
HAL Id: hal-03120210
https://hal.science/hal-03120210

Submitted on 13 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

0-1 ILP-based Run-Time Hierarchical Energy
Optimization for Heterogeneous Cluster-based

multi/many-core Systems
Simei Yang, Sébastien Le Nours, Maria Mendez Real, Sébastien Pillement

To cite this version:
Simei Yang, Sébastien Le Nours, Maria Mendez Real, Sébastien Pillement. 0-1 ILP-based Run-Time
Hierarchical Energy Optimization for Heterogeneous Cluster-based multi/many-core Systems. Journal
of Systems Architecture, 2021, 116, pp.102035. �10.1016/j.sysarc.2021.102035�. �hal-03120210�

https://hal.science/hal-03120210
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

0-1 ILP-based Run-Time Hierarchical Energy Optimization for
Heterogeneous Cluster-based multi/many-core Systems
Simei Yang*, Sébastien Le Nours, Maria Mendez Real and Sébastien Pillement
University of Nantes, CNRS, IETR UMR 6164, F-44000 Nantes, France

ART ICLE INFO
Keywords:
0-1 ILP
run-time management
energy efficiency
task mapping
per-cluster DVFS

ABSTRACT
Heterogeneous cluster-based multi/many-core platforms are on the edge, delivering high comput-

ing and energy-efficient embedded systems. These platforms support Dynamic Voltage/Frequency
Scaling (DVFS), allowing to change the voltage/frequency levels for each cluster independently.
Mapping dynamic applications on such platforms at run-time is a tedious task. This article presents
a 0-1 Integer Linear Programming (ILP) based run-time management approach that aims to optimize
the overall system energy. The proposed approach adopts a hierarchical management organization.
A global management strategy determines application-to-cluster assignments and setups the cluster
frequency configurations. A local management strategy determines task-to-core mapping in each
cluster to minimize resource usage. Our approach achieves optimized solutions with reduced
complexity and shows good scalability on different platform sizes. The experimental results show that,
compared with the state-of-the-art approaches of similar complexity, the proposed global management
strategy can reduce the average power consumption of the overall system by 80.3%. The experiment
also demonstrates that resource minimization in the local management can significantly impact global
management decisions, and thereby further reducing overall average power by up to 60.72%.

1. Introduction
Heterogeneous cluster-based multi/many-core platforms

represent promising solutions to deliver high computing
performance and energy efficiency in modern embedded
systems. On such platforms, cores are grouped into clus-
ters, while distinct features of different core types can be
exploited in the different clusters. One example of such
a platform is the Exynos 5 Octa (5422) [1] with ARM’s
big.LITTLE architecture composing of a LITTLE cluster
(quad-core Cortex-A7) and a big cluster (quad-core Cortex-
A15). As reported in [2], the performance of Cortex-A15
is twice that of Cortex-A7, but with a power consumption
4 times higher (in average for different calculation types,
e.g., floating-point and integer). It is expected that more
clusters/cores will be largely adopted in future systems [2, 3],
such as in automotive and IoT domains. For power consump-
tion optimization, these platforms often support per-cluster
DynamicVoltage/Frequency Scaling (DVFS), allowing each
cluster to run under its own voltage/frequency (v∕f) levels
independently. The different computation resources among
clusters and the allowable v∕f cluster configurations allow
systems to achieve a good compromise between computation
performance and power consumption. That is one of the
reasons why the ARM big.LITTLE architecture is widely
used, for instance in the field of smartphones [4].

The increasing number of cores on modern platforms
provides opportunities to execute more applications at the
same time. As defined in [5], we adopt the notion of
use-case to designate a set of applications that are active
concurrently on the system. From one use-case to another,
workloads on the platform resources change dynamically
over time. The increasing application complexity and dy-
namism in multi/many-core platforms arise the need for

resources management. This management should optimize
the energy efficiency of the overall system with acceptable
computation complexity. The management process includes
appropriate mapping activate applications (i.e., application-
to-cluster assignments, task-to-core mapping within a sin-
gle cluster) and, for energy optimization purpose, applying
DVFS (i.e., selecting v∕f configurations for each cluster) to
the system [3].

Obviously, application mapping and cluster v∕f config-
urations directly influence the overall energy consumption
of the system. In cluster-based multi/many-core platforms,
small changes in the application mapping can significantly
change the cluster v∕f configurations, and consequently
increase/decrease the energy consumption of the overall
system. Obtaining the optimal application mapping under
system constraints is known as a NP-hard problem [6]. The
solution space exploration increases with the number of
applications and the number of cores. The exploration space
becomes even larger when DVFS is taken into account.
This problem is even more complex when dealing with
heterogeneous platforms.

To explore mapping and DVFS solutions, two man-
agement approaches can be applied. Design-time man-
agement approaches fix the system configuration (i.e., task
mapping, and v∕f level) while the system is designed (or
before system execution), and thus cannot handle application
dynamism. Run-time management approaches intend to
avoid the limitations of design-time management [7, 8], by
adapting tasks mapping and DVFS settings to the dynamic
workloads of a system. When performing run-time manage-
ment on a heterogeneous cluster-based system, two problems
need to be addressed.

The first problem is how to apply task mapping and
DVFS effectively to optimize the energy consumption of the
overall system? First approaches, such as [9, 10], apply first

Page 1 of 18
© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1383762121000370
Manuscript_04e952ecddd9c25b00f862096a1655ac

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1383762121000370
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1383762121000370

the taskmapping and then configure the DVFS separately. If
this approach simplifies the optimization problem, it might
lead to smaller energy efficiency of the overall system. This
is because the mapping can be further optimized after the
v∕f level changes. A more energy-efficient solution is to
apply task mapping and DVFS integratedly [7, 8]. Any
change in the mapping can trigger an update of v∕f levels
under system constraints. Such approaches take into account
the mutual influence between mapping and DVFS. As [7, 8]
target one application executing on a multi-core system, a
new integrated approach is required to consider multiple
applications executing concurrently.

The second problem is how to make the proposed run-
time management strategy scalable according to platform
sizes (e.g., different numbers of clusters, different numbers
of cores within a cluster)? A hierarchical management
structure [11] is known as scalable. Such a structure mainly
uses 2-level hierarchical management, consisting of a global
and a local management strategy. Generally, the global
management considers a monolithic application-to-cluster
assignment approach [9, 12, 13]. These solutions are pro-
posed for small-heterogeneous cluster-based platforms (e.g.,
ARM big.LITTLE, with 4 cores within a cluster), and they
might present scalability issues for many-core platforms en-
compassing more clusters or more cores within each cluster
(as can be seen in Section 6). A new application-to-cluster
allocation strategy is needed to achieve energy efficiency
on different platform sizes with acceptable computational
complexity.

Our work aims to propose a run-time management ap-
proach for heterogeneous cluster-basedmulti/many-core plat-
forms (supporting per-cluster DVFS). We consider several
applications running concurrently on top of the platform. As
themanagement needs to be scalable, the approach considers
a 2-level hierarchical management structure. The mapping
process and DVFS setting are handled integratedly in order
to achieve energy efficiency of the overall system. More
precisely the contributions of this work are:

• We formulate the dependencies between taskmapping
and cluster v∕f into a 0-1 Integer Linear Program-
ming (ILP) model. This model is the base to integrat-
edly handle the mapping and the cluster v∕f settings.

• To support scalability issues and achieve an optimized
solution to the 0-1 ILP problem with acceptable ex-
ploration effort, we propose a greedy search strat-
egy in the global management. The global strategy
assigns applications with similar timing constraints
into the same clusters, and keeps cluster v∕f as low
as possible. Besides, the proposed strategy allows a
configurable number of applications to be migrated
from one cluster to another.

• To minimize the resource usage within each cluster,
we propose a local management strategy to optimize
task-to-core mapping. The local management allows
the global management to handle the heterogeneity

of the platform more efficiently. The reduction of
resource usage can impact the decision of the global
management, and consequently leads to better energy
efficiency of the overall system.

• We evaluate our strategies for different use-cases (i.e.,
different sets of simultaneously active applications)
and on different platform sizes. The experiments
compare the proposed strategies to state-of-the-art
approaches in terms of energy efficiency, scalability
and strategy complexity.

The remainder of this paper is organized as follows.
Section 2 discusses related work on run-time management
for heterogeneous cluster-based multi/many-core systems.
Section 3 then presents the considered application, platform
and power/energy models. Section 4 defines the prob-
lem overview of the hierarchical management, while the
Section 5 introduces the proposed hierarchical run-time
management strategy. Section 6 discusses the experimental
results. Finally, Section 7 concludes this paper.

2. Related works
As introduced above, run-time management in heteroge-

neous cluster-based multi/many-core systems includes two
tasks: 1) performing a dynamic mapping of applications
to resources and 2) setting the best values of voltage and
frequency to optimize energy consumption (i.e. by using
DVFS techniques). These two steps can be applied sepa-
rately or integratedly. The former way considers the two
management techniques into two independent steps, and
the latter way makes management decisions considering the
potential impact of one technique on the other one.

In cluster-based systems, task mapping needs be con-
sidered at cluster-level and at core-level. In [3, 9, 12]
authors separate cluster-level and core-level mapping from
DVFS. These works apply simple cluster-level mapping
strategies, and then achieve workload balance within each
cluster. Based on the selected mapping, cluster v∕f levels
are decreased as much as possible under timing constraints
or power budgets. Particularly at cluster-level, the authors
of [3] applies a Low-Energy-First (LEF) mapping strategy.
It assigns each independent periodic task to the cluster that
can achieve the lowest energy consumption at the maximum
cluster v∕f level. This work holds the hypothesis that
the energy consumption of a task at a given v∕f level
only depends on the used core type, meaning that different
mapping priorities are given to different clusters (at the
maximum cluster v∕f levels). Similarly, the works [9,
12] also give different priorities to different clusters when
mapping applications onto the ARM big.LITTLE platforms.
They use a Low-Power-First (LPF) based application-to-
cluster assignment strategy, where each application attempts
to be assigned to the lowest-power cluster (i.e., with the little
cores) first. If the performance constraint is not satisfied,
the high-performance cluster (i.e., big core cluster) is used.
Both LEF and LPF strategies give the highest priority to

Page 2 of 18

one cluster type during cluster-level mapping. For platforms
with more clusters or more cores within a cluster, we can
predict that the workload of the highest-priority clusters
might be very heavy with increasing numbers of active
applications. Furthermore, low-priority clusters might be
empty without any executed application, or significantly
under used, thus missing the opportunity for further energy
optimization.

In [13–15], the authors consider the cluster-level map-
ping independently, but integrate the core-level mapping and
DVFS within each cluster (for ARM big.LITTLE based sys-
tems). In [13], every new active application is first mapped
onto the little cluster, corresponding to the LPF strategy.
Then, within each cluster, this work considers the mutual
influence of task mapping and DVFS by estimating the
performance (i.e., throughput) gain/loss of each application
according to different management decisions. This work
first applies the DVFS technique i.e., decrease cluster v∕f
levels to achieve power gain, and estimates the resulting
system performance. If the estimated result at the new v∕f
level violates performance constraints, the task mapping is
performed to try to compensate for the performance loss.
Besides, the works in [14, 15] assume that application-to-
cluster assignments are known at design-time, and apply
the two steps of management through iterative evaluations
within each cluster. These works try different mappings and
DVFS configurations in each cluster until all active appli-
cations are successfully mapped at the lowest cluster v∕f
level. However, as these works focus on local optimization
within each cluster, they cannot benefit from dynamic global
optimization at the overall system level.

In contrast to previous works, the authors of [8, 16]
integrates mapping andDVFS at both, cluster and core levels
to achieve more energy-efficient solutions. In [8], a genetic
algorithm is presented to characterize task mapping and v∕f
levels decisions on the same chromosome. This work targets
design-time management strategies for a single application,
while our work considers a run-time management strategy
for multiple applications executing concurrently. A recent
work [16] presents a machine-learning based approach to
integratedly manage task mapping and DVFS on an Arm
big.LITTLE platform. At design-time, this work explores
the best configurations (i.e., the number of used cores and
frequency level in each cluster) for the dynamic workload of
each application. Then, it uses a Neural Network to build the
relationship between workloads and these configurations.
At run-time, the neural network chooses between different
configurations according to the execution context. This
work provides a new way to achieve system optimization for
multiple applications that execute sequentially, where one
application executes after another. On our side, our work
considers multiple applications executing concurrently.

Table 1 summarizes the strategies of previous works
and also compares the management structures (last col-
umn) of the different approaches. The centralized structure
adopted in [3, 8, 12, 13, 16] enables management simplicity,
but it may introduce severe performance bottlenecks and

heavy computation burdens for complex systems. A better
scalability can be provided by distributed and hierarchical
managements. By using a distributed structure, the works
in [14, 15] divide the entire management problem into
several sub-problems to achieve local optimization on each
sub-system (cluster). Hierarchical management considers
system optimization at different levels, having the possibility
to achieve both local and global optimization. The work
in [9] optimizes the system at the system-level, the cluster-
level, and the task-level.

Table 1: Comparison of related management strategies in
heterogeneous cluster-based systems

Ref
Cluster-based Apply Mapping Application- Management

Platform and DVFS to-cluster Structure

[3] different sizes
(1-task apps) separated LEF centralized

[9]
ARM big.LITTLE
2clusters x 4cores
(multi-task apps)

separated LPF hierarchical
[12] LPF centralized
[13] integrated in LPF centralized
[14] each cluster Known distributed[15] Known
[8] 2clusters x 2cores

(single app)
integrated

among clusters Genetic
centralized

[16] ARM big.LITTLE
(sequential apps) and Machine-

learning
This
work

different sizes
(concurrent apps)

integrated in
each cluster

0-1 ILP
model hierarchical

Our work achieves scalability by a 2-level hierarchi-
cal management structure as in [11], targeting global opti-
mization at the cluster-level and local optimization at the
core-level. It is worth noting this work considers a dif-
ferent architecture (i.e., homogeneous at cluster-level, het-
erogeneous at core-level, no DVFS consideration) to our
work. Besides, the work of [17] also uses a hierarchical
management structure on many-core platforms of different
sizes. Nevertheless, it considers homogeneous platform
supporting per-core DVFS (i.e., each core can have an
independent v∕f level). In our work, we focus on platforms
derived from Arm big.LITTLE architectures [1] (i.e., het-
erogeneous at cluster level, homogeneous at core-level, per-
cluster DVFS). Firstly, we formulate the mutual influence
between application-to-cluster assignments and per-cluster
DVFS into an 0-1 ILP model. The 0-1 ILP formation is
based on design-time prepared data, which helps to reduce
complexity of the run-time calculation. To avoid issues
of LEF and LPF, a dedicated global management strategy
based on the proposed model is developed to determine
application-to-cluster assignments and cluster v∕f levels.
Secondly, a local management strategy performs task-to-
core mapping by selecting an appropriate design-time pre-
pared mapping for each active application within each clus-
ter. The local management aims to minimize resource
utilization, bymerging selected mappings with respect to the
cluster v∕f (set by the global management). The reduction
of resource usage, in turn, leads to more energy-efficient
solutions (i.e.,application-to-cluster assignments and cluster

Page 3 of 18

v∕f levels) in the overall system. Compared to the state-
of-the-art management approaches, our work provides a
new solution to deal with mapping and cluster-level DVFS.
Furthermore, as we apply a hierarchical decision process
and use design-time prepared data, our solution is scalable
in terms of numbers of clusters and/or cores as discussed
in [18].

3. System models
3.1. Application models

In this work, we consider periodic multi-task applica-
tions. The period of an application appi is denoted as
Periodappi . As illustrated in Figure 1, an application consistsof a set of H computation tasks: Tappi = {t1,i, t2,i,⋯ , tH,i}and a set ofG communication edges: Eappi = {e1,i, e2,i,⋯ , eG,i}representing dependencies among the tasks. Tasks and
edges in appi are respectively indexed by tℎ,i and eg,i. In
the scope of this work, Synchronous Data Flow (SDF)
semantic [19] is used to capture the application activity. As
shown in Figure 1, input tokens define the number of tokens
that are read from the edge before executing a task and the
output tokens define the number of tokens that are written
through the edge after executing the task.

Platform Model

cluster1 clusterJ

System Memory

core1 coreNj

Local Memory

…

t2,1

3

3

1 1

1
1

1

1

t1,1

t4,1

t3,1

e1,1 e2,1

e3,1

t2,1

3

3

1 1

1
1

1

1

t1,1

t4,1

t3,1

e1,1 e2,1

e3,1

t2,2

3

11

t1,2

e1,2 1

t2,2

3

11

t1,2

e1,2 1

app1 app2

VFI

cluster2

Communication Resources (e.g., BUS/NoC)

core2

...

…

input token

output tokens u1

um

mapping

BUS/NoC

Figure 1: System model with multiple applications executed
dynamically on a cluster-based multi/many-core platform.

A use-case um is defined as a set of simultaneously active
applications according to [5]. We denote a use-case by
um = {app1, app2,⋯ , appI}, where I is the total number
of active applications in the use-case. For the example
in Figure 1, u1 encompasses two active applications (i.e.,
u1 = {app1, app2}). Different use-cases might be active
over time leading to different combinations of active set of
applications.
3.2. Platform model

Thiswork targets heterogeneous cluster-basedmulti/many-
core platforms. The platform (illustrated in the bottom
of Figure 1) is composed of J clusters associated with a
shared memory and communication resources. Each cluster,
indexed by clusterj , is composed of Nj number of cores.
The core type within each cluster is the same, but core types

between clusters can be different (i.e., defining a locally
homogeneous, globally heterogeneous platform).

Besides, the considered platform supports per-cluster
DVFS, making each cluster as one voltage/frequency island
(VFI) [20]. All the cores within a cluster share the same
voltage/frequency (v∕f) level, while each cluster has its
own v∕f range. The available discrete frequency levels of
clusterj are denoted as {fj,1, fj,2,… , fj,max} and operatingvoltages are adapted to the frequency settings, as illustrated
in [15], providing an adapted v∕f couple.

According to the platform model, the time used to com-
plete the computation activity of a task (tℎ,i) is defined
as its computation time (CompT imeℎ,i), while the time
used to complete communication activity between depen-
dent tasks via an edge (eg,i) is defined as communication
time (CommT imeg,i). CompT imeℎ,i and CommT imeg,i canbe different due to processed data dependencies, mapping
strategies and platform configurations (processing element,
v∕f level,⋯).

The communication resources among clusters andwithin
each cluster can be either a bus or Network-on-Chip (NoC).
Traditionally busses present scalability issueswhen the num-
ber of cores or clusters increase [8]. From bus to NoC, a
more detailed communication model can be used to capture
the difference in communication time (e.g., due to commu-
nication distance and possible communication congestion).
As our approach considers that each application is mapped
on a specific cluster (no communication among different
clusters), the communication time within each cluster is
initially included in its execution trace (see Section 4.1.1).
For sake of simplicity, the communication power/energy
is not taken into account explicitly in the experimental
evaluations for all the implemented algorithms (Section 6).
3.3. Power and energy models

Energy efficiency refers to the optimization of energy
consumption for the execution of the applications. Since
energy consumption is the integration of the power con-
sumption over time (i.e., Energy = Power × T ime), we
characterize energy efficiency by the average dynamic power
consumption of active applications on platform resources
over an execution period.

For a given use-case executed on a cluster-based plat-
form, the system average power (P avgsys) can be expressed as
the sum of the average power of all active applications in all
clusters as follows.

P avgsys =
I
∑

i=1

J
∑

j=1
P avgappi

(clusterj , fj) (1)

where I and J are the total number of active applications
and the total number of clusters, respectively. P avgappi is theaverage power of appi, this value depending on the under-
lying type of cluster (clusterj) and the cluster frequency
configuration (fj).

For an application, its P avgappi within a period (Periodappi)can be computed as the amount of energy (Eappi) consumed
Page 4 of 18

in a unit of time as in Eq. (2). Our work assumes that
the considered applications are computation intensive. As
already mentioned, we do not consider the communication
power/energy as in [15, 21]. The communication energy
could be additionally considered in our future work, by
including communications energy models as developed in
existing works such as [7, 8, 22] . In our work, Eappi ismainly estimated as the sum of energy consumed by all the
tasks of the application.

P avgappi
(clusterj , fj) =

Eappi
Periodappi

≈
∑H
ℎ=1 Eℎ,i(clusterj , fj)

Periodappi

(2)

where Eℎ,i refers to the computation energy of tℎ,i. Eℎ,ican be further estimated by the integration of the power con-
sumption (Pℎ,j) over its task computation time (CompT imeℎ,i),
i.e., Eℎ,i = Pℎ,i × CompT imeℎ,i.In this work as we target a big.LITTLE based architec-
tures we reuse the power model proposed in [15]. It models
the dynamic power as a third degree polynomial of fre-
quency, as shown in Eq. (3). With �ℎ,i,j a power coefficient
that is dependent on the task (tℎ,i) and the assigned core type.

Pℎ,i(clusterj , fj) = �ℎ,i,j × f 3
j (3)

To describe the evolution of task computation time with
operating frequency fj , we use the same performance model
as in [3, 23, 24] and defined in Eq. (4).

CompT imeℎ,i(clusterj , fj) ≈
Wℎ,i

fj

≈
CompT imeℎ,i(clusterj , f0) × f0

fj
(4)

where Wℎ,i is the total number of execution cycles of
task tℎ,i, which can be understood as the amount of work that
has to be done. Wℎ,i can be known at a reference frequency
(f0) [15]. f0 can be any frequency level used to evaluate
(e.g., by measurements) some design-time information (e.g.,
computation time, power...).

To better evaluate the power/performance characteristics
of different core types, we reuse the performance/power
ratios defined in [2]. Let Rperfj and Rpowerj be the perfor-
mance/power ratios of tℎ,i executed on clusterj respectively,while clusterr is defined as the reference cluster.

Rperfj =
CompT imeℎ,i(clusterj , f0)
CompT imeℎ,i(clusterr, f0)

(5)

Rpowerj =
Pℎ,i(clusterj , f0)
Pℎ,j(clusterr, f0)

=
�ℎ,i,j
�ℎ,j,r

(6)

Based on Eq. (3),(4),(5) and (6), the energy of a task tℎ,ican be further written as:

Eℎ,i(clusterj , fj) =f 2
j ×Qℎ,i,r × R

power
j × Rperfj (7)

where Qℎ,i,r = �ℎ,i,r × f0 × CompT imeℎ,i,r(f0), whichis not dependent on the core type of clusters (clusterj). As
a consequence, the system average power P avgsys (Eq. (1) can
be further written into Eq. (8).

P avgsys =
I
∑

i=1

J
∑

j=1
f 2
j ×

∑H
ℎ=1Qℎ,i,r × R

power
j × Rperfj

Periodappi
(8)

This equation will be used latter in the optimization
problem.

It has to be noticed that we do not consider Dynamic
Power Management (DPM) strategy [4], and this would be a
part of our future work. Thus, DPM approaches like shutting
down non-used clusters/cores to reduce static power/energy
is beyond the scope of this work.

4. Management organization and problem
definition
The main objective of this work is to optimize the

average dynamic power consumption of the overall system,
where multiple applications are executed concurrently in a
particular use-case. This objective is achieved by run-time
hierarchical management that appropriately determines ap-
plication mappings (i.e., inter and intra cluster) and dynam-
ically sets cluster frequencies (the voltage being dependent
on the selected frequency). Figure 2 shows the overview of
the proposed approach.

Local Management Local Management

Global Management

 Cluster-based Multi/Many-core Platform

...

Local Management ...

Task-to-core allocation and scheduling

Cluster1

(several cores)
Cluster2

(several cores)
Clusterj

(several cores)

Use-case (active applications)

Run-Time Management (contributions)

Design-Time Data Preparation

Application-to-cluster assignments, cluster frequency settings

Nb of required coreNb of required core

❶

❷

Figure 2: Run-time hierarchical management for several
applications executed dynamically on a cluster-based hetero-
geneous multi/many-core platform.

The run-time management is based on design-time data
preparation (see 1 in Fig. 2), these design-time prepared

Page 5 of 18

data are presented in Subsection 4.1. These design-time
analysis helps to reduce run-time computation burdens and
still guarantees mapping quality [21]. Moreover, the run-
time management is considered in a hierarchical organi-
zation (see 2). For each use-case, the global manage-
ment determines the application-to-cluster assignments and
sets accordingly the cluster frequency levels. The global
management considers that each application is assigned
to one cluster (no mapping at task-level) to avoid costly
communications among clusters. For the assigned applica-
tions in each cluster, the local management determines the
task-to-core allocation and schedulingwithout changing the
cluster frequency set by the global management. As already
stated, the hierarchical approach and the use of design-time
prepared data support the scalability of the approach.
4.1. Design-time data preparation

At design-time, we prepare a set of different mappings
for each application. The prepared mappings are evaluated
(computing time and communication time as a whole) in
a reference cluster (clusterr) at a reference frequency (f0).Besides, for each prepared mapping, we also evaluate the
minimum required frequency (defined as MAF) to meet the
application timing constraints.
4.1.1. Mappings preparation

We consider that multiple mappings (i.e., having differ-
ent resource usage and performance trade-off) are prepared
for each supported application. These mappings establish
the usage (i.e., allocation and scheduling) of cores for the
different tasks of the applications. Each mapping is char-
acterized by its execution trace. An execution trace is a
set of instants defining the start time (xs) and end time
(xe) of each task executed at a given frequency on the
targeted cluster within a period. The execution trace of an
application appi mapped on c cores is defined by Xc

appi
=

{xs_tℎ,i (1), xe_tℎ,i (1),⋯ xs_tℎ,i (k), xe_tℎ,i (k)}, where k refers
to the ktℎ instance of a given task. Figure 3 illustrates two
possible mappings of app1 (see Fig. 1), using (a) one core
and (b) two cores.

Different mappings lead to different application latencies
(Latencyappi refers to the latency of appi). It can be ob-
served from Figure 3 that the latency (Latencyapp1) ofX2

app1is smaller than X1
app1

due to execution parallelism. As a
result, the slack time of the two prepared execution traces are
different with respect to Periodapp1 . The slack time can be
used to scale down the cluster frequency while still meeting
the considered timing constraint.

At run-time, the global management uses only the map-
ping that leads to the minimum latency (i.e., that uses
the maximum number of cores) among all the prepared
mappings. We particularly denote this mapping Xci

appi ,which uses ci number of cores. The global management
uses the information ofXci

appi to achieve the lowest frequencyconfigurations of clusters (discussed in Section 5.2). On the
other hand, the local management can access all prepared
mappings of each application, including Xci

appi and other

Periodapp1

time

Latency1app1

(a)

t3,1(2) t3,1(3)

time

Latencyapp1

t1,1(1)

t3,1(1) t4,1(1)t1,1(1)

e2,1 e2,1e2,1

t3,1(1) t3,1(2) t3,1(3) t4,1(1)

slot.1

Periodapp1

slot.1

slot.2

t2,1(2) t2,1(3)t2,1(1)

(b)

t2,1(1) t2,1(3)t2,1(2)

Slack

Slack

Figure 3: Design-time prepared mapping for app1 running
(a) on one core (X1

app1
) and (b) on two cores (X2

app1
).

Xc
appi

. The local management then uses the information
of all prepared mappings to minimize resource utilization
(discussed in Section 5.3).
4.1.2. Evaluation of the Minimum Allowed Frequency

(MAF)
We define as the allowed frequencies, for a given map-

ping, the set of frequencies that allow the application to
respect its timing constraints. The allowed frequencies can
be obtained by experimental measurements or by application
performance models (see Eq.(4)). In our approach, only
the Minimum Allowed Frequency (MAF), of each prepared
mapping is stored within design-time prepared data. We
define MAF ci,j as the MAF of appi mapped on c cores in
clusterj . Different mappings of an application can lead to
different MAFs with respect to the same timing constraint.
For the example in Figure 3, MAF 2

1,j can be smaller than
MAF 1

1,j because the longer slack time of X2
app1

allows exe-
cution at a lower frequency level without timing violation.

MAF ci,j can be deduced approximately based onMAF ci,raccording to application performancemodel (i.e.,MAF ci,j =
MAF ci,r × Rperfj , from Eq.(5)). Such an estimation is
accurate for platforms that support continuous frequencies
scaling. However, this estimation can be a little biased in our
considered platforms that support discrete frequency levels.
As the current platform has a limited number of clusters, we
evaluateMAF ci,j for every different cluster at design-time to
overcome this issue.

As previously discussed, only the information of Xci
appi ,

having the minimumMAF (e.g.,MAF cii,j) among all is used
by the global management. At run-time, MAF cii,j will be
used by the global management to set cluster frequencies,
while the othersMAF ci,j will be used by the local manage-
ment to explore task-to-core mapping to minimize resource
usage. The local resource optimization is performed at the

Page 6 of 18

cluster frequency set by the global management.
At this point, the global management reduces the ex-

ploration space by withdrawing some prepared mappings
during decision-makings. Besides, the local management
reduces the exploration space by excluding cluster v∕f in
its optimization objective.
4.2. 0-1 ILP formulation of the hierarchical

run-time management
The hierarchical run-time management problem is for-

mulated as a 0-1 ILPmodel. In the formulation, the application-
to-cluster assignment decision is expressed as variables.
When the assignment variables change at run-time, the
cluster frequency configuration is then set to respect (1)
application timing and (2) cluster frequency constraints.
The local management decision task-to-core mapping is
performed afterwards under (3) cluster resource constraints.
• Application-to-cluster assignment: For a set of simulta-
neously active applications (in each use-case), we define a
matrix variables [ai,j]I×J , where ai,j is a binary variable
equal to:

ai,j =

{

1, if appi is assigned onto clusterj .
0, otherwise. (9)

• Cluster frequency configurations: The global manage-
ment aims to reduce the cluster frequencies as much as
possible, using the design-time preparedMAF cii,j . To meet
(1) application timing constraints in a cluster (clusterj),the optimized cluster frequency (fj) should not be lower
than the highest MAF cii,j value of all clusterj assigned
applications.

fj >= max{MAF cii,j × ai,j},∀i (10)
Besides, to satisfy the (2) cluster frequency constraints, the
optimized frequency of each cluster should be within the
frequency range of the cluster.

fj ∈ {fj,1, fj,2,… , fj,max},∀j (11)
• Task-to-core mapping: The local management aims to
reduce the number of used cores in the cluster under (3)
cluster resource constraints. In each cluster, the number
of used cores (Nused

j) by the assigned applications should
not be larger than the available cores (Nj). Nused

j depends
on the application-to-cluster assignment matrix variables,
and on the applied local management strategy. This latter
establishes task-to-core mapping under the guidance of all
prepared mappings Xc

appi
andMAF ci,j .

Nj >= Nused
j ([ai,j]I×J ,Local Management Strategy) (12)

The objective of the hierarchical management is to min-
imize the average power consumption of the system based
on Eq.(8). The objective is expressed as Eq.(13), which is
subject to Eq.(10), Eq.(11) and Eq.(12).

minP avgsys = min
I
∑

i=1
P avgappi

= min
{fj ,ai,j}

J
∑

j=1
f 2
j

I
∑

i=1
ai,j

∑H
ℎ=1Qℎ,i,r × R

power
j × Rperfj

Periodappi
(13)

For a particular situation where an application (appi)requires to be assigned to one empty cluster among several
candidates, the average dynamic power of the application
(P avgappi) Eq.(13) can be rewritten as in Eq.(14). Note that
P avgappi is the average power of appi after frequency reductionunder the timing constraint, and the cluster frequency (fj) is
determined byMAF

cj
i,j .

P avgappi
= (MAF cii,j)

2 ×

∑H
ℎ=1Qℎ,i,r × R

power
j × Rperfj

Periodappi

= (MAF cii,r)
2 (Rperfj)2

∑H
ℎ=1Qℎ,i,r × Rpowerj × Rperfj

Periodappi
(14)

In Eq.(14), MAF
cj
i,j can be further approximately ex-

pressed asMAF ci,r ×R
perf
j (Eq.(5)). Additionally, let define

EFj = Rperfj ×Rperfj ×Rperfj ×Rpowerj , which refers to energy
factor of clusterj , EFj only depends on the core type of the
cluster. P avgappi becomes:

P avgappi
= EFj × (MAF cii,r)

2 ×
∑H
ℎ=1Qℎ,i,r

Periodappi
(15)

The minimum P avgappi (i.e., P avgsys for one application) can
be achieved in the cluster with the smallest EFj . This
property will be used to reduce exploration space of the
proposed global management strategy in Section 5.2.

5. Proposed run-time global and local
management strategies

5.1. General architecture
Solving the above 0-1 ILP optimization problem is too

computationally expensive to be done at run-time. In this
work, we aim to achieve optimized solutions through heuris-
tic strategies in a reasonable time. The overview of the
proposed run-time global and local strategies (in hierarchical
management) is shown in Figure 4.

Global management considers the application-to-cluster
assignment of active applications one after another. For the

Page 7 of 18

N
b

 o
f

re
q

u
ir

ed
 c

o
re

s
fo

r
ch

e
ck

in
g

E
q

.(
1

2
)

appi

Run-time local management strategy (Section 5.3)

Reduce core utilization for all assigned applications

 Task-to-core mapping

Run-time global management strategy (Section 5.2)

Assign each considered application to a cluster (clusterj)
for the minimum at optimized cluster frequencies,

under system constraints of Eq.(10),(11),(12)

 Application-to-cluster assignment set
 Cluster frequency configurations

Active apps in um

All applications in um
are assigned?

Yes

yes

Need accurate calculation of
Nj

used in Eq.(12)?

Design-Time Data Preparation

 MAFci
i,j

 Xci
appi

 other MAFc
i,j

 other Xc
appi❸

❻

❹

❺

Run-Time Mapping Selection

Run-Time Mapping Combination

❼

Figure 4: The overview of the proposed run-time hierarchi-
cal management: a global strategy and a local strategy.

current application, a greedy strategy is used to estimate
optimized cluster fj levels (Eq.(10), Eq.(11)) as well as
P avgsys (Eq.(13)) of different assignment attempts. It then
assigns the application to the cluster with the minimum
P avgsys under the system constraints. Application timing and
cluster frequency constraints are guaranteed by the selected
fj levels based on design-time preparedMAF cii,j (see 3 in
Figure 4). The frequency of each cluster is determined by
the assigned application, which has the largest MAF cii,j inthe same cluster (see Eq.(10)). As a consequence, other
applications in the same cluster might work at a higher
frequency than their own prepared MAFs. The greedy
global strategy intends to assign the active applications
with close MAF cii,j to the same cluster. This helps to
keep the frequency increase of applications in the same
cluster as small as possible. Nevertheless, cluster resource
constraints cannot be guaranteed as Nused

j (Eq.(12)) cannot
be known unless the local management strategy is executed.
It means that global management requires the estimation
of the parameter Nused

j from local management to justify
whether cluster resource constraints are met for different
assignment attempts (see 4 in Figure 4).

In the local management, a heuristic strategy is used
to determine task-to-core mapping for the assigned appli-
cations in each cluster, at the frequency (fj) set by the
global management. The local strategy aims to minimize the
number of used cores in each cluster, using all design-time
prepared data (i.e., all Xc

appi
and MAF ci,j , 5 in Figure 4).

Fewer resource usage within each cluster allows the global
management to assign more applications to more energy-
efficient clusters, and consequently results in more energy
efficiency in the overall system. Resource minimization in
the local management is achieved through run-timemapping
selection and combination steps. The first step selects one of
the prepared mappings for each assigned application accord-
ing to fj , under the MAF ci,j constraint of the applications.The second step combines the selected mappings together.
This process is detailed in Section 5.3. Note that at different
fj , the selected mapping for each assigned application as
well as their combined mapping can be different, which
makes the Nused

j parameter available only after local man-
agement execution.

However, computing Nused
j in local management and

then feeding back to global management in every application
assignment attempts will increase computational overhead.
To reduce this overhead a pessimistic estimation and an
accurate calculation ofNused

j can be used.
Pessimistic estimation: We define the pessimistic esti-

mation ofNused
j at the globalmanagement level, asNused,max

j ,
which refers to the maximum number of used cores for the
assigned applications in each cluster. That is Nused,max

j =
∑I
i=1 ci × ai,j by assuming that each application uses its

maximum number of cores (ci). When the total number
of available cores in a cluster (Nj) is large enough (i.e.,
Nj >= Nused,max

j), global management can ensure that
the resource constraints (Eq.(12)) are met in application
assignment attempts.

Accurate calculation: When Nj < Nused,max
j , the pes-

simistic estimation cannot ensure that the resource constraint
can be achieved. In this case, the accurate Nused

j feed-
back from the local management is required. The accurate
calculation (see 6 in Figure 4) is performed only when
0 < Nused,max

j − Nj <= Secure Margin. Secure Margin
is an integer value to reduce unpromising explorations when
Nused,max
j is too high compared to Nj . In our experiments,

Secure Margin is arbitrarily set to 10. This value can be
adapted according to the performance of the considered local
management strategy and to the available cores (Nj) in eachcluster.

Once global management is completed for all active
applications (7 in Figure 4), the local strategy is executed to
definitelymap tasks to cores in each cluster at the determined
cluster frequency (fj).
5.2. Global management strategy

When a new use-case starts, the proposed global man-
agement strategy calledGreedy Search Application-to-Cluster
Assignment (GSACA) is executed. The GSACA strategy
first assigns newly active applications (in the current use-
case) to clusters, and then allows migration of old existing
applications (from the previous use-case) from one cluster
to another. If there is no new active application (only appli-
cations resuming), only application migration is performed.

The Algorithm 1 presents the GSACA strategy, which
consists of three basic steps: new application(s) ordering,

Page 8 of 18

Algorithm 1: Greedy Search Application-to-
Cluster Assignment (GSACA) Strategy

Input: design-time prepared data, active applications in the current
use-case, application timing constraints, cluster-based
multi/many-core platform

Output: application-to-cluster assignments, cluster frequency
configurations

1 //Step 1: New application ordering
2 Average I newly active applications into J groups, in decreasing order of

MAF ci
i,r ;

3 Order newly active applications in a particular way;
4 //Step 2: New application assignment
5 for each new appi or released old appi do
6 //Step 2.a: select some clusters satisfying Eq.(10),(11)
7 Select used or empty clusters that meet fj,max >=MAF ci

i,j ;
8 //Step 2.b: solution attempts by updating ai,p,fp and P avgsys
9 for each selected cluster clusterp do
10 Estimate cluster frequency fp (Eq.(10)) and P avgsys (Eq.(13));
11 if the first feasible clusterp or P

avg
sys decreases then

12 //Step 2.c: check Eq.(12) by pessimistic estimation or
accurate calculation

13 if 0 <
∑I
i=1 ci × ai,p −Np <= 10 then

14 Accurately calculatesNused
p by executing local

strategy
15 end
16 if

∑I
i=1 ci × ai,j >= Np orNp >= Nused

p then
17 Assign appi to clusterp;
18 Update frequency level of clusterp;
19 end
20 end
21 end
22 if No solution can be found for new appi then
23 Release an already assigned new application that has lower

MAF ci
i,r and can provide available cores for the currently

considered new application;
24 Otherwise, application assignment fails;
25 end
26 end
27 //Step 3: Old application migration
28 Initialize further allowed migrationNm = 0;
29 if Nm <= Allowmigration then
30 Assign the old unmigrated application with the minimumMAFi,r

(line 6-18);
31 Nm + +;
32 end

new application(s) assignment, old existing application(s)
migration. Due to possible migration costs, the GSACA
allows controlling the number of migrations (Allowmigrationin Algorithm 1).
5.2.1. New application(s) ordering

In the first step, newly active applications are ordered
(line 1-3 in Algorithm 1), according to design-time pre-
pared MAF cii,r on the reference cluster (clusterr). The
application ordering aims to avoid assigning applications
with close MAF cii,r successively. As previously illustrated
in Eq.(11), each cluster frequency level is chosen by the
assigned application with the maximum MAF cii,r. In order
to achieve the minimum P avgsys , an application could be
assigned to an empty cluster to avoid its frequency being
increased by an other application already assigned in the
candidate cluster. When all empty clusters are taken up by
former considered applications (with closeMAF cii,r values),it means that all cluster will have close fj . Then latter
considered applications can also be assigned to different
clusters due to resource constraints. Separating applications
with close and high MAF cii,r into different clusters would

app1 app3 app4 app6 app7 app8 app9

group1 group3group2 group4app2

app5

Old
applications

app10

MAF1,r MAF2,r MAF9,r

< < <... <

MAF10,r
c1 c2 c9 c10

app1 app3

group1

app9

group4

app4 app6

group2

app7 app8

group3

1st 2nd 3rd 4th
5th 6th 7th

descending ascending descending ascending
Application

order

(a)

(b)

Figure 5: GSACA order result for 7 newly active applica-
tions in 4 groups.
result in different clusters with high frequency levels and
thus may globally increase P avgsys at the end.

Our particular ordering approach aims to avoid assigning
applications with close MAF cii,r successively. For this pur-
pose, the GSACA strategy divides newly active applications
into J (i.e., the number of clusters) groups according to their
descending order ofMAF cii,r.In the example of Figure 5 (a), 10 applications are
active in the considered use-case. The 7 newly active
applications (in gray in the figure) are sorted according
to the descending order of their respective MAF cii,r. In
this example, app1 and app3 have relatively close MAF cii,rvalues. In Figure 5 (a), the 7 newly active applications
are divided into 4 groups (the considered platform having 4
clusters). To give applications in each group an opportunity
to occupy an empty cluster, GSACA successively indexes an
application in each groups. In the meanwhile, we expect that
the successively indexed applications have distant MAF cii,r.To this end, we first re-order application groups, which
refer to group1-group4-group2-group3 (see Figure 5 (b)).
Then, in each group, applications are indexed (from 1st to
7tℎ) according to descending order and ascending order of
MAF cii,r alternatively.
5.2.2. New application(s) assignment

Following the obtained application order, the second
step of the approach is to assign each newly active appli-
cation to a cluster that leads to the minimum P avgsys . For eachapplication-to-cluster assignment, system constraints (i.e.,
Eq.(10),(11),(12)) are checked.

The GSACA strategy first selects potential clusters (used
or empty) under the application timing constraint and cluster
frequency constraint (i.e., fj,max >= MAF cii,j) (step 2.a in
Algorithm 1). If several empty clusters meet the constraints,
only the cluster with the minimum EFj (see Section 4.2)
is selected for further evaluation. This helps to reduce the
number of selected clusters. Figure 6.(a) gives an example
of the selection of clusters for application app1. In this
example, the old existing applications (app2, app5, app10)are kept in the same clusters as in previous use-case. The
GSACA strategy searches for possible clusters for app1. As

Page 9 of 18

cluster2 cannot guarantee the application timing constraint
(as f2,max < MAF c11,2), the remaining used cluster (cluster1)
and the empty cluster (cluster3) with the lowest energy
factor EF3 are selected for further evaluations.

app1

Cluster1 Cluster2 Cluster3 Cluster4

Old app

New app

selected

app2 app5 app10

selected
Not selected as
f2,max < MAFc1

1,2

Dynamic Power Consumption

frequency

0

(b)

(a)

Estimate new

For the case when app1 is assigned to cluster1, (i.e., j=1)

< < <EF1 EF2 EF3 EF4

Figure 6: (a) Selection of possible clusters for app1; (b)estimation of the optimized cluster frequency when app1 isassigned to cluster1.
For each possible selected cluster, GSACA estimates the

optimized cluster frequency (fj) and the overall P avgsys at
this frequency (step 2.b in Algorithm 1). The optimized
cluster frequency is determined by all the MAF cii,j of the
applications assigned to the cluster (Eq.(11)). Figure 6
(b) illustrates how the cluster frequency is updated if app1is assigned to cluster1. One can see the dynamic power
consumption evolution of the considered prepared mappings
Xci
appi (i.e.,X2

app1
andX4

app2
) for the active applications (app1

and app2) in cluster1. The allowed frequency range of
each application is highlighted (in bold line). In this case,
the global management sets the cluster frequency to the
minimum common frequency that supports the execution of
both applications, which corresponds to the maximumMAF
(MAF 2

1,j in the example). Given the cluster frequency, P avgsys
is estimated using Eq.(13).

The estimated P avgsys for all selected clusters (cluster1and cluster3 in Figure 6) are compared. For the first
evaluated cluster (or when P avgsys decreases compared to the
assignment in previous evaluated cluster), GSACA checks
whether the resource constraints (Eq.(12)) are met using the
pessimistic or the accurate estimation of Nused

j (step 2.c in
Algorithm 1). By doing this for all selected clusters, GSACA
can explore the assignment of each application to find the
minimum P avgsys under current system constraints.

However, it is possible that no cluster can be found for
a new application, if the clusters that meet the application

timing constraints are already used (line 25-28). In this case,
GSACA checks already assigned new applications that have
lowerMAF cii,r, in order to release some cores. The released
application will then be reassigned to another cluster by
greedy searching (step 2 of Algo.1). If no application can
be released, the application assignment fails.
5.2.3. Old existing application(s) migration

After all new applications are assigned to clusters, the
third stage is to further optimize P avgsys by migrating old
existing applications from one cluster to another (line 23-
29 in Algorithm 1). The number of allowed migrations
(Allowmigration in line 29) can be set by the user. The
GSACA strategymigrates any old application from one clus-
ter to another one by greedy searching for a new assignment
solution. The new solution should reduce P avgsys as much
as possible at the new optimized cluster frequencies (fjin Eq.(11)). In this work, we choose to migrate the old
application with the minimumMAF cii,r first. This is because
the frequencies of old applications with low MAF cii,r can
be highly increased by newly active applications assigned
to the same cluster. This could happen when resources are
not sufficient for the newly active applications. Notice that
migrations could reduce P avgsys at the expense of migration
overhead. For the sake of simplicity, this work does not
model migration overheads and considers only the number
of allowed migrations. The migration overheads can be ne-
glected if tasks are running for a sufficiently long time [25].
Besides, we assume that migrations are performed at the end
of application periods to avoid migrating intermediate task
states.

It has to be noticed that at the end of this process,
all empty clusters (or even unused processors) could be
switched off to reduce static power consumption. This point
has not been evaluated in this work, and will be taken into
account in our future works (i.e.,for DPM consideration).
5.3. Local management strategy

The local management strategy is executed in each clus-
ter under two situations. First, when global management re-
quests an accurate calculation of the required cores (Nused

j).
Second, when the application-to-cluster assignment in a
use-case is completed, the local strategy updates the task-
to-core mapping in the cluster. As previously discussed
in Section 5.1, the proposed local management strategy
is based on all design-time prepared data (i.e., Xc

appi
and

MAF ci). It aims to minimize core utilization of task-to-
core mapping by performing the run-time mapping selection
and combination steps. The two steps are performed for all
applications in the cluster.
5.3.1. Run-time mapping selection

The run-timemapping selection step selects themapping
for each application based on their MAFs and the cluster
frequency (fj) set by the global management. The selection
aims to reduce the number of used cores for all assigned
applications in the cluster.

Page 10 of 18

Dynamic Power Consumption

frequency

0

Determined by
Global Management

Figure 7: MAF-based mapping selection for active applica-
tions app1 and app2 at the global management determined
frequency fj =MAF 2

1 .

In the example of Figure 7, app1 and app2 are assignedto the same cluster and cluster frequency (fj = MAF 2
1,j) isselected by the global management decision (see Fig. 6 (b)).

Figure 7 shows the dynamic power consumption evolution
of all prepared mappings for the two active applications
in the cluster. The figure highlights the selected design-
time mapping (bold line) for each application at different
frequencies. At the cluster frequency fj = MAF 2

1 , theselected mappings are X2
app1

and X2
app2

(see the red dotted
line). Compared to the considered mappings (X2

app1
and

X4
app2

) in the global management, the local management
reduces 2 cores of the required resources. For more active
applications with more prepared mappings, the total number
of reduced cores can be more significant.
5.3.2. Run-time mapping combination

After the mappings selection, the selected mappings are
combined at the optimized cluster frequency (fj). The
combined mapping must respect the timing constraints of
all assigned applications. This work considers two different
mapping combination strategies, including the commonly
used First-Come-First-Serve (FCFS) [26] strategy, and our
previous proposed heuristic strategy called Grouped Appli-
cations Packing under Varied Constraints (GAPVC) [27].
As introduced in [27], these two strategies perform task-to-
core mapping without degrading application performance.
Since FCFS allows each core to be used only by one ap-
plication, some processing resources can be wasted. To
reduce resource usage, GAPVC can allocate tasks of differ-
ent applications to the same core. Figure 8 compares the
mappings results of FCFS and GAPVC for app1 and app2.The combination is performed within the Least Common
Multiple (LCM) of application periods.

Figure 8 (a) abstract the design-time prepared execution
trace X2

app1
(from Figure 3 (b)) at the slot level. Slots are

formed by combining multiple adjacent executions of tasks
on the same core (see slot.1 and slot.2). This slot-level
execution trace is then extended at the cluster frequency
(fj = MAF 2

1) within the LCM of periods of the active
applications. The same slots executed in different periods
are defined as periodic (i.e., slot.1 and slot.5 in Figure 8).

t1,1(1)

t3,1(1) t3,1(2) t3,1(3) t4,1(1)

t2,1(2) t2,1(3)t2,1(1)

slot.3

time

time

time

time

core1

core2

core1

core2

Periodapp1 Periodapp1

Periodapp2

(a)

(b)

time

time

time

time

core1

core2

core3

core4

(c)

time

time

time

time

core1

core2

core3

LCM of Periodapp1 and Periodapp2

(d)

core4

slot.3

LCM of Periodapp1 and Periodapp2

periodic slots

slot.5

slot.6

slot.1

slot.6

slot.4

slot.4

slot.4

slot.3

slot.5

slot.6

slot.5

slot.6

slot.1

slot.6

slot.2

slot.1

Figure 8: Mappings combination of app1 and app2: (a)
X2
app1

and (b) X2
app2

extended at the cluster frequency
(fj = MAF 2

1) within the least common multiple (LCM)
of periods; The combined mappings on four cores using (c)
FCFS and (d) GAPVC.
The periodic slots are normally packed onto the same core, in
order to reduce the migration overhead. Figure 8 (b) shows
the slot-level execution trace X2

app2
. Notice that GAPVC

provides a higher packing priority for slots with earlier
end times (e.g., see the slot order in part (a) and (b)), to
resolve communication contention between concurrent tasks
as in [7, 28]. Part (c) and (d) of Figure 8 show the combined
mappings using FCFS and GAPVC respectively. As it can
be seen, GAPVC uses fewer cores than FCFS to combine the
selected mappings together. This is because GAPVC allows
slots of different applications (e.g., slot.4 and slot.6 in part
(d)) to be mapped onto the same core. More details about
the GAPVC strategy can be found in [27].

6. Experimental evaluations
6.1. Experiment settings

For experimental evaluations, all management strate-
gies are implemented in C++. To go beyond the exist-
ing small-sized heterogeneous cluster-based platforms (i.e.,
ARM big.LITTLE, Exynos 5422 [1]), we consider 4 core
types to compose different cluster-based platforms. We set
up the platforms based on [2], which focuses on big.LITTLE
architectures of different sizes using ARM Cortex-A series
processors (e.g., ARM-Cortex-A9, A15, A7, A17). The
physical characteristics of the 4 core types [2] are reported in
Table 2. The values of performance ratio (Rperfj in Eq.(5))

Page 11 of 18

and power ratio (Rpowerj in Eq.(6)) are normalized to Cortex-
A9 (gray in Table 2). The frequency of the core types can
be differently set with a fstep = 0.1GHz increment. Based
on these 4 core types, up-to 8 clusters are considered. In
order to evaluate the scalability of the different management
strategies, the experimental evaluations are performed for
different platform sizes (i.e., number of clusters × the num-
ber of cores inside each cluster). We considered 2-cluster
platforms (cluster1, cluster2), 4-cluster platforms (cluster1to cluster4), 6-cluster platforms (cluster1 to cluster6) and 8-cluster platforms (cluster1 to cluster8), where each cluster
can encompass 4, 8, 16 or 24 cores.

Table 2: Characteristics of the 4 considered core types, and
performance ratio values from [2]

Cortex- Rperf Rpower
fmin fmax fstep cluster
(GHz) (GHz) (GHz)

A7 1.25 0.55 0.4 1.4 0.1 cluster3, cluster7
A9 1 1 0.4 2.0 0.1 cluster1, cluster5
A15 0.625 2.25 0.4 2.0 0.1 cluster2, cluster6
A17 0.645 1.3 0.4 1.8 0.1 cluster4, cluster8

The 10 considered applications (app1 to app10) are de-
fined in Table 3. They are derived from reference ap-
plications (H263 encoder and H263 and JPEG decoders)
with different input/output tokens. Each application was
captured as an SDF model [29]. As can be seen in Table 3,
we prepared for each application several mappings with
different numbers of cores providing different MAF values.
MAF values are evaluated regarding the used core types
(Cortex-A9, -A15, -A7, -A17) in the reference cluster. We
assume that the worst-case computation time of each task
provided by SDF3 [29] is derived from the Cortex-A9 cluster
at fmax = 2.0GHz. The computation time and MAF values
of the different mappings (e.g., corresponding to different
core types and different fj configurations) are obtained
according to the performance ratio Rperfj (see Eq.(4),(5) in
Section 3). In Table 3, the design-time prepared data used at
the global management level are highlighted (in gray), and
all prepared data can be accessed at the local level.

The experimental evaluations compare our proposed
run-time strategies (i.e., global and local) to state-of-the-
art strategies. The comparisons are performed according to
their achieved P avgsys and strategy complexities. In the realis-
tic assumption that each use-case runs for a sufficient long
time [25], the impact of application migration power/energy
(or run-time exploration power/energy) on P avgsys can be
neglected. We particularly evaluate the exploration time
of different run-time strategies, based on their average time
to explore a run-time configuration. The comparison of
exploration time reflects the computation complexity of
different strategies.
6.2. Evaluations of Global Management Strategies

In this section, we compare the proposed GSACA strat-
egy to three state-of-the-art global management strategies.

We considered first an Exhaustive strategy. It evaluates all
possible application-to-cluster assignments and provides the
optimal solution (the lowest P avgsys at the optimized cluster
frequencies). The LPF [9] strategy assign all active appli-
cations to the clusters with the lowest power consumption
(i.e., Cortex-A7 due to the minimum power ratio Rpowerj).
While LEF [3] assign the application first to the cluster
with the lowest energy consumption (i.e., Cortex-A17 due
to the minimum energy factor EFj). In LPF and LEF,
when the cluster with the lowest power/energy consumption
is not available for an application, the cluster with the next
lowest power/energy consumption is considered. For all
these experiments, the local management uses the FCFS
strategy [26] based on a single prepared mapping (Xci

appi),denoted as FCFSS . This ensures that the comparison
considers only the achievements of global management.
Global management strategies are compared in two cases: a
special casewhere the application assignments take place on
an always empty platform (in any use-case), and the general
case which takes into account already mapped applications
from the previous use-case.
6.2.1. Global management solution (special case)

The special case assumes that each use-case starts on
an empty platform, making the assignment of each use-
case independent from the others. The global management
considers the assignments of all active applications in each
use-case.

Figure 9 shows the compared P avgsys achieved by the
global management strategies for this special case. The com-
parison is performed for all the possible (i.e.,1023) use-cases
of the 10 considered applications, and for different platform
sizes. The P avgsys of each global management strategy is
normalized to the Exhaustive result under the constraints of
the 8 clusters × 8 cores platform. The values in Figure 9
refer to the average normalized P avgsys of the 1023 use-cases.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

4x4 4x8 4x16 4x24 2x8 4x8 6x8 8x8

Exhaustive LPF LEF GSACA

1.28 1.16 1.15 1.15 1.16 1.13
1.00

1.85

2.11

1.42
1.36

Platform: Nb of clusters x Nb of cores

A
ve

ra
ge

 n
o

rm
al

iz
e

d

 (

w
.r

.t
. E

xh
au

st
iv

e
8x

8)
A

ve
ra

ge
 n

o
rm

al
iz

e
d

 (
w

.r
.t

. E
xh

au
st

iv
e

8x
8)

1.17

Figure 9: Average normalized P avgsys with respect to
Exhaustive strategy (constrained by 8×8 platform size) for
the 1023 use-cases. Results are given for different platforms
constraints.

The Exhaustive results show that the optimal P avgsys is
highly dependent on platform constraints. With more cores
per cluster in heterogeneous platforms, reduced P avgsys can

Page 12 of 18

Table 3
Design-time prepared data of the 10 considered applications

Application Prepared Mappings

Type appi
Nb of tokens Period X1

appi
X2
appi

X4
appi

of each task (�s) Nb of cores: MAFs1 (GHz) Nb of cores: MAFs (GHz) Nb of cores: MAFs (GHz)

H263 decoder
:4 tasks
:3 edges

app1 {1, 6, 6, 1} 60 1: {1.0, 0.7, 1.3, 0.7} 2: {1.0, 0.6, 1.2, 0.7}
app2 {1, 4, 4, 1} 180 1: {0.4, 0.3, 0.5, 0.3} 2: {0.4, 0.2, 0.4, 0.2}
app3 {1, 264, 264, 1} 360 1: {1.3, 0.8, 1.6, 0.8} 2: {0.8, 0.5, 1.0, 0.5}

H263 encoder
:5 tasks
:4 edges

app4 {1, 5, 5, 5, 1} 540 1: {1.3, 0.8, 1.6, 0.9} 2: {1.2, 0.8, 1.5, 0.8}
app5 {1, 15, 15, 15, 1} 1080 1: {0.9, 0.6, 1.1, 0.6} 2: {0.7, 0.5, 0.9, 0.5}
app6 {1, 45, 45, 45, 1} 1080 1: {1.5, 0.9, 1.8, 1.0} 2: {1.1, 0.7, 1.3, 0.7}

JPEG decoder
:6 tasks
:5 edges

app7 {1, 7, 7, 7, 7, 1} 180 1: {1.3, 0.9, 1.7, 0.9} 2: {1.1, 0.7, 1.4, 0.7} 4: {1.0, 0.7, 1.3, 0.7}
app8 {1, 9, 9, 9, 9, 1} 360 1: {0.8, 0.5, 1.0, 0.5} 2: {0.7, 0.4, 0.8, 0.4} 4: {0.6, 0.4, 0.7, 0.4}
app9 {1, 22, 22, 22, 22, 1} 1080 1: {0.5, 0.4, 0.7, 0.4} 2: {0.4, 0.3, 0.5, 0.3} 4: {0.4, 0.2, 0.4, 0.2}
app10 {1, 12, 12, 12, 12, 1} 180 1: {1.9, 1.2, 2.4, 1.2} 2: {1.5, 1.0, 1.9, 1.0} 4: {1.3, 0.8, 1.6, 0.9}

3 MAFs depends on the prepared mapping for the different core types: {A9,A15,A7,A17}.

be achieved (e.g., P avgsys = 1.28 on the 4×4 platform,
P avgsys = 1.16 on the 4×8 platform), this is due to the fact
that more applications are assigned to amore energy efficient
cluster (in terms of heterogeneous clusters or lowest cluster
frequencies). On the other hand, more clusters can also lead
to reduced P avgsys (e.g., P avgsys = 1.85 on the 2×8 platform,
P avgsys = 1.16 on the 4×8 platform). As applications with
differentMAFs can be separated into more different clusters,
lower cluster frequencies can be achieved for less P avgsys . TheExhaustive results show that more platform resources (e.g.,
more clusters and more cores within each cluster) leads to
reduced P avgsys .Besides, we can observe that the results of LPF and LEF
are very different from the previous trend. The two strategies
give different assignment priorities to clusters. They might
achieve close results to the optimal ones for small platforms
(e.g., the 4×4 or 2×8 platforms). However, with more cores
per cluster, more applications are assigned to the cluster
while leaving other clusters empty without any assigned
application. Consequently, the frequency of a cluster may
increase significantly and result in P avgsys increase. The
maximum P avgsys of LPF and LEF strategies can be observed
on the 4 clusters × 24 cores heterogeneous platform. They
respectively entail 97.28% (i.e., 2.11−1.151.15) and 21.96% (i.e.,
1.42−1.15

1.15) higher P avgsys than Exhaustive strategy.
It can be seen in Figure 9 thatGSACA achieves optimized

results that are close to optimal solutions. Such observations
can be seen for different platform sizes, demonstrating the
management scalability of GSACA. The largest difference
between GSACA and Exhaustive is up to 6.40% on the 4x4
platform. The results indicate that our greedy strategy based
on a particular application assignment order is able to avoid
assigning too many applications to one cluster and to assign
applications with close MAFs to same clusters. Compared
to LPF and LEF, GSACA results in P avgsys reduction by up to
80.3% (i.e., 2.11−1.171.17) and 21.2% (i.e., 1.42−1.171.17) respectively.

6.2.2. Global management solution (general case)
The general case considers different use-cases, suppos-

ing that the assignment in each use-case is dependent on
the assignment in the previous use-case. In this evaluation,
we consider P avgsys for each global management strategy for
the 1023 use-cases that are generated in random sequences.
To illustrate the influence of the number of application
migrations from one cluster to another, we consider global
management allowing 0 migration and limited migrations
per use-case.

Allowing 0 migration per use-case: Figure 10 shows
P avgsys results of each global management strategy with no
migration per use-case. We denote the compared strategies
as Exhaustive_0, LPF_0, LEF_0 and GSACA_0.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Exhaustive_0 LPF_0 LEF_0 GSACA_0

1.41

1.25
1.19 1.19

1.25

1.18

1.03

1.97

2.11

1.421.46

Platform: Nb of clusters x Nb of cores

A
ve

ra
ge

n

o
rm

al
iz

e
d

 (
w

.r
.t

. E
xh

au
st

iv
e

8
x8

)

4x4 4x8 4x16 4x24 2x8 4x8 6x8 8x8

Figure 10: Average normalized P avgsys normalized to Exhaus-
tive (on 8×8 platform) with no migration allowed.

In Figure 10, the P avgsys values obtained on different
platform sizes are normalized to the Exhaustive result under
the constraint of a 8 clusters × 8 cores platform of the special
case. This aims to highlight how global management strate-
gies are influenced by previous mappings. Exhaustive_0
results in a 1.41−1.28

1.28 = 10.6% increased P avgsys on the 4×4
platform. BecauseExhaustive_0 considers only newly active
application, the assignments of the old existing applications
reduce the possibilities of P avgsys reduction. Otherwise, the

Page 13 of 18

trends of P avgsys are similar to the special case (Figure 9). The
results of LPF_0 and LEF_0 are respectively up to 77.3%
and 19.3% higher than Exhaustive_0. Differently, GSACA_0
achieves very close results as Exhaustive_0 (up to 3.5%
difference on the 4x4 platform).

Allowing limited migrations in each use-case: To
evaluate the influence of applicationmigrations, we consider
GSACAwith 1, 2 or 3 allowedmigrations (i.e.,Allowmigrationin Algo.1) per use-case, the related strategies are denoted
GSACA_Allowmigration.

0.95

0.96

0.97

0.98

0.99

1

1.01

4x4 4x8 4x16 4x24 2x8 6x8 8x8

GSACA_0 GSACA_1 GSACA_2 GSACA_3

Pltaform: Nb of clusters x Nb of cores

A
ve

ra
g

e
 n

o
rm

a
li

ze
d

 (
w

.r
.t

. G
S

A
C

A
_

0
)

0.984

0.960

(a)

0

0.1

0.2

0.3

0.4

0.5

4x4 4x8 4x16 4x24 2x8 6x8 8x8

GSACA_0 GSACA_1 GSACA_2 GSACA_3

N
b

 o
f

m
ig

ra
ti

o
n

s
p

e
r

u
se

-c
as

e

Platform: Nb of clusters x Nb of cores

0.17

0.38

(b)

Figure 11: Average P avgsys normalized to GSACA_0 (con-
strained by each platform size) for the 1023 use-cases.

Figure 11 (a) compares the average P avgsys normalized to
the results of GSACA_0 among the 1023 use-cases, while
part (b) shows the average number of migrations per use-
case for each strategy. As can be seen allowing migrations
can permit to further reduce P avgsys compared to GSACA_0
that prohibits migrations. As an example, it can be observed
that for GSACA_1 and GSACA_3 on the 4×8 platform, P avgsysdecreases from 0.984 to 0.960, while migrations increase
from 0.17 to 0.38 (see Figure 11 (b)). However it may be
interesting to accept migration overheads in order to achieve
lower P avgsys if the energy saving after migration is larger than
the migration costs. This result can be jeopardized if the
migration cost is too high, or if the active duration of the
current use-case is not sufficiently long (as stated is Section
5.2.3).

Generally, application migration can be performed when
migration benefits overweight migration overheads, namely,

(P sysavg
′ − P sysavg) × T > Emappi

2. The left part denotes the
energy saving due to migration, while the right part denotes
the energy cost of the migration of the application (appi).The difficulty would be on how to measure the migration
overhead of each application (Emappi) and how to correctly
predict the duration of the current use-case (T). Migration
overhead highly depends on the amount of data to be mi-
grated, and the organization of communication and memory
resources. As the use-case duration (i.e., T) increases, the
influence of migration overheads on average system power
(P sysavg

′ and P sysavg) decrease. Under the assumption that each
use-case executes for a long time (as in [25]), our proposed
GSACA strategy presents the capability of controlling the
number of migration. Further trade-offs between migration
benefits and costs would be considered in future work.
6.2.3. Complexity of global management strategy

To compare the complexity of the global management
strategies, we consider the average exploration time spent
for each use-case and for different platform size, results
are shown in Figure 12. The exploration is performed
for different global management strategies in Visual Studio
running on an Intel Core i5 processor, with 16 GB of DDR.

0.001

0.01

0.1

1

10

100

1000

10000

Exhaustive LPF LEF GSACA

Exhaustive_0 GSACA_0 GSACA_2

Lo
g

o
f

av
e

ra
ge

 e
xp

lo
ra

ti
o

n

ti
m

e
pe

r
u

se
-c

a
se

 (
m

s)

Platform: Nb of clusters x Nb of cores

4x4 4x8 4x16 4x24 2x8 4x8 6x8 8x8

Figure 12: The average exploration time (in ms, log scale)
of a use-case among the 1023 use-cases. Results are given
for different platform constraints.

We first compare four global management strategies
(i.e., Exhaustive, LPF, LEF and GSACA) in the special
case. It can be observed that LPF and LEF have the
minimum exploration time (less than 0.011ms in 4-cluster
platforms). However, as previously discussed, these two
strategies are limited in energy efficiency on platforms with
more resources. Compared to Exhaustive, GSACA needs
much less exploration time. For the 4-cluster platforms,
Exhaustive strategy uses about 93.6ms for exploration, while
GSACA requires less than 0.058ms. This means GSACA
runs 1614 times faster than Exhaustive, but entails only up
to 6.40% increase in P avgsys . When compared to LPF and LEF,

2(P sysavg
′ − P sysavg) × T > Emappi , where P sysavg and P sysavg

′ refer to the
system average power before and after the migration. T denotes a use-case
duration. Emappi denotes the migration energy of the application (appi).

Page 14 of 18

GSACA achieves 80.3% reduction in P avgsys with a similar
level of complexity.

Then, we consider (i.e., Exhaustive_0, GSACA_0 and
GSACA_2) for the general case. For the sake of clarity, we
do not present the exploration time of LPF_0, LEF_0 which
are less than 0.005ms. It can be observed that GSACA_0
and GSACA_2 are much faster than Exhaustive_0 (up to
24.611ms on 4-cluster platforms). For example GSACA_0
runs 746 times faster than Exhaustive_0, with only 3.7%
increase in P avgsys (see Section 6.2.2). It can be noticed
that GSACA_2 (which allows migrations) takes more ex-
ploration time than GSACA_0. It indicates that more time
is spent exploring an energy-efficient assignment for each
migrated application.

Finally, we can also observe that the exploration time
does not significantly change with the number of cores, but
increases with the number of clusters. For instance, from
2×8 to 8×8 platforms, the exploration time for Exhaus-
tive_0 increases from 0.038 ms to 175.68 ms. Nevertheless,
the proposed strategies (GSACA, GSACA_0, GSACA_2)
present slower growth in exploration time (e.g., from 0.028
ms to 0.076 ms for GSACA_2, from 2×8 to 8×8 platforms).
This also demonstrates the scalability of the proposed greedy
strategy for different platform sizes.
6.3. Evaluations of local management influence

Global decisions can be different due to different re-
source usages in each cluster. In this work we used FCFS,
in a first version denoted FCFSS using a single prepared
mapping (Xci

appi). A second version FCFSM is based on
multiple prepared mappings like the GAPV CM strategy.
For these two last local strategies, our run-time selection
strategy is used to select a mapping for each active appli-
cation before the run-time mapping combination by FCFS
and GAPVC strategies.
6.3.1. Local and global management solutions

In the first experiment, we evaluated the impact of the
local management on the results using the different global
management strategies. Table 4 evaluates improvements
of using FCFSM and GAPV CM in all 1023 use-cases
compared to using FCFSS , for the Exhaustive, GSACA,
Exhaustive_0 and GSACA_2) global management strate-
gies. LPF and LEF global management strategies are not
considered due to their limitations (i.e., high P sysavg) on plat-
forms with more resources.

First, we compare the number of use-cases where the
system fails to find a feasible mapping respecting the con-
straints (see column 1 in Table 4). When platform re-
sources are not sufficient for all active applications, the
mapping strategy can fail to achieve a possible solution.
For the Exhaustive global management strategy on small-
sized platforms (e.g., 4×4, 2×8), using FCFSS local man-
agement strategy can have up to 296 failed use-cases (over
the 1023 in total) in the general case. Using FCFSMand GAPV CM local strategies can effectively reduce the
number of failures. As FCFSM and GAPV CM are based

onmultiple prepared mappings for each application, the run-
time mapping selection strategy helps to reduce the number
of used cores, and use-cases with more active applications
can be better handled as a result. In particular, GAPV CMcan reduce the failed use-cases to 0 (only 1 failure on all
our experiments), which is even better than FCFSM (with
up to 54 failures over 1023 use-cases). This is because the
GAPVC mapping combination strategy can use fewer cores
than FCFS based on the same selected mappings, without
sacrificing application performance.

Then, we consider the common feasible use-cases, where
the compared strategies (either FCFSM or GAPV CMcompared with FCFSS) can all achieve feasible solutions.
Column 2 shows the number of core reduction achievable
by FCFSM and GAPV CM over FCFSS . For the Ex-
haustive global management strategy on the 4x4 platform,
FCFSM and GAPV CM reduce the number of used cores
by 16.63% and 32.09% respectively. The maximum resource
reductions are respectively 31.80% and 49.95% (Exhaus-
tive_0 on the 2x8 platform). The results show that using
multiple prepared mapping leads to better resource usage
efficiency.

As the local management can reduce resource usage, it
influences also the system power consumption P avgsys (see
column 3). As can be seen, the local management strat-
egy can lead to up to 70.25% use-cases with a reduced
power. The range of P avgsys reduction is highlighted (column
4). For the 4x4 platform using Exhaustive, FCFSMand GSPV CM achieve lower P avgsys (w.r.t. FCFSS) in
47.20% and 67.47% respectively (in their common feasible
uses-cases). Among these use-cases, FCFSM reduces
P avgsys from 0.19% to 27.83%, and GAPV CM achieves up
to 31.96% reduction. As FCFSM and GAPV CM use
fewer cores, they allow more applications to be assigned
to more efficient clusters (e.g., due to heterogeneous clus-
ter or low cluster frequency), resulting in a more efficient
mapping. The maximum P avgsys reduction (up to 60.72%)
can be observed for the Exhaustive_0 on the 4×8 platform.
Additionally, it can be observed that the three local strategies
lead to the same P avgsys on the 4×16 and 4×24 platforms.
It suggests that, when platform resources are sufficient, the
different resource usage inside clusters do not change global
management decisions (i.e., application-to-cluster assign-
ments and cluster frequency configurations).

To summarize, the resource usage efficiency achieved
by FCFSM and GAPV CM can lead to less P avgsys in the
overall system. When platform resources are insufficient,
FCFSM and GAPV CM entail fewer failed use-cases. On
the other hand, when platform resources are sufficient, fewer
resource usage in each cluster does not change application-
to-cluster assignment decisions in global management nor
P avgsys results. These observations can be seen for the different
global management strategies.
6.3.2. Complexity of the hierarchical strategy

Using different local strategies can lead to different
complexity for the whole management system. As previ-

Page 15 of 18

Table 4
Comparison of different local management strategies in hierarchical management among
the 1023 use-cases

Global

In common feasible um

Strategy platform

1 Nb of failed um 2 Total reduced cores 3 pct. of um with less 4 P avgsys reduction w.r.t FCFSS
(over 1023 use-cases) w.r.t FCFSS P avgsys w.r.t FCFSS (from min to max)

FCFSS FCFSM GAPVCM FCFSM GAPVCM FCFSM GAPVCM FCFSM GAPVCM

Exhaustive

4x4 273 6 0 16.63% 32.09% 47.20% 67.47% 0.19%-27.83% <0.01%-31.96%

(Special case)

2x8 273 0 0 30.23% 48.77% 31.47% 31.60% 0.08%-22.02% 0.08%-22.02%
4x8 0 0 0 20.24% 32.00% 22.19% 22.19% <0.01%-9.94% <0.01%-9.94%
6x8 0 0 0 20.00% 32.00% 22.19% 22.19% <0.01%-3.51% <0.01%-3.51%
4x16 0 0 0 20.24% 32.00% 0 0 0 0
4x24 0 0 0 20.24% 32.00% 0 0 0 0

GSACA

4x4 273 36 0 20.49% 33.80% 48.40% 66.27% 0.08%-46.20% 0.24%-46.20%

(Special case)

2x8 273 8 0 30.79% 49.88% 24.13% 26.40% 0.18%-27.74% 0.18%-27.74%
4x8 0 0 0 20.90% 31.72% 24.14% 24.14% 0.13%-33.62% 0.27%-33.62%
6x8 0 0 0 19.70% 30.21% 19.75% 19.75% 0.24%-17.98% 0.24%-17.98%
4x16 0 0 0 21.01% 31.72% 0 0 0 0
4x24 0 0 0 21.01% 31.72% 0 0 0 0

Exhaustive_0

4x4 296 37 1 20.95% 34.82% 43.05% 64.65% 0.10%-48.09% 0.02%-59.07%

(General case)

2x8 278 1 0 31.80% 49.95% 34.63% 37.32% 0.18%-51.92% 0.18%-57.92%
4x8 0 0 0 21.72% 33.77% 43.60% 44.97% <0.01%-60.72% <0.01%-60.72%
6x8 0 0 0 20.51% 31.86% 26.49% 26.49% <0.01%-37.62% <0.01%-37.62%
4x16 0 0 0 21.99% 33.77% 0 0 0 0
4x24 0 0 0 21.99% 33.77% 0 0 0 0

GSACA_2

4x4 307 54 0 21.11% 33.74% 50.43% 70.25% 0.21%-53.93% 0.24%-55.22%

(General case)

2x8 287 3 0 31.37% 49.62% 33.70% 36.82% <0.01%-43.41% 0.17%-43.41%
4x8 0 0 0 21.52% 33.22% 22.19% 22.19% <0.01%-9.94% <0.01%9.94%
6x8 0 0 0 19.80% 30.64% 27.18% 27.47% <0.01%-30.85% <0.01%-30.85%
4x16 0 0 0 21.74% 33.22% 0 0 0 0
4x24 0 0 0 21.74% 33.22% 0 0 0 0

1 Common feasible use-cases: the use-cases where the considered local management strategy (FCFSM or GAPV CM) and the counterpart
FCFSS can achieve a mapping result.

ously introduced in Section 5.1, global management verifies
the resource constraint for a new assigned application by
estimating Nused

j in a cluster. This value can be estimated
through the pessimistic estimation directly by the global
manager or accurately by invoking the local management.
FCFSS does not consider resource optimization within a
cluster, and its Nused

j is equals to the pessimistic estimation
in global management. On the other hand, FCFSM and
GAPV CM optimize resource usage based on multiple pre-
pared mappings. The two local strategies are invoked for
an accurate estimation when 0 < Nused,max

j − Nj <= 10,
as introduced early. Consequently, more calculations are
required to complete management decisions in certain use-
cases.

Table 5 shows the average exploration time spent per
use-case when using different local strategies. Due to the
scalability issue of the Exhaustive approach, we only con-
sider GSACA and GSACA_2 as global management strate-
gies for this comparison. Table 5 indicates thatFCFSM and
GAPV CM require more time to find a possible mapping.
When platform resources are insufficient (i.e., 4x4, 2x8
platforms), the exploration time ofFCFSM andGAPV CMare 11.98 and 14.17 times bigger than the pessimistic eval-
uation (i.e. using FCFSS). But as seen in the previous
section (Table 4) they considerably reduce the number of
failed mappings. When platform resources are sufficient

Table 5: Normalized exploration time for the hierarchical
manager

Global Platform
Time (ms) Normalized exploration time
of FCFSS FCFSS FCFSM GAPVCM

GSACA

4x4 0.049 1 11.98 14.17
2x8 0.036 1 4.90 8.76
4x8 0.055 1 3.25 4.28
6x8 0.072 1 2.34 2.83
4x16 0.053 1 1.11 1.13
4x24 0.058 1 0.95 0.97

GSACA_2

4x4 0.044 1 11.87 13.39
2x8 0.027 1 7.13 11.66
4x8 0.040 1 3.48 6.28
6x8 0.055 1 3.04 3.87
4x16 0.043 1 1.20 1.15
4x24 0.044 1 1.12 1.07

(i.e., 4x8, 6x8 platforms), the difference in exploration time
decreases. When the platform resources are quite enough,
there is almost no difference in the exploration time. In this
situation the number of active applications competing for
limited resources is reduced (i.e., when 0 < Nused,max

j ×ai,j−
Nj <= 10), and FCFSM andGAPV CM are less called for
accurate calculation ofNused

j (see 6 in Figure 4).

Page 16 of 18

7. Conclusions
This paper presents a hierarchical run-time manage-

ment strategy to achieve the overall energy efficiency of a
heterogeneous cluster-based multi/many-core platform, on
which multiple applications can execute concurrently and
dynamically. Based on some design-time prepared data
for each application, the global management integratedly
determines application-to-cluster assignment and sets clus-
ter frequency, while the local management in each cluster
determines task-to-core allocation and scheduling. The
global management problem is formulated as a 0-1 ILP
model using the information of only one prepared mapping
for each application. A greedy global strategy is proposed
to achieve optimized solutions to the 0-1 ILP model while
reducing computation complexity. The local management
aims to minimize resource usage within each cluster by
using the information of multiple prepared mappings for
each application. For this purpose, we propose a local
management strategy consisting of a mapping selection and
a combination process of the selected mappings.

Our experimental results show that the proposed global
management strategy outperforms the state-of-art LPF and
LEF strategies, in terms of management scalability on differ-
ent platform sizes. Compared to LPF and LEF, our proposed
global strategy (GSACA, a greedy strategy) can reduce
the achieved average power consumption (per use-case) by
80.3%, with a similar level of complexity. Compared to
the exhaustive strategy (providing the optimal solution), the
exploration time of our proposedGSACA is up to 1614 times
faster, with at maximum a 6.4% difference in the achieved
average power consumption (per use-case). Furthermore,
our greedy strategy is able to assign only the newly active
applications as well as to allow limited applicationmigration
from one cluster to another. Our evaluation indicates that
allowing 0.21 more migration per use-case can lead to 2.6%
improvement in energy efficiency. Additionally, compared
to the state-of-the-art local management strategy FCFS, our
proposed local strategy can achieve up to 50% resource
usage reduction. The resource reduction in the local man-
agement can change the global management decision and
consequently improve the energy efficiency of the overall
system up to 60.72% (per use-case).

In the future, we will extend our work by incorporating
a communication energy model into the local management.
Such an extension requires additional calculation of commu-
nication energy in the 0-1 ILP model, without changing the
hierarchical management structure. Besides, we will also
take into account migration overheads to provide a more
accurate evaluation of the proposed strategy. By introducing
an estimation of migration cost for each application, our
management process could be further optimized to appro-
priately select active applications to migrate. Finally, we
will study the introduction of dynamic power management
techniques to further reduce the energy consumption, and
to handle static power reduction (by switching-off unused
clusters for example).

Acknowledgement
This work was supported by China Scholarship Council

under contract number 201606380135.

References
[1] Exynos 5 octa (5422), Available:http://www.samsung.com/exynos,

2019.
[2] A. Butko, F. Bruguier, D. Novo, A. Gamatié, G. Sassatelli,

Exploration of performance and energy trade-offs for heterogeneous
multicore architectures, arXiv preprint arXiv:1902.02343 (2019).

[3] S. Pagani, A. Pathania, M. Shafique, J.-J. Chen, J. Henkel, Energy
efficiency for clustered heterogeneous multicores, IEEE Transactions
on Parallel and Distributed Systems 28 (2016) 1315–1330.

[4] Y. G. Kim, J. Kong, S. W. Chung, A survey on recent os-level
energy management techniques for mobile processing units, IEEE
Transactions on Parallel and Distributed Systems 29 (2018) 2388–
2401.

[5] L. Benini, D. Bertozzi, M. Milano, Resource management policy
handling multiple use-cases in mpsoc platforms using constraint
programming, in: International Conference on Logic Programming,
Springer, 2008, pp. 470–484.

[6] H. Aydin, Q. Yang, Energy-aware partitioning formultiprocessor real-
time systems, in: Proceedings International Parallel and Distributed
Processing Symposium, IEEE, 2003, pp. 9–pp.

[7] H. Ali, U. U. Tariq, Y. Zheng, X. Zhai, L. Liu, Contention & energy-
aware real-time task mapping on noc based heterogeneous mpsocs,
IEEE Access 6 (2018) 75110–75123.

[8] U. U. Tariq, H. Ali, L. Liu, J. Panneerselvam, X. Zhai, Energy-
efficient static task scheduling on vfi-based noc-hmpsocs for intelli-
gent edge devices in cyber-physical systems, ACM Transactions on
Intelligent Systems and Technology (TIST) 10 (2019) 1–22.

[9] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra,
S. Vishin, Hierarchical power management for asymmetric multi-
core in dark silicon era, in: Proceedings of the 50th Annual Design
Automation Conference, ACM, 2013, p. 174.

[10] V. Petrucci, O. Loques, D. Mossé, R. Melhem, N. A. Gazala,
S. Gobriel, Energy-efficient thread assignment optimization for
heterogeneous multicore systems, ACM Transactions on Embedded
Computing Systems (TECS) 14 (2015) 15.

[11] W. Quan, A. D. Pimentel, A hierarchical run-time adaptive
resource allocation framework for large-scale mpsoc systems, Design
Automation for Embedded Systems 20 (2016) 311–339.

[12] P.-C. Hsiu, P.-H. Tseng, W.-M. Chen, C.-C. Pan, T.-W. Kuo, User-
centric scheduling and governing on mobile devices with big. little
processors, ACM Transactions on Embedded Computing Systems
(TECS) 15 (2016) 17.

[13] A. Kanduri, A. Miele, A. M. Rahmani, P. Liljeberg, C. Bolchini,
N. Dutt, Approximation-aware coordinated power/performance
management for heterogeneous multi-cores, in: 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), IEEE,
2018, pp. 1–6.

[14] H. Khdr, S. Pagani, E. Sousa, V. Lari, A. Pathania, F. Hannig,
M. Shafique, J. Teich, J. Henkel, Power density-aware resource
management for heterogeneous tiled multicores, IEEE Transactions
on Computers 66 (2016) 488–501.

[15] H.-E. Zahaf, A. E. H. Benyamina, R. Olejnik, G. Lipari, Energy-
efficient scheduling for moldable real-time tasks on heterogeneous
computing platforms, Journal of Systems Architecture 74 (2017) 46–
60.

[16] S. K. Mandal, G. Bhat, J. R. Doppa, P. P. Pande, U. Y. Ogras, An
energy-aware online learning framework for resource management in
heterogeneous platforms, ACM Transactions on Design Automation
of Electronic Systems (TODAES) 25 (2020) 1–26.

[17] A. L. del Mestre Martins, A. H. L. da Silva, A. M. Rahmani,
N. Dutt, F. G. Moraes, Hierarchical adaptive multi-objective resource

Page 17 of 18

management for many-core systems, Journal of Systems Architecture
97 (2019) 416–427.

[18] A. K. Singh, P. Dziurzanski, H. R. Mendis, L. S. Indrusiak, A survey
and comparative study of hard and soft real-time dynamic resource
allocation strategies for multi-/many-core systems, ACM Computing
Surveys (CSUR) 50 (2017) 1–40.

[19] E. A. Lee, D. G. Messerschmitt, Static scheduling of synchronous
data flow programs for digital signal processing, IEEE Transactions
on Computers C-36 (1987) 24–35.

[20] T. Lionel, B. Pascal, S. Giles, R. Michel, An introduction to multicore
system on chip. trends and challenges. multiprocessor system-on-
chip: Hardware design and tool integration. pag. 1-18, 2010.

[21] A. K. Singh, M. Shafique, A. Kumar, J. Henkel, Resource and
throughput aware execution trace analysis for efficient run-time
mapping on mpsocs, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 35 (2016) 72–85.

[22] U. U. Tariq, H. Wu, S. Abd Ishak, Energy and memory-aware
software pipelining streaming applications on noc-based mpsocs,
Future Generation Computer Systems (2020).

[23] C.-H. Hsu, U. Kremer, M. Hsiao, Compiler-directed dynamic volt-
age/frequency scheduling for energy reduction in microprocessors,
in: ISLPED’01: Proceedings of the 2001 International Symposium
on Low Power Electronics and Design (IEEE Cat. No. 01TH8581),
IEEE, 2001, pp. 275–278.

[24] J. Mei, K. Li, J. Hu, S. Yin, E. H.-M. Sha, Energy-aware
preemptive scheduling algorithm for sporadic tasks on dvs platform,
Microprocessors and Microsystems 37 (2013) 99–112.

[25] W. Quan, A. D. Pimentel, A hybrid task mapping algorithm for
heterogeneous mpsocs, ACM Transactions on Embedded Computing
Systems (TECS) 14 (2015) 14.

[26] A. K. Singh, A. Kumar, T. Srikanthan, A hybrid strategy for
mapping multiple throughput-constrained applications on mpsocs,
in: Proceedings of the 14th international conference on Compilers,
architectures and synthesis for embedded systems, ACM, 2011, pp.
175–184.

[27] S. Yang, S. Le Nours, M. mendez Real, S. Pillement, Mapping and
frequency joint optimization for energy efficient execution of multiple
applications on multicore systems, in: 2019 Conference on Design
and Architectures for Signal and Image Processing (DASIP), IEEE,
2019, pp. 29–34.

[28] A. K. Singh, M. Shafique, A. Kumar, J. Henkel, Resource and
throughput aware execution trace analysis for efficient run-time
mapping on mpsocs, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 35 (2015) 72–85.

[29] Sdf3, Available:http://www.es.ele.tue.nl/sdf3, 2019.

Simei Yang received the B.S. and M.S. degrees
in microelectronics from Sun Yat-sen University,
Guangzhou, China, in 2014 and 2016, respec-
tively. She received her Ph.D. degree in the
embedded system in IETR UMRCNRS 6164-
Polytech Nantes - Université de Nantes, France, in
2020. She is currently a postdoctoral researcher
in IMEC and KU Leuven. Her research interests
include DNN evaluation framework on compute-
in-memory architectures, run-time management of
energy efficiency on multi/many-core system, and
system-level modelling and simulation.

Sébastien Le Nours received the M.S. degree in
electrical engineering and computer science from
ISEN engineer school (Brest, France) in 2000.
He received the PhD degree in Electronic from
National Institute of Applied Science (Rennes,
France) in 2003. He is an associate professor
in electrical engineering and computer science
at Polytech Nantes, the engineering school of
University of Nantes (France), where he has been
since 2004. His research concerns system-level
design and methodologies, embedded computer
systems, specification and modeling languages,
and communication system design. Dr. Le Nours
is a member of the IETR laboratory, UMR CNRS
6164.

Maria Méndez Real is Associate Professor in
Electrical and Computer Engineering at Ecole
Polytechnique Universitaire de l’Université de
Nantes, France. Her research is within IETR
Lab, UMR CNRS 6164. She received her PhD
in Electrical and Computer Engineering from
Université de Bretagne-Sud, France, in 2017
within the frame of the French ANR TSUNAMY
project within Lab-STICC Lab. In 2015 she
spent 4 months as invited researcher at Ruhr-
University of Bochum, Germany. Her research
interests include System and Hardware Security,
Multi and Many-core Systems, Networks-on-Chip
and Simulators/Virtual Platforms.

Sébastien Pillement received the PhD degree
and Habilitation degrees in computer engineering,
respectively, from the University of Montpellier
II and the University of Rennes 1. Since 2012,
he is a full professor at Ecole Polytechnique of
Nantes University, France. From 1999 to 2012
he was with IUT in Lannion, the subdivision of
the University of Rennes 1, France, and a research
member of the CAIRN INRIA Research Team.
He is now a member of the IETR laboratory,
UMR CNRS 6164. His research interests include
dynamically reconfigurable architectures, system
on chips, design methodology and Network on
Chip (NoC)-based circuits. He focuses his research
on designing flexible and efficient architectures
managed in real time. He is the author or coauthor
of about 120 journal and conference papers.

Page 18 of 18

