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Abstract:

Objective:

Deep vein thrombosis and pulmonary embolism referred as venous thromboembolism (VTE) are a common cause of morbidity and mortality. Plasma from healthy controls or individuals who have experienced a VTE were analyzed using metabolomics to characterize biomarkers and metabolic systems of VTE patients.

Approach and Results:

Polar metabolite and lipidomic profiles from plasma collected 3 months after an incident VTE were obtained using liquid chromatography mass spectrometry (LC-MS). Fasting-state plasma samples from 42 patients with venous thromboembolism (VTE) and 42 healthy controls were measured. Plasma metabolomic profiling identified 512 metabolites forming 62 biological clusters. Multivariate analysis revealed a panel of 21 metabolites altogether capable of predicting VTE status with an area under the curve of 0.92 (P=0.00174, selectivity=0.857, sensitivity=0.971).

Multiblock systems analysis revealed 25 of the 62 functional biological groups as significantly affected in the VTE group (P<0.05 to control). Complementary correlation network analysis of the dysregulated functions highlighting a subset of the lipidome composed mainly of n-3 long-chain polyunsaturated fatty acids within the predominant triglycerides as a potential regulator of the post-VTE event biological response, possibly controlling oxidative and inflammatory defence systems, and metabolic disorder associated dysregulations. Of interest was microbiota metabolites including trimethylamine N-oxide that remained associated to post incident VTE patients, highlighting a possible involvement of gut microbiota on VTE risk and relapse. 

Conclusions

Introduction

Venous thromboembolism (VTE) including deep vein thrombosis and pulmonary embolism is a complex disease resulting from the interaction between environmental and genetic factors [START_REF] Rosendaal | Venous thrombosis: A multicausal disease[END_REF] . Genetic risk factors (antithrombin, protein C, protein S deficiencies, factor V Leiden and the G20210A prothrombin mutation) are identified in approximatively 30% of VTE patients. Some other frequent genetic markers such as ABO blood group are associated with VTE but the identification of at-risk patients remains uncertain. Besides, among patients with a VTE history, these markers poorly associated with recurrence risk. Currently, the only plasma biomarker routinely used for VTE in a clinical context is D-dimer, a split product from the cross-linked fibrin clot, which has low specificity and is elevated in other conditions such as cancer, inflammation and pregnancy [START_REF] Tritschler | Venous thromboembolism: Advances in diagnosis and treatment[END_REF][START_REF] Palareti | D-dimer testing to determine the duration of anticoagulation therapy[END_REF] .

Metabolomics for biomarker discovery is the profiling of all metabolites in biofluids, cells and tissues that can be detected. It is based on detection techniques including nuclear magnetic resonance (NMR), gas chromatography mass spectrometry (GC/MS) or liquid chromatography mass spectrometry (LC/MS), which collect complex multidimensional data. The subsequent analysis of metabolomics data requires the combination of feature extraction tools such as XCMS [START_REF] Kumar | Quantitative trait loci for carbohydrate and total energy intake on mouse chromosome 17: Congenic strain confirmation and candidate gene analyses (glo1, glp1r)10.1152/ajpregu.00491[END_REF] and both univariate and multivariate statistical analysis toolboxes, and these workflows are now well established [START_REF] Cesbron | Optimization of fecal sample preparation for untargeted lc-hrms based metabolomics[END_REF][START_REF] Chong | Metaboanalyst 4.0: Towards more transparent and integrative metabolomics analysis[END_REF] . As metabolites represent the downstream expression of a genome, transcriptome and proteome, they can reflect the phenotype of an organism at a specific time [START_REF] Bahado-Singh | Serum metabolomic markers for traumatic brain injury: A mouse model[END_REF] . Thus, over the last decade metabolomics has been widely

applied in the identification of potential biomarkers for the early diagnosis and detection of diseases.

However, there have been few studies to date investigating VTE using a metabolomics approach. Deguchi et al (2015) found that two acylcarnitines (10:1 and 16:1) were low in plasma samples of the 40 VTE patients collected 3 months after the event compared with 40 matched controls [START_REF] Deguchi | Acylcarnitines are anticoagulants that inhibit factor xa and are reduced in venous thrombosis, based on metabolomics data[END_REF] . Recently a large prospective case (n= 240)-control (n=6963) study investigating the relationship between blood metabolites collected before VTE and the risk of incident VTE found that C5 carnitine was significantly associated with incident VTE and diacylglycerols were enriched in both VTE and pulmonary embolism suffering individuals [START_REF] Jiang | Metabolites associated with the risk of incident venous thromboembolism: A metabolomic analysis[END_REF] .

In the present study, we used a metabolomics approach covering central metabolism and complex lipids to compare polar metabolite, semi-polar metabolite and lipid profiles in plasma collected in post VTE patients to that of VTE free patients.

To ensure comprehensive coverage of the metabolome, three untargeted LC-MS/MS analyses were performed in both positive and negative ionization modes.

The objectives were to: first, search unique biomarkers that were related to the VTE group and have a set of potential biomarkers diagnostic of VTE resilience in clinically recovered patients, and second, to reveal possible metabolic disruptions remaining in the VTE patients. These results, in combination with clinical parameters, will be valuable for assisting selection of appropriate therapeutic approaches and evaluating the efficacy of clinical care.

Materials and Methods

Study population

A total of 84 subjects comprising of 42 who have experienced a single VTE and 42 healthy controls were selected for our study. Forty three other patients with recurrent (over 1 event) VTE were used as a comparison cohort. The MARTHA cohort is extensively described elsewhere [START_REF] Germain | Meta-analysis of 65,734 individuals identifies tspan15 and slc44a2 as two susceptibility loci for venous thromboembolism[END_REF] 

Materials

Ultrapure water was obtained from a Milli-Q TM system (Millipore, Bedford, MA).

Solvents, methanol, isopropanol and acetonitrile were of LC-MS grade, chloroform was of HPLC grade and were all purchased from Carlo Erba Reagents (France).

Mobile phase modifiers formic acid and ammonium formate were purchased and Sigma-Aldrich Chemicals Co. (St Louis, MO). The 10kDa PES (polyethlyene sulfone) microcentrifuge filters were obtained from VWR (USA).

Sample collection and preparation

Following overnight fasting, blood samples were collected 3 months after diagnosis of acute thrombosis into sodium citrate collection tubes from each participant and the plasma separated and stored at -80 ºC until extraction. For VTE patients, blood samples were collected after the acute phase (i.e. after at least 3 months of anticoagulation). The samples were randomized into two equal sized analytical batches for metabolomic analyses.

Plasma was extracted using two separate extraction protocols to measure polar/semi-polar metabolites and lipids. The polar/semi-polar metabolites were extracted using a methanol precipitation method validated elsewhere 11 12 . Briefly, polar/semi-polar compounds in plasma were extracted by adding 400 µL of ice cold methanol to 100 µL of plasma, vortex mixing for 30 sec and placing at -20 ºC for 30 min to facilitate protein precipitation. Samples were then thoroughly shaken and centrifuged for 15 min at 11,000 rpm and 4 °C and the supernatants centrifuged through a 10kDa microcentrifuge filter for 45 min under the same conditions, dried under a flow of nitrogen, and stored at -80 °C until analysis. Samples were resuspended in 300 µL water:acetonitrile (1:1 v/v) and a 100 μL aliquot of each sample placed into two separate vials for polar analysis using HILIC LC-MS and semi-polar analysis using reverse-phase (RP) LC-MS. The remaining 100 µL was spilt equally and combined to obtain quality control (QC) samples for the HILIC and RP analyses.

Lipids were extracted by adding 800 µL of ice cold chloroform:methanol (1:1 v/v) to 100 µL of plasma in a glass tube, vortex mixing for 30 sec and placing at -20 ºC for 30 min to facilitate protein precipitation. Then 400 µL of water was added, followed by vortex mixing for 30 sec and then centrifuged for 15 min at 11,000 rpm and 4 °C. A volume of 100 µL of the lower phase was transferred to a clean glass vial, dried under a flow of nitrogen, and stored at -80 °C until analysis. A further 50 µL of the lower phase was combined to obtain QC samples for the lipid analyses, aliquoted into 100 µL aliquots and subsequently dried. Samples and QCs were resuspended in 100 µL acetonitrile:isopropanol (1:1 v/v) and placed into a clean glass insert.

For each analytical stream (HILIC, RP and lipid), a blank sample (deionized water) was extracted and analyzed 3 times at the start of each analysis batch to assist in removing analytical noise. Following the blanks, 10 consecutive injections of the QC sample were performed to condition the system, and then a QC sample was injected every 5 samples during the batches to assist in adjusting for run-order and batch effects.

Instrumentation

The HILIC separation was performed on a Thermo Ultimate 3000 HPLC (Milford, MA, USA) while detection used both positive and negative electrospray ionization (ESI+ve/ESI-ve) on a MaXis Impact II qTOF-MS (Bruker Daltonics, Bremen, Germany). The capillary voltage for ESI+ve mode and ESI-ve mode were +4.5 kV and -2.5 kV respectively. Nebulizing gas pressure was 1.8 bar, and the drying gas flow and temperature were 8 L/min and 220 °C.

The RP and lipid analyses were both performed on a Thermo Ultimate 3000 HPLC connected to a Thermo Q-Exactive Plus MS instrument (Thermo, Bremen, Germany). For RP analysis, the capillary voltage was 3.5 kV for both ESI+ve and ESI-ve modes, nebulizing gas flows for the sheath, auxiliary and sweep gas were 30, 8, and 0 arbitrary units respectively and the heated electrospray was operated at 310 °C. For lipid analysis, the ESI+ve capillary voltage was +3.0 kV and -3.5 kV in ESI-ve. Nebulizing flows for the sheath, auxiliary and sweep gases were 60, 20, and 1 units respectively and the heated electrospray was operated at 370 °C.

LCMS analysis

For HILIC analyses, separation was performed using a ZIC-HILIC column (4.6 × 100 mm, 5 μm, Merck) at 25 °C at a flow rate of 250 µL/min. The mobile phase was acetonitrile-formic acid (99.9:0.1, v/v) (solvent A) and water-ammonium formate ( 16mM, pH 6.3) (solvent B). The gradient elution programme was: held at 97% A (0-1 min), 97-70% A (1-12 min), 70-10% A (12-14.5 min), held at 10% A (14.5-17 min), returned to 97% A (17-18.5 min) and equilibrated for 5.5 min. Samples were kept at 4

°C and the injection volume was 2 μL. Scans were acquired on the qTOF-MS at a rate of 2 Hz using a mass range of m/z 45-1000.

For RP analyses, separation was performed using a Hypersil GOLD C18 column (2.1 × 100 mm, 1.9 μm, Thermo) at 40 °C at a flow rate of 400 µL/min. The mobile phase was water-formic acid (99.9:0.1, v/v) (solvent A) and acetonitrile-formic acid (99.9:0.1, v/v) (solvent B). The gradient elution programme was: held at 100% A (0-1 min), 100-0% A (1-11 min), held at 0% A (11-13 min), returned to 100% A (13-14 min) and equilibrated for 2 min. Samples were kept at 4 °C and the injection volume was 5 μL. Data were collected on the Q-Exactive over a mass range of m/z 80-1000 at a mass resolution setting of 35,000.

For lipid analyses, separation was performed using a Hypersil GOLD C8 column (2.1 × 100 mm, 1.9 μm, Thermo) at 55 °C at a flow rate of 400 µL/min. The mobile phase was acetonitrile-water-formic acid (65:34.9:0.1, v/v) containing 10 mM ammonium formate (solvent A) and isopropanol-water-formic acid (90: 9.9:0. 

Data pre-processing and cleaning

Data files were converted to the file format mzXML and peak detection and alignment performed using the XCMS [START_REF] Kumar | Quantitative trait loci for carbohydrate and total energy intake on mouse chromosome 17: Congenic strain confirmation and candidate gene analyses (glo1, glp1r)10.1152/ajpregu.00491[END_REF] 'cent wave' algorithm with the following parameters; peakwidth; HILIC = 10-25 s, RP = 4-15 s, Lipid = 5-25 s; snthresh = 10; retention time correction using obiwarp method; peak grouping 'bw' and 'mzwidth' parameters of 5 and 0.015 respectively, and gap filling with the default parameters.

The CAMERA function was subsequently applied to annotate isotopes and group correlated features (pcgroup). Features detected in common between the blank and QC samples (<3:1 mean peak areas of sample:blank) were removed and run order and batch effects were corrected for using the Van der Kloet algorithm (loess model) [START_REF] Van Der Kloet | Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping[END_REF] with the online Workflow4Metabolomics 3.0 tool [START_REF] Cesbron | Optimization of fecal sample preparation for untargeted lc-hrms based metabolomics[END_REF] . Further filtering was performed after normalization by calculating the coefficient of variation (CV) of variable intensity in the QC samples (cutoff set at <30 %).

Compound annotation

Feature annotations for the HILIC and RP streams were performed by matching peaks against in-house libraries of authentic standards run under identical conditions [START_REF] Bennouna | The impact of genetics and environment on the polar fraction metabolome of commercial brassica napus seeds: A multisite study[END_REF] , while lipid annotations were performed by MS 2 spectral matching using

LipidSearch TM software (Thermo). Each annotated metabolite was assigned a biological role based upon the Human Metabolome Database (www.hmdb.ca)

Metabocard, PubChem description, and KEGG pathways. Complementary information was found in PubMed publications whenever available. The annotated metabolites reported in Supplemental Table 1 were then grouped according to their functional role and analyzed utilizing a hierarchical PLS procedure previously described [START_REF] Afshordel | Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging--impact of bcl-2 and npd-1 like metabolites[END_REF][START_REF] Thabuis | Lipid transport function is the main target of oral oleylethanolamide to reduce adiposity in high-fat fed mice[END_REF] , in which each functional set combining the metabolites may be translated into a workable composite score value for each individual (described below).

Statistical analyses

Continuous variables were described by mean and standard derivation and categorical variables by percentages. A Pearson χ 2 test or Fisher's Exact Test were used to compare categorical variables between groups. Intergroup comparisons of means were performed using t-test. Statistical analyses were performed with SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

For metabolomic data, features from both ionization modes for HILIC and RP data were combined into a single dataset, while both ionization modes were combined for the lipid data and analyzed separately. All data was 'auto-scaled' before statistical analysis. Univariate statistical analysis, random forest, hierarchical clustering, heatmapping, confounding factor adjustment testing, power calculation, ROC analysis and correlation plotting were performed using the online tool The significant threshold in the random forest or PLS-DA analysis was calculated utilizing a normal probability plot, indicating which metabolites in the random forest test deviated the most from normal distribution due to treatment. A similar method was employed to select the PLS-DA variable importance in projection (VIP) cutoff threshold for significant lipid species. H-PLS-DA modelling was performed based on the contribution of separate orthogonal PLS-DAs calculated from all functional sets of metabolites, allowing to generate for each functional set a composite score value [START_REF] Martin | Multi-level systems biology modeling characterized the atheroprotective efficiencies of modified dairy fats in a hamster model[END_REF] . Multiblock PLS or hierarchical PLS enables aggregation of the data into biological function blocks to ease data interpretation and biological understanding of the implications of the VTE on the system. The functional metabolic blocks were "weighted" to take into account the number of metabolites per block [START_REF] Wold | Hierarchical multiblock pls and pc models for easier model interpretation and as an alternative to variable selection[END_REF] .

For lipid blocking, lipid species were grouped according to clusters calculated by hierarchical clustering analysis (Ward method). Lipid blocks score values were generated by H-PLS-DA as above. Scores from the H-PLS-DA multiblock analysis were analysed (t-test) to determine the most significant biological functions related to the clinical outcome. The criterion for significance was set at P ≤ .01 after false discovery rate.

Results

Clinical features of the studied population:

In total, 42 healthy controls and 42 patients with a personal history of incident VTE were included in this study cohort. 

Feature detection

After removing blank peaks, performing run-order and batch normalization and CV filtering, a total of 137 metabolites were annotated from the in-house libraries.

These annotated metabolites consisted of amino acids, purines, carnitines, amines, organic acids, sugars, lysophospholipids, and fatty acids. The lipid +ve and -ve curated datasets contained 254 and 121 annotated lipids respectively after overlapping identifications from both ionization modes were removed. A total of 512 annotated variables were thus obtained and retained for each patient and used for further statistical analyses. A summary of the identified metabolites measured along with assigned metabolic functional groupings for multiblock analysis, and the number of annotated lipid species by lipid class is provided in the supplementary data (Tables S1 andS2).

Biomarker selection

Firstly we compared the incident to the recurrent VTE patients, and showed that no differences occurred among the 2 groups (Supplementary Figure I). The recurrent patients were kept separate as a validation cohort (see below) whereas the biomarkers search and subsequent multiblock analysis (section 3.3) were investigated between only incident VTE and control individuals (n = 42 each). A list of metabolites was selected based on the most commonly shared variables found in 10 consecutively constructed PLS-DA models in which 5 incident VTE and 5 controls were randomly excluded. In each model the variables (metabolites) were selected based on the shift of the partial PLS correlation coefficient from the normal distribution.

Hierarchical clustering highlighted the effectiveness of the 21 metabolite model at separating the two groups (healthy or VTE) (Figure 1A), with 10 of the metabolites relatively higher in abundance in the VTE group. In contrast, 11 of the metabolites were higher in the healthy controls (Figure 1B). The selected metabolites were subsequently combined to generate a meaningful clinical composite score for each individual. This predictive score was calculated from the PLS algorithm using the PLS partial correlation coefficients applied to each metabolite, with the clinical status used as the predicted variable (Figure 2A). From this equation a "thrombotic score" was calculated for each individual and tested using a receiver operating characteristic (ROC) curve. This method produced the following statistics: error probability P = 0.000348 after 1000 permutations, area under the curve 0.906, selectivity 0.832, sensitivity 0.96, cut off score value at 0.446 for discriminating VTE vs healthy individuals (Figure 2). 86% of the control and 83% of the VTE patients were correctly assigned when using the strict cut off value, and 15% of the total patients were indistinguishable. Using a 99% confidence interval, 19% were not defined on top of the 9.5% indistinguishable (Figure 2D). We validated our algorithm by also predicting the excluded samples of the 10 training sets described above, as well as by predicting new samples not used in the training sets (comprising the recurrent VTE individuals (see supplementary material biomarker validation steps)). Also, confounding factors effects listed in Table 1 such as BMI, family history of VTE were estimated (Supplemental Figures III-VI). They did not show any significant influence on this predictive score. Finally, power analysis indicated that as low as 24

individuals per group was sufficient to discriminate the 2 populations using the composite score (Supplemental Figure VII). The full validation procedure is detailed in the supplementary material. Aside lipids, the selected metabolites are related to the redox and inflammatory status, oxidative stress and metabolic activity (Supplemental Table S1).

Multiblock analysis

The 137 detected and annotated metabolites were clustered into 50 functional biological blocks as described in the method section (Supplemental Table S1). Lipids were blocked according to their statistical proximity using hierarchical clustering analysis (375 lipid species clustered into 12 different blocks, Supplemental Figure II and Supplemental Table S3). Each functional block was then analyzed using a PLSbased multiblock approach (hierarchical PLS). The effectiveness of the blocking procedure was tested to ensure it did not distort the observations mapping in the PLS space, by comparing the PLS-DA score plots of the weighed blocked to that of the original unblocked data (Supplemental Figure VIII).

Twenty-five metabolic and lipid blocks were found significantly differentially regulated between healthy and VTE patients at the qval ≤ 0.01 threshold (Figure 3A).

The difference between VTE and control individuals was better reflected in the metabolome than in the plasma lipidome (48% vs 16.6% of the total metabolic functions dysregulated respectively) . These disease-impacted functions were related to cellular regulations, metabolic control and dysregulation, oxidative stress/inflammation, primary metabolism and vascular function (Figure 3A). The probability value was plotted to stratify the relative impact of the disease recurrence on each function (Figure 3B). This highlighted carbohydrate metabolism was mainly affected, followed by metabolic dysregulation and stress defence related functions, but also the gut microbiota derived metabolism. Among the gut microbiota metabolites of interest was trimethylamine N-oxide (TMAO) that remained twice as high in VTE patients, whether incident (Figure 3C), or recurrent (not shown). It alone was however found not to be highly predictive of VTE status (Figure 3D). Tryptophan metabolism and vascular related metabolites were the least significantly affected.

The interplay between the biological functions were examined by calculating pairwise partial correlations and displaying in an interaction network (Figure 4).

In order to focus on the specific interplays of the VTE population, we subtracted the network node edges calculated for the control population to that of the diseased one. The resulting graphical network thus displayed the specific disease biological function relationships. In that context the lipid cluster 1 node appeared as an important hub. It was related at the first and second neighbor's degree to functions related to the cell defense oxidative system, metabolic control or dysregulations, stress functions, some primary metabolisms (branched chain amino acid and saturated lipids), and to vascular health related metabolites (see metabolites composition in Supplemental Table S1). Interestingly, gut microbiota metabolism also related to tryptophan metabolism was also associated with this vascular outcome.

This lipid cluster 1 was characterized by 43 lipid species distributed into 11 lipid classes (Figure 5A andB). The cluster was dominated by phosphatidylcholines and triglycerides containing fatty acyl moieties composed of long-chain polyunsaturated fatty acids of both the n-6 and n-3 series (Figure 5A andB). Among them was C22:6n-3 (docosahexaenoic acid), esterifying over 42% of the lipid species. All the lipids of that cluster were present in higher amounts in most of the historical VTE patients (Figure 5B andC), with a statistical emphasis for triglycerides.

Across the biomarker and functional results, of the 21 metabolites selected to predict the thrombosis status, 16 were included in the 248 metabolites composing the biological functions found related to the disease phenotype. These 16 predictive metabolites could be assigned into 14 biological functions, all matching with the 25 differentially regulated between control and VTE patients (not shown).

Discussion

This study had two main goals: to identify a set of biomarkers related to historical VTE, and to identify possible background molecular mechanisms associated with this adverse phenotype.

We identified a set of 21 plasma metabolites including 12 lipid species as biomarkers of historical VTE. Individually, none were able to robustly discriminate the cases from the healthy control individuals. However, combining them into an equation generated a score for each individual sufficiently sensitive and selective (0.96 and 0.832 respectively) to be used as a multiplex biomarker (Figure 2). Such a strategy has been found valuable in other studies [START_REF] Martin | Multi-level systems biology modeling characterized the atheroprotective efficiencies of modified dairy fats in a hamster model[END_REF][START_REF] Aidoud | Modulation de l'apport qualitatif post-natal en lipides sur le fonctionnement cérébral du nouveau-né[END_REF]19 to define a biomarker that is less affected by interindividual variation or environmental influences 19 . The multiplex biomarker score value at the 99% confidence interval indicated that less than 30% (9.5% false status and ~17% with an undefined status) of the VTE patients had a similar score to controls, suggesting a return to a healthy status. Our results also highlighted that post 3 months from a VTE, over 70% of the VTE populations remained different from the healthy controls. Whether or not such population continued to remain at risk is unknown and would require a follow up study.

The new combination of biomarkers that we selected to predict the incident VTE also correctly predicted the majority of the relapsed patients used as an external validation cohort (74% correct assignment). Thus a permanent metabolic background seemed to represent the VTE phenotype irrespective of the number of events, however we cannot explain whether it relates to a post VTE induced metabolome or is a pre-existing VTE outcome. Only pre and post VTE sampling on the same patients to perform the metabolome analysis would be able to confirm this and remains to be done. Nevertheless, our strategy provides a proof of principle approach to stratify the population for subsequent clinical monitoring after a VTE.

The metabolite candidates were related to many biological processes, such as oxidative/inflammation status, metabolic dysregulation, some of which have been already established in the VTE phenotype ( 20 , 21 , [START_REF] Phang | Diet and thrombosis risk: Nutrients for prevention of thrombotic disease[END_REF] ), including carnitine derivatives [START_REF] Deguchi | Acylcarnitines are anticoagulants that inhibit factor xa and are reduced in venous thrombosis, based on metabolomics data[END_REF][START_REF] Jiang | Metabolites associated with the risk of incident venous thromboembolism: A metabolomic analysis[END_REF] .

However, the reduced set of metabolites remains insufficient to provide a mechanistic explanation concerning complex disease phenotypes.

Thus, to describe with improved accuracy the status of patients, we examined the differences in the biological status at the metabolic function level. For this, metabolites were clustered according to functional ontologies or statistical clusters (lipids) as previously described ( 23 , 24 , 14 , 16 , 15 ). This analysis provides a more meaningful higher-level explanation of the complex biological regulations.

Most of the biomarkers used in the multiplex biomarker panel (16 out 21 metabolites) were also included in the list of 248 metabolites forming the statistically relevant biological function matrix, suggesting that the majority of these 21 metabolites could also be considered as functional biomarkers. The 25 metabolic and lipid clusters statistically modified in VTE patients covered an array of functions, highlighting the complex nature of the VTE phenotype. Such metabotype can be summarized to functions relating to cell defence system, cell signalling, metabolic control and deregulation, to primary metabolism including microbiota metabolism, and some vascular function related metabolites (Figure 3). Some of these perturbed metabolic areas have been individually observed previously in VTE patients, however the previous studies focused on a smaller number of metabolites ( 20 , 21 , 22 , [START_REF] Abdelhamid | Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease[END_REF] ).

Comparisons remain difficult with studies examining mechanistic aspects during or around the VTE, as they can be associated together with other diseases. At the time of sampling, our VTE patients were supposed to be clinically recovered, but we still found numerous resilient metabolic changes at the function level (Figure 3), but not necessarily at the single metabolite level. The multivariate statistics used to form the functional blocks includes the extent of the relationships among the variables, in contrast to univariate methods that focus solely on the mean and the variance of a single variable ( 26 ). As a result, our multiblock approach is more sensitive by aggregating individual minor variations that can make them collectively significant.

The metabolic function blocking allows sorting of the initial VTE effect according to the statistical P-value (Figure 3) but does not provide a representation of the orchestrating specific regulations (network of interactions) occurring in the VTE patients. The partial correlation networking performed here, better reports true metabolic outcomes [START_REF] Krumsiek | Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data[END_REF] and emphasises the critical functions with potential regulatory roles. Lipids cluster 1 thus appeared central in coordinating the specific VTE metabolic response (Figure 4), whereas its relative statistical relevance only looked medium to low (Figure 3B). This lipid cluster was especially rich in triglycerides and phosphatidylcholines, with lipid species mainly comprising esterified long-chain polyunsaturated fatty acid of n-6 and n-3 series. These fatty acids can reflect both dietary intake and metabolic influences 28 , 29 , 30 , 31 , 32 . The cluster comprised docosahexaenoic and eicosapentaenoic acid containing lipids in higher proportions to the other clusters. High intake of these two n-3 long-chain polyunsaturated fatty acids are recognized to be generally anti-thrombotic [START_REF] Sanchez | Diet modulates endogenous thrombin generation, a biological estimate of thrombosis risk, independently of the metabolic status[END_REF] , and can lower VTE in both animal models [START_REF] Andriamampandry | Antithrombotic effects of (n-3) polyunsaturated fatty acids in rat models of arterial and venous thrombosis[END_REF] , or humans [START_REF] Hansen-Krone | High fish plus fish oil intake is associated with slightly reduced risk of venous thromboembolism: The tromso study[END_REF] . A high blood eicosapentaenoic/arachidonic acid ratio in humans has also been found to be associated with a lower occurrence of acute VTE [START_REF] Hiki | Significance of serum polyunsaturated fatty acid level imbalance in patients with acute venous thromboembolism[END_REF] . However, a meta-analysis from 79 RCTs (including 112059 participants) to assess the role of n-3 fatty acids for the primary and secondary prevention of CVD found a harmful (RR 1.25), though non-significant effect, of both docosahexaenoic and eicosapentaenoic acid on VTE (analyzed on a subset of 4 RCT and 3011 participants) [START_REF] Abdelhamid | Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease[END_REF] . This trend seemed to be similar to our finding where such n-3 long chain fatty acid lipids were associated with our VTE patients. It is nevertheless difficult to conclude with confidence with regards to the role of n-3 lipids in the occurrence of VTE. Instead, our results suggest that these lipids seemed to interact or control various functions with still un-reset activities in patients with a previous VTE. At 2 neighbours degree distance, lipid cluster 1 was related mainly to oxidative and inflammatory defence systems, and to metabolic disorder associated dysregulations, representing clinical indicators to monitor.

Interestingly, our network analysis also revealed in VTE patients a relationship between tryptophan metabolism and gut microbiota metabolism. This can be explained by the common metabolites found in both functions, but the finding also highlights the possible implication of gut microbiota in this vascular disease through the modulation of tryptophan metabolism. This latter metabolism is vital in the modulation of VTE ( 37 , [START_REF] Voils | Metabolomic association between venous thromboembolism in critically ill trauma patients and kynurenine pathway of tryptophan metabolism[END_REF] ) through the activation of the nuclear receptor AhR pathway ( 39 ). Moreover, the gut microbiota function also includes TMAO. TMAO originates from gut microbiota and was found to be prothrombotic ( 40 ). However, it was not linearly associated with recurrent VTE ( 41 ). In our study, TMAO levels were twice as high in the plasma of incident (and recurrent) VTE patients compared to healthy controls (Figure 3C), but its variability prevented its inclusion in the predictive biomarkers panel (Figure 3D and Figure 2). Our finding thus suggests that our VTE patients would have a gut microbiota composition more related to elevated TMAO production. Alternatively, since TMAO can also be influenced by the host liver Flavincontaining monoxygenase 3 activity ( 42), it may be indicative of a polymorphism in this gene in the VTE patients. However, the latter appears unlikely since no such Flavin monooxygenase 3 gene polymorphism has to date been found associated with VTE.

It should be noted that healthy controls were not from the general population.

They were referred to our centre for a thrombophilia screening because they had a family history of VTE. About half of them had a positive thrombophilia screening (among antithrombin, protein C, protein S deficiencies, factor V Leiden, G20210A prothrombin mutation). As a consequence they might harbour a higher VTE risk than the general population. and 22% of the total composition. B, lipid species composition, with disease impact on the lipids sorted in decreasing order according to P-values (expressed in -log10Pvalue, significance cut off at qval < 0.05 is indicated by a solid red line, n= 84). C, relative content of the lipid species of cluster 1 in both VTE cases (black in legend) and control (grey in legend) displayed as a heatmap (light grey, relative decrease, dark, relative increase). n = 84.
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MetaboAnalyst 4 .

 4 0[START_REF] Chong | Metaboanalyst 4.0: Towards more transparent and integrative metabolomics analysis[END_REF] , while partial correlations were calculated with the R package GeneNet, and network visualization performed using Cytoscape. The multivariate statistical analyses, partial least squares discriminant analysis (PLS-DA) and hierarchical partial least squares-discriminant analysis (H-PLS-DA) were performed with SIMCA 14 (Umetrics, Umea, Sweden). Models were validated by cross validation analysis of variance (CV-ANOVA) (significance threshold ≤0.05) and by permutation tests (200 permutations).

Figure 1 :

 1 Figure 1: A, one dimensional PLS-DA score plot obtained with PLS coefficient 'CS' values of 0.016 and 'VIP' values of 1.63 (n = 42 individuals per class). Model details: group variance explained R2Y = 0.447, and predicted Q2Y = 0.399. Model robustness validation: R2Y after 200 random individual permutations = 0.0899, Q2Y =-0.116, significance of class discrimination after cross-validation ANOVA was P =1.1147 x 10 -9 . B, list of the selected best 21 metabolite biomarkers obtained from the PLS-DA model with their relative increase (dark grey) or decrease (light grey) in the plasma of thrombotic vs healthy patients. Lipids are specified by class (PA, phosphatidic acid, LPMe, lysophosphatidylmethanol, PS, Phosphatidylserine, PE, Phosphatidylethalnolamine, TG, Triglycerides, PC, Phosphatidylcholine, and ZyE, Zymosterol ester). The attached fatty acyl chains along with unsaturation number are indicated, or when not fully determined the total number of carbons and unsaturations in the combined fatty acyl moieties.

Figure 2 :

 2 Figure 2: A, thrombotic score equation to predict the clinical status using the PLS algorithm combining all the selected variables. B, whisker plot of thrombosis score values for each individual with a thrombotic or a healthy status. The red line indicated the threshold of class assignment, and was determined by C, the asymptotic point of a ROC curve calculated from the prediction scores. The area under the curve (AUC) along with the sensitivity and selectivity values are indicated. D, true, false or not determined (ND) patients class assignment according to the ROC curve threshold value, along with no, 95% or 99% confidence interval. PRED NEW stands for prediction performance in the validation cohort of recurrent VTE patients (n=42).

Figure 3 :

 3 Figure 3: Selected biological functions significantly affected by patient status (healthy controls vs venous thrombosis, T-test, q value ≤ 0.01, n = 42 per group), trimethylamine N-oxide plasma level. A, relative activation level of biological functions calculated by hierarchical PLS-DA and displayed as a heatmap (light grey, relative decrease, dark, relative increase). TCA, tricarboxylic acid cycle, BCAA, branched-chain amino acids. Biological meaning is indicated. B, disease impact on the biological functions sorted in decreasing order according to P-values (expressed in -log10P-value, n= 84). C, box plot and dispersion plot of TMAO plasma level in VTE and control patients. D, receiver operating characteristic curve calculated from TMAO in both VTE and control patients (AUC for the area under the curve value).

Figure 4 :

 4 Figure 4: partial correlation network displaying pairwise relationships between the biological functions specific to cases (thrombosis). The common pairwise correlations between cases and controls have been removed to keep only relationships specific of the cases population. Initial partial correlations Pvalue ≤ 0.10. Nodes represent the biological functions, the edges show the partial correlation with thickness related to P-value, with solid lines for positive correlations, dashed lines for negative correlations.

Figure 5 :

 5 Figure 5: Lipid composition and relative abundance of lipid cluster 1. A, lipid classes composition, with TGs (dark blue) and PCs (brown) representing 38and 22% of the total composition. B, lipid species composition, with disease impact on the lipids sorted in decreasing order according to P-values (expressed in -log10Pvalue, significance cut off at qval < 0.05 is indicated by a solid red line, n= 84). C, relative content of the lipid species of cluster 1 in both VTE cases (black in legend) and control (grey in legend) displayed as a heatmap (light grey, relative decrease, dark, relative increase). n = 84.

  

  All participants provided written informed consent, and the protocol was approved by the ethics committee of the participating institution.

	MARTHA bioresources were provided by the Biological Resources Center of the
	Assistance Publique -Hopitaux de Marseille (CRB-APHM, certified NF S96-900 &
	ISO 9001 v2015), from the CRB-HV component.
	A VTE episode was confirmed if objectively diagnosed by medical imaging
	techniques: compression ultrasound, venography, ventilation/perfusion lung scan,
	spiral computed tomography or pulmonary angiography, or if the patient received full-
	dose anticoagulation for at least three months. Healthy controls were VTE free
	patients generally referred to our centre because they had a family history of VTE. A
	1 st degree family history of VTE was reported in 90% of healthy controls that were
	unrelated to our cases.

and consists of patients enrolled from June 1992 to November 2011 at the Reference Centre for Thrombophilia in La Timone hospital, Marseille, France. The MARTHA cohort aims to identify new genetic risk factors for VTE.

Table 1

 1 

	shows the main characteristics of the

Table 1 :

 1 Clinical parameters of the study cohort.

	Parameter	Healthy controls (n=42)	VTE patients (n=42)	P-value
	Age, mean (SD)	52.9 (14.1)	54.9 (14.1)	0.53
	Women, n (%)	26 (61.9)	26 (61.9)	0.99
	Smoking status, n (%)			0.46
	Former	8 (19)	4 (9.5)	
	Current	26 (61.9)	29 (69)	
	No	8 (19.1)	9 (21.5)	
	Body mass index (Kg.m -2 ), mean (SD)	24.2 (4.0)	26.8 (5.0)	0.009
	Antiplatelet drugs, n (%)	1 (2.3)	3 (7.1)	0.61
	Hormone treatment (female), n (%)	21 (84)	20 (80)	0.71
	Drug treatment*, n (%)	27 (64.3)	22 (52.4)	0.27
	Hypertension, n (%)	34 (81)	36 (85.7)	0.56
	Dyslipidemia status, n (%)			0.57
	Hypercholesterolemia	7 (16.6)	10 (23.8)	
	Hypertriglyceridemia	1 (2.4)	2 (4.8)	
	None	34 (81)	30 (71.4)	
	Diabetic status			
	Type I	1	1	
	Type II	1		
	Family history of VTE, n (%)	37 (88)	17 (40.5)	0.000006
	Pregnancies, n (%)			0.11
	0	0 (0)	4 (18.2)	
	2-3	16 (64)	13 (59)	
	>3	4 (16)	5 (22.8)	
	Age at first VTE episode, mean (SD)		44.9 (15.4)	
	Unprovoked first VTE episode, n (%)		34 (81.0)	
	Pulmonary embolism, n (%)		16 (38.1)	
	* antibiotics (n= 2, 1 in control, 1 in VTE), anti-inflammatory (n=2 in control),	
	progestatifs and estroprogestatifs (n=4 in control), antidepressant (n=2 in control),	
	platelet aggregation inhibitor (n=4, 1 in control, 3 in VTE), others (n=35, 17 in control,
	18 in VTE)			

Abbreviations