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1 Abstract 17 

Anthropogenic impoundments (e.g. large dams, small reservoirs, and ponds) are 18 

expanding in number globally, influencing downstream temperature regimes in a diversity 19 

of ways that depend on their structure and position along the river continuum. Because of 20 

the manifold downstream thermal responses, there has been a paucity of studies 21 

characterizing cumulative effect sizes at the catchment scale. Here, we introduce five 22 

thermal indicators based on the stream-air temperature relationship that together can 23 

identify the altered thermal signatures of dams and ponds. We used this thermal signature 24 

approach to evaluate a regional dataset of 330 daily stream temperature time series from 25 

stations throughout the Loire River basin, France, from 2008–2018. This basin (105 km2) 26 

is one of the largest European catchments with contrasting natural and anthropogenic 27 

characteristics. The derived thermal signatures were cross-validated with several known 28 

catchment characteristics, which strongly supported separation into dam-like, pond-like 29 

and natural-like signatures. We characterize the thermal regime of each thermal signature 30 

and contextualize it using a set of ecologically relevant thermal metrics. Results indicate 31 

that large dams decreased summer stream temperature by 2°C and delayed the annual 32 

stream temperature peak by 23 days relative to the natural regimes. In contrast, the 33 

cumulative effects of upstream ponds increased summer stream temperature by 2.3°C and 34 

increased synchrony with air temperature regimes. These thermal signatures thus allow for 35 

identifying and quantifying downstream thermal and ecological influences of different 36 

types of anthropogenic infrastructures without prior information on the source of 37 

modification and upstream water temperature conditions. 38 

Keywords: thermal regime, impoundment, reservoir, Loire River, thermal 39 

sensitivity40 
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1. Introduction 41 

1.1 Stream temperature in a changing world 42 

River corridors store, transform, and convey mass and energy from headwaters to 43 

oceans. Although rivers are typically analyzed as lotic systems, the distribution of lentic 44 

water bodies (e.g., lakes, reservoirs, ponds) along the river continuum has recently come 45 

to light as a critical factor in nitrogen removal (Harrison et al., 2009; Schmadel et al., 46 

2018), and storage of phosphorus (Grantz et al., 2014) and sediments (Vörösmarty et al., 47 

2003). An emerging concern is the cumulative effects of lentic systems on stream and 48 

river water temperature, which is a critical parameter affecting the eutrophication of water 49 

bodies (Minaudo et al., 2018; Le Moal et al., 2019) and the distribution of aquatic 50 

communities (Cox & Rutherford, 2000; Poole & Berman, 2001; Ducharne, 2008).  51 

Stream temperature effects from lentic water bodies depend strongly on their 52 

individual characteristics and their overall spatial distributions, complicating scales of 53 

inference and prediction. For example, anthropogenic features like dams, impoundments 54 

and ponds appear to have contrasting effects on stream temperature (Webb, 1996; Webb 55 

et al., 2008; Olden & Naiman, 2010). It is important to develop a more general 56 

understanding of these effects because global change will likely exacerbate them, e.g., by 57 

increasing the number of future dams or ponds and increasing the capacity of current 58 

ones. Indeed, in some countries, recurrent droughts led to an increase in the number of 59 

small farm dams storing water for later use in irrigation (Habets et al., 2013). The 60 

preponderance of studies on the regional scale effects of anthropogenic structures use 61 

physical process-based models that are highly parameterized (Van Vilet et al., 2012; 62 

Niemeyer et al., 2018; Yearsley et al., 2019; Cheng et al., 2020), limiting their broad 63 

applicability (Dugdale et al., 2017). Hence, there is a need for simpler, data-based tools 64 

that can identify and predict such anthropogenic effects on stream temperature and 65 
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subsequent consequences to ecosystems, particularly at large scales relevant to 66 

management. 67 

1.2 Large dams tend to reduce stream temperature and shift annual cycles 68 

The effects of large dams on river thermal regimes are well studied at the site scale 69 

(Webb & Walling, 1993, 1996, 1997; Lowney, 2000; Preece & Jones, 2002; Casado et al., 70 

2013). These studies typically compare observed stream temperature regimes above and 71 

below the dam, before and after dam construction, or in regulated and unregulated 72 

streams, with unregulated streams being located in close proximity of regulated streams 73 

with a similar climate. Results provide strong support that large dams generally reduce 74 

downstream temperatures by releasing cold, hypolimnetic water in summer (Olden & 75 

Naiman, 2010), and that they delay the annual cycle of both flow (Lehner et al., 2011) and 76 

stream temperature regimes (Webb & Walling, 1993; Webb, 1996). Additionally, through 77 

discharge regime regulation (Petts & Gurnell, 2005), large dams may also modify stream 78 

temperature through the impact on thermal capacity without necessarily modifying the 79 

components of heat budget (Webb & Walling, 1996; Poole & Berman, 2001). While some 80 

subsequent works have used physical process-based models to upscale these effects across 81 

river networks and regions (Van Vliet et al., 2012; Niemeyer et al., 2018; Cheng et al., 82 

2020; Daniels & Danner, 2020), large-scale empirical assessments remain scarce (but see 83 

Steel & Lange, 2007; Maheu et al., 2016a, Hill et al., 2013). Hence, there is still a major 84 

gap in our regional scale understanding of dam-induced alterations, largely because the 85 

changes to any one component of river thermal regime depend on the spatiotemporal 86 

scales considered (Steel & Lange, 2007). 87 

1.3 Ponds and shallow reservoirs tend to increase stream temperature 88 

Pond and shallow (<15 m in height) reservoir effects on stream temperature differ 89 

from those of large dams due to their mode of downstream water release. Observations 90 



5  

suggest that the surficial water release from these structures – as opposed to hypolimnetic 91 

release from large dams – tends to increase downstream stream temperature (Sinokrot et 92 

al., 1995; Maxted et al., 2005; Bae et al., 2016; Maheu et al., 2016b; Chandesris et al., 93 

2019). The greatest increase in stream temperature occurs during low-flow periods 94 

(Webb, 1996). Specifically, these structures increase not just the average stream 95 

temperature, but also its diurnal range and the frequency and duration of high 96 

temperatures (Maheu et al., 2016a, 2016b; Chandesris et al., 2019). Further, the increase 97 

in downstream temperature is weakly compensated by natural processes, leading to 98 

minimal downstream recovery to baseline temperatures (Boon & Shires, 1976; Fraley, 99 

1979; Maxted et al., 2005; Dripps & Granger, 2013). However, thermal alterations from 100 

small impoundments are far less studied than those of large dams, and their cumulative 101 

effects on river thermal regimes at the regional scale are unknown. 102 

1.4 The stream-air temperature relationship as a diagnostic tool 103 

A major challenge in the regional assessment of water temperature is the lack of 104 

detailed information about the heat budget (Webb & Zhang, 1997). This issue leads to 105 

using air temperature as a proxy for computing the river heat budget. Simple linear 106 

regression between water and air temperature is a common proxy technique to infer 107 

stream thermal regimes (Stefan & Preud’homme, 1993; Pilgrim et al., 1998; Mohseni et 108 

al., 1999; Erickson & Stefan, 2000; Caissie et al., 2004), but regression parameters are 109 

highly spatially variable. For instance, river reaches without groundwater input typically 110 

have steep regression slopes with low intercepts, but opposite relations can emerge for 111 

groundwater-dominated reaches (Caissie, 2006; O’Driscoll & DeWalle, 2006; Kelleher et 112 

al., 2012). The relationship between water temperature and air temperature may also be 113 

altered by different types of anthropogenic disturbances leading to a weaker correlation 114 

and/or a smaller regression slope (Erickson & Stefan, 2000; Webb et al., 2008; Bae et al., 115 
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2016). We can therefore take advantage of these spatially variable relationships to infer 116 

the controls and drivers of stream temperature.  117 

1.5 Thermal signatures as a means of identifying anthropogenic influences 118 

We suggest development of “thermal signatures” based on air-water temperature 119 

relationships to identify anthropogenic influences on stream temperature regimes. The 120 

choice of the name thermal signatures derives from the analogous concept of hydrological 121 

signatures (Gupta et al., 2008), which use statistical analysis of flow regimes to provide 122 

information on broader controls on hydrological behavior (e.g., dominant flow processes, 123 

strength and spatiotemporal variability of the rainfall–runoff response (Berhanu et al., 124 

2015; McMillan et al., 2017). Similarly, thermal signatures capitalize on indicators 125 

extracted from the statistical structure of local stream-air temperature relationships to 126 

identify the dominant processes (e.g., anthropogenic influences) that generate observed 127 

stream temperature time series. Due to the wide availability of air temperature data and 128 

the rapid growth of water temperature datasets, thermal signatures can be applied at large 129 

scales, facilitating regional assessments of stream temperature variability. Thermal 130 

signatures further allow tracing of systematic changes introduced by anthropogenic 131 

structures like dams or ponds, and identification of highly influenced reaches at large 132 

scale.  133 

1.6 Purpose of the study 134 

The purpose of this study is to distinguish the characteristics of altered and natural 135 

stream thermal regimes, and to determine their spatial distributions at a regional scale with 136 

a simple, data-based approach. To do so, we use novel thermal signatures based on both 137 

stream-air temperature linear regression and seasonality analysis. These signatures reveal 138 

the influence of dams and ponds on thermal regimes without prior information on the 139 

source of modification or upstream water temperature conditions. We then cross validate 140 
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our thermal signature approach with known properties of catchments and anthropogenic 141 

structures. Finally, we contextualize the thermal signatures with a set of ecologically 142 

relevant thermal metrics. 143 

2 Study area and data 144 

2.1 Loire basin and surface waters 145 

The Loire basin is a large European catchment (105 km2) with contrasting natural 146 

conditions (Figure 1), providing an ideal case study to test the limitations of the thermal 147 

signature approach. Mean annual precipitation (549–2130 mm), mean annual air 148 

temperature (6.0–12.5°C), altitude (10–1850 m), and lithology provide spatially variable 149 

controls on stream temperature regime (Figure 1, left panel.).  150 

[Figure 1 about here.] 151 

Surface waters (as identified by aerial photography; minimum resolution of 15 m2) 152 

cover approximately 0.8% of the Loire basin, and include 11 natural lakes and numerous 153 

artificial ponds, shallow reservoirs (6 m< height <15 m), and large dams (height>15 m). 154 

Up to 70% of surface waters have surface areas less than 10 ha, and less than 0.5% of the 155 

surface waters (by number) are shallow reservoirs. Hence, over 99% of surface waters are 156 

artificial ponds, commonly dedicated to irrigation or recreation. Height and volume 157 

estimates are unavailable for the most of these artificial ponds (see Figure 1, right panel; 158 

IGN, 2006). Based on these observations, we considered surface waters that were not 159 

natural lakes or dams to be “ponds”, while recognizing that some small proportion of 160 

these so-called ponds may indeed be shallow reservoirs. 161 

The Loire River basin houses 73 large dams (total storage capacity, S=999 Mm3), 162 

which are used for hydroelectricity (S=734 Mm3), drinking water (S=57 Mm3), recreation 163 

(S=32 Mm3) and navigation (S=234 Mm3) (see Figure 1, right panel). The two largest 164 

dams are: 1) Naussac dam (S=190 Mm3, height =50 m), and 2) Villerest dam (S=106 165 
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Mm3, height = 59 m) (Figure 1, right panel) These large dams are located in the upstream 166 

part of the basin (referred to as region A in Figure 1, right panel), with granite and basalt 167 

lithology and little influence of groundwater input.  168 

2.2 Observed stream and air temperature data 169 

We obtained hourly water temperature for 2008–2018 at 392 stations with complete 170 

year data, most of which were managed by the French Agency for Biodiversity 171 

(http://www.naiades.eaufrance.fr) and the National Fishing Federation 172 

(https://www.federationpeche.fr). Most stations (55%) had at least 5 years of data, with 173 

1% having all 11 years of complete temperature data and 33% having less than 3 years. 174 

The stations are evenly distributed across the Loire basin, with a median Euclidean 175 

distance between any two stations of 4 km. The stations represent a wide range of river 176 

discharge (mean annual specific discharge 72–1050 mm y-1) and width (1.5–34 m), with 177 

75% of the stations located on rivers with a Strahler order from 2 to 4. The mean annual 178 

stream temperature varies between 8°C in the upstream part of the basin and 14°C in the 179 

western downstream part. The majority of stations (~80%) have artificial ponds in their 180 

contributing area. There are 38 stations downstream of large dams (median of distance=6 181 

km). For the large dams, no information about mode-of-operation (e.g., peaking, run-of-182 

river, storage, etc.) was available. Only four stations are located downstream of natural 183 

lakes (median of distance=4.15 km).  184 

We obtained air temperature data from SAFRAN reanalysis at a 8-km spatial 185 

resolution (Quintana-Segui et al., 2008; Vidal et al., 2010). SAFRAN is a mesoscale 186 

atmospheric analysis system for surface variables. It produces an analysis at the hourly 187 

time step using ground data observations and numerical models. The daily-averaged data 188 

of the closest grid cell to each stream temperature station is used. 189 
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2.3 Basin feature databases and descriptors 190 

We used four databases to obtain catchment characteristics for each station: 191 

• BD ALTI® 50-m resolution digital terrain model dataset for topographic 192 

variables (IGN, 2011); 193 

• RHT (Theoretical Hydrographic Network for France, and its environmental 194 

attributes) for river and stream hydrological variables (Pella et al., 2012); 195 

• BD CARTHAGE® (Thematic CARtography Database of Water Agencies and 196 

the Ministry of the Environment) for location and surface areas of reservoirs 197 

and ponds (IGN, 2006); 198 

• AELB (Loire-Bretagne Water Agency) for dams’ characteristics (location, 199 

height and volume) (Chandesris & Pella, 2006); 200 

• SYRAH-CE (Relational System for Auditing River Hydromorphology) for 201 

land cover and geomorphological variables (Valette et al., 2012). 202 

3 Methods 203 

We define five general steps to identify and characterize thermal signatures of 204 

altered stream temperature regimes: 205 

1. Select stream temperature stations; 206 

2. define thermal indicators and signatures for identifying altered regimes; 207 

3. identify thermal signatures of altered regimes through clustering based on 208 

thermal indicators; 209 

4. cross validate the derived thermal signatures; and 210 

5. characterize the thermal signatures. 211 

3.1 Select stream temperature stations 212 

We selected stations based on their potential to be influenced by anthropogenic 213 

structures. This effectively eliminates large rivers from our dataset because they are 214 
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weakly sensitive to thermal regime alterations due to their larger conveyed volumes and 215 

greater thermal capacity (Smith & Lavis, 1975; Webb & Walling, 1993; Caissie, 2006; 216 

Kelleher et al., 2012). Moreover, because large river temperatures are approximately in 217 

equilibrium with air temperature (Moatar & Gailhard, 2006; Bustillo et al., 2014), 218 

information extracted from regression-type analyses is equivocal. Therefore, this study 219 

focuses on smaller rivers to identify altered regimes. 220 

To subset our original dataset to focus on smaller rivers, we removed stations that are 221 

in equilibrium with air temperature (and thus weakly sensitive to our proposed thermal 222 

signature approach) using a distance-from-source threshold. To calculate this threshold, 223 

we regressed interannual summer (June–August, referred to as “JJA” throughout) 224 

temperature means for both stream and air temperature against distance from headwater 225 

source (as derived from the RHT database), and extracted the intersection of the two 226 

regressions (Figure S1, left panel). Sites above the distance-from-source value at this 227 

intersection will be removed from further analysis. 228 

3.2 Define thermal indicators and signatures for identifying altered regimes 229 

Typically, upstream reference conditions are used to identify the downstream thermal 230 

alterations of anthropogenic structures. Since such information is in practice rather 231 

limited, air temperature may be used as a proxy for the heat budget reference conditions. 232 

As such, we propose five thermal indicators to identify the dominant process of thermal 233 

regime (Table 1 and Figure 2). The choice of these indicators is based on a preponderance 234 

of literature evidence on the known impacts of dams and ponds. In the following, Tw 235 

stands for stream (water) temperature and Ta for air temperature. 236 

[Figure 2 about here.] 237 

[Table 1 about here.] 238 

The first two indicators are based on daily, summertime stream-air temperature linear 239 



11  

regressions. Stream-air temperature linear regression may be calculated on annual data 240 

(Kelleher et al., 2012; Beaufort et al., 2020) or summer data (Mayer, 2012). We selected 241 

the summer period to capture the higher influence of large dam operations on stream 242 

temperature during these months. The first derived thermal indicator is the regression 243 

slope between stream and air temperature, which we term “thermal sensitivity”, or TS (°C 244 

°C-1, or unitless [-]), because it indicates how sensitive stream temperature is to changes in 245 

air temperature (Kelleher et al., 2012). In natural streams, TS is greater when climate is 246 

the main control on stream temperature, but TS is lower where ground water inputs are 247 

large (Caissie, 2006; Mayer, 2012) or when dams reduce the temporal coupling between 248 

stream and air temperature. The second thermal indicator is the coefficient of 249 

determination (R2) of the regression between stream and air temperature, which indicates 250 

the predictive capacity of air temperature on stream temperature, and therefore shows how 251 

strongly these variables are coupled (Kelleher et al., 2012). In natural streams, R2 is high, 252 

whereas in streams with an upstream dam, R2 is low, like TS. 253 

The remaining three thermal indicators are derived from daily stream and air 254 

temperature time series. The first one is the “lag time” (days) between the annual peak of 255 

the two 30-days moving average time series. This indicator detects how dams delay the 256 

annual cycle (see Figure S2 for an example). The next indicator, which we term the 257 

“heating effect” (°C), is the mean positive difference of daily stream-air temperature (Tw-258 

Ta) from March to October. This period is selected to avoid any snowmelt effect on stream 259 

temperature, and to have the greatest increase in stream temperature due to ponds during 260 

the low-flow period. This heating effect indicates how energy storage in ponds increases 261 

downstream stream temperature. The final indicator, which we term the “thermal effect” 262 

(°C), is the mean overall difference of daily stream-air temperature difference (Tw-Ta) 263 

from March to October. The thermal effect indicates overall temperature effects of ponds 264 
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on downstream waters, accounting for potential natural cooling and mitigation of heating 265 

effects. We calculated the five indicators at each station for each year with data and 266 

computed their interannual means for further analysis.  267 

We hypothesized that because TS, R2, and lag time are able to capture the impacts of 268 

managed dams—indeed, dams decrease TS and R2 (Webb et al., 2008, and see Figure S3), 269 

and delay the annual cycle (Webb & Walling, 1993; Webb, 1996)—they would reveal a 270 

dam signature on thermal regimes (Table 1). Similarly, we hypothesized that the 271 

remaining two indicators–the heating effect and the thermal effect–would detect the 272 

influence of energy storage observed in the presence of artificial ponds (Dripps & Granger 273 

2013, Chandesris et al. 2019, and see Figure S2), and thus reveal a pond signature on 274 

thermal regimes (Table 1).  275 

3.3 Identify thermal signatures of altered regimes through clustering based on thermal 276 

indicators 277 

The objective of this step is to cluster stations using the scaled values of five thermal 278 

indicators defined in Table 1. We used K-means clustering (with Euclidean distance), 279 

which is an unsupervised learning algorithm that partitions n observations into k clusters, 280 

where each observation belongs to the cluster with the nearest mean. An optimal number 281 

of clusters was obtained using the NbClust R package (Charrad et al., 2014; R Core Team, 282 

2013). This package provides 30 popular indices that determine the number of clusters in 283 

a data set by using k-means clustering method, and offers the user the best clustering 284 

scheme based on different results. The number of clusters suggested by the majority of 285 

these indices was selected. 286 

3.4 Cross validate derived thermal signatures 287 

We validated the derived thermal signature clusters in three ways, each based on the 288 

expectation that stations clustered together would have similar catchment properties and 289 
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anthropogenic features. In the first step, we used a simple presence/absence test for 290 

upstream human-constructions (i.e., does the station have an upstream pond or dam?). We 291 

then calculated odds-ratios for each cluster from presence/absence counts of upstream 292 

dams or ponds to determine the strength of association between clustering based on 293 

thermal indicators and known anthropogenic influence. For example, for a cluster with a 294 

dam thermal signature, we calculated the ratio between the odds of being in that cluster 295 

given presence of a dam and the odds of being in the cluster given the absence of a dam. 296 

Second, to test how well the clusters aligned with specific anthropogenic features, we 297 

compared statistical distributions of dam and pond characteristics (Table 2) among the 298 

clusters using ANOVA and the post-hoc Tukey’s Honestly Significant Difference t-test 299 

with Bonferroni adjustment. Prior to any analyses, we ensured homogeneity of variances 300 

and normality using log transformation when necessary. Because the cross validation data 301 

relies on measured dam and pond characteristics, these analyses were conducted on 302 

subsets of stations with known dams (n=38) and ponds (n=260). We hypothesized that 303 

stations from respective dam- or pond-like clusters would have greater or lower values of 304 

their respective feature characteristics. For example, we expected that stations from the 305 

dam cluster would have a much smaller distribution of distance to the closest dam than the 306 

other clusters, or that stations from the pond cluster would have a higher proportion 307 

ponded surface area than the other clusters. Hence, this provides a more detailed 308 

validation than the simple presence/absence test.  309 

Finally, we validated the dam/pond thermal signature clustering using catchment-310 

specific dam and pond characteristics in the presence of other natural landscape predictors 311 

as controlling factors. To do so, we used stepwise linear regression (MASS package in R; 312 

Venables & Ripley, 2002) to select the catchment, dam, or pond characteristics (Table 2) 313 

that best explained their respective thermal indicators. We chose our catchment 314 
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descriptive variables based on hypothesized controls on thermal regimes, and a 315 

preliminary multi-collinearity assessment using various diagnostic tests from the mctest R 316 

package (Imdadullah et al., 2016).  317 

[Table 2 about here.] 318 

3.5 Characterize the thermal signatures 319 

We first characterized the derived thermal signatures by comparing their aggregate 320 

stream and air temporal behaviors. The goal was to create a portrait of how the respective 321 

cumulative effects of dams and ponds modulated stream temperature relative to air 322 

temperature and relative to so-called “natural” regimes. We also sought to place the 323 

altered thermal regimes in the context of widely used ecological metrics. To do so, we 324 

gathered metrics from biodiversity and stream ecology (Verneaux et al., 1977; Buisson & 325 

Grenouillet, 2009; Steel et al., 2017; Table 3) to quantitatively evaluate anthropogenic 326 

effects in altered regimes compared to natural ones. We then compared the means of these 327 

thermal metrics from altered regimes to those from natural regimes using ANOVA and 328 

the post-hoc Tukey’s Honestly Significant Difference t-test with Bonferroni adjustment 329 

(natural regimes was used as the reference group). We excluded false-positives (e.g., 330 

stations that were clustered in a dam thermal signature, but did not have a dam) from this 331 

analysis to avoid misinterpretation of true anthropogenic effects. 332 

[Table 3 about here.] 333 

4 Results 334 

4.1 Selected stations 335 

Our distance-from-source analysis found that 100 km approximately delineated the 336 

designation between small and large rivers (Figure S1). Large rivers in this sense were 337 

rivers with stream temperature in equilibrium with air temperature and less sensitive to the 338 

human induced alterations (Figure S1, right panel). These stations are therefore excluded, 339 



15  

resulting in 330 stations with a median catchment area of 232 km2 (range=3–1600 km2). 340 

4.2 Thermal indicator distributions 341 

[Figure 3 about here.] 342 

Thermal indicator distributions tended to group together based on their hypothesized 343 

thermal signature (i.e., dam or pond; Figure 3). TS was spatially variable across the region 344 

and lacked clear patterning, although most low TS (i.e., TS<0.2) stations were located in 345 

the upstream part of basin (Figure 3). In contrast, the spatial distributions of R2 and lag 346 

time varied much less, covaried with each other, and were more spatially homogeneous. 347 

Indeed, 83% of stations had both high R2 (i.e., >0.6), and short lag times (i.e., <20 days). 348 

Visual inspection revealed that stations with low TS coincided with lower values of R2 349 

(<0.6), and higher values of lag time (>30 days) in the upstream part of the basin. Ranges 350 

for heating and thermal effects were 0.05°C to 4°C and −4.9°C to 3.7°C, respectively, but 351 

the interquartile ranges were much narrower: 0.54°C to 1.14°C and -1.58 to 0.16, 352 

respectively. Stations with larger heating effects (e.g., >1°C), tended to exhibit greater 353 

thermal effects (e.g., >1°C) as well (r=0.9). 354 

4.3 Clustering the stations into thermal signatures 355 

The greatest proportion of indices (11 out of 30) suggested an optimal number of three 356 

clusters based on the five thermal indicators. The stations in cluster 1 are located in the 357 

upstream part of the basin (zone A of Figure 1). The stations in cluster 2 are scattered over 358 

the basin, and 60% of the stations in cluster 3 tend to be found in the upstream part of the 359 

basin (see the bottom right panel of Figure 3). 360 

[Figure 4 about here.] 361 

The statistical distribution of thermal indicators within each cluster suggests the proper 362 

labelling of the obtained clusters with regard to the underlying physical processes (Figure 363 

4). First, the lowest median values of TS (0.22) and R2 (0.23) are observed in cluster 1, 364 
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along with the greatest median value of lag time (26 days). Therefore, we label cluster 1 365 

as dam-like. Second, the greatest median values of TS (0.42), heating effect (1.38°C), and 366 

thermal effect (0.65°C) are found in cluster 2. The second cluster is thus labelled as pond-367 

like. Finally, the median value of TS in stations that belong to cluster 3 (0.34) is closer to 368 

the median value of TS in the stations in the pond-like cluster than that of the stations in 369 

the dam-like cluster. Stations in cluster 3 also exhibit the highest median value of R2, and 370 

the smallest heating or thermal effects. In this regard, cluster 3 is labelled as natural-like.  371 

4.4 Cross validation of derived clusters  372 

4.4.1 Presence-absence test 373 

The plausibility of the clustering results was validated by the presence/absence test of 374 

dams and ponds in each cluster. In support of our labelling scheme, 71% of stations in the 375 

dam-like cluster had an upstream dam and if a site contained an upstream dam, it was 31.1 376 

times more likely (p < 0.001) to be in the dam-like cluster than if it did not have an 377 

upstream dam. Similarly, 94% of stations in the pond-like cluster have ponds in their 378 

catchment and if a site contained an upstream pond, it was 6.5 times more likely (p < 379 

0.001) to be in the pond-like cluster than if it did not have an upstream pond. The lower 380 

odds-ratio for the pond-like cluster is due to the high proportion of stations (49% of all 381 

stations) outside of this cluster that did have upstream ponds (i.e., were false negatives). 382 

Indeed, 72% of stations in the natural-like cluster have ponds in their catchment. 383 

4.4.2 Dam and pond characteristic distributions 384 

The statistical distribution of dam descriptive variables differed from each other 385 

among the clusters—IRI (F1,30=7.307, p=0.01), ddam (F1,34=9.120, p=0.005), and IRI/ddam 386 

(F1,30=4.84, p=0.035)—and clearly supported the clustering results (Figure S4). Dam-like 387 

stations were located closer to their upstream dam (median=4.5 km) compared to the 388 

pond-like stations (median=10 km; t19=-4.078, p=0.001) and natural-like stations 389 
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(median=6.5 km; t15=-2.769, p=0.014). Similarly, dam-like stations had upstream dams 390 

that were an order of magnitude larger (implied by larger values of IRI, median=14.3%) 391 

than dams upstream of pond-like stations (median=0.36%; t14=3.555, p=0.003) and 392 

natural-like stations (median=3.7%; t17=2.809, p=0.012). 393 

The mean values of pond descriptive variables also differed from each other among 394 

the clusters, but the differences were less clear than for dam descriptive variables—395 

fpond,reach (F2,205=0.031, p=0.97), fp̅ond,reach (F2,205=0.016, p=0.854), and fpond,catchment 396 

(F2,257=5.967, p=0.003) (Figure S5).  Although statistically insignificant, pond-like 397 

stations had over twice as much ponded reach area than natural like stations at both the 398 

local reach scale (median fpond,reach=6.5% versus 3.0%; t157=0.235, p=0.815) and the 399 

catchment scale (median �p̅ond,reach=1.4% versus 0.6%; t179=0.557, p=0.578). These results 400 

were mirrored by overall proportional ponded area at the catchment scale (i.e., not just 401 

along reaches) for pond-like and natural-like stations (median fpond,catchment=0.14% versus 402 

0.07%; t173=3.702, p=0.001). The dam-like cluster was not analyzed with t-tests because 403 

we reasoned that the stream temperature regime resets at the dam position and the 404 

cumulative effects of ponds will be lost. 405 

4.4.3 Multiple regression with catchment variables 406 

[Table 4 about here.] 407 

The stepwise multiple regression procedure broadly supported the clustering 408 

results, and indicated that dam and pond characteristics are the strongest controls on 409 

thermal indicators and therefore on thermal signatures. Indeed, of the 10 considered 410 

catchment variables, only two arose as being important predictors of or controlling 411 

factors on thermal indicators (Table 4). For thermal indicators of the dam signature, 412 

only lag time was influenced by catchment slope, and for the pond signature, the 413 

heating effect was influenced by vegetation. More important were dam 414 
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characteristics: the closer a station is to a dam (low ddam), and the bigger the dam 415 

(high IRI) the lower the TS and R2; lag time also increased at stations that were closer 416 

to a dam. The influence of ddam on TS was approximately 50% stronger than IRI, but 417 

ddam influence on R2 was approximately 20% weaker than IRI (based on scaled regression 418 

coefficients, Table 4). For lag time indicator, the influence of ddam was 13% stronger than 419 

catchment slope. For ponds, ponded catchment area (fpond,catchment ) was the most 420 

important predictor variable of both heating and thermal effects, but percentage 421 

vegetation cover (Veg%) appeared to partially mitigate heating effects (at 422 

approximately half the influence of fpond,catchment). 423 

4.5 Characterize the thermal signatures 424 

[Figure 5 about here.] 425 

Thermal portraits from the three clusters supported current understanding on how 426 

anthropogenic structures influence stream and river thermal regimes (Figure 5). Compared 427 

to natural regimes, temperatures of dam-like stations exhibited downshifted (by 2°C) and 428 

lagged summer thermal peaks (by 23 days), with less clear differences in winter. In 429 

contrast, stream temperature of pond-like stations remains above air temperature over the 430 

whole year and is nearly synchronous with air temperature, mimicking the regimes of 431 

large rivers (Figure S1). Indeed, annual stream temperature amplitude of pond-like 432 

stations was 14°C, 15% less than that of large rivers (16.5°C), but 30–55% greater than 433 

that of dam-like or natural stations. Natural-like stations stand out in that their summer 434 

peaks are cooler than pond-like stations, but are warmer and more synchronous with air 435 

temperature than dam-like stations. 436 

[Figure 6 about here.] 437 

Altered thermal regimes (i.e., dam- and pond-like) clearly separated from natural 438 

regimes along ecological metrics— T�w,summer (F322=17.625, p<0.001), max(Tw,month) 439 
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(F322=20.719, p<0.001), NTw>20 (F322=55.529, p<0.001), DTw>15  (F320 =38.928, p<0.001), 440 

and max(ΔTw) (F322=39.786, p<0.001). Magnitude and frequency (T�w,summer and NTw>20) 441 

thermal metrics were less for dam-like stations than for natural-like stations (by 2°C, 442 

t15=3.633, p=0.02; and 4 days, t32=4.204, p=0.001), but frequency, duration, and rate of 443 

change thresholds were equivocal (Figure 6).  444 

Altered thermal regimes from ponds differed from natural regimes along every thermal 445 

metric considered here, with a 2.3°C increase in average T�w,summer (t182=-11.603 , 446 

p<0.001), a 2.5°C increase in max(Tw,month) (t169=-9.3, p<0.001), a 15-day increase in 447 

NTw>20 (t104=-9.504, p<0.001), a 39-day increase in DTw>15 (t150=-10.119, p<0.001), and a 448 

2.6°C increase in ΔTw (t210=-12.345, p<0.001). 449 

5 Discussion 450 

Our results demonstrate that five simple indicators derived from stream-air 451 

temperature time series are capable of identifying the extent and characteristics of both 452 

altered and natural stream thermal regimes. Using these indicators, we could accurately 453 

parse the divergent thermal signatures of dams and ponds on the thermal regimes of 454 

flowing waters. 455 

5.1 Large dam thermal signature 456 

The spatial clustering of dam thermal signatures into the upstream of the Loire River 457 

basin aligned with the known distribution of dams there (Figure 1). This thermal signature 458 

approach may therefore be useful in identifying areas with strong thermal alteration from 459 

dam proliferation, like in the Amazon headwaters (Anderson et al. 2018). 460 

Dam mode of operation affects its degree of change in downstream thermal regime 461 

(Olden & Naiman, 2010; Maheu et al., 2016a) and should be reflected in its emergent 462 

thermal signature. Our observed dam thermal signature was based on hypothesized 463 

cooling effects from hypolimnetic release, and although most stations downstream of 464 
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large dams exhibited this signature, many did not, suggesting alternative modes of 465 

operation. Hence, in future works, subsequent use of alternative thermal indicators to 466 

capture other modes of operation may be warranted. Even dams with the same purpose 467 

could have different mode of operation (Maheu et al., 2016a). Interannual variability 468 

driven by climate, adding an additional layer of complexity that may be difficult to assess 469 

with this method. Regardless, even the relatively simple approach here was largely 470 

successful in identifying altered thermal regimes. We provide additional evidence here 471 

that dams which release hypolimnetic water disrupt the stream-air temperature 472 

relationship (R2) (Buendía et al. 2015), and delay the annual stream temperature peak 473 

(Olden & Naiman, 2010) (Figures 4 and 5). 474 

The degree of dam thermal alterations depends on reservoir volume, stream order, and 475 

distance from the dam (Webb et al., 2008; Batalla et al., 2004). Here, we also show that 476 

channel slope is an important compounding factor on dam influence, which appeared to 477 

amplify lag time effects from dam proximity (Table 4): the steeper the channel, the less 478 

travel time there is for water-air equilibrium and thermal lag time increases. Our cross 479 

validation results also highlight the critical effect of dam volume on thermal regimes, 480 

underscoring previous works that identified a critical impoundment threshold of 5–20% of 481 

the mean annual runoff (Buendía et al. 2015; Maheu et al. 2016a). Importantly, we found 482 

that IRI>20% completely erased stream-air temperature correlation (data not shown; cf. 483 

Buendía et al. 2015). Stations with the weakest dam signature were far from large dams, 484 

supporting the known reduction of dams influence on thermal regimes (increase of TS) 485 

with distance due to the heat exchange with ambient conditions (Preece & Jones, 2002; 486 

Buendía et al., 2015). The coupling of greater distance from dam and lower IRI of 487 

upstream dam may provide additional explanation as to why 17 stations with known dams 488 

did not cluster into our dam-like thermal signature. 489 
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The induced changes by dams in ecologically relevant thermal metrics on downstream 490 

temperature were moderate. We observed effects of decreased summer stream 491 

temperatures and a large decrease in the frequency of high temperatures, in accordance 492 

with previous works (Olden & Naiman, 2010; Maheu et al., 2016a), but found little 493 

evidence for other ecologically relevant effects compared to natural systems. However, 494 

our focus was biased towards increased thermal alterations, and further metrics and 495 

analysis would benefit future inference. 496 

5.2 Pond thermal signature 497 

Ponds and shallow (<15 m in height) reservoirs impound water for different purposes 498 

that depend on location and local needs. We observed that ponds were evenly distributed 499 

throughout the Loire basin, with no clear clustering of sizes (Figure 1, right panel). In 500 

support of this observation, pond-like thermal signatures were evident throughout the 501 

basin (Figure 3), located mostly on medium size streams (median of distance from 502 

source=40 km). 503 

Ponds typically release warm water from overflow, increasing downstream 504 

temperatures synchrony with air temperature (Dripps & Granger 2013, Maheu et al., 505 

2016b). The pond thermal signature identified here aligns with other empirical results 506 

(Chandesris et al., 2019) and this general conceptual model (Figures 4 and 5). Stations 507 

influenced by small dams experience a small decrease in R2, compared to natural stations 508 

(cf. Bae et al., 2016), which we also observed to a small degree (Figure 4). The extent of 509 

the induced change by ponds depends mostly on the surface area and residence time 510 

(Maxted et al., 2005; Chandesris et al., 2019). The lack of data on the depth of the 511 

pond/shallow reservoirs at this scale prevented us from using residence time. A bigger 512 

surface area, or a bigger residence time increase the time of exposure to air temperature 513 

and incoming solar radiation, leading to greater sensitivity of stream temperature to air 514 
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temperature (increased TS) (Maheu et al., 2016b; Michel et al., 2020). We also detected 515 

greater TS (thermal sensitivity) for pond-like stations (see Figure 4).  516 

The single best predictor of the pond thermal signature was the proportion of a 517 

station’s catchment that was ponded, strongly implying that pond effects have an 518 

emergent, cumulative effect on stream temperature regimes. Indeed, of the local, reach-519 

scale metrics, neither could differentiate the thermal indicators or signatures (Table 4, 520 

Figure S5). However, we note that the reach scale metrics were defined based on recorded 521 

surface waters in 2011 and are perhaps not temporally aligned with stream and air 522 

temperature measurements used here. Importantly, our cross validation suggests that the 523 

thermal influence of ponds may be mitigated by vegetation cover (Maxted et al., 2005), 524 

suggesting the strategic planting of canopy cover species in thermal restoration efforts. 525 

Ponds can alter ecologically relevant thermal metrics substantially. They increase the 526 

summer temperatures, frequency and duration of high temperatures (Lessard & Hayes, 527 

2003; Maheu et al., 2016a, 2016b; Chandesris et al. 2019) which we found as well (see 528 

Figure 6).  529 

5.3 Natural regimes 530 

The thermal regimes of natural-like stations are those that are most strongly driven by 531 

natural factors like climate, topography, vegetative shading, and stream discharge (Poole 532 

& Berman, 2001; Kelleher et al., 2012; Hannah & Garner, 2015). These thermal 533 

signatures should therefore arise in regions with minimal anthropogenic influence, which 534 

we observed in their spatial clustering predominately in the upstream part of the Loire 535 

River basin where there is the greatest proportion of vegetation cover (cf. Beaufort et al., 536 

2020). These natural stations were located on smaller streams (median of distance from 537 

source=24 km) and had typically greater proportions of vegetative cover (median of 538 

vegetation cover within a 10 meter buffer=100%). 539 
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Natural-like thermal signatures, unlike altered ones, had strong correlation with air 540 

temperature (cf. Webb et al., 2008) and exhibited minimal lag time, heating, or thermal 541 

effects (Figure 4). In accordance with Beaufort et al. (2020), who studied the controlling 542 

factors of natural regimes the Loire River basin, TS at the stations located on large rivers 543 

where climate is the key driver of stream temperature (median=0.43), was greater than the 544 

TS in natural-like stations (median=0.34). However, the values of TS in our study were 545 

smaller than the TS values reported by Beaufort et al. (2020), since the present study has 546 

focused on summer TS values. A similar result (median of TS=0.45) was obtained in an 547 

analysis focused on August stream temperatures, that attributed decreased summer TS to 548 

ground water input (Mayer 2012). In the current study, TS in the stations located in region 549 

B (Figure 1), which has the greatest potential for ground water input, was lower than TS 550 

in the stations located in regions A, and C (median TS=0.29 versus 0.35). Supporting our 551 

thermal signature approach, we observed annual amplitude for stations with natural 552 

thermal signatures (median=11°C) in direct accordance of observations in Beaufort et al., 553 

(2020) (9–14°C).  554 

5.4 Limitations of the study 555 

The stream temperature database used in the current study only includes stations with 556 

complete annual data, but less complete databases may struggle with the outlined 557 

approach. For example, when we also included 170 stations that only had summer data in 558 

our analysis, we observed that the lag time indicator was highly sensitive to within-year 559 

data availability, indicating that a year-round dataset is required for clustering. However, 560 

the pond signature indicators (heating and thermal effects) were not sensitive to within-561 

year data availability, even when the summer stream temperature data were available. 562 

Importantly, if complete annual data are not available, the indicators appear quite robust 563 

to interannual data heterogeneity (i.e., missing whole years of data; Figure S6). The only 564 
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exception is lag time indicator, which can be heavily influenced by year-to-year variations 565 

in both climate and upstream reservoir management. 566 

The large sample size used in the present study, the presence of different types of 567 

reservoirs over the study area, and the blind-eye towards dam operation may have some 568 

implications for generalizing our findings. For example, in regions with more variable 569 

dam operations, different clusters may arise, or it may be difficult to perform cluster 570 

analysis without additional thermal indicators. Scales of inference are also likely to vary 571 

among regions. In our study, we had a low possibility of station pseudo-replication due to 572 

high resolution of SAFRAN data (8 km): only 20% of the SAFRAN meshes included 573 

more than one station, and only 12% of the meshes included the stations with the same 574 

clustering group. Hence, it is imperative to verify and cross-validate this approach when 575 

applied to new datasets. 576 

5.5 Implications and perspectives 577 

The proposed thermal signatures approach allows a simple, rapid, and accurate 578 

workflow to identify river reaches that are highly influenced by dams and ponds. The 579 

methodology is inherently regional, aligning in scale with the jurisdictions of most 580 

environmental agencies and working groups. We suggest that thermal signature results 581 

can be used to identify hotspots and target specific reaches for restoration and further 582 

investigation, and to more broadly design strategic measurement networks (Jackson et al., 583 

2016). Thermal signatures can also identify natural reaches as benchmarks for restoration 584 

or aquatic species habitat protection. Indeed, there is much interest in predicting the 585 

phenological and spatial diversity within species of interest or their prey (Steel et al., 586 

2017). Moreover, because climate change will likely exacerbate the degree of thermal 587 

alterations (Michel et al., 2020) through increasing air temperature, decreasing 588 

streamflow, and increasing demand for ponds and dams (Webb, 1996; Moatar & Gailhard, 589 
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2006), the thermal signature framework could be used to plan pond and dam placement to 590 

minimize cumulative downstream effects. 591 

The proposed thermal signatures may also be used by modelers to develop a reference-592 

condition model by the use of natural regimes (Hill et al., 2013), or to assess the 593 

performance of distributed water temperature models that do not take into account 594 

anthropogenic activities. The differences between simulated and observed thermal 595 

signatures at altered stations can serve as a bias correction factor that is a function of 596 

known dam or pond descriptive variables. 597 

The thermal signature approach is flexible and can easily be reimagined for the other 598 

purposes other than detection and characterization of altered regimes from anthropogenic 599 

impoundments. For example, the stream-air temperature linear regression calculated on 600 

annual data could identify varied thermal signatures of ground water inputs in natural 601 

streams (with a focus on TS and the intercept) (Kelleher et al., 2012; Beaufort et al., 602 

2020). Moreover, the synthesis of thermal signatures and hydrological signatures could be 603 

applicable in analyzing fish and macroinvertebrate communities.  604 

6 Conclusions 605 

Thermal signatures enable rapid and clear evaluation of the cumulative impact of 606 

human impoundments on stream temperature, highlighting two dominant modes of 607 

thermal alteration in the Loire River basin. We expect that the application of the thermal 608 

signatures will reveal new, possibly overlooked, modes of alteration depending on where 609 

it is applied, resulting in new perspectives on the growing spatiotemporal effects of 610 

anthropogenic structures to thermal regimes. Ultimately, by identifying natural thermal 611 

regimes, thermal signatures provide important information to managers on reference 612 

conditions, and can be used in conjunction with distributed models to identify bias, 613 

leading to improved performance and predictive capacity. 614 
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Figure 1: The Loire River basin. Left panel: main aquifer formations and basin lithology; granite and 

basalt dominate the upstream part of the basin (Region A), whereas sedimentary rocks occupy the middle 

reaches with a potential for ground water input (Region B), which leads to more granite and schist in the 

lower reaches (Region C). Right panel: altitude and surface waters. Black points show dams higher than 

15 m. Red circle points show the two largest dams in the basin. Triangles denote stations that had a 

potential for upstream-downstream comparison (red for dams, green for ponds), which are visually 

assessed in Supplementary Figure 2. 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 2: Conceptual representation of thermal signatures. Top row:  daily stream-air temperature linear 

regression showing lower TS (Thermal Sensitivity) and lower R2 downstream of a dam (left), and higher 

TS and higher R2 downstream of ponds (right). Bottom row: stream and air temperature regimes showing 

the lagged annual cycle of stream temperature relative to air temperature downstream of a dam (left), and 

greater heating effect and thermal effect more often downstream of ponds (right). See Table 1 for the 

mathematical definition of thermal signatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3: Spatial distribution of the five thermal indicator values over 330 stations on the Loire basin, and 

spatial distribution of the stations in three obtained clusters, or thermal signatures (bottom right). The top 

row were expected dam thermal indicators and the bottom row (i.e., heating and thermal effects) were 

expected pond thermal indicators. 

 

 

 

 

 

 

 

 

 

 



 

Figure 4: Statistical distribution of thermal signatures in each cluster: 1.dam-like with 21 stations; 2.pond-

like with 96 stations; 3.natural-like with 213 stations.    

 

 

 

 

 

 

 

 

 

 



 

Figure 5: The annual air and water temperature regimes of altered (by dams and ponds) and natural streams. 

Shaded areas represent the 10th-90th percentile band, and solid lines represent the median value: 1.dam-

like with 15 stations that have a large upstream dam; 2.pond-like with 90 stations; 3.natural-like with 213 

stations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 6:  Statistical distribution of ecologically relevant thermal metrics in each cluster: 1) dam-like with 

15 stations that have a large upstream dam, 2) pond-like with 90 stations, and 3) natural-like with 213 

stations. The t-test was conducted with the reference group of natural-like cluster. ***, **, and * indicates 

that the metric for the group of altered regimes is significantly different from natural regimes at the 1, 5 

and 10% confidence levels, respectively. The “ns” shows that the metric for the group of altered regime is 

non-significantly different from natural regimes. 

 

 

 



List of Tables 
 
Table 1: Indicators used to identify thermal signatures of altered stream temperature regimes. Indicators are grouped into a dam or pond 
signature based on their hypothesized ability to detect thermal effects from their respective anthropogenic structures.  

Indicator Definition Rationale 

Dam signature 

Thermal sensitivity (TS) Daily JJA stream-air temperature linear regression slope Dams reduce TS 
R2 Daily JJA stream-air temperature coefficient of determination Dams reduce R2 

Lag time 
Lag time between the annual peak in 30-days moving average stream and air 
temperature regimes 

Dams increase lag time 

Pond signature 

Heating effect 
mean positive difference of daily stream-air temperature difference (Tw-Ta) from 
March–October 

Ponds increase distributed 
energy storage, leading to 
heating 

Thermal effect 
mean overall difference of daily stream-air temperature difference (Tw-Ta) from 
March–October 

Ponds increase energy 
storage, even in the 
presence of natural cooling 

Note: Indicators are calculated based on interannual averages 
 
 
 
 
 



Table 2: Descriptive variables tested for assessing the links between thermal signatures and dam/pond characteristics (see Section 3.4). 
Mean and standard deviation values (SD) are shown for the 330 stations selected in the study (see Section 3.1). 

 

Notation Variable Mean SD Unit 

 
dam/pond characteristics 

   

ddam Distance from the closest large dam a 6.6 4.2 km 
IRI Impounded Runoff Index of the closest large dam b 11 16 % 
IRI/ddam IRI/distance from the closest large dam c 10 25.5 %/km 
fpond,reach Fraction of station’s reach surface area that is ponded d 7.5 12 % 
fp̅ond,reach  Fraction of station’s reach surface area that is ponded; 

averaged over all upstream reaches 
1.6 2.7 % 

fpond,catchment Fraction of the catchment area that is ponded e 0.17 0.8 % 
     

 catchment properties    

Ta Annual mean Ta at station 12 1.5 °C 
Acatchment Catchment area 232 300 km2 
Alt Altitude at station 399 290 m 
S Upstream mean slope 0.037 0.03 m/km 
D Distance from the source 30 20 km 
Wq Width for median discharge f 8.7 6.3 m 
Dq Depth for median discharge f 0.3 0.16 m 
q Mean annual specific discharge g 10 4.9 l/s/km2 
CI Connectivity index h 0.4 0.08 - 
Veg Rate of vegetation cover i 83 22 % 
a Derived from ArcMap tools. 
b Ratio of dam volume to mean annual runoff. 
c To capture the interaction between the dam characteristic and the position of a station from the dam. 
d Extracted from SYRAH-CE database (Valette et al., 2012). Final nodes of each considered river segment are at important 
confluences and topologically important places. 
e A proxy of cumulative effects of upstream ponds. 
f From the ESTIMKART empirical model developed by Lamouroux et al. (2010). 
g Based on geostatistical interpolation on the RHT network (Pella et al., 2012; Sauquet et al., 2000). 
h IC: Q10-Q99/Q1-Q99; represents the shape of the dimensionless flow duration curve. This descriptor is a measure of the 
contrast between low-flow and high-flow regimes. Values close to 1 are observed where there are large aquifers or storage 
in snow packs. Values close to 0 are related to catchments exposed to contrasted weather (Sauquet & Catalogne, 2011).  
i Derived from remote sensing on both sides of reaches with a buffer of 10 m at station, as reported in SYRAH-CE database 
(Valette et al., 2012). 



Table 3: Selected ecologically relevant thermal metrics for comparison between altered regimes and natural ones. 
Regime feature Metric Description Biological importance 

Magnitude 

T�w,summer 
Mean Tw in summer (June–
August) 

Differences in mean tempera-
ture across river systems con- 
tribute to determining which 
species are present and which 
are absent 

max(Tw,monthly) 
Maximum of the 30-day 
moving average daily mean Tw 

Used in the biotypology ac- 
cording to the formula pro- 
posed by Verneaux et al. 
(1977) 

Frequency NTw>20 
Number of days that daily 
mean Tw>20 °C 

Species-specific differences in 
response to high temperatures 
provide preferential advantages 
to particular species 

Duration DTw>15 
Duration of consecutive days 
with mean Tw>15°C 

Accumulated stress may trigger 
migration and other major life-
history transitions 

Rate of change max(ΔTw) 
Difference between mean Tw in 
August and February 

The competitive advantage of 
one species over another may 
be determined by conditions in 
both summer and winter a 

a Buisson & Grenouillet (2009) used air temperature instead of water temperature.  



Table 4: Stepwise multiple linear regression results for cross-validation approach relating descriptive variables for thermal indicators 
within dam and pond signatures. ***, **, and * denote significance at the 1, 5 and 10% confidence levels, respectively. The scaled 
coefficients are shown in parentheses for comparison among predictor variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dam signature 

Descriptive variable TS (-) R2 (-) Lag time (days) 

S [m/km] — — 
232.85±92.891** 

(0.377±0.151) 

ddam [km] 
0.015±0.005*** 
(0.458±0.140) 

0.029±0.010** 
(0.385±0.141) 

-1.6±0.560*** 
(-0.425±0.151) 

IRI [%] 
-0.002±0.001** 
(-0.306±0.145) 

-0.009±0.002*** 
(-0.484±0.146) 

— 

Adjusted R2 0.43 0.482 0.3 
F statistic (df) 12.37 (29) 15.43 (29) 7.64 (29) 
p-value <0.001 <0.001 0.002 

Pond signature 

Descriptive variable Heating effect (°C) Thermal effect (°C)  

Veg [%] 
-0.003±0.002* 
(-0.164±0.102) 

—  

fpond,catchment [%] 
0.62±0.211*** 
(0.296±0.102) 

0.762±0.305** 
(0.257±0.102) 

 

Adjusted model R2 0.1 0.060  
F statistic (df) 5.442 (87) 3.872 (87)  
p-value 0.006 0.024  



 




