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I. ABSTRACT

This survey is on recent advancements in the intersection
of physical modeling and machine learning. We focus on the
modeling of nonlinear systems which are closer to electric
motors. Survey on motor control and fault detection in
operation of electric motors has been done.

II. INTRODUCTION

Understanding of physical process from data when there
is no first principle solution is very hard. The abundance of
data in both natural and physical sciences has enabled the
use of machine learning models to understand the governing
dynamics of many complex processes. There are different
ways in which physical modeling and machine learning meth-
ods have been used together. Research has been done in the
following areas; a) the problem of understanding the physical
process from data, b) classifying or predicting complex phys-
ical process, c) using physics to generate simulation data for
machine learning models, d) using machine learning to control
non-linear dynamical systems, and e) using machine learning
to do fault detection in dynamical systems.

This survey is on all the different areas where there has
been an amalgamation of machine learning and physics. The
applications on which we focus on are time series modeling,
non-linear control, motor control, and fault detection. The
survey is divided into the following sections; iii) first is
modeling of physical systems, iv) second is on non-linear
control, v) third is on motor control, and vi) the fourth is on
fault detection.

III. MODELING OF PHYSICAL SYSTEMS

A. Data-driven modeling
Data-driven approaches for modeling physical systems are

proposed in [1]–[4]. Hidden Markov Model (HMM), or
Kalman filter can learn linear dynamic models. For non-
linear dynamics accommodating nonlinearity into HMM is
very hard. In [1] a new method called sufficient posterior
representation is presented which can be used to model
nonlinear dynamic behaviors using many nonlinear supervised
learning algorithms such as neural networks, boosting and
SVM in a simple and unified fashion. In [2] modeling of
time-invariant nonlinear systems is addressed. A multi-layered
network architecture with a control input signal called Hidden
Control Neural Network (HCNN) is presented which can

model signals generated by nonlinear dynamical systems with
restricted time variability. Most of the methods of data-driven
learning of dynamic systems deal with sequential data. In [3]
method is presented to learn dynamics from non-sequential
data. In [4] three deep neural network structures are trained
on sequential data to learn complex behavior.

B. Modeling using partial differential equations

Another approach of modeling physical system is to repre-
sent it in the form of Partial Differential Equations (PDEs).
PDEs can describe complex phenomena. We don’t always have
PDEs for a given problem, but we may have a large amount
of data available. In [5] a data-driven method is proposed to
learn the governing PDEs of a given system from time series
data. Sparse regression is used to learn the coefficients and an
iterative method is used to get the most suitable coefficients.
Experiments on the Navier-Stokes equation is shown. In [6]
a deep learning approach for discovering nonlinear partial
differential equations from scattered and potentially noisy
observations is presented. Two deep neural networks are used
to approximate solution and nonlinear dynamics.

C. Representation learning of dynamical systems

For some physical systems, we want a weak governing
dynamics in form of equations. A neural network trained on
physical system data does not provide a good representation
in form of equations. [7], [8] have shown methods which can
be used to find weak governing dynamics in form of equations
or sparse matrices. Computing hidden system parameters from
measurable quantities of complex physical systems using an
Invertible Neural Network (INN) is presented in [7]. In [8]
a data-driven approach of approximating nonlinear dynamics
to a linear one using deep neural networks has been present.
Koopman operators [9] are learned from data for coordinate
transformation of a nonlinear system to a linear one. Koopman
operator [9] is a linear operator Cφ defined by the rule
Cφ(f) = f ◦ φ, where f ◦ φ denotes function composition.
Other methods for nonlinear to a linear transformation are
presented in [2], [10]. There are systems where dynamics
change with time and some dynamics may not have been
seen before. Identifying new dynamics will be useful. [10]
uses neural networks to identify new physics. In [2] a multi-
layered neural network called Hidden Control Neural Network
(HCNN) is presented to model nonlinear dynamical systems
with restricted time variability. The mapping of the neural



network changes with time as a function of an additional
control input signal.

D. Theory-guided learning of dynamical systems
It is crucial to have a machine learning model which is

consistent with the physics of the dynamical system. [11]
has shown how physics can be used to do better data-driven
discoveries. Theory-guided design, learning, refinement of the
machine learning model has been presented. In [12], [13] a
physics-guided neural network (PGNN) is presented which
leverages the output of physics-based model simulations along
with observational features to generate predictions using a
neural network. The model predictions not only show lower
errors on the training data but are also consistent with the
system dynamics. [14] uses machine learning to optimize
physical dynamic systems.

E. Modeling using reinforcement learning
Reinforcement learning (RL) has also been used for

physical modeling. In [15] a Temporal Difference learning
algorithm for continuous-time, continuous-state, nonlinear
control problems is presented. Kernel regression method is
used to learn a nonlinear auto-regressive model.

IV. NONLINEAR CONTROL

A. Feedforward neural network based controllers
Feedforward neural networks have been used for nonlinear

control in [16]–[21]. In [16] a feedforward neural network
is used to control an unknown stochastic nonlinear dynam-
ical system. In [17] the governing equations of a Propor-
tional–Integral–Derivative (PID) controller is used to train a
neural network to control a nonlinear system. In [18] a method
for jointly optimizing the temporal parameters along with the
control command profiles is presented. In [19] an adaptive
controller for thermostat is presented. The consequences of
control decisions are delayed in time, the controller anticipates
heating demands with predictive models of occupancy patterns
and the thermal response of the house and furnace. Occupancy
pattern prediction is achieved by a hybrid neural net/look-up
table. The controller searches, at each discrete time step, for
a decision sequence that minimizes the expected cost over a
fixed planning horizon. The first decision in this sequence is
taken, and this process repeats.

B. Stablility in neural network based controllers
In [20] a new framework for intelligent control is presented

which adaptively controls a class of nonlinear discrete-time
dynamical systems while assuring boundedness of all signals.
A linear robust adaptive controller and multiple nonlinear
neural network based adaptive controllers are used, and a
switching law is suitably defined to switch between them,
based upon their performance in predicting the plant output.
Boundedness of all the signals is established regardless of
the parameter adjustment mechanism of the neural network
controllers, and thus neural network models can be used

in novel ways to better detect changes in the system and
provide starting points for adaptation. In [21] a neural net-
work based approach is presented for controlling two distinct
types of nonlinear systems. The first corresponds to nonlinear
systems with parametric uncertainties where the parameters
occur nonlinearly. The second corresponds to systems for
which stabilizing control structures cannot be determined. The
proposed neural controllers are shown to result in closed-loop
system stability under certain conditions.

C. Sequence-to-sequence networks based controllers
Most dynamical systems have time as one dimension and

having a controller that can take sequence into account is
very useful. [22]–[25] use Recurrent Neural Network (RNN)
for nonlinear control. Using a recurrent network to create a
mixture of experts for modeling and controlling dynamical
systems is presented in [22]. In [23] a dynamical system is
first modeled using a recurrent neural network (RNN). Then
the dynamic response of the system is controlled using another
RNN. Disturbance canceling is performed using an additional
RNN. In [24] a recurrent neural network architecture called
Sigmoid Diagonal Recurrent Neural Network (SDRNN) is
used for adaptive control of nonlinear dynamical systems. In
[25] recurrent neural network is used to control nonlinear
plants. The proposed method is used in controlling landing
of a commercial aircraft in severe wind conditions.

D. Reinforcement learning based controllers
Reinforcement learning (RL) methods for optimal control

of nonlinear systems are presented in [15], [26]–[29]. RL
algorithm that learns to combine open-loop and closed-loop
control is presented in [26]. Kuremoto et. al. [27] uses RL to
predict nonlinear time series. In [28] a general purpose chaos
control algorithm based on RL is introduced and applied to
the stabilization of unstable periodic orbits in various chaotic
systems and the targeting problem. The algorithm does not
require any information about the dynamical system nor about
the location of periodic orbits. Model-based RL combined
with dynamic programming has been shown to be useful for
learning control of continuous state dynamic systems. The sim-
plest method assumes the learned model is correct and applies
dynamic programming to it, but many approximators provide
uncertainty estimates on the fit. [29] have presented the case
where the system must be prevented from having catastrophic
failures during learning. In [30] a new RL architecture for
nonlinear control is presented. A direct feedback controller, or
the actor, is trained by a value-gradient based controller, or the
tutor. This architecture enables both efficient use of the value
function and simple computation for real-time implementation.
Good performance was verified in multi-dimensional nonlinear
control tasks using Gaussian softmax networks.

E. Convolutional neural network based controller
In [31] a method for model learning and control of non-

linear dynamical systems from raw pixel images is presented.
Embedd-to-control (E2C) consists of a deep generative model



that learns to generate image trajectories from a latent space
in which the dynamics are constrained to be locally linear.

V. MOTOR CONTROL

A. Neural Network controller
In [32] a neural network adaptive inverse controller is

presented. A neural network constructs the dynamical system
inverse model identifier. The task is accomplished by gener-
ating a tracking error between the input command signal and
the system response. The error signal updates the weights of
the neural network in such a way that the error is minimized
and the neural network is close to the system inverse model.
The above steps make the gain of the serial connection system
close to unity, realizing waveform replication function in real-
time. To enhance its convergence and robustness, normalized
least mean square algorithm is applied.

B. Recurrent Neural Network controller
In [33] a model-following adaptive control structure is

proposed for the speed control of a nonlinear motor drive
system and the compensation of the nonlinearities. A recurrent
neural network is used for the online modeling and control of
the nonlinear motor drive system with high static and Coulomb
friction. The neural network is first trained off-line to learn the
inverse dynamics of the motor drive system using a modified
form of the decoupled extended Kalman filter algorithm. It is
shown that the recurrent neural network structure combined
with the inverse model control approach allows an effective
direct adaptive control of the motor drive system. The per-
formance of this method is validated experimentally on a dc
motor drive system using a standard personal computer.

C. Neural Network for multi-input-multi-output control
In [34] application of recently developed adaptive control

techniques based on neural networks to the induction motor
control is presented. The case study represents one of the
more difficult control problems due to the complex, nonlinear,
and time-varying dynamics of the motor and unavailability
of full-state measurements. A partial solution is first pre-
sented based on a single-input-single-output (SISO) algorithm
employing static multilayer perceptron (MLP) networks. A
novel technique is subsequently described which is based on
a recurrent neural network employed as a dynamical model
of the plant. Recent stability results for this algorithm are
reported. The technique is applied to multi-input-multi-output
(MIMO) control of the motor.

D. Other Deep Neural Network based controllers
In [35] a deep learning controller is designed by learning

a PID controller. The input/output of the PID controller is
used as the learning data set for the deep learning network.
Deep Belief Network algorithm is used to design the deep
learning controller. In [36] a discrete time neuro-compensated
dynamic state feedback control system for lateral and longi-
tudinal control of intelligent vehicle highway systems (IVHS)
is presented.

VI. FAULT DETECTION

A. Stability guarantees
Learning algorithms have enjoyed numerous successes in

robotic control tasks. In problems with time-varying dynamics,
online learning methods have also proved to be a powerful
tool for automatically tracking and/or adapting to the chang-
ing circumstances. However, for safety-critical applications
such as airplane flight, the adoption of these algorithms has
been significantly hampered by their lack of safety, such
as “stability,” guarantees. In [37] authors have presented a
method for “monitoring” the controllers suggested by the
learning algorithm online, and rejecting controllers leading to
instability.

B. Fault detection in electric motors
In [38] three different machine learning methods are pre-

sented for fault detection in electric motors. First one is feature
extraction using Principal Component Analysis (PCA), the
second one is classification using the k-Nearest Neighbor (k-
NN) or Probabilistic Neural Network (PNN) methods and the
third one is classifier performance evaluation using the Cross-
Validation (CV) method. While electric machine, inverter, and
sensor faults are introduced, the supervised learning algorithms
are applied to four case studies where two fault modes occur
in a current sensor, and two occur in the speed encoder.

C. Operating conditions as priors in fault detection
[39] deals with the application of speed variable pumps

in industrial hydraulic systems. The benefit of the natural
feedback of the load torque is investigated for the issue of
condition monitoring as the development of losses can be
taken as evidence of faults. A neural network is used for
adaptive modeling of the torque balance over a range of steady
operation in fault-free behavior. The goal is to keep a numeric
reference with an acceptable accuracy of the unit used in
particular, taking into consideration the manufacturing toler-
ances and other operation conditions differences. The learned
model gives a baseline for identification of significant possible
abnormalities and offers a fundament for fault isolation by
continuously estimating and analyzing the deviations.

D. Other methods for fault detection
In [40], [41] a machine learning algorithm has been pre-

sented which automatically selects a set of representative
operating points in the (torque, speed) domain, which is sent
to the simulated electric drive model to generate signals for the
training of a diagnostic neural network called Fault Diagnostic
Neural Network (FDNN). In [42] the fault degree and health
degree of the system are put forward based on the analysis of
electric motor drive system’s control principle. With the self-
organizing neural network’s advantage of competitive learning
and unsupervised clustering, the system’s health clustering
and safety identification are worked out. In [43] a Deep
Belief Network (DBN) is used to learn features from the
frequency distribution of vibration signals with the purpose of
characterizing the working status of induction motors. In [44]



DNN on raw time series data is applied to do fault detection.
In [45] fault detection in real-time systems using ANN and
adaptive control of an active suspension system is presented.
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