al., 2020). S100A8 and S100A9 have been 95 shown to bind to both RAGE, TLR4, CD147, and neuroplastin (Sakaguchi et al., 2016; Ma et al., 96 2017). Many other yet unraveled receptors may also serve as transducers of the pro-inflammatory 97 signals elicited by the extracellular heterodimer and/or homodimers (Tomonobu et al., 2020). 98 S100A8/A9 signaling has been linked to a plethora of inflammatory or inflammation-driven 99 pathologies, including rheumatoid arthritis, myocardial infarction, Alzheimer's disease or cancers 100 (Shabani et al., 2018; Wang et al., 2018a; Marinkovic et al., 2019; Wang et al., 2019). These two 101 S100 proteins are therefore considered as valuable therapeutic targets (Bjork et al., 2009; Reeb et al., 102 2015; Pruenster et al., 2016). They are also utilized as biomarkers for the diagnostic of certain 103 pathologies such as inflammatory bowel diseases, due to their increased plasma levels in an 104 inflammatory context (Chaabouni et al., 2016).

105 S100 proteins fold into a four-helix globular domain that is sometimes followed by a C-terminal, 106 unstructured extension of variable length (Donato et al., 2013). The minimal functional unit is a 107 homo- or heterodimer, but higher order oligomers are also encountered (Leukert et al., 2006). As for 108 other S100 proteins, S100A9 active conformation requires the presence of two Ca²⁺ ions, one in each 109 EF-hand motif, for proper effector binding (Vogl et al., 2006). In addition to calcium, both human 110 and murine S100A9 were shown to bind zinc (Raftery et al., 1996). Many S100 proteins possess two 111 symmetrical Zn²⁺ binding motifs located at the interface between the two subunits of the S100

112 homodimer (Brodersen et al., 1999; Moroz et al., 2009a; Lin et al., 2016). These tetrahedral binding 113 sites are formed by two histidine residues (or possibly an aspartic acid replacing the second His) 114 surrounding the first EF-hand motif of one protomer, and two histidine residues (or equivalent 115 positively charged residues) placed at the C-terminal end of the fourth helix in the second protomer. 116 S100 proteins can also chelate other divalent cations such as manganese, iron, nickel or copper 117 (Nakashige et al., 2015; Zackular et al., 2015; Gilston et al., 2016; Nakashige et al., 2017). Chelation of Mn²⁺, Ni²⁺ and Fe²⁺ by S100A8/A9 is part of a sequestration process known as nutritional 118 119 immunity that aims at depriving invading pathogens from these essential nutrients (Damo et al., 120 2013; Nakashige et al., 2015; Nakashige et al., 2017). Thanks to the patch of histidine residues 121 located in the long, flexible C-terminal tail of its S100A9 moiety, the S100A8/A9 heterodimer can generate an octahedral His₆ binding motif for Mn^{2+}/Ni^{2+} coordination, thereby increasing the affinity 122 123 of the protein for these metal ions (Damo et al., 2013; Nakashige et al., 2018). Therefore, 124 S100A8/A9 is considered as a potent antimicrobial peptide (Corbin et al., 2008). Other S100 proteins 125 have been shown to possess bactericidal properties (Glaser et al., 2005; Realegeno et al., 2016), but 126 it is not known whether S100A9 also displays such ability to kill bacteria outside the S100A8/A9 127 heterodimer (i.e. as a homodimer).

Metal ion chelation by S100 proteins may however not be restricted to an antimicrobial activity. Indeed, divalent cations other than calcium may act as modulators of the biological function of S100 proteins, in particular zinc (Baudier et al., 1986; Nakatani et al., 2005; Moroz et al., 2011). Various processes may induce modifications in the structural organization of S100 proteins, including ion binding, which promotes protein oligomerization, as well as post-translational modifications and/or oxidation-dependent mechanisms that may lead for example to the formation of disulfidecrosslinked S100 oligomers having distinct functions than the non-covalent assemblies

(Winningham-Major et al., 1989; Haase-Kohn et al., 2011; Lim et al., 2011; Unno et al., 2011; 135 136 Yatime, 2017). We and others have proposed that these effects may be the direct translation of a 137 change in S100 proteins tertiary and/or quaternary structure (Moroz et al., 2009b; Yatime et al., 138 2016). Although these ideas are generally more and more well perceived by the scientific community 139 working in the field, these forms have so far not been characterized in details. To date, only one 140 structural study reports the finding of a novel homodimeric form of S100 proteins, observed for 141 S100A6 in its complex with RAGE and stabilized by zinc and cysteine-dependent mechanisms 142 (Yatime et al., 2016). In order to understand how these proteins can have many diverse and 143 sometimes contradictory functions, differences between species should also be taken into account. 144 For example, the C-terminal region of murine S100A9 (mS100A9) was shown to have 145 antinociceptive functions and to inhibit macrophage functions through modulation of B1 cell 146 function (Paccola et al., 2008; Pagano et al., 2014). Remarkably, these properties have so far not 147 been ascribed to the human protein. Such distinct properties may arise from local differences in 148 the 3D-architectures of human and murine proteins, possibly driven by divalent cations since 149 S100A9 C-terminal region has been involved in metal chelation, at least as part of the S100A8/A9 150 heterocomplex (Damo et al., 2013; Nakashige et al., 2015).

In order to gain deeper insight on how divalent cations may act as regulators of these processes at a structural level, we have undertaken the biophysical characterization of mS100A9 in the presence of various sets of cations. Using X-ray crystallography and mass spectrometry, we show that the mS100A9 homodimers exist, in solution, both as non-covalent and covalent, disulfide-crosslinked forms. The non-covalent homodimers contain an intramolecular disulfide bridge linking Cys91 to Cys111. The disulfide-crosslinked homodimers are characterized by distinct disulfide bond patterns depending on the metal present. We also demonstrate that the relative proportion of these 158 forms depends on the ions bound to the protein. Calcium appears to promote the non-covalent, 159 canonical homodimer, whereas zinc enhances the formation of the SS-bridged homodimer(s). 160 Furthermore, we observe that the C-terminal region of mS100A9 contains an additional Zn²⁺ 161 binding site, distinct from the one at the interface between the two monomers that is generally 162 observed in the canonical S100 homodimers. Finally, we provide isothermal titration calorimetry 163 (ITC) analyses of zinc binding to mS100A9 and dynamic light scattering (DLS) studies of the 164 zinc-dependent aggregation of mS100A9. All these findings suggest that divalent cations may 165 drastically affect the local conformation of mS100A9 C-terminal tail. In the present study, we 166 discuss the possible consequences of these structural modulations in terms of physiological 167 function.

168 2. Material and Methods

169 2.1. Expression and purification of mS100A9 WT and mutant proteins

170 The gene coding for WT mS100A9, optimized for codon usage in E. coli, was synthesized by 171 Genscript and further cloned into the Ncol – HindIII fragment of vector pETM11 (EMBL vector 172 collection). The protein sequence of the mS100A9 sample obtained with this construct after 173 purification is indicated in Supplementary Table S1. A theoretical molecular weight of 13177 Da 174 is expected. Cysteine-to-alanine point mutants C80A, C91A and C111A, were obtained by PCR-175 based site-directed mutagenesis using High Fidelity Hot Start Phusion DNA Polymerase 176 (Finnzymes) and anti-complementary oligonucleotides bearing the mutation to introduce 177 (Supplementary Table S1). The resulting mS100A9:pETM11 constructs were used to transform 178 E. coli BL21 (DE3) cells. Protein expression and purification was carried out as described 179 previously (Yatime, 2019). Transformed cells were grown at 37°C for 4 hours and protein 180 expression was induced overnight at 18°C by adding 1 mM IPTG in the culture medium. Cells

181 were harvested by centrifugation at 6000 g and disrupted by sonication. After clarification by 182 centrifugation, the cell lysate was loaded onto a 5 ml HisTrap Ni-column (GE Healthcare) 183 equilibrated with 50 mM Tris-HCl pH 7.5, 300 mM NaCl, 30 mM imidazole, 1 mM PMSF. 184 Following high salt wash with a buffer containing 1 M NaCl, to remove nonspecifically bound 185 contaminants, the protein of interest was eluted with a buffer containing 500 mM imidazole. The 186 N-terminal polyhistidine tag was then removed overnight by incubating the sample at 4°C with 187 home-made recombinant Tobacco Etch Virus protease (rTEV), using a protein to rTEV massic 188 ratio of 30 to 1. A second step of affinity chromatography on the His-Trap Ni-column was then 189 performed to separate the cleaved mS100A9 protein, eluting in the flow-through, from the His6-190 tag and His-tagged rTEV that remained bound to the column. 10 mM EDTA/EGTA were then 191 added to the sample to remove all traces of divalent cations and, after overnight incubation with 192 the chelating agents, the protein was further purified by size exclusion chromatography (SEC) on 193 a 24 ml Superdex 75 Increase column (GE Healthcare) equilibrated with Buffer 1 (20 mM Tris-194 HCl pH 7.5, 100 mM NaCl). Fractions corresponding to the dimeric form of mS100A9 were 195 pooled and the purity of the sample was verified by SDS-PAGE (Supplementary Fig. S1A). The 196 purified mS100A9 homodimer was flash frozen in liquid nitrogen and stored at -80°C until use. 197 This purification protocol yielded in routine 10 mg of pure mS100A9 homodimer per liter of 198 culture.

Before biophysical analyses, mS100A9 samples (WT and mutants) were freshly repurified on a Superdex 75 Increase SEC column equilibrated with Buffer 1, to ensure that a homogenous dimeric form of the protein was used (Supplementary Fig. S1B). SEC was performed at 18°C, at a flow rate of 0.4 ml/min. 2.5 mg of mS100A9 dimeric pool were injected per run (loading volume: 400 μ l of protein concentrated at 6.2 mg/ml). After pooling again the dimeric peak of mS100A9 and concentrating, the different samples were prepared by incubating mS100A9 at a final protein concentration of 4.8 mg/ml (365 μ M) with either 1 mM CaCl₂ (mS100A9 + Ca), 1 mM ZnCl₂ (mS100A9 + Zn) or 1 mM CaCl₂ + 1 mM ZnCl₂ (mS100A9 + Ca/Zn), while the apo mS100A9 sample did not contain any of these metals (as assessed by ICP-MS, Table 3). To prepare samples for MS analysis, these stock solutions were further diluted to a final mS100A9 concentration of 50 μ M.

210 2.2. Crystallization, data collection and refinement

211 Initial crystallization screening was performed by hand using the sitting-drop vapor diffusion 212 technique at 18°C in 96-well Swissci MRC crystallization plates and commercial screens from 213 Molecular Dimensions Ltd. mS100A9 (WT and C80A) crystallized at 10 mg/ml (760 µM) in the 214 presence of 5 mM CaCl₂ (6.6 eq) / 2 mM ZnCl₂ (2.6 eq) over a reservoir containing 0.2 M 215 Ammonium sulfate, 4 mM spermine tetrahydrochloride, 50 mM Bis-Tris pH 7.0, 45% MPD. 216 Crystals were directly flash frozen in liquid nitrogen and all datasets (native and anomalous) were 217 collected at 100K on beamline ID23eh1 at ESRF (Grenoble, France) or beamline X06DA at SLS 218 (Villingen, Switzerland). Datasets were processed with XDS (Kabsch, 2010) and the structure was determined by molecular replacement (MR) in PHASER (McCoy et al., 2007), using the structure 219 220 of Ca²⁺-bound human S100A9 (PDB ID 1IRJ) (Itou et al., 2002) for the WT protein, and the newly 221 determined structure of WT mS100A9 for the C80A mutant. Refinement of the models was carried 222 out by alternating cycles of manual rebuilding in COOT (Emsley et al., 2004) and cycles of energy 223 minimization in PHENIX.REFINE (Adams et al., 2010) including refinement of individual 224 isotropic Atomic Displacement Parameters (ADP) using Translation-Libration-Screw (TLS) 225 parameterization (Table 1 and Supplementary Table S2). The quality of the final models was

assessed with MOLPROBITY (Davis et al., 2007). All figures were made with the Pymol
Molecular Graphics System (version 0.99rc6, DeLano Scientific LLC).

228 2.3. Inductively-coupled plasma mass spectrometry (ICP-MS)

229 The metal content of our protein preparation of WT mS100A9 was analyzed by ICP-MS prior to 230 cation binding studies. A 200 µM stock solution of WT mS100A9 in Buffer 1 was used for 231 measurements. Trace element concentrations were determined both in Buffer 1 alone and in the 232 mS100A9 sample, with the Thermo Scientific iCAP TQ ICP-MS system (using the Kinetic Energy 233 Discrimination mode and He as collision gas) on the AETE-ISO platform (OSU OREME, 234 University of Montpellier, France). An internal solution, containing Be, Sc, Ge, Rh was added on-235 line to the samples to correct signal drifts. Certified water SLRS-6 (National Research Council of 236 Canada, Metrology Research Centre) was used as a control of the correctness of the measurements.

237 2.4. Isothermal titration calorimetry (ITC)

238 The affinity of mS100A9 for ZnCl₂ in the presence or absence of CaCl₂ was determined using a 239 MicroCal iTC200 system (Malvern Panalytical, Malvern, UK). Experiments were performed at 240 25°C in 20 mM Tris-HCl pH 7.5, 100 mM NaCl, +/- 1 mM CaCl₂. The mS100A9 protein solution 241 (at concentrations ranging from 30 μ M to 120 μ M) was loaded in the calorimetric cell. ZnCl₂ (at 242 concentrations ranging between 0.6 and 1.2 mM) was titrated in the protein sample typically by 243 performing 16 injections of 2.5 μ L or 20 injections of 2 μ L each. The dissociation constant (K_d), 244 enthalpy of binding (ΔH), and stoichiometry (N) were obtained after fitting the integrated and 245 normalized data to a single-site binding model. The data were processed using Origin 7.0 (Malvern

Panalytical, Malvern, UK). All experiments were performed at least in duplicate to check forreproducibility of the data.

248 2.5. Dynamic light scattering (DLS)

249 DLS measurements were performed at 20°C using a Zetasizer Nano S from Malvern Instruments 250 Ltd using a quartz cuvette from Hellma Analytics. We measured the hydrodynamic radius (Rh) of 251 the protein mS100A9 at 120 μ M, in the presence or absence of 1 mM CaCl₂, at different mS100A9 252 to ZnCl₂ molar ratios (1:0, 1:1, 1:2, 1:3 and 1:4).

253 2.6. Liquid chromatography/electrospray-ionization mass spectrometry (LC/ESI-TOF-MS)

254 The disulfide bond pattern of mS100A9 in the presence or absence of different divalent cations 255 was investigated by Liquid Chromatography/Electrospray Ionization Mass Spectrometry (LC/ESI-256 TOF-MS) on a 6210 TOF mass spectrometer coupled to a HPLC system (1100 series, Agilent 257 Technologies). The mass spectrometer was calibrated with tuning mix (ESI-L, Agilent 258 Technologies). The following instrumental settings were used: gas temperature (nitrogen) 300 °C, 259 drying gas (nitrogen) 7 L min-1, nebulizer gas (nitrogen) 10 psig, V_{cap} 4 kV, fragmentor 250 V, 260 skimmer 60 V, V_{pp} (octopole RF) 250 V. The HPLC mobile phases were prepared with HPLC 261 grade solvents. Mobile phase A composition was: H₂O 95%, ACN 5%, TFA 0.03%. Mobile phase 262 B composition was: ACN 95%, H₂O 5%, TFA 0.03%.

For MS analysis of the intact protein, three different samples were prepared for each set of ions: 1) *no treatment*: the protein sample at 10 μ M concentration in the corresponding buffer, without any chemical treatment; 2) *alkylation (IAA)*: the protein sample at 10 μ M concentration, after incubation with 55 mM IAA (30 min at room temperature, in the dark); 3) *reduction and alkylation* (*DTT+IAA*): the protein sample at 10 μ M concentration, first incubated with 10 mM DTT (45 min at 56°C, under gentle mixing) followed by treatment with 55 mM IAA (30 min at room

269 temperature, in the dark). For the mS100A9 protein without ions, a fourth sample was prepared: 270 4) unfolding, reduction and alkylation (urea+DTT+IAA): the protein sample at 10 μ M 271 concentration, first incubated with 10 mM DTT in the presence of 8 M urea (45 min at 56°C, under 272 gentle mixing) followed by treatment with 55 mM IAA (30 min at room temperature, in the dark). 273 2μ of each protein sample (20 pmol) were injected for MS analysis and were first desalted on-274 line for 3 min with 100% of mobile phase A (flow rate of 50 μ l/min), using a C8 reverse phase 275 micro-column (Zorbax 300SB-C8, 5μ m, 5×0.3 mm, Agilent Technologies). The sample was then 276 eluted with 70% of mobile phase B (flow rate of 50 μ l/min) and MS spectra were acquired in the 277 positive ion mode in the 300-3000 m/z range. Data were processed with MassHunter software (v. 278 B.02.00, Agilent Technologies) and GPMAW software (v. 7.00b2, Lighthouse Data, Denmark). 279 The mass accuracy on the experimental mass values obtained for the mS100A9 samples from ESI 280 mass spectra, after deconvolution, was of ± 0.06 Da (for the "monomeric" peak) and of ± 0.2 Da 281 (for the "dimeric" peak). To verify whether monomeric and dimeric species have similar relative 282 ionization efficiencies, we assessed the relative ionization efficiency of mS100A9 mutants C111A 283 (that gives only monomeric species) and C91A (that gives only dimeric species). The results, 284 displayed in Supplementary Figure S9, show that both species have relatively similar ionization 285 efficiencies with an estimated average percent error of 5% max, which we consider acceptable. 286 Based on these results, we then evaluated the relative proportions of monomeric and dimeric 287 species in our LC/ESI-TOF MS experiments by measuring the peak area of each species in the 288 deconvoluted ESI MS spectra and reporting their values as a percentage of the sum of all species 289 observed (area % of deconvoluted peak) (see for ex. Figures 4A and 5A). The number of disulfide 290 bonds versus free cysteines was determined for each set of ions by comparing the ESI MS spectra recorded for the samples without any chemical treatment, with those after reaction with IAA aloneor DTT + IAA.

293 2.7. Native mass spectrometry

294 The samples were analyzed by native mass spectrometry (Boeri Erba et al., 2015; Boeri Erba et 295 al., 2018; Boeri Erba et al., 2020). Protein ions were generated using a nanoflow electrospray 296 (nano-ESI) source. Nanoflow platinum-coated borosilicate electrospray capillaries were bought 297 from Thermo Electron SAS (Courtaboeuf, France). MS analyses were carried out on a quadrupole 298 time-of-flight mass spectrometer (Q-TOF Ultima, Waters Corporation, Manchester, U.K.). The 299 instrument was modified for the detection of high masses (Sobott et al., 2002; van den Heuvel et 300 al., 2006). The following instrumental parameters were used: capillary voltage = 1.2-1.3 kV, cone 301 potential = 40 V, RF lens-1 potential = 40 V, RF lens-2 potential = 1 V, aperture-1 potential = 0 302 V, collision energy = 30-140 V, and microchannel plate (MCP) = 1900 V. All mass spectra were calibrated externally using a solution of cesium iodide (6 mg/mL in 50% isopropanol) and were 303 304 processed with the Masslynx 4.0 software (Waters Corporation, Manchester, U.K.) and with 305 Massign software package (Morgner et al., 2012).

306 **3. Results**

307 3.1. General overview of the Ca^{2+}/Zn^{2+} -bound mS100A9 structure

To date, no structural data on mS100A9 are available. Quite a few structures of hS100A9 are deposited in the Protein Data Bank (PDB), either for the homodimeric form of the protein or for the S100A8/A9 heterotetramer (Itou et al., 2002; Korndorfer et al., 2007; Chang et al., 2016). However, none of these structures has been obtained in the presence of zinc. In fact, the sole information that may be derived on zinc chelation by S100A9 arise from the structures of manganese- and nickel-bound human S100A8/A9 (Damo et al., 2013; Gagnon et al., 2015; 314 Nakashige et al., 2017; Nakashige et al., 2018). No such data exist for the S100A9 homodimer, 315 although this form is able to bind zinc as well (Raftery et al., 1999). Furthermore, differences in 316 metal coordination between the human and murine proteins cannot be excluded. We therefore 317 started investigating zinc binding to mS100A9 from a structural point of view. As for hS100A9, 318 mS100A9 tends to form higher oligomers than just simple homodimers, as we indeed observed 319 when we analyzed the concentrated protein by size exclusion chromatography (SEC) 320 (Supplementary Figs. S1A and S1C-D). To avoid adding a level of complexity to the study, we 321 focused our experiments on the dimeric pool of the protein, collected separately from the SEC 322 column and rerun after long term storage at -80°C on the same column to evaluate its stability 323 (Supplementary Fig. S1B). Despite extensive efforts, we could only obtain crystals of the protein 324 in the presence of calcium and zinc. No crystals appeared if any of the two ions was absent from 325 the protein buffer. The crystals belonged to space group C2 and diffracted to a maximum resolution 326 of 1.45 Å (Table 1). The structure was determined by molecular replacement using calcium-bound hS100A9 (Itou et al., 2002) as the MR search model. 327

The final refined atomic model for Ca^{2+}/Zn^{2+} -bound mS100A9 is displayed in Figure 1A (Table 1 328 329 for data statistics). Quality of the fit between this model and the experimental electron density map 330 can be assessed in Figure 1B. As expected, mS100A9 arranges in a centro-symmetrical homodimer 331 that corresponds to the canonical dimer reported for all other S100 proteins. Both subunits bind 332 two calcium ions, in the two EF-hand motifs, and more surprisingly, two zinc ions, one at the 333 interface between the two subunits and one within the C-terminal tail. The exact nature of these 334 ions was confirmed by calculating anomalous difference Fourier maps from datasets collected at 335 the Zn peak (wavelength of 1.27 Å), where both Zn and Ca display anomalous scattering of X-

rays, and just after the Zn peak (wavelength of 1.30 Å), where Zn anomalous signal is lost whereas
calcium anomalous signal increases (Fig. 1C).

338 The overall architecture of mS100A9 closely resembles that of hS100A9. As depicted in Figure 1D, the mS100A9 protomer (beige) superimposes quite well with the corresponding Ca^{2+} -bound 339 340 protomer of both WT (blue) and C3S (red) hS100A9 homodimer (Itou et al., 2002; Chang et al., 2016) as well as with the Ca²⁺/Mn²⁺-bound hS100A9 moiety (grey) of the hS100A8/A9 341 heterocomplex (Damo et al., 2013). An overall r.m.s.d. on Ca atoms of 1.05 and 1.42 Å can be 342 343 measured between the murine protein and the WT or mutated hS100A9, respectively, for the core 344 region encompassing helices H1 to H4 (Fig. 1D). Similarly, r.m.s.d. values on Cα atoms comprised between 1.19 and 1.31 Å were obtained by comparing mS100A9 and the hS100A9 moiety from 345 346 the different human S100A8/A9 structures. The major movements between these structures occur 347 in the second half of helix H4 and in the C-terminal tail of the protein (Fig. 1D), a region that is 348 not modeled in all available structures due to its high flexibility. In mS100A9, the long C-terminal 349 tail adopts a rigidified architecture that will be discussed in more details below.

350 In contrast to the conserved conformation of the S100A9 protomer observed between human and 351 murine proteins, the respective position of the two mS100A9 subunits within the homodimer differs quite substantially from what is observed for the Ca²⁺-bound hS100A9 homodimers (Fig. 352 353 1E). Indeed, subunit B of mS100A9 is shifted away from subunit A by a rotation of approximately 354 30° as compared to the equivalent subunits in both structures of the hS100A9 homodimer (Fig. 355 1E). This differential positioning of the two S100A9 subunits may reflect intrinsic differences 356 between the two S100A9 orthologues. Another possibility is that zinc binding triggers the 357 reorientation of the two S100 subunits. To address this question, we then compared the relative orientation of the two S100 subunits in our Ca^{2+}/Zn^{2+} -bound mS100A9 homodimer with that of 358

359 other S100 homodimers bound to calcium alone or to calcium plus zinc. As depicted in Figure 1F 360 and Supplementary Figure S2, our mS100A9 homodimer superimposes quite well with the 361 hS100A7 (Brodersen et al., 1999), hS100A8 (Ishikawa et al., 2000; Lin et al., 2016), hS100A12 362 (Moroz et al., 2001; Moroz et al., 2003), hS100A15 (Murray et al., 2012) and hS100B (Ostendorp et al., 2007; Ostendorp et al., 2011) homodimers, whether they are Ca²⁺-bound (hS100A8, 363 hS100A12, hS100B), Ca²⁺/Zn²⁺-bound (hS100A7, hS100A8, hS100A15, hS100B) or even 364 365 Ca^{2+}/Cu^{2+} -bound (hS100A12). In fact, no major repositioning of the two S100 subunits is observed in these different S100 homodimers upon zinc addition to the Ca^{2+} -bound form. This suggests that 366 the differential S100/S100 orientation we observe between Ca^{2+} -bound hS100A9 and Ca^{2+}/Zn^{2+} -367 368 bound mS100A9 is not a direct consequence of zinc binding. The fact that the hS100A9 structures 369 have been determined either by NMR (for the WT protein) or by X-ray crystallography but using 370 a hS100A9 mutant form (for the C3S mutant) may also account for the observed differences. In any case, the quaternary organization of our Ca^{2+}/Zn^{2+} -bound mS100A9 homodimer is very similar 371 to that of other Ca^{2+}/Zn^{2+} -bound s100 homodimers. 372

373 3.2. mS100A9 harbors two distinct types of zinc binding sites

374 To our knowledge, no biophysical characterization of zinc binding to the S100A9 homodimer has 375 been published so far, although S100A9 is known to bind zinc in the absence of its S100A8 376 congener (Bjork et al., 2009). In particular, the stoichiometry of zinc binding to the S100A9 377 homodimer and the exact nature of the cation binding sites remain unknown. Unexpectedly, our structure of Ca²⁺/Zn²⁺-bound mS100A9 revealed the presence of two Zn²⁺ ions per S100A9 378 379 protomer. The first binding site is positioned at the interface between the two mS100A9 subunits. 380 The mS100A9 homodimer contains two equivalent sites of this type, arranged centro-381 symmetrically (Zn1 and Zn3 in Figure 1A) and displaying a tetrahedral geometry (Fig. 2A), with

average Zn-ligand bond distances between 1.9 and 2.0 Å (Table 2). The first mS100A9 subunit 382 383 provides two of the coordinating residues, His21 at the end of helix H1, and Asp31 within the first Ca^{2+} EF-hand. The two other Zn^{2+} -chelating residues, His92 and His96, come from helix H4 in 384 385 the second subunit. This site corresponds to the canonical His₃Asp zinc binding motif which is 386 encountered in the His-Zn class of S100 proteins, and its geometry is highly similar to that of the 387 His-Zn sites present in hS100A7 (Brodersen et al., 1999; Supplementary Fig. S3A) and hS100A12 388 (Moroz et al., 2009a; Supplementary Fig. S3B). The geometry of this site also corresponds well to 389 that of the Zn-binding sites found in hS100B (Ostendorp et al., 2011; Supplementary Figure S3C) 390 and hS100A8 (Lin et al., 2016; Supplementary Figure S3D), although in these two cases the 391 coordinating motifs are respectively His₃Glu and His₄.

392 The second Zn-binding site observed in our structure involves the three histidine residues located 393 in the C-terminal tail of mS100A9 (Fig. 2B, purple triangles). These three C-terminal His residues form a novel, tetrahedral Zn²⁺-binding motif (Fig. 2C), never encountered so far in other S100 394 395 protein structures. The fourth coordinating residue, Glu65 at the end of helix H3, is provided by a 396 symmetry-related mS100A9 molecule within the crystal. Average Zn-ligand bond distances for this second Zn-site range between 1.9 and 2.1 Å (Table 2). Due to the involvement of its three His 397 398 residues in zinc chelation, the C-terminal tail folds back over the mS100A9 subunit core. This 399 folding is further promoted by the presence of a disulfide bridge connecting Cys91, at the end of 400 helix H4, and Cys111 at the end of the C-terminal tail. The C-terminal tail therefore adopts a 401 rigidified architecture, forming a closed loop that protrudes at the extremity of helix H4 (Fig. 2D). 402 This novel Zn-binding site is rendered possible in mS100A9, at least in the crystal structure, 403 because the three His residues in its C-terminal portion are not placed contiguously but are instead 404 spaced by a residue of different nature, giving rise to an HxHxH motif (Fig. 2B). hS100A9 likewise

405 contains a cluster of histidine residues in its C-terminal tail (Fig. 2B, orange circles). Since no 406 structure of the hS100A9 homodimer bound to zinc is available, it is not possible to know if such 407 a site can be formed within the human homodimer. However, the structures of the human S100A8/A9 heterocomplex bound to Mn²⁺ or Ni²⁺ (Damo et al., 2013; Nakashige et al., 2018) 408 revealed that in hS100A9, these C-terminal His residues participate in the coordination of the Mn²⁺ 409 410 ion present at the interface between the two S100 subunits, thereby generating an octahedral His₆ 411 coordination site with high affinity. In the context of the S100A8/A9 heterocomplex, this noncanonical His₆ site was shown to bind both Zn^{2+} , Mn^{2+} , Ni^{2+} and Fe^{2+} (Damo et al., 2013; 412 413 Nakashige et al., 2015; Nakashige et al., 2017). It remains unknown whether such an octahedral 414 site would also be used for zinc chelation in the context of the hS100A9 homodimer or whether 415 hS100A9 could also form a second Zn-binding site, similar to the one we observe for mS100A9. Obviously, since the three terminal histidines of hS100A9 are contiguous to each other (Fig. 2B), 416 417 the geometrical constraint imposed on the protein backbone would only allow two of them to 418 arrange simultaneously in a tetrahedral coordination motif, and the two remaining Zn-ligand would 419 have to be provided by a distinct molecule/ion.

420 Since the novel Zn-site we observe in mS100A9 structure is promoted by crystal contacts, we 421 investigated whether it was a crystallization artifact or whether it could also exist in solution. For 422 this purpose, we first confirmed that our mS100A9 sample had been purified in the apo form by 423 quantifying the residual content of divalent cations present in our protein preparation using 424 inductively-coupled plasma mass spectrometry (ICP-MS). The measured metal/S100 ratios show 425 that there is no significant metal-ion contamination in our sample (Table 3). We then performed 426 ITC titrations of zinc binding to mS100A9, either in the absence or presence of calcium. As shown 427 in Figures 3A and 3B, the thermograms were best fitted with a single-site model, indicating that

mS100A9 binds one Zn^{2+} ion per subunit with an average dissociation constant (K_d) ranging 428 429 between 16 and 25 µM depending on the experiments. Thus, the mS100A9 homodimer possesses 430 two equivalents Zn-binding sites with affinities in the medium μ M range. Differences in K_d values between apo mS100A9 and Ca²⁺-bound mS100A9 are within error range, suggesting that calcium 431 432 has no effect on mS100A9 affinity for zinc. A few of the titrations curves exhibited a small, second 433 phase that could indicate a biphasic binding mode but fitting with a two-sites model did not yield 434 pertinent results in these cases (data not shown). Thus, even if a second Zn-binding site exists on 435 the mS100A9 protomer in solution, we could not detect it with the experimental conditions 436 employed here. Importantly, all titrations ended up at 2 molar equivalents of zinc as compared to 437 mS100A9. When we increased further zinc concentration in the titrations, mS100A9 started 438 precipitating. To analyze this metal-dependent aggregation of mS100A9 in more details, we 439 performed DLS analysis of the sample, both in the presence and absence of calcium, using 440 increasing concentrations of zinc. As depicted in Figures 3C and 3D, zinc-dependent aggregation 441 of mS100A9 readily occurs as soon as the zinc to mS100A9 molar ratio equals or exceeds 3 442 equivalents and this phenomenon is independent of calcium. This tendency to aggregate in the 443 presence of excess zinc evidently complicates the analysis of the Zn-mS100A9 samples with native 444 MS (see below). It may also impair the detection of low affinity Zn-binding sites by ITC.

3.3. In solution, mS100A9 exists as several homodimeric forms with distinct disulfide bond patterns

447 Our structure reveals that mS100A9 forms an intramolecular disulfide bridge between Cys91 and 448 Cys111, at least in the presence of high calcium and zinc concentrations. By contrast, a disulfide 449 bridge between Cys80 and Cys91 was previously reported for the protein isolated from native 450 source or produced recombinantly in the absence of divalent cations (Raftery et al., 1999). Presence of divalent cations may therefore influence SS link formation within mS100A9. In particular, zinc coordination at the C-terminal tail may preferentially stabilize the Cys91-Cys111 SS bridge (or *vice versa*). To gain more insight into the disulfide bonding pattern of wild-type (WT) mS100A9, we analyzed the dimeric pool of mS100A9 under denaturing conditions using LC/ESI-TOF MS (Supplementary Fig. S4). This technique enables the characterization of both inter- and intramolecular disulfide crosslinks whereas all the non-covalent interactions are broken (Boeri Erba et al., 2018).

458 We first analyzed WT mS100A9 in the absence of divalent cations. When all three cysteines are 459 reduced (i.e. are not engaged in an SS-bond), our mS100A9 protein has a theoretical mass of 460 13177.1 Da as a monomer, and of 26354.2 Da as a homodimer. Under denaturing conditions and 461 in the absence of DTT, WT mS100A9 generates an LC/ESI-TOF MS spectrum with one major 462 peak (Fig. 4A; mass 13175.1 Da, 66% of the total protein signal) referred to as the "monomeric" 463 peak and whose mass confirms the presence of one intramolecular disulfide bond per molecule. 464 Since the mS100A9 sample was analyzed under denaturing conditions, the "monomeric" peak is 465 composed of both native monomers and single subunits generated by the disassembly of non-466 covalent oligomers. The ESI MS spectrum also reveals a minor peak (Fig. 4A; mass 26349.5 Da, 467 34% of the total protein signal) referred to as the "dimeric" peak. Upon reduction with DTT, the 468 "dimeric" peak almost totally disappears (Fig. 4D), confirming that the mS100A9 form(s) giving 469 rise to this peak contain intersubunit disulfide bonds.

To characterize the oligomeric state of these covalent and non-covalent forms of mS100A9, we analyzed the same samples using native MS. In both absence and presence of DTT, mS100A9 is mostly dimeric (Figs. 4B-C; mass: 26351 ± 2 Da and 26355 ± 3 Da, respectively), in agreement with our SEC experiments (Supplementary Fig. S1B). A small amount of monomer is also

474 observed in both conditions (Figs. 4B-C; mass: 13175 ± 2 Da and 13177 ± 1 Da, respectively). 475 Due to the gentle experimental conditions employed, native MS is a technique that preserves non-476 covalent interactions (Boeri Erba et al., 2020). The monomeric state we observe can therefore not 477 arise from the breaking of dimers during data acquisition. Interestingly, mS100A9 carries less 478 charges in the presence of disulfide bridges (Figs. 4B-C). This reflects the higher degree of 479 compactness of the disulfide crosslinked mS100A9 compared to the non-crosslinked one. This is 480 also in agreement with our SEC experiments which show that in the presence of DTT, the peak 481 corresponding to homodimeric mS100A9 elutes slightly earlier than under non-reducing 482 conditions (Supplementary Fig. S1B), suggesting a less compact form in the presence of DTT. 483 Addition of DTT does not yield a significantly higher proportion of monomeric mS100A9 (Fig. 484 4C), suggesting that mS100A9 remains dimeric upon breakage of the intersubunit SS bridges.

485 To assess the number of free cysteines, we treated mS100A9 with iodoacetamide (IAA), in the 486 absence or presence of DTT, and we analyzed these samples using LC/ESI-TOF MS (Figs. 4E-F). 487 Reaction with IAA increases the mass of the "monomeric" peak to 13232.1 Da (+ 57 Da), 488 indicating the covalent addition of one acetamide group per molecule (Figs. 4E, 4G). This suggests 489 that only one cysteine per mS100A9 molecule is free to react with IAA. Treatment with DTT and 490 IAA gives rise mainly to addition of 1 and 2 acetamide groups (Figs. 4F-G). Thus, DTT reduces 491 two cysteines that were previously engaged in an intramolecular disulfide bridge. Species with 3 492 acetamide groups were not detected after DTT and IAA treatment. There are several explanations: 493 one of the three cysteines may be partly inaccessible to the solvent after cleavage of the SS bridge; 494 alternatively, the reaction conditions may not be sufficient to reduce all cysteines. To address this 495 question, we incubated mS100A9 with DTT in the presence of strong denaturant (8M urea) before 496 performing alkylation with IAA using identical conditions as previously. In these conditions, we 497 obtained fully tri-alkylated protein (Fig. 4H, species at molecular mass 13348.3 Da). Thus, upon
498 complete unfolding of the protein, all three cysteines reacted with IAA.

Reaction with IAA increases the mass of the "dimeric" peak of 114 Da, indicating a covalent addition of 2 acetamide groups per dimer (Figs. 4E, 4I). This means that only two cysteines (out of six available) are free to react. We may hypothesize two intersubunit SS bonds between two S100A9 protomers, forming a covalent dimer. Another possibility is that only one inter-subunit SS bond bridges the two mS100A9 protomers and one of the protomers also bears an intramolecular SS bridge.

Altogether MS data suggest that 1) WT mS100A9 forms both non-covalent and SS-crosslinked homodimers (Figs. 4A-4D); 2) the protein also exists as a monomer (Figs. 4B-C); 3) the noncovalent species all contain one intramolecular disulfide bridge per S100A9 subunit (Fig. 4G).

508 3.4. The homodimerization mode of mS100A9 is differentially affected by calcium and zinc

Next, we aimed to investigate the effect of divalent cations on the mS100A9 dimeric pool. Thus, we performed LC/ESI-TOF and native MS experiments on WT mS100A9 incubated in the presence of calcium alone, zinc alone, or both metals (Supplementary Fig. S4). As shown in Figure 5, we observe the presence of both the "monomeric" and "dimeric" peaks in the LC/ESI-TOF spectra regardless of the metal present. However, when zinc is present, the equilibrium is significantly shifted towards the formation of SS-crosslinked homodimers (Figs. 5C, 5E).

515 In the absence of divalent cations or in the sole presence of calcium, the "monomeric" peak 516 observed under denaturing conditions is predominant (Figs. 4A, 5A). In the native MS conditions, 517 the non-covalent homodimer is in equilibrium with a monomeric form of the protein, whose 518 abundance remains low (Fig. 4B, 5B). The use of IAA shows that calcium does not affect the 519 disulfide bond pattern of the non-covalent and SS-crosslinked homodimers (Supplementary Fig. 520 S5). In the presence of calcium, the "monomeric peak" still contains an intramolecular SS bridge 521 per subunit (Supplementary Figs. S5A-C), whereas the disulfide-crosslinked homodimer has two 522 SS bonds and two free cysteines (Supplementary Fig. S5D). The addition of calcium seems only 523 to loosen slightly the monomer packing in the homodimer as illustrated by the observed shift to 524 higher charge states in the native MS spectrum (Fig. 5B).

525 Regardless of whether calcium is bound or not, the presence of zinc highly affects mS100A9 526 behavior. The disulfide-crosslinked homodimer becomes predominant, representing 86 % and 80 527 % of the total amount of protein in the presence of zinc alone or zinc and calcium, respectively 528 (Figs. 5C, 5E). The observed molecular mass of this "dimeric" peak increases of +2 Da, suggesting 529 that one of the two SS bridges is lost. Interestingly, native MS shows that the signals of mS100A9 530 monomers are not observed anymore (Figs. 5D, 5F). Moreover, it was quite difficult to record 531 native MS data when zinc was present since the sample tended to aggregate during injection into 532 the mass spectrometer. Thus, as also suggested by our DLS experiments, zinc may promote the 533 formation of high order insoluble oligomers and the recorded spectra may only reflect the soluble 534 fraction of the sample.

535 In the sample with zinc alone, reaction with IAA generates species carrying one acetamide group 536 for the "monomeric" peak (Supplementary Fig. S6A). Pre-treatment with DTT yields species 537 carrying up to 2 acetamide groups (Supplementary Figs. S6B-C). The binding of 3 acetamide 538 groups is not observed, indicating that a maximum of two cysteines per molecule is available. Zinc 539 might hinder solvent accessibility of the third cysteine either because Zn^{2+} -binding sites may 540 directly block the access to this residue or because zinc may promote mS100A9 oligomerization, 541 thereby diminishing solvent exposure of the cysteines buried within the oligomers. Surprisingly, 542 in the presence of both calcium and zinc, no alkylation of the non-covalent species occurs

(Supplementary Fig. S7A). Similarly, addition of DTT and IAA leads mainly to the formation of
species with 1 acetamide group, and a smaller amount of species with 2 acetamide groups, as well
as a certain amount of unreacted protein (Supplementary Figs. S7B-C).

546 Up to four acetamide groups are bound to the disulfide-crosslinked homodimer in the presence of 547 zinc alone (Supplementary Fig. S6D), whereas only two acetamide groups are added in the sole 548 presence of calcium (Supplementary Fig. S5D). This demonstrates loss of one SS bridge upon zinc 549 addition. When calcium and zinc are present, the SS-linked homodimer is almost unreactive 550 towards alkylation, the major form observed is the unreacted protein, whose mass corresponds to 551 a dimer carrying one intersubunit SS bridge (Supplementary Fig. S7D). Small amounts of 552 homodimers with 1 and 2 acetamide groups are also detected but clearly the cysteines are much 553 less accessible to IAA when both cations are present. Taken together, these data suggest that zinc 554 act as a modulator of the disulfide bonding pattern of mS100A9. It promotes the assembly of 555 covalent, SS-crosslinked dimers and affects the accessibility of the other unliganded cysteines.

556 **3.5.** The formation of distinct SS bridges allows switching between the different homodimeric 557 forms of mS100A9

558 In order to identify which of the three cysteines of mS100A9 are involved in the intramolecular 559 and inter-subunit disulfide bridges, point mutations into alanine were introduced for each cysteine 560 residue. Only the dimeric fraction of the samples was pooled from the SEC column 561 (Supplementary Fig. S8). These dimeric pools were first analyzed by SDS-PAGE under non-562 reducing conditions for all four ionic conditions tested. As shown in Figure 6A, regardless of the 563 metal present, almost no disulfide-crosslinked dimer is observed for the C111A mutant, whereas 564 the C91A mutant forms almost exclusively the disulfide-crosslinked dimers. For both the WT 565 protein and the C80A mutant, a mixture of monomers and SS-linked dimers is present. The relative

proportion of monomers and dimers is however difficult to evaluate and it is apparently not highlyinfluenced by cations (Figure 6A).

568 In order to assess the mass of the species with high accuracy and sensitivity, the three Cys-to-Ala 569 mutants were analyzed by LC/ESI-TOF-MS. C111A mutant is unable to form the disulfide-570 crosslinked homodimer, regardless of the cations present (Figure 6B), in agreement with our SDS-571 PAGE experiments. This indicates that Cys111 is responsible for the formation of inter-subunit 572 SS bridge(s). In all four ionic conditions, the "monomeric" peak has an experimental molecular 573 mass of 13145.2 Da. This mass indicates that the two non-mutated cysteines, Cys80 and Cys91, 574 are in the reduced state, regardless of the presence or absence of metal ions. Consistently, treatment 575 of the protein with IAA leads to the binding of two acetamide groups per subunit, when there is 576 Ca only, Zn only or no metal (Supplementary Fig. S10A). When both zinc and calcium are present, 577 one cysteine is less accessible to react with IAA. These data rule out the formation of an 578 intramolecular bridge between Cys80 and Cys91, and suggest that Cys111 also participates in the 579 intramolecular SS links. Alternatively, Cys111 mutation into alanine may affect the overall 580 architecture of the S100A9 molecule in such a way that the SS bridge between Cys80 and Cys91 581 cannot be formed. As Cys111 is located at the very end of mS100A9 C-terminal tail, in a highly 582 flexible and unstructured region, it seems however unlikely that the C111A mutation may modify significantly the architecture of the protein core. 583

584 By contrast, the C91A mutant is exclusively present as disulfide-crosslinked dimers, in all ionic 585 conditions screened (Fig. 6C). The measured molecular mass indicates a homodimer containing 586 one inter-subunit SS bond and two reduced cysteines. Consistently, reaction with IAA leads mainly 587 to the addition of 2 acetamide groups, except when both zinc and calcium are present. In that case, 588 the protein is mostly present in its non-alkylated form (Supplementary Fig. S10B). These observations suggest that Cys91 is not essential to the formation of the SS-linked homodimer and that Cys91 mutation frees two cysteines by removing one of the SS bonds present within the disulfide-crosslinked dimer.

592 In the case of the C80A mutant, different forms of mS100A9 are in equilibrium (Fig. 6D). In the 593 absence of metals or in the presence of zinc, the disulfide-crosslinked homodimer represents the 594 most abundant form of the protein whereas non-covalent species are slightly prevailing in the 595 presence of calcium alone. The "monomeric" peak has a molecular mass consistent with one 596 intramolecular SS bridge per mS100A9 subunit (Fig. 6D). Moreover, reaction with IAA does not 597 result in alkylation of the protein, demonstrating that the two non-mutated cysteines, Cys 91 and 598 Cys111, are not available to react due to their engagement in the intramolecular SS link 599 (Supplementary Fig. S10C). The disulfide-crosslinked homodimer displays a mass indicating the 600 presence of a single inter-subunit SS bridge and two reduced cysteines. These residues are 601 available for alkylation by IAA, when there is calcium or zinc or no metals (Supplementary Fig. 602 S10D). When both zinc and calcium are present, the unreacted protein represents the major species. 603 This may be explained by oligomerization and/or local conformational changes hindering access 604 to free cysteines.

In a further effort to unravel how the three cysteines interact with each other, in particular within the disulfide-crosslinked homodimer, we aimed to crystallize the three Cys-to-Ala mS100A9 point mutants in the various ionic conditions screened. We managed to obtain crystals for the mS100A9 C80A mutant, in the presence of calcium and zinc, in the same crystallization conditions than for the WT protein. These crystals diffracted X-rays to 2.35 Å resolution (Table 1, Supplementary Table S2). The structure of the Ca²⁺/Zn²⁺-bound point mutant was determined by MR using the structure of the WT protein obtained in this study. The resulting structural model is reported in Figure 7A and the quality of the fit with the electron density map is depicted in Supplementary
Figure S11A. The overall structure of the mutant is highly similar to the structure of the WT
protein, with an r.m.s.d. value on Cα atoms of 0.2 Å between the two structures (Fig. 7A). As for
the WT protein, the C80A mutant forms a non-covalent homodimer with two calcium and two zinc
bound per protomer and one intramolecular SS bridge connecting Cys91 and Cys111 (Fig. 7A,
Supplementary Fig. 11B). This second structure confirms that within the non-covalent species,
Cys80 is not involved in the formation of intramolecular SS bonds.

In summary, our results indicate that Cys91 and Cys111 are able to form an intramolecular SS bridge in the absence or presence of calcium and/or zinc. Characterization of the SS inter-subunit bridges in the disulfide-crosslinked dimer is more complex. The dimer strongly relies on Cys111, whether metals are present or not. It contains two SS bridges, one of which is lost upon addition of zinc as well as when Cys80 or Cys91 are point-mutated. There may not be a single SS-linked homodimeric form of mS100A9 and the protein may display quite some flexibility in the way its subunits are connected through disulfide bridges.

626 **4. Discussion**

627 In this study, we provided a detailed *in vitro* investigation of the homodimerization and disulfide 628 bond pattern of murine S100A9 and we examined how divalent cations affect these properties. We 629 described the first crystallographic structures of mS100A9 (WT and C80A mutant) obtained in the 630 presence of calcium and zinc. They revealed a canonical architecture for the mS100A9 631 homodimer, with both protomers arranged in a centro-symmetrical fashion, as observed for most 632 other S100 proteins. The structures also suggested that mS100A9 is able to chelate two zinc ions 633 per subunit, in contrast to what has been reported so far for other members of the family. Indeed, 634 besides the canonical His₃Asp Zn-motif, our structural data uncovered a second, His₃Glu tetrahedral Zn^{2+} -binding site formed by the HxHxH motif within mS100A9 C-terminal tail and a glutamate side chain coming from a symmetry-related molecule in the protein crystal. This second type of metal-binding site has not been observed in the structures of Mn²⁺- or Ni²⁺-bound human S100A8/A9 (Damo et al., 2013; Gagnon et al., 2015; Nakashige et al., 2017; Nakashige et al., 2018). Moreover, it has been proposed that S100A8/A9 also uses the octahedral His₆ site to chelate zinc (Nakashige et al., 2016).

641 The accurate mechanism and stoichiometry of zinc chelation by the S100A9 homodimer has not 642 been characterized yet. It was reported that a truncated version of mS100A9 encompassing only 643 the first 102 residues (i.e. lacking the three His residues from the C-terminal tail), binds 644 substantially less zinc than the WT protein (Raftery et al., 1999). More recently, Harms and 645 coworkers proposed a biphasic zinc binding mode for the hS100A9 homodimer (unpublished 646 results). In their model, both the His20/Asp30/His91/His95 tetrad and the C-terminal histidines 647 may contribute to zinc chelation, possibly through two distinct binding sites (Loes et al., 2019). 648 These data are consistent with our structural observations of two independent Zn-sites per 649 mS100A9 protomer but they still require confirmation. On the other hand, our ITC experiments 650 (Figs. 3A-B) suggest that in solution, only one zinc ion is bound per mS100A9 subunit, with an 651 affinity much lower than that reported for human calprotectin (Kehl-Fie et al., 2011; Brophy et al., 652 2012). If the affinity of the second Zn-site is even lower or if the binding is entropy driven, we 653 may not detect it by ITC. In conclusion, we cannot evidence the existence of a second Zn-binding 654 site per mS100A9 protomer in solution, but our structural data still highlight that such a site is 655 geometrically possible. Whether this site is a crystallization artifact or whether it can be formed *in* 656 vivo remains to be determined. This Zn-site may not exist in the context of the sole mS100A9 657 homodimer, especially knowing that one of the coordinating residues would be missing. It could for example be pertinent for mS100A9 interaction with specific binding partners, in particular
those whose interaction has been described as zinc-dependent (Bjork et al., 2009).

660 The non-covalent mS100A9 homodimers we observe both in our crystal structure and in solution, 661 through MS analysis, all contain an intramolecular bridge in each S100A9 subunit, between Cys91 662 and Cys111. This finding correlates with older reports mentioning an intramolecular SS bridge in 663 the protein (Raftery et al., 1998). It remains however uncertain whether all these non-covalent 664 forms display a canonical S100A9/S100A9 arrangement, as reported in our crystallographic 665 models. Remarkably, the Cys91-Cys111 bond leads the otherwise flexible C-terminal tail to adopt 666 a rigidified architecture by folding back over the tip of helix H4. This mechanism seems to be zinc-667 independent since the disulfide bond pattern of the non-covalent homodimers is not affected by 668 divalent cations. As a consequence, mS100A9 C-terminal tail adopts a conformation unique to the 669 murine protein, regardless of the ions present. Behaviourial differences between murine and 670 human S100 proteins have been described for several members of the family, including S100A8 671 (Lackmann et al., 1993; Lim et al., 2009). This is also the case for S100A9: hS100A9 is generally 672 considered as pro-inflammatory, especially in a cancer context (Gebhardt et al., 2006), whereas 673 mS100A9 may rather display anti-inflammatory properties (Dale et al., 2006; Otsuka et al., 2009; 674 Gomes et al., 2013; Wang et al., 2018b). These latter properties were attributed to mS100A9 C-675 terminal tail, which can inhibit hyperalgesia by modulating calcium channel signaling in sensory 676 neurons (Dale et al., 2009). However, the mS100A9 C-terminal peptide used in these studies 677 lacked both cysteines involved in the intramolecular SS-bridge. Consequently, it would not adopt 678 the hairpin-like 3D-fold we observe in our structures. Modulation of the 3D-architecture of 679 S100A9 C-terminal tail should therefore be taken into account when designing peptides with more 680 potent antinociceptive effects. Furthermore, the unique architecture of mS100A9 C-terminal tail

should be kept in mind when comparing the physiological properties of hS100A9 and mS100A9.
While the interconversion between pro- and anti-inflammatory functions for S100A9 is possibly
influenced by both the pathological and the cell contexts, differential properties observed between
human and murine S100A9 may also be inherent to their distinct 3D-architectures, especially in
their C-terminal region known to be critical for effector binding.

686 Formation of disulfide-crosslinked S100A9 homodimers has already been described in the 687 literature (Shibata et al., 2004). Our MS data provide novel insights into these disulfide-crosslinked 688 species and how divalent cations may influence their formation. Indeed, we observed that the SS-689 linked homodimers bear one inter-subunit disulfide bridge, which strongly relies on Cys111, and 690 a second SS bond, either inter- or intramolecular, which is lost when zinc is added or when Cys80 691 or Cys91 are mutated. It is not straightforward to reconcile all these observations in a single model. 692 The Cys111-Cys111 interaction is the sole inter-subunit SS bridge consistent with a canonical 693 S100A9 homodimer (Fig. 7B). Other inter-subunit interactions would require a substantial 694 repositioning of the two S100A9 protomers with respect to each other and/or conformational 695 changes within each protomer. Other models for which the S100A9/S100A9 arrangement differs 696 dramatically from the canonical configuration we observe in our crystal structures may also help 697 describe these SS-linked homodimers. For example, some of these forms may adopt a two-fold 698 symmetrical homodimeric arrangement, similar to the one we observed for S100A6 in complex 699 with the full-length RAGE ectodomain (Yatime et al., 2016). Interestingly, we speculated at that 700 time that the novel S100A6 conformation may be utilized by other S100 proteins, possibly 701 stabilized by inter-subunit SS bond (Yatime et al., 2016; Yatime, 2017). The different SS-702 crosslinked mS100A9 dimers may also display other yet unraveled quaternary architectures. These 703 models for the disulfide-crosslinked mS100A9 homodimer(s) are still speculative without structural data. Nevertheless, our results clearly indicate that mS100A9 adopts multiple homodimeric arrangements that rely on distinct disulfide bond patterns and are modulated by the cations present. Local calcium/zinc concentrations may also influence the respective proportion of these forms, possibly through metal-induced crosslinking/oligomerization.

708 It becomes more and more evident that not only mS100A9, but also other S100 proteins exist in 709 *vivo* as multiple forms, this plasticity helping understand how these proteins can achieve so many 710 diverse and sometimes opposite functions. Disulfide-crosslinked homodimers have been reported, 711 both in vitro and in vivo, for many other S100 proteins, including S100A2 (Yamaguchi et al., 712 2016), S100A4 (Haase-Kohn et al., 2011), S100A5 (Schafer et al., 2000), S100A6 (Wojda et al., 713 1994), S100A8 (Harrison et al., 1999), S100B (Winningham-Major et al., 1989), and the 714 S100A8/A9 heterodimer (Stephan et al., 2018; Hoskin et al., 2019). None of these forms has been 715 characterized from a structural point of view yet, due to the difficulty of isolating them in vitro. 716 Nevertheless, evidence has accumulated suggesting that oxidation may contribute to the 717 modulation of \$100 function in vivo. In the case of the \$100A8/A9 heterocomplex, both 718 intramolecular and inter-subunit disulfide crosslinks have been identified (Stephan et al., 2018; 719 Hoskin et al., 2019). The resulting SS-crosslinked complexes were shown in vitro to be more 720 susceptible to protease degradation. This suggests a way to remove unnecessary S100A8/A9 721 present in the extracellular space and thereby down-tune both the inflammatory and antimicrobial 722 activities of the heterocomplex (Magon et al., 2015; Stephan et al., 2018; Hoskin et al., 2019).

An interplay between metal binding and oxidation-dependent regulation has also been reported for several S100 proteins. For example, disulfide crosslinking of S100A4 in the presence of copper was shown to enhance pro-inflammatory responses in the tumor microenvironment, through increased RAGE signaling (Haase-Kohn et al., 2011). Similarly, SS-linked S100B dimers promote 727 neuronal growth and proliferation of glial cells (Winningham-Major et al., 1989). S100B 728 crosslinking is also induced by excess copper and may stimulate a toxic response, through nitric 729 oxide production, in relevant neuropathological conditions (Matsui Lee et al., 2000). Cu²⁺-730 oxidized forms of S100A1, S100A2, S100A6, S100B and S100P were also described, leading to 731 SS-crosslinked dimers at least for S100A2 (Yamaguchi et al., 2016). These forms were shown to 732 modulate PP5 phosphatase activity, possibly impacting on apoptotic responses to oxidative stress. 733 Copper-mediated oxidation of murine S100A8 also generated SS-crosslinked dimers that lost their 734 chemotactic properties, thereby preventing leukocyte recruitment (Harrison et al., 1999). 735 Conversely, SS bond formation may also regulate S100 metal binding properties. Formation of an 736 intramolecular disulfide bridge within human S100A7 was shown to enhance metal sequestration 737 by the canonical His3Asp Zn-binding site, through allosteric modulation, thereby increasing 738 S100A7 antimicrobial activity (Cunden et al., 2017).

739 These examples demonstrate how subtle modulations of the 3D/4D-architecture of S100 proteins 740 may dramatically affect their biological properties. Interestingly, reports also start emerging on 741 possible crosslinking between molecules of RAGE, the cognate receptor for several members of 742 the S100 family (Wei et al., 2012; Moysa et al., 2019). All these findings underline the importance 743 of further studying S100 disulfide-crosslinked forms, in order to understand what is their function 744 and which factors/mechanisms promote their formation in vivo. The in-depth characterization of 745 these various forms and of their physiological functions will clearly be a prerequisite to propose 746 efficient targeting strategies against S100 proteins in a context where their pro-inflammatory 747 properties become deleterious, while preserving their beneficial functions such as their 748 antimicrobial activity, these antagonistic effects being possibly orchestrated by distinct forms of 749 the proteins.

750 Accession codes

The structure factors and atomic coordinates for the crystal structures of WT and C80A mS100A9 in the presence of calcium and zinc have been deposited in the Protein Data Bank as entries 6ZDY and 6ZFE, respectively (http://www.wwpdb.org/).

754 **CRediT authorship contribution statement**

Luca Signor: Methodology, Investigation, Formal analysis, Visualization, Writing – original draft.
Theo Paris: Investigation. Caroline Mas: Methodology, Investigation, Formal analysis,
Visualization. Adrien Picard: Investigation. Georges Lutfalla: Funding acquisition. Elisabetta
Boeri Erba: Methodology, Investigation, Formal analysis, Resources, Visualization, Writing –
original draft. Laure Yatime: Conceptualization, Methodology, Investigation, Formal analysis,
Supervision, Resources, Funding acquisition, Visualization, Writing – original draft.

761 Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personalrelationships that could have appeared to influence the work reported in this paper.

764 Acknowledgements

We thank the beamline staffs at ESRF and SLS for technical assistance. We thank Dr. Mickael Blaise for initial data collection for the WT protein and Dr. Vincent Olieric for help with data collection for the C80A mutant. We are grateful to Rémi Freydier and Léa Causse from the AETE-ISO platform in the Hydrosciences laboratory (Montpellier, France) for their help with the ICP-MS measurements. We thank Dr. Cherine Bechara for fruitful discussion. This work used the platforms of the Grenoble Instruct-ERIC center (ISBG; UMS 3518 CNRS-CEA-UGA-EMBL)

771 within the Grenoble Partnership for Structural Biology (PSB), supported by FRISBI (ANR-10-

772 INBS-05-02) and GRAL, financed within the University Grenoble Alpes graduate school (Ecoles

773 Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE-0003). IBS acknowledges

774 integration into the Interdisciplinary Research Institute of Grenoble (IRIG, CEA). Financial

support to access the ISBG platform was provided by Instruct-ERIC (PID 6047). We also would

176 like to acknowledge the French Infrastructure for Integrated Structural Biology (FRISBI) for

providing access to ESRF and the Danish Cancer Society for initial financial support.

778 Appendix A. Supplementary data

779 Supplementary data to this article can be found online.

780 References

Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N. et al., 2010.

782 PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta

783 Cryst. D 66, 213-221. https://doi.org/10.1107/S0907444909052925.

784

Baudier, J., Glasser, N., Gerard, D., 1986. Ions Binding to S100 Proteins .1. Calcium-Binding

and Zinc-Binding Properties of Bovine Brain S100-Alpha-Alpha, S100a-(Alpha,Beta), and

787 S100b-(Beta-Beta), Protein - Zn-2+ Regulates Ca-2+ Binding on S100b Protein. J. Biol. Chem.
788 261, 8192-8203.

789

Bjork, P., Bjork, A., Vogl, T., Stenstrom, M., Liberg, D., Olsson, A. et al., 2009. Identification of
human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-

- carboxamides. PLoS Biol 7, e97. https://doi.org/10.1371/journal.pbio.1000097.
- 793

Boeri Erba, E., Petosa, C., 2015. The emerging role of native mass spectrometry in

characterizing the structure and dynamics of macromolecular complexes. Protein Sci 24, 1176-

796 1192. https://doi.org/10.1002/pro.2661.

797

- Boeri Erba, E., Signor, L., Oliva, M.F., Hans, F., Petosa, C., 2018. Characterizing Intact
- 799 Macromolecular Complexes Using Native Mass Spectrometry. Methods Mol Biol 1764, 133-
- 800 151. https://doi.org/10.1007/978-1-4939-7759-8_9.

- 802 Boeri Erba, E., Signor, L., Petosa, C., 2020. Exploring the structure and dynamics of
- 803 macromolecular complexes by native mass spectrometry. J Proteomics 222, 103799.
- 804 https://doi.org/10.1016/j.jprot.2020.103799.

- Brodersen, D.E., Nyborg, J., Kjeldgaard, M., 1999. Zinc-binding site of an S100 protein
- revealed. Two crystal structures of Ca2+-bound human psoriasin (S100A7) in the Zn2+-loaded
- 808 and Zn2+-free states. Biochemistry 38, 1695-1704. https://doi.org/10.1021/bi982483d.
- 809
- 810 Brophy, M.B., Hayden, J.A., Nolan, E.M., 2012. Calcium ion gradients modulate the zinc
- affinity and antibacterial activity of human calprotectin. J. Am. Chem. Soc. 134, 18089-18100.
 https://doi.org/10.1021/ja307974e.
- 813
- 814 Chaabouni, T., Manceau, H., Peoc'h, K., 2016. Interest of fecal calprotectine dosage in
- 815 inflammatory bowel diseases, state of the art and perspectives. Ann Biol Clin (Paris) 74, 385816 394. https://doi.org/10.1684/abc.2016.1172.
- 817
- 818 Chang, C.C., Khan, I., Tsai, K.L., Li, H., Yang, L.W., Chou, R.H. et al., 2016. Blocking the
- 819 interaction between S100A9 and RAGE V domain using CHAPS molecule: A novel route to
- drug development against cell proliferation. Biochim. Biophys. Acta 1864, 1558-1569.
- 821 https://doi.org/10.1016/j.bbapap.2016.08.008.
- 822
- 823 Corbin, B.D., Seeley, E.H., Raab, A., Feldmann, J., Miller, M.R., Torres, V.J. et al., 2008. Metal
- chelation and inhibition of bacterial growth in tissue abscesses. Science 319, 962-965.
- 825 https://doi.org/10.1126/science.1152449.
- 826
- 827 Cunden, L.S., Brophy, M.B., Rodriguez, G.E., Flaxman, H.A., Nolan, E.M., 2017. Biochemical
- 828 and Functional Evaluation of the Intramolecular Disulfide Bonds in the Zinc-Chelating
- Antimicrobial Protein Human S100A7 (Psoriasin). Biochemistry 56, 5726-5738.
- 830 https://doi.org/10.1021/acs.biochem.7b00781.
- 831
- B32 Dale, C.S., Altier, C., Cenac, N., Giorgi, R., Juliano, M.A., Juliano, L. et al., 2009. Analgesic
- 833 properties of S100A9 C-terminal domain: a mechanism dependent on calcium channel inhibition.
- Fundam Clin Pharmacol 23, 427-438. https://doi.org/10.1111/j.1472-8206.2009.00686.x.
- 835
- B36 Dale, C.S., Pagano Rde, L., Paccola, C.C., Pinotti-Guirao, T., Juliano, M.A., Juliano, L. et al.,
- 837 2006. Effect of the C-terminus of murine S100A9 protein on experimental nociception. Peptides
- 838 27, 2794-2802. https://doi.org/10.1016/j.peptides.2006.07.002.
- 839
- Damo, S.M., Kehl-Fie, T.E., Sugitani, N., Holt, M.E., Rathi, S., Murphy, W.J. et al., 2013.
- 841 Molecular basis for manganese sequestration by calprotectin and roles in the innate immune

- response to invading bacterial pathogens. Proc. Natl. Acad. Sci. U. S. A. 110, 3841-3846.
- 843 https://doi.org/10.1073/pnas.1220341110.
- 844
- Davis, I.W., Leaver-Fay, A., Chen, V.B., Block, J.N., Kapral, G.J., Wang, X. et al., 2007.
- 846 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic
- 847 Acids Res. 35, W375-383. https://doi.org/10.1093/nar/gkm216.
- 848
- Donato, R., Cannon, B.R., Sorci, G., Riuzzi, F., Hsu, K., Weber, D.J. et al., 2013. Functions of
- 850 S100 proteins. Curr. Mol. Med. 13, 24-57.
- 851
- Emsley, P., Cowtan, K., 2004. Coot: model-building tools for molecular graphics. Acta Cryst. D
 60, 2126-2132. https://doi.org/10.1107/S0907444904019158.
- 854
- Gagnon, D.M., Brophy, M.B., Bowman, S.E.J., Stich, T.A., Drennan, C.L., Britt, R.D. et al.,
- 856 2015. Manganese Binding Properties of Human Calprotectin under Conditions of High and Low
- 857 Calcium: X-ray Crystallographic and Advanced Electron Paramagnetic Resonance Spectroscopic
- 858 Analysis. J. Am. Chem. Soc. 137, 3004-3016. https://doi.org/10.1021/ja512204s.
- 859
- Gebhardt, C., Nemeth, J., Angel, P., Hess, J., 2006. S100A8 and S100A9 in inflammation and
- 861 cancer. Biochem Pharmacol 72, 1622-1631. https://doi.org/10.1016/j.bcp.2006.05.017.
- 862
- Gilston, B.A., Skaar, E.P., Chazin, W.J., 2016. Binding of transition metals to S100 proteins. Sci
- 864 China Life Sci 59, 792-801. https://doi.org/10.1007/s11427-016-5088-4.
- 865
- 666 Giudice, V., Wu, Z., Kajigaya, S., Fernandez Ibanez, M.D.P., Rios, O., Cheung, F. et al., 2019.
- 867 Circulating S100A8 and S100A9 protein levels in plasma of patients with acquired aplastic
- anemia and myelodysplastic syndromes. Cytokine 113, 462-465.
- 869 https://doi.org/10.1016/j.cyto.2018.06.025.
- 870
- 871 Glaser, R., Harder, J., Lange, H., Bartels, J., Christophers, E., Schroder, J.M., 2005.
- 872 Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat
- 873 Immunol 6, 57-64. https://doi.org/10.1038/ni1142.
- 874
- Goebeler, M., Roth, J., van den Bos, C., Ader, G., Sorg, C., 1995. Increase of calcium levels in
- epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-
- related protein 8 (MRP8) and MRP14 to keratin intermediate filaments. Biochem J 309 (Pt 2),
 419-424.
- 879

- Gomes, L.H., Raftery, M.J., Yan, W.X., Goyette, J.D., Thomas, P.S., Geczy, C.L., 2013. S100A8
- and S100A9-oxidant scavengers in inflammation. Free Radic Biol Med 58, 170-186.
- 882 https://doi.org/10.1016/j.freeradbiomed.2012.12.012.
- 883
- 884 Gonzalez, L.L., Garrie, K., Turner, M.D., 2020. Role of S100 proteins in health and disease.
- Biochim. Biophys. Acta Mol. Cell Res. 1867, 118677.
- 886 https://doi.org/10.1016/j.bbamcr.2020.118677.
- 887
- Haase-Kohn, C., Wolf, S., Lenk, J., Pietzsch, J., 2011. Copper-mediated cross-linking of
- 889 S100A4, but not of S100A2, results in proinflammatory effects in melanoma cells. Biochem.
- 890 Biophys. Res. Commun. 413, 494-498. https://doi.org/10.1016/j.bbrc.2011.08.132.
- 891
- Harrison, C.A., Raftery, M.J., Walsh, J., Alewood, P., Iismaa, S.E., Thliveris, S. et al., 1999.
- 893 Oxidation regulates the inflammatory properties of the murine S100 protein S100A8. J. Biol.
- 894 Chem. 274, 8561-8569.

- Hoskin, T.S., Crowther, J.M., Cheung, J., Epton, M.J., Sly, P.D., Elder, P.A. et al., 2019.
- 897 Oxidative cross-linking of calprotectin occurs in vivo, altering its structure and susceptibility to
 898 proteolysis. Redox Biology 24https://doi.org/Artn 101202
- 899 10.1016/J.Redox.2019.101202.

900

- 901 Hunter, M.J., Chazin, W.J., 1998. High level expression and dimer characterization of the S100
- 902 EF-hand proteins, migration inhibitory factor-related proteins 8 and 14. J. Biol. Chem. 273,
- 903 12427-12435. https://doi.org/10.1074/jbc.273.20.12427.

904

- 905 Ishikawa, K., Nakagawa, A., Tanaka, I., Suzuki, M., Nishihira, J., 2000. The structure of human
- 906 MRP8, a member of the S100 calcium-binding protein family, by MAD phasing at 1.9 A
- 907 resolution. Acta Cryst. D 56, 559-566.

908

- Itou, H., Yao, M., Fujita, I., Watanabe, N., Suzuki, M., Nishihira, J. et al., 2002. The crystal
- 910 structure of human MRP14 (S100A9), a Ca(2+)-dependent regulator protein in inflammatory
- 911 process. J. Mol. Biol. 316, 265-276. https://doi.org/10.1006/jmbi.2001.5340.

912

- 913 Kabsch, W., 2010. Xds. Acta Cryst. D 66, 125-132.
- 914 https://doi.org/10.1107/S0907444909047337.

- 916 Kallberg, E., Tahvili, S., Ivars, F., Leanderson, T., 2018. Induction of S100A9 homodimer
- 917 formation in vivo. Biochem. Biophys. Res. Commun. 500, 564-568.
- 918 https://doi.org/10.1016/j.bbrc.2018.04.086.

- 919
- 920 Kehl-Fie, T.E., Chitayat, S., Hood, M.I., Damo, S., Restrepo, N., Garcia, C. et al., 2011. Nutrient
- 921 Metal Sequestration by Calprotectin Inhibits Bacterial Superoxide Defense, Enhancing
- 922 Neutrophil Killing of Staphylococcus aureus. Cell Host Microbe 10, 158-164.
- 923 https://doi.org/10.1016/j.chom.2011.07.004.
- 924
- 925 Kerkhoff, C., Nacken, W., Benedyk, M., Dagher, M.C., Sopalla, C., Doussiere, J., 2005. The
- 926 arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by
- 927 interaction with p67phox and Rac-2. FASEB J. 19, 467-469. https://doi.org/10.1096/fj.04-2377fje.
- 928
- 929
- 930 Korndorfer, I.P., Brueckner, F., Skerra, A., 2007. The crystal structure of the human
- 931 (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of
- 932 interacting alpha-helices can determine specific association of two EF-hand proteins. J. Mol.
- 933 Biol. 370, 887-898. https://doi.org/10.1016/j.jmb.2007.04.065.
- 934
- 935 Kraemer, A.M., Saraiva, L.R., Korsching, S.I., 2008. Structural and functional diversification in
- 936 the teleost S100 family of calcium-binding proteins. BMC Evol Biol 8, 48.
- 937 https://doi.org/10.1186/1471-2148-8-48.
- 938
- 939 Lackmann, M., Rajasekariah, P., Iismaa, S.E., Jones, G., Cornish, C.J., Hu, S. et al., 1993.
- 940 Identification of a chemotactic domain of the pro-inflammatory S100 protein CP-10. J Immunol
- 941 150, 2981-2991.
- 942
- 943 Lagasse, E., Weissman, I.L., 1992. Mouse MRP8 and MRP14, two intracellular calcium-binding
- 944 proteins associated with the development of the myeloid lineage. Blood 79, 1907-1915.
- 945
- 946 Leclerc, E., Heizmann, C.W., 2011. The importance of Ca2+/Zn2+ signaling S100 proteins and
- 947 RAGE in translational medicine. Front Biosci (Schol Ed) 3, 1232-1262.
- 948 https://doi.org/10.2741/223.
- 949
- 950 Leukert, N., Vogl, T., Strupat, K., Reichelt, R., Sorg, C., Roth, J., 2006. Calcium-dependent
- 951 tetramer formation of S100A8 and S100A9 is essential for biological activity. J. Mol. Biol. 359,
- 952 961-972. https://doi.org/10.1016/j.jmb.2006.04.009.
- 953
- 954 Lim, S.Y., Raftery, M.J., Geczy, C.L., 2011. Oxidative modifications of DAMPs suppress
- 955 inflammation: the case for S100A8 and S100A9. Antioxid Redox Signal 15, 2235-2248.
- 956 https://doi.org/10.1089/ars.2010.3641.
- 957

- Lim, S.Y., Raftery, M.J., Goyette, J., Hsu, K., Geczy, C.L., 2009. Oxidative modifications of
- 959 S100 proteins: functional regulation by redox. J. Leukoc. Biol. 86, 577-587.
- 960 https://doi.org/10.1189/jlb.1008608.

- Lin, H., Andersen, G.R., Yatime, L., 2016. Crystal structure of human S100A8 in complex with zinc and calcium. BMC Struct. Biol. 16, 8. https://doi.org/10.1186/s12900-016-0058-4.
- 964
- Loes, A.N., Shi, R., Harms, M.J., 2019. Zinc-independent activation of Toll-like receptor 4 by
 S100A9. bioRxiv, 796219. https://doi.org/10.1101/796219.
- 967
- Longbottom, D., Sallenave, J.M., van Heyningen, V., 1992. Subunit structure of calgranulins A
- and B obtained from sputum, plasma, granulocytes and cultured epithelial cells. Biochim.
- 970 Biophys. Acta 1120, 215-222. https://doi.org/10.1016/0167-4838(92)90273-g.
- 971
- 972 Ma, L., Sun, P., Zhang, J.C., Zhang, Q., Yao, S.L., 2017. Proinflammatory effects of S100A8/A9
- via TLR4 and RAGE signaling pathways in BV-2 microglial cells. Int J Mol Med 40, 31-38.
- 974 https://doi.org/10.3892/ijmm.2017.2987.
- 975
- Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N. et al., 2019. The EMBLEBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636-W641.
- 978 https://doi.org/10.1093/nar/gkz268.
- 979
- 980 Magon, N.J., Turner, R., Gearry, R.B., Hampton, M.B., Sly, P.D., Kettle, A.J., 2015. Oxidation
- 981 of calprotectin by hypochlorous acid prevents chelation of essential metal ions and allows
- bacterial growth: Relevance to infections in cystic fibrosis. Free Radic Biol Med 86, 133-144.
- 983 https://doi.org/10.1016/j.freeradbiomed.2015.05.022.
- 984
- 985 Marenholz, I., Heizmann, C.W., Fritz, G., 2004. S100 proteins in mouse and man: from
- 986 evolution to function and pathology (including an update of the nomenclature). Biochem.
- 987 Biophys. Res. Commun. 322, 1111-1122. https://doi.org/10.1016/j.bbrc.2004.07.096.
- 988
- 989 Marinkovic, G., Grauen Larsen, H., Yndigegn, T., Szabo, I.A., Mares, R.G., de Camp, L. et al.,
- 2019. Inhibition of pro-inflammatory myeloid cell responses by short-term S100A9 blockade
- improves cardiac function after myocardial infarction. Eur Heart J 40, 2713-2723.
- 992 https://doi.org/10.1093/eurheartj/ehz461.
- 993
- 994 Matsui Lee, I.S., Suzuki, M., Hayashi, N., Hu, J., Van Eldik, L.J., Titani, K. et al., 2000. Copper-
- dependent formation of disulfide-linked dimer of \$100B protein. Arch Biochem Biophys 374,
 137-141. https://doi.org/10.1006/abbi.1999.1595.
- 997

- 998 McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., Read, R.J.,
- 999 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674.
- 1000 https://doi.org/10.1107/S0021889807021206.
- 1001
- 1002 Morgner, N., Robinson, C.V., 2012. Massign: an assignment strategy for maximizing
- 1003 information from the mass spectra of heterogeneous protein assemblies. Anal Chem 84, 2939-
- 1004 2948. https://doi.org/10.1021/ac300056a.
- 1005
- Moroz, O.V., Antson, A.A., Grist, S.J., Maitland, N.J., Dodson, G.G., Wilson, K.S. et al., 2003.
 Structure of the human S100A12-copper complex: implications for host-parasite defence. Acta
 Cryst. D 59, 859-867. https://doi.org/10.1107/s0907444903004700.
- 1009
- 1010 Moroz, O.V., Antson, A.A., Murshudov, G.N., Maitland, N.J., Dodson, G.G., Wilson, K.S. et al.,
- 1011 2001. The three-dimensional structure of human S100A12. Acta Cryst. D 57, 20-29.
- 1012 https://doi.org/10.1107/s090744490001458x.
- 1013
- 1014 Moroz, O.V., Blagova, E.V., Wilkinson, A.J., Wilson, K.S., Bronstein, I.B., 2009a. The crystal 1015 structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12
- 1016 oligomerisation. J. Mol. Biol. 391, 536-551. https://doi.org/10.1016/j.jmb.2009.06.004.
- 1017
- Moroz, O.V., Burkitt, W., Wittkowski, H., He, W., Ianoul, A., Novitskaya, V. et al., 2009b. Both
 Ca2+ and Zn2+ are essential for S100A12 protein oligomerization and function. BMC Biochem.
 10, 11. https://doi.org/10.1186/1471-2091-10-11.
- 1021
- Moroz, O.V., Wilson, K.S., Bronstein, I.B., 2011. The role of zinc in the S100 proteins: insights
 from the X-ray structures. Amino Acids 41, 761-772. https://doi.org/10.1007/s00726-010-05404.
- 1025
- Moysa, A., Hammerschmid, D., Szczepanowski, R.H., Sobott, F., Dadlez, M., 2019. Enhanced
 oligomerization of full-length RAGE by synergy of the interaction of its domains. Sci Rep 9,
- 1028 20332. https://doi.org/10.1038/s41598-019-56993-9.
- 1029
- 1030 Murray, J.I., Tonkin, M.L., Whiting, A.L., Peng, F., Farnell, B., Cullen, J.T. et al., 2012.
- 1031 Structural characterization of S100A15 reveals a novel zinc coordination site among S100
- 1032 proteins and altered surface chemistry with functional implications for receptor binding. BMC
- 1033 Struct. Biol. 12, 16. https://doi.org/10.1186/1472-6807-12-16.
- 1034
- 1035 Nacken, W., Sopalla, C., Propper, C., Sorg, C., Kerkhoff, C., 2000. Biochemical characterization
- 1036 of the murine S100A9 (MRP14) protein suggests that it is functionally equivalent to its human

- 1037 counterpart despite its low degree of sequence homology. European Journal of Biochemistry
- 1038 267, 560-565. https://doi.org/DOI 10.1046/j.1432-1327.2000.01040.x.
- 1039
- 1040 Nakashige, T.G., Bowman, S.E.J., Zygiel, E.M., Drennan, C.L., Nolan, E.M., 2018. Biophysical
- 1041 Examination of the Calcium-Modulated Nickel-Binding Properties of Human Calprotectin
- 1042 Reveals Conformational Change in the EF-Hand Domains and His3Asp Site. Biochemistry 57,
- 1043 4155-4164. https://doi.org/10.1021/acs.biochem.8b00415.
- 1044
- 1045 Nakashige, T.G., Stephan, J.R., Cunden, L.S., Brophy, M.B., Wommack, A.J., Keegan, B.C. et
- al., 2016. The Hexahistidine Motif of Host-Defense Protein Human Calprotectin Contributes to
- 1047 Zinc Withholding and Its Functional Versatility. J. Am. Chem. Soc. 138, 12243-12251.
- 1048 https://doi.org/10.1021/jacs.6b06845.
- 1049
- 1050 Nakashige, T.G., Zhang, B., Krebs, C., Nolan, E.M., 2015. Human calprotectin is an iron-
- 1051 sequestering host-defense protein. Nat. Chem. Biol. 11, 765-771.
- 1052 https://doi.org/10.1038/nchembio.1891.
- 1053
- 1054 Nakashige, T.G., Zygiel, E.M., Drennan, C.L., Nolan, E.M., 2017. Nickel Sequestration by the
- 1055 Host-Defense Protein Human Calprotectin. J. Am. Chem. Soc. 139, 8828-8836.
- 1056 https://doi.org/10.1021/jacs.7b01212.
- 1057
- 1058 Nakatani, Y., Yamazaki, M., Chazin, W.J., Yui, S., 2005. Regulation of S100A8/A9
- 1059 (calprotectin) binding to tumor cells by zinc ion and its implication for apoptosis-inducing
- 1060 activity. Mediators Inflamm 2005, 280-292. https://doi.org/10.1155/MI.2005.280.
- 1061
- 1062 Ostendorp, T., Diez, J., Heizmann, C.W., Fritz, G., 2011. The crystal structures of human S100B
- 1063 in the zinc- and calcium-loaded state at three pH values reveal zinc ligand swapping. Biochim.
- 1064 Biophys. Acta 1813, 1083-1091. https://doi.org/10.1016/j.bbamcr.2010.10.006.
- 1065
- 1066 Ostendorp, T., Leclerc, E., Galichet, A., Koch, M., Demling, N., Weigle, B. et al., 2007.
- 1067 Structural and functional insights into RAGE activation by multimeric S100B. EMBO J 26,
- 1068 3868-3878. https://doi.org/10.1038/sj.emboj.7601805.
- 1069
- 1070 Otsuka, K., Terasaki, F., Ikemoto, M., Fujita, S., Tsukada, B., Katashima, T. et al., 2009.
- 1071 Suppression of inflammation in rat autoimmune myocarditis by S100A8/A9 through modulation
- 1072 of the proinflammatory cytokine network. Eur J Heart Fail 11, 229-237.
- 1073 https://doi.org/10.1093/eurjhf/hfn049.
- 1074

- 1075 Paccola, C.C., Gutierrez, V.P., Longo, I., Juliano, L., Juliano, M.A., Giorgi, R., 2008.
- 1076 Antinociceptive effect of the C-terminus of murine S100A9 protein on experimental neuropathic
- 1077 pain. Peptides 29, 1806-1814. https://doi.org/10.1016/j.peptides.2008.05.023.
- 1078
- 1079 Pagano, R.L., Moraes, N.F., De Lorenzo, B.H., Coccuzzo Sampaio, S., Mariano, M., Giorgi, R.,
- 1080 2014. Inhibition of macrophage functions by the C-terminus of murine S100A9 is dependent on
- 1081 B-1 cells. Mediators Inflamm 2014, 836491. https://doi.org/10.1155/2014/836491.
- 1082
- 1083 Pruenster, M., Vogl, T., Roth, J., Sperandio, M., 2016. S100A8/A9: From basic science to
- 1084 clinical application. Pharmacol Ther 167, 120-131.
- 1085 https://doi.org/10.1016/j.pharmthera.2016.07.015.
- 1086
- 1087 Raftery, M.J., Collinson, L., Geczy, C.L., 1999. Overexpression, oxidative refolding, and zinc
 1088 binding of recombinant forms of the murine S100 protein MRP14 (S100A9). Protein Expr Purif
- 1089 15, 228-235. https://doi.org/10.1006/prep.1998.1015.
- 1090
- 1091 Raftery, M.J., Geczy, C.L., 1998. Identification of posttranslational modifications and cDNA 1092 sequencing errors in the rat S100 proteins MRP8 and 14 using electrospray ionization mass
- 1093 spectrometry. Anal Biochem 258, 285-292. https://doi.org/10.1006/abio.1997.2601.
- 1094
- Raftery, M.J., Harrison, C.A., Alewood, P., Jones, A., Geczy, C.L., 1996. Isolation of the murine
 S100 protein MRP14 (14 kDa migration-inhibitory-factor-related protein) from activated spleen
 cells: characterization of post-translational modifications and zinc binding. Biochem J 316 (Pt
- 1098 1), 285-293. https://doi.org/10.1042/bj3160285.
- 1099
- 1100 Realegeno, S., Kelly-Scumpia, K.M., Dang, A.T., Lu, J., Teles, R., Liu, P.T. et al., 2016.
- 1101 S100A12 Is Part of the Antimicrobial Network against Mycobacterium leprae in Human
- 1102 Macrophages. PLoS Pathog. 12, e1005705. https://doi.org/10.1371/journal.ppat.1005705.
- 1103
- Reeb, A.N., Li, W., Sewell, W., Marlow, L.A., Tun, H.W., Smallridge, R.C. et al., 2015. S100A8
- 1105 is a novel therapeutic target for anaplastic thyroid carcinoma. J Clin Endocrinol Metab 100, 1106 E232,242, https://doi.org/10.1210/ia.2014.2088
- 1106 E232-242. https://doi.org/10.1210/jc.2014-2988.
- 1107
- Roh, J.S., Sohn, D.H., 2018. Damage-Associated Molecular Patterns in Inflammatory Diseases.
 Immune netw. 18, e27. https://doi.org/10.4110/in.2018.18.e27.
- 1110
- 1111 Sakaguchi, M., Yamamoto, M., Miyai, M., Maeda, T., Hiruma, J., Murata, H. et al., 2016.
- 1112 Identification of an S100A8 Receptor Neuroplastin-beta and its Heterodimer Formation with
- 1113 EMMPRIN. J Invest Dermatol 136, 2240-2250. https://doi.org/10.1016/j.jid.2016.06.617.
- 1114

- 1115 Schafer, B.W., Fritschy, J.M., Murmann, P., Troxler, H., Durussel, I., Heizmann, C.W. et al.,
- 1116 2000. Brain S100A5 is a novel calcium-, zinc-, and copper ion-binding protein of the EF-hand
- superfamily. Journal of Biological Chemistry 275, 30623-30630. https://doi.org/DOI
- 1118 10.1074/jbc.M002260200.
- 1119
- 1120 Shabani, F., Farasat, A., Mahdavi, M., Gheibi, N., 2018. Calprotectin (S100A8/S100A9): a key
- 1121 protein between inflammation and cancer. Inflamm Res 67, 801-812.
- 1122 https://doi.org/10.1007/s00011-018-1173-4.
- 1123
- 1124 Shibata, F., Miyama, K., Shinoda, F., Mizumoto, J., Takano, K., Nakagawa, H., 2004. Fibroblast
- growth-stimulating activity of S100A9 (MRP-14). Eur J Biochem 271, 2137-2143.
- 1126 https://doi.org/10.1111/j.1432-1033.2004.04129.x.
- 1127
- Sievers, F., Higgins, D.G., 2018. Clustal Omega for making accurate alignments of many protein
 sequences. Protein Sci 27, 135-145. https://doi.org/10.1002/pro.3290.
- 1130
- 1131 Sobott, F., Hernandez, H., McCammon, M.G., Tito, M.A., Robinson, C.V., 2002. A tandem mass
- 1132 spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal
- 1133 Chem 74, 1402-1407. https://doi.org/10.1021/ac0110552.
- 1134
- 1135 Stephan, J.R., Yu, F.T., Costello, R.M., Bleier, B.S., Nolan, E.M., 2018. Oxidative Post-
- translational Modifications Accelerate Proteolytic Degradation of Calprotectin. J. Am. Chem.
 Soc. 140, 17444-17455. https://doi.org/10.1021/jacs.8b06354.
- 1138
- 1139 Striz, I., Trebichavsky, I., 2004. Calprotectin a pleiotropic molecule in acute and chronic
- 1140 inflammation. Physiol Res 53, 245-253.
- 1141
- 1142 Tomonobu, N., Kinoshita, R., Sakaguchi, M., 2020. S100 Soil Sensor Receptors and Molecular
- 1143 Targeting Therapy Against Them in Cancer Metastasis. Transl Oncol 13, 100753.
- 1144 https://doi.org/10.1016/j.tranon.2020.100753.
- 1145
- 1146 Unno, M., Kawasaki, T., Takahara, H., Heizmann, C.W., Kizawa, K., 2011. Refined crystal
- 1147 structures of human Ca(2+)/Zn(2+)-binding S100A3 protein characterized by two disulfide
- 1148 bridges. J. Mol. Biol. 408, 477-490. https://doi.org/10.1016/j.jmb.2011.02.055.
- 1149
- 1150 van den Heuvel, R.H., van Duijn, E., Mazon, H., Synowsky, S.A., Lorenzen, K., Versluis, C. et
- al., 2006. Improving the performance of a quadrupole time-of-flight instrument for
- 1152 macromolecular mass spectrometry. Anal Chem 78, 7473-7483.
- 1153 https://doi.org/10.1021/ac061039a.
- 1154

- 1155 Vogl, T., Leukert, N., Barczyk, K., Strupat, K., Roth, J., 2006. Biophysical characterization of
- 1156 S100A8 and S100A9 in the absence and presence of bivalent cations. Biochim. Biophys. Acta
- 1157 1763, 1298-1306. https://doi.org/10.1016/j.bbamer.2006.08.028.
- 1158
- 1159 Wang, C., Iashchishyn, I.A., Pansieri, J., Nystrom, S., Klementieva, O., Kara, J. et al., 2018a.
- 1160 S100A9-Driven Amyloid-Neuroinflammatory Cascade in Traumatic Brain Injury as a Precursor
- 1161 State for Alzheimer's Disease. Sci Rep 8, 12836. https://doi.org/10.1038/s41598-018-31141-x.
- 1162
- 1163 Wang, Q., Chen, W., Lin, J., 2019. The Role of Calprotectin in Rheumatoid Arthritis. J Transl
- 1164 Int Med 7, 126-131. https://doi.org/10.2478/jtim-2019-0026.
- 1165
- 1166 Wang, S., Song, R., Wang, Z., Jing, Z., Wang, S., Ma, J., 2018b. S100A8/A9 in Inflammation.
- 1167 Front Immunol 9, 1298. https://doi.org/10.3389/fimmu.2018.01298.
- 1168
- 1169 Wei, W., Lampe, L., Park, S., Vangara, B.S., Waldo, G.S., Cabantous, S. et al., 2012. Disulfide
- bonds within the C2 domain of RAGE play key roles in its dimerization and biogenesis. PLoS
- 1171 One 7, e50736. https://doi.org/10.1371/journal.pone.0050736.
- 1172
- 1173 Winningham-Major, F., Staecker, J.L., Barger, S.W., Coats, S., Van Eldik, L.J., 1989. Neurite
- extension and neuronal survival activities of recombinant S100 beta proteins that differ in the
- 1175 content and position of cysteine residues. J Cell Biol 109, 3063-3071.
- 1176 https://doi.org/10.1083/jcb.109.6.3063.

- 1178 Wojda, U., Kuznicki, J., 1994. Calcyclin from Mouse Ehrlich Ascites Tumor-Cells and Rabbit
- 1179 Lung Form Noncovalent Dimers. Biochimica Et Biophysica Acta-Protein Structure and
- 1180 Molecular Enzymology 1209, 248-252. https://doi.org/Doi 10.1016/0167-4838(94)90192-9.
- 1181
- 1182 Yamaguchi, F., Tsuchiya, M., Shimamoto, S., Fujimoto, T., Tokumitsu, H., Tokuda, M. et al.,
- 1183 2016. Oxidative Stress Impairs the Stimulatory Effect of S100 Proteins on Protein Phosphatase 5
- 1184 Activity. Tohoku Journal of Experimental Medicine 240, 67-78.
- 1185 https://doi.org/10.1620/tjem.240.67.

1186

Yatime, L., 2017. [A cystein-dependent activation mechanism for the pro-inflammatory ligands
of RAGE?]. Med Sci (Paris) 33, 351-354. https://doi.org/10.1051/medsci/20173303026.

- 1190 Yatime, L., 2019. Structural Analysis of S100A8 Complex with Zinc and Calcium: A General
- 1191 Protocol for the Study of S100 Proteins in the Presence of Divalent Cations by X-Ray
- 1192 Crystallography. Methods Mol Biol 1929, 417-435. https://doi.org/10.1007/978-1-4939-9030-
- 1193
 6_26.
- 1194

1195 Yatime, L., Betzer, C., Jensen, R.K., Mortensen, S., Jensen, P.H., Andersen, G.R., 2016. The 1196 Structure of the RAGE:S100A6 Complex Reveals a Unique Mode of Homodimerization for

- 1197 S100 Proteins. Structure 24, 2043-2052. https://doi.org/10.1016/j.str.2016.09.011.
- 1198
- 1199 Zackular, J.P., Chazin, W.J., Skaar, E.P., 2015. Nutritional Immunity: S100 Proteins at the Host-
- 1200 Pathogen Interface. J. Biol. Chem. 290, 18991-18998. https://doi.org/10.1074/jbc.R115.645085.
- 1201
- 1202
- 1203
- 1204 **Figure legends**

1205 Figure 1. Structure of murine S100A9 in the presence of calcium and zinc. (A) General overview of the structure of the Ca²⁺/Zn²⁺-bound murine S100A9 (mS100A9) homodimer at 1.45 Å 1206 1207 resolution. The two mS100A9 subunits are shown in beige and purple. Calcium and zinc ions are 1208 displayed as green and yellow spheres, respectively. (B) Final electron density map contoured at 1209 1σ and final model superimposed to assess the quality of the fit. (C) Anomalous difference Fourier 1210 maps calculated using phases and weight from the best refined atomic model obtained with the native dataset and anomalous differences from the datasets collected at wavelengths of 1.27 Å 1211 (blue mesh, contour at 5σ) and 1.30 Å (red mesh, contour at 5σ). The final model displayed as 1212 1213 cartoon is superimposed for comparison. (**D**) Superimposition of the mS100A9 protomer from the X-ray structure of Ca^{2+}/Zn^{2+} -bound mS100A9 homodimer (beige, this study) with the hS100A9 1214 1215 moiety from the NMR structure of apo-hS100A9 homodimer (red, PDB_ID 5I8N (Chang et al., 2016)), from the X-ray structure of Ca²⁺-bound hS100A9 homodimer (cyan, PDB ID 1IRJ (Itou 1216 et al., 2002)) and from the X-ray structure of Ca^{2+}/Mn^{2+} -bound calprotectin heterocomplex (grey, 1217 1218 PDB ID 4GGF (Damo et al., 2013)). Superimposition was performed on C-alpha atoms (mS100A9 residues Glu10 to Leu83). (E) Superimposition of the Ca^{2+}/Zn^{2+} -bound mS100A9 1219 homodimer (beige, this study) with apo (red, PDB ID 518N (Chang et al., 2016)) and Ca²⁺-bound 1220

hS100A9 homodimer (cyan, PDB_ID 1IRJ (Itou et al., 2002)). All 3 homodimers are superimposed on subunit A (superimposition on C-alpha atoms, mS100A9 residues Glu10 to Leu83). (F) Superimposition of the Ca^{2+}/Zn^{2+} -bound mS100A9 homodimer (beige, this study) with Ca^{2+} -bound (grey, PDB_ID 1MR8 (Chang et al., 2016)) and Ca^{2+}/Zn^{2+} -bound hS100A8 homodimer (purple, PDB_ID 5HLO (Itou et al., 2002)). All 3 homodimers are superimposed on subunit A (superimposition on C-alpha atoms, mS100A9 residues Glu10 to Leu83).

1227 Figure 2. The two Zn-binding modes of mS100A9: comparison with hS100A9 and influence on the conformation of the C-terminal tail. (A) Zoom on the first type of Zn²⁺-binding site of 1228 1229 mS100A9, close to the first Ef-hand motif of subunit A. Anomalous difference Fourier maps 1230 calculated using phases and weight from the best refined atomic model (without ions) obtained 1231 with the native dataset and anomalous differences from datasets collected at different wavelengths are shown as blue mesh ($\lambda = 1.27$ Å, contour at 3.5 σ) or red mesh ($\lambda = 1.30$ Å, contour at 3.5 σ). 1232 1233 Residues involved in zinc coordination are shown as sticks. (B) Sequence alignment of the C-1234 terminal region (Helix H4 + C-terminal tail) of murine and human S100A9. The alignment was 1235 performed in Clustal Omega (Sievers et al., 2018; Madeira et al., 2019). The secondary structure 1236 is displayed schematically above the alignment. The residue numbering indicated below the 1237 alignment corresponds to mS100A9 sequence. Identical residues between the two sequences are 1238 underlined in dark green whereas conserved mutations are highlighted in light green. The three 1239 cysteines of mS100A9 are indicated with a red star. Histidine residues involved in zinc 1240 coordination are marked with orange (Zn-binding site 1) or blue (Zn-binding site 2) triangles for 1241 mS100A9 and with orange spheres (Zn-binding site 1) for hS100A9. (C) Same as panel A but with the close-up view centered on the second type of Zn^{2+} -binding site of mS100A9, within the C-1242 1243 terminal tail of subunit A. (**D**) Overview of the C-terminal region of mS100A9 encompassing helix

H4 and the C-terminal tail closing around the second Zn²⁺ binding site. A disulfide bridge connects
Cys91 and Cys111 while Cys80 remains free.

1246 Figure 3. Biophysical investigation of zinc binding to the mS100A9 homodimer. (A) ITC titrations and binding isotherms fitted with a one-site model for the binding of Zn^{2+} to apo-mS100A9. 1247 Experiments were performed at least in duplicates. The measured K_d value and stoichiometry for 1248 each particular experiment are indicated on the graph. (B) Same as panel A but with Ca²⁺-bound 1249 1250 mS100A9 homodimer. (C) DLS analysis of apo-mS100A9 in the presence of increasing 1251 concentrations of zinc. Below 3 molar equivalents of zinc, mS100A9 remains homodimeric. At 3 1252 or more equivalents, mS100A9 readily aggregates and forms large oligomers. (D) Same as panel C but with Ca^{2+} -bound mS100A9. 1253

1254 Figure 4. Mass spectrometry analysis of WT mS100A9 in the absence of divalent cations. (A) 1255 LC/ESI-TOF-MS deconvoluted spectrum of untreated WT mS100A9. The protein displays two 1256 peaks, one at a mass of 13175.1 Da referred to as the "monomeric" peak (M), and one at 26349.5 1257 Da referred to as the "dimeric" peak (D). (B) and (C) Native MS spectra of WT mS100A9 either 1258 untreated (panel B) or after treatment with DTT (panel C) prior to MS analysis. Interestingly, 1259 mS100A9 carries less charges in the presence of disulfide bridges. Specifically, the highest peaks 1260 of disulfide-bond containing mS100A9 monomeric and dimeric forms are 7+ and 10+, respectively 1261 (panel B). On the contrary, the highest peaks of the DTT-treated mS100A9 monomers and dimers 1262 are 8+ and 11+, respectively (panel C). These differences in charge reflect the higher degree of 1263 compactness of the disulfide cross-linked mS100A9 protein. (D), (E) and (F) LC/ESI-TOF-MS 1264 deconvoluted spectra of WT mS100A9 incubated with either DTT alone (DTT, panel D), 1265 iodoacetamide alone (IAA, panel E) or DTT + IAA (panel F) prior to MS analysis. (G) 1266 Superimposition of the LC/ESI-TOF-MS deconvoluted spectra obtained for WT mS100A9

1267 without any treatment (upper spectrum), incubation with IAA alone (middle spectrum) or with 1268 DTT + IAA (lower spectrum). The spectra are centered on the region corresponding to the 1269 "monomeric" peak. (H) Superimposition of the LC/ESI-TOF-MS deconvoluted spectra obtained 1270 for WT mS100A9 without any treatment (upper spectrum) or incubation urea + DTT + IAA (lower 1271 spectrum). The spectra are centered on the region corresponding to the "monomeric" peak. (I) 1272 Superimposition of the LC/ESI-TOF-MS deconvoluted spectra obtained for WT mS100A9 1273 without any treatment (upper spectrum) or after incubation with IAA alone (lower spectrum). The 1274 spectra are centered on the region corresponding to the "dimeric" peak. The relative proportions 1275 of the "monomeric" and "dimeric" peaks (peak area expressed in %) are indicated on the 1276 corresponding graphs where appropriate.

Figure 5. Mass spectrometry analysis of WT mS100A9 in the presence of divalent cations. (A) and (B) LC/ESI-TOF-MS and native MS spectra of untreated WT mS100A9 in the presence of 1 mM CaCl₂. (C) and (D) LC/ESI-TOF-MS and native MS spectra of untreated WT mS100A9 in the presence of 1 mM ZnCl₂. (E) and (F) LC/ESI-TOF-MS and native MS spectra of untreated WT mS100A9 in the presence of 1 mM CaCl₂ + 1 mM ZnCl₂. The relative proportions of the "monomeric" and "dimeric" peaks (peak area expressed in %) are indicated on the LC/ESI-TOF-MS spectra.

Figure 6. Mass spectrometry analysis of the Cys-to-Ala mutants of mS100A9 in the absence or in the presence of divalent cations. (**A**) SDS-PAGE analysis of WT and mutant mS100A9 in the four different ionic conditions tested in the study. The sample deposited in each lane is indicated above the gels. (**B**) Superimposition of the LC/ESI-TOF-MS deconvoluted spectra obtained for untreated C111A mutant in the absence of ions (upper spectrum), in the presence of 1 mM CaCl₂ (upper middle spectrum), in the presence of 1 mM ZnCl₂ (lower middle spectrum), or in the presence of 1 mM CaCl₂ + 1 mM ZnCl₂ (lower spectrum). (C) Same as panel B but for mutant C91A. (D)
Same as panel B but for mutant C80A.

Figure 7. Structure of Ca^{2+}/Zn^{2+} -bound mS100A9 C80A and possible models for the disulfide-crosslinked mS100A9 homodimer. (A) General overview of the structure of the Ca^{2+}/Zn^{2+} -bound murine S100A9 C80A mutant (mS100A9-C80A) homodimer at 2.35 Å resolution. The two mS100A9-C80A subunits are shown in beige and purple. Calcium and zinc ions are displayed as green and yellow spheres, respectively. The zinc coordinating residues are depicted as sticks. The structure of the WT mS100A9 protein determined in this study has been superimposed for comparison (dark blue cartoon). (B) Canonical homodimer conformation of mS100A9 as observed in our crystal structure. In this configuration, only the two Cys111 from each monomer may reach out to form an intramolecular SS bridge although they are separated by more than 50Å, due in part to the side chains protruding from both helices H4. Inter-subunit interaction of Cys111 with Cys80 or Cys91 from the other subunit would require partial unfolding of the second S100A9 protomer (interactions indicated with a question mark).

	mS100A9 (WT)	mS100A9 (WT)	mS100A9 (WT)	mS100A9 (C80A)
	(native)	(anomalous)	(anomalous)	(native)
Data collection				
Diffraction source	ID23eh1, ESRF	ID23eh1, ESRF	ID23eh1, ESRF	X06DA, SLS
Wavelength (Å)	1.27	1.27	1.30	1.28
Space group	C2	C2	C2	C2
a, b, c (Å)	72.84, 40.62, 53.09	72.84, 40.62, 53.09	72.97, 40.65, 53.17	73.61, 38.80, 53.17
α, β, γ (°)	90, 125, 90	90, 125, 90	90, 124.99, 90	90, 124.75, 90
Mosaicity (°)	0.28	0.28	0.28	0.41
Resolution range (Å)	80 - 1.45 (1.51 - 1.45)	80 - 1.45 (1.51 - 1.45)	80 – 1.5 (1.57 – 1.5)	80 – 2.35 (2.44 – 2.35)
Total No. of reflections	141507 (13504)	143258 (13475)	130241 (14794)	34129 (3573)
No. of unique reflections	22267 (2406)	43051 (4657)	39043 (4809)	5224 (550)
Completeness (%)	97.6 (92.8)	96.9 (91.3)	96.9 (93.9)	98.5 (98.6)
Redundancy	6.35 (5.6)	3.3 (2.9)	3.3 (3.1)	6.5 (6.5)
, [/ σ(])	14.57 (1.93)	14.18 (1.52)	16.31 (1.57)	8.73 (2.33)
R _{meas}	5.9 (78.2)	4.4 (77.1)	3.8 (78.6)	13.2 (84.3)
Wilson B factor (Å ²)	30.3	30.3	32.4	43.5
Refinement				
Resolution range (Å)	43 - 1.45			43 – 2.35
No. of unique reflections	22210			5198
Final R _{work} / R _{free} (%)	17.57 / 19.95			26.80 / 30.54
No. of non-H atoms				
Protein	868			867
lons	9			20
Water	97			6
Total	974			893
R.m.s. deviations				
Bonds (Å)	0.004			0.002
Angles (°)	0.720			0.461
Average B factors (Å ²)				
Protein	38.7			66.8
lons	27.1			76.3
Water	47.1			59.3
Ramachandran plot				
Favored regions (%)	99.06			99.06
Allowed regions (%)	0.94			0.94
Outliers (%)	0			0

Table 1. Data collection and refinement statistics.

1316								
	Zn-ligand bond distances							
1317	Zn site	Ligand	Bond distance (Å)	Monodentate vs Bidentate ligand				
1210	Zn1/Zn3	His21	1.92	nr				
1518		Asp31	1.89 / 2.81	bidentate				
		His92	1.99	nr				
1319		His96	2.01	nr				
	Zn2/Zn4	Glu65	1.90	monodentate				
		His103	2.08	nr				
1320		His105	2.06	nr				
		His107	2.04	nr				
1321	Zn-ligand bond angles							
	Zn site	Ligand 1	Ligand 2	Angle (°)				
1322	Zn site Zn1/Zn3	Ligand 1 His21	Ligand 2 Asp31	Angle (°) 124.3				
1322	Zn site Zn1/Zn3	Ligand 1 His21 His21	Ligand 2 Asp31 His92	Angle (°) 124.3 107.4				
1322	Zn site Zn1/Zn3	Ligand 1 His21 His21 His21 His21	Ligand 2 Asp31 His92 His96	Angle (°) 124.3 107.4 109.1				
1322 1323	Zn site Zn1/Zn3	Ligand 1 His21 His21 His21 Asp31	Ligand 2 Asp31 His92 His96 His92	Angle (°) 124.3 107.4 109.1 114.2				
1322 1323	Zn site Zn1/Zn3	Ligand 1 His21 His21 His21 Asp31 Asp31	Ligand 2 Asp31 His92 His96 His92 His96	Angle (°) 124.3 107.4 109.1 114.2 95.4				
1322 1323 1324	Zn site Zn1/Zn3	Ligand 1 His21 His21 His21 Asp31 Asp31 His92	Ligand 2 Asp31 His92 His96 His92 His96 His96	Angle (°) 124.3 107.4 109.1 114.2 95.4 103.8				
1322 1323 1324	Zn site Zn1/Zn3 Zn2/Zn4	Ligand 1 His21 His21 His21 Asp31 Asp31 His92 Glu65	Ligand 2 Asp31 His92 His96 His92 His96 His96 His103	Angle (°) 124.3 107.4 109.1 114.2 95.4 103.8 111.9				
1322 1323 1324	Zn site Zn1/Zn3 Zn2/Zn4	Ligand 1 His21 His21 His21 Asp31 Asp31 His92 Glu65 Glu65	Ligand 2 Asp31 His92 His96 His92 His96 His96 His103 His105	Angle (°) 124.3 107.4 109.1 114.2 95.4 103.8 111.9 106.8				
1322 1323 1324 1325	Zn site Zn1/Zn3 Zn2/Zn4	Ligand 1 His21 His21 His21 Asp31 Asp31 His92 Glu65 Glu65 Glu65 Glu65	Ligand 2 Asp31 His92 His96 His92 His96 His96 His103 His105 His107	Angle (°) 124.3 107.4 109.1 114.2 95.4 103.8 111.9 106.8 118.5				
1322 1323 1324 1325	Zn site Zn1/Zn3 Zn2/Zn4	Ligand 1 His21 His21 His21 Asp31 Asp31 His92 Glu65 Glu65 Glu65 His103	Ligand 2 Asp31 His92 His96 His92 His96 His96 His103 His105 His107 His105	Angle (°) 124.3 107.4 109.1 114.2 95.4 103.8 111.9 106.8 118.5 114.2				
1322 1323 1324 1325	Zn site Zn1/Zn3 Zn2/Zn4	Ligand 1 His21 His21 His21 Asp31 Asp31 His92 Glu65 Glu65 Glu65 His103 His103	Ligand 2 Asp31 His92 His96 His92 His96 His96 His103 His105 His107 His105 His107	Angle (°) 124.3 107.4 109.1 114.2 95.4 103.8 111.9 106.8 118.5 114.2 104.6				

1327 Table 2. Zn²⁺-ligand bond distances and angles measured for the two different types of Zn-

binding sites encountered in mS100A9 crystal structure. nr: not relevant.

Sample		Ca	Cr	Mn	Fe	Со	Ni	Cu	Zn
Buffer 1	ppb	151	0.061	Nd	Nd	0.122	4.760	0.554	1.787
	μΜ	3.764	0.001	Nd	Nd	0.002	0.081	0.009	0.027
m\$100A9	ppb	146	0.139	Nd	Nd	0.088	7.851	3.490	22.010
	μΜ	3.644	0.003	Nd	Nd	0.001	0.133	0.055	0.336
	equiv./A9	0.018	1.34e-5	Nd	Nd	7.46e-6	7e-4	3e-4	0.002
Control SLRS-6									
SLRS-6	ppb	9161.5	0.260	2.218	85.513	0.059	0.612	25.76	1.960
Certified	ppb	8770	0.252	2.12	84.5	0.053	0.617	24.0	1.76
values SLRS-6	SD (ppb)	200	0.012	0.10	3.6	0.012	0.022	1.8	0.12

1333

1335

Table 3. Metal content of purified WT mS100A9 as analyzed by ICP-MS. Each sample was analyzed only once (averaging over 3 replicates). Metal content is given in parts per billion (ppb), in concentration (μ M), and as molar equivalents with respect to mS100A9. Nd indicates that the concentration was below detection limit and could not be determined. Certified water SLRS-6 was used as a control (both the values measured in our experiments, the certified values and the standard deviation SD on certified values are indicated for SLRS-6).

Α

Mass (Da)

D

