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Systems that engineers and scientists are facing today,
whether for their modeling, analysis, or management, and
in particular for the management of the risks of their dys-
function, are increasingly complex. This complexity is due,
among other things, to the need to increase the capacities
of these systems by networking them, creating interactions
that can lead to unpredictable behavior. Complexity is a
word that encompasses a set of concepts whose meaning is
highly dependent on the context Gell-Mann (2002), Gold-
enfeld and Kadanoff (199), Mainzer (2007). The definition
of a complex system varies depending on the discipline
to which it applies. The complexity attributes basically
addressed in this paper are related to the number of
components of a system and principally their interactions
that may lead to cascade effect in the case of the failure
of one of them. We consider two types of interactions:
influence and interdependence. Influence is materialized
by the fact that components interact in hierarchy to form
system so that its model can be described by a directed
acyclic graph (DAG) whereas interdependence consists in
components potentially influencing each other that can be
described by a graph where cycles and loops are allowed.
In the case of physical systems that are designed and
built by man, whose analysis for operational maintenance

1. INTRODUCTION

This approach can be used for following non exhaustive
purposes: understanding the logic leading to the undesired
state of a system; showing compliance with the (input)
system safety / reliability requirements; prioritizing the
contribution of each primary or elementary event or com-
ponent to the occurrence of the undesired event establish-
ing by the way the criticality of each elementary event;

FTA is dedicated to analyzing dysfunctional status of a
system. Fault tree analysis (FTA), originally developed in
1962 at Bell Laboratories by H.A. Watson, under a U.S.
Air Force Ballistics Systems Division contract to evaluate
the Minuteman I Intercontinental Ballistic Missile (ICBM)
Launch Control System Clifton (1999), is a top down,
deductive failure analysis in which an undesired state of a
system is analyzed using Boolean logic to combine a series
of lower-level events.

procedures is the main subject of this communication,
the structure of hierarchy (or interchangeably influence)
is rather functional (grouping together the elements of
one level to perform a function of another level) whereas
the structure of interdependence is physical (exchange of
materials, energy, information, friction, etc.). In the field
of maintenance, the tools for modeling and analysis of the
hierarchy structure are mainly those derived from depend-
ability and, in particular, fault trees analysis (FTA).
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monitoring and controlling the safety performance of the
complex system; minimize and optimize resources; assist-
ing in designing a system; diagnosing and prognosis; etc.

FTA analysis involves following five steps Clifton (1999)
going from the definition of the undesired event to study to
controlling the identified hazards, through understanding
of the system, construction of the fault tree; and evaluating
the fault tree.

The use of FTA for modeling the inoperability process of
a system has some major flaws:

• the impossibility to take into account the physical
interactions between components; components are
considered to function independently;

• the states of the components are considered as binary
(working or faulty) whereas in practice one can have
intermediate states (degraded functioning);

• the difficulty in obtaining numerical indicators of the
health status of the system from the health status of
the components;

• it is not possible in general to take into account
external possible influence on the behavior of the
system and/or components;

• etc.

In order to try to remedy these flaws of FTA in order to
obtain the models of inoperability of the systems as close
to reality as possible, we propose in this paper to proceed
in two steps: (1) modeling the hierarchical structure of the
system by a fault tree and (2) transforming the model into
a dynamic Bayesian network that allows to correct most
of the above-mentioned flaws.

The idea of transforming fault trees into Bayesian net-
works with a view to exploiting their potential to allow
a precise analysis of modeled systems is not new in it-
self. Indeed, there are works in the literature related to
this transformation such as Bobbio et al. (2001) which
has shown that any fault tree can be transformed into a
Bayesian network with the possibility of introducing un-
certainty at the level of logic gates; similarly, Montani et al.
(2008) has also considered and shown the importance of
the relationship between fault trees and Bayesian networks
in their work; other related work on this issue is that of
Khakzad et al. (2011). What our work tries to bring is that
we consider in this paper the integration of the evolution
in time of the system and its context of use; moreover the
structuring of the transformation process in our work is
based on the notions of hierarchy (which can be found in
works such as Lanus et al. (2003)) and the interactions
leading to three levels in the Bayesian network, namely
components level, intermediate level (here the minimal cut
sets), and the system level with the possibility of intra -
level interdependency; the inter - level dependency being
determined by the hierarchy.

2. PROPOSED APPROACH

As mentioned above, interactions in terms of influence
can be described by a hierarchical structure where the
behavior of the basic components influences the behavior
of intermediate subsystems to gradually reach the behavior
of the overall system. Thus in this section, we will first
present the elementary components’ structure, then the in-

teraction of these components using fault trees whose final
result is the determination of minimum cut sets to finally
transform this tree structure into a static Bayesian net-
work by isomorphism. By considering the ageing process
of components, delayed effects interdependence between
components, and possible influence of external signals, a
model in the form of a dynamic Bayesian is obtained as
ultimate decision support tool to that can be used for risk
informed decision making.

2.1 Structure of the system

Structurally, let us consider a system S in the sense of
dependability consisting of n components given by the set
C = {C1, C2,, ..., Cn} where each component can be only
in two states: either the component is functioning (state
OK) or it is not functioning (state OFF). As the purpose
of this paper is to study the inoperability of the system,
let us define by xi(t) the inoperability status of component
i at time instant t that is binary in this case and given by
equation (1)

xi(t) =

{

1 if component Ci is OFF at time t
0 if component Ci is OK at time t

;(1)

so that the inoperability status of the overall system can
be resumed by its inoperability vector x(t) as shown by
equation (2)

x(t) = [ x1(t) x2(t) ... xn(t) ] . (2)

The ultimate analysis goal is to determine ϕ(x(t)) that
represents the inoperability status of the system at time t
defined by equation (3)

ϕ(x(t)) =

{

1 if system S is OFF at time t
0 if system S is OK at time t

. (3)

To dermine this function ϕ(x(t)), the well indicated math-
ematical tool is the so called fault tree analysis that is
presented in the following.

To analyze the inoperability of the system that is mainly
to determining ϕ(x(t)) using FTA analysis, one consider
boolean algebra Sikorski (1969) consisting of two opera-
tions + (OR Gate) and • (AND Gate) so that the physical
structure (how basic components states do combine to lead
to the sate of the system) of the system can be transformed
into a tree. From this tree, one can determined the reduced
structural functions ϕ(x(t)) that is a valuable information
for determining inoperability status of the system. The
main results of this analysis are structural or qualitative in
terms of cut sets (a cut set is a subset of components whose
simultaneous failure leads to system failure regardless of
the condition of the other components; a cut set is minimal
if it does not contain another cut set) and quantitative in
terms of probability of inoperability of the system IS(t)
given actual conditions described by equation (4)

IS(t) = Pr {ϕ(x(t)) = 1} . (4)

In terms of prognostics, IS(t) is a good indicator to
determine for instance the remaining useful life RULα(t0)
at each time instant t0 at caution or boldness rate α
(probability that the system being operational); indeed by
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Fig. 1. Representation of the structure of the system by a
tree through minimum cut sets (a) and the equivalent
Bayesian network (b)

setting up the threshold α, RULα(t0) is given by equation
(5)

RULα(t0) = I−1

S (1− α)− t0 (5)

where I−1

S (1− α) is the inverse of IS(t) defined by (6)

I−1

S (1− α) = {T : IS(T ) = 1− α} ; (6)

the main challenge therefore is to calculate this indicator
IS(t).

Theoretically, it is possible to calculate this function
from minimum cut sets; indeed, let us denote by X =
{X1, X2,, ..., Xm} the set of minimum cut sets obtained
from qualitative analysis where xk = [ xk1

xk2
... xkk

] is
the vector containing the components of the cut set Xk

and ϕXk
(xk) the indicator of event Xk happing; therefore

ϕXk
(xk) and ϕ(x) are given by equations (7) and(8)

respectively

ϕXk
(xk) = xk1

• xk2
• ... • xkk

(7)

ϕ(x) = ϕX1
(x1) + ϕX2

(x2) + ...+ ϕXm
(xm) (8)

that is graphically illustrated by Figure 1 (a).

In theory from equation (8), one can calculate IS(t) by
using some properties of probabilities theory; but in prac-
tice this may be very challenging mainly when the system
is constituted by a great number of components and/or
if their dynamic behavior is subjected to some external
disturbance signals and/or delayed-effect interdependence
between components. On other hand, graph of Figure 1
(a) is isomorphic to probabilistic graph known in the lit-
erature as Bayesian network and their extension (dynamic
Bayesian networks) when one consider for instance ageing
process of components and/or influence of external signals.

The advantage of transforming a fault tree or a proba-
bility diagram, see for instance Bobbio et al. (2001) and
Tchangani (2001), into a Bayesian network is multifaceted:
instead of considering binary states to describe the behav-
ior of a system, intermediate states can be introduced to
represent, for example, degraded system behaviors; simi-
larly, the probabilities of occurrence can be degraded to
simulate a certain level of ignorance. In the perspective

of using Bayesian technology (largely considered in risk
management decision making Tchangani (2011)) to model
the inoperability of a system with hierarchical interactions,
we will briefly recall the principle of dynamic Bayesian net-
works, the literature on this subject being well provided,
and then show how a failure tree can be transformed into
a Bayesian network.

2.2 Dynamic Bayesian Networks (DBN)

Dynamic Bayesian networks Murphy (2002) derive from
an extension of Bayesian networks (see Nielsen and Jensen
(2009) Pearl (1988) and references therein) that describe
probabilistic relationships between variables of a knowl-
edge domain in order to take into account time behavior.
Dynamic Bayesian networks (DBNs) are directed acyclic
graphical models of stochastic processes, see [9], and they
generalize Hidden Markov Models (HMMs) and Linear
Dynamical Systems (LDSs) by representing the hidden
and observed state in terms of state variables, which can
have complex interdependencies. The graphical structure
provides an easy way to specify these conditional inter-
dependencies, and hence to provide a compact parame-
terization of the model. A dynamic Bayesian networks is
completely defined by two components: its structure that
is a directed acyclic graph (DAG) where nodes represent
variables and directed arcs represents influential relation-
ships between these variables and its parameters that
represent conditional probability density (CPD) functions
in the case of a continuous variable (the allowed values
of the variable belong to a continuous set) or conditional
probability table (CPT) in the case of a discrete variable
(the allowed values of the variable belong to a discrete set
that will be in general a finite set). A dynamic Bayesian
network structure consists of an intra slices directed acyclic
graph and an inter slices directed graph; slices represent
time instants to describe dynamic behavior of the system.
Intra slice graph models the instantaneous relationships of
nodes (a Bayesian network) and the inter slice graph rep-
resents the dynamics of the nodes. Intra slice parameters
are conditional probability density functions and/or con-
ditional probability tables of the corresponding Bayesian
network and inter slice parameters represent the dynamics
of variables on one hand and their relationships with the
variables that influence their behavior on the other hand.
The advantage of the Bayesian network model over the
Markov chain representation for instance, besides the fact
that the model is more compact and/or the possibility to
consider the influence of the history up to some complexity,
is that the transition matrix P can be learnt (estimated)
from the expert knowledge and/or experimental data or
parameters depending on external dynamic signals. BN
and DBN have been widely used to assist decision mak-
ing processes in domains such as: dependability, product
heath management and maintenance, see for instance Liu
et al. (2018), Tchangani and Noyes (2006), and refer-
ences therein. Dynamic Bayesian networks are of partic-
ular interest for modeling interactions whose effects are
delayed as is usually the case for physical systems. Indeed,
in this case the interactions are modeled by the inter-
slice relations in the Dynamic Bayesian network while the
functional relations form the static Bayesian network at
the level of a slice. Of course, the indicators or measures



of importance defined in the safety of operation literature
such as those in equations (11) to (15) are easily calculable
in a DBN model by running the model.

2.3 Transforming a fault tree into a DBN

In this section, we will use dynamic Bayesian networks
(DBN) to establish inoperability analysis model of a sys-
tem which FTA analysis leads to graph of Figure 1 (a);
indeed, from this Figure the corresponding Bayesian net-
work structure is given by Figure 1 (b) with three types
of nods as described by the legend, namely nodes repre-
senting basics components and intermediate AND and OR
combination nodes.

As evoked in the previous section, building a DBN consists
in constructing its structure that is straightforward here
as the intra-slice structure is isomorphic to the FTA of
Figure 1 (a); and establishing its parameters. Specifying
these parameters that is conditional probability tables
(CPT) for nodes Xi and S may be very tedious; indeed
if Xi is constituted of ni components the corresponding
CPT will have 2ni lines (in the binary case (ON/OFF));
to overcome this issue and given that each node is ho-
mogeneous (either AND or OR), we propose to regroup
hierarchically parents by two or three nodes at most to
facilitate specifying CPTs. To introduce interdependence
relationships, we consider them to be delayed allowing by
the way the possibility of modeling loops in interactions,
taking into account ageing process of components, and
possible influence of external signals. Though the range
of historical effect on actual behavior of the system may
be very long, when observations are made on small sample
time (what is not a hard constraint), one can considered
this range to be reduced. In terms of DBN, we consider
therefore a two slices DBN model as shown by Figure 2
where arcs with t−1 denote delayed effect: inner such arcs
correspond to auto-influence (ageing process for instance)
of components whereas arc on the cluster represent de-
layed effects of other components; external signal w(t) is
supposed to have an instantaneous effect but it could have
its own dynamics that can be taken into account in this
model. Quantitatively, interdependence between a compo-
nents i and other components as well as its environment is
summarized by its transition matrix Pi(t) at time t given
by equation (9)

Pi(t) = Pr{xi(t)/x(t− 1), w(t)} (9)

By so doing the corresponding dynamic Bayesian net-
work model that can be implemented using existing soft-
ware packages such as Netica Netica (2019), BayesiaLab
BayesiaLab (2019), Hugin Expert Hugin (2019), etc. or by
writing ones own code to deduce the IS(t) of the system
is given by Figure 2 where dotted loops over components
denote dynamic behavior of states of these components
between two consecutive time slices to represent their
ageing process and w(t) is a possible external disturbance
signals that may affect components.

By running the DBN of Figure 2, one will not only de-
termine IS(t) that can be used to determine the RUL of
the system, but many other indicators useful for diagnosis,
predictive maintenance, risk analysis, etc. such as the fol-
lowing ones known as importance factors in dependability
literature Limnios (2005).
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Fig. 2. Two time slices model of BN of Figure 1 (b)

• Criticality of a component: a vector x(t) is critical at
time t for component Ci if it verifies equation (10)

ϕ((1i, x(t))) = 1 and ϕ((0i, x(t))) = 0 (10)

where (×i, x(t)) means that the component Ci is in its
status × (0 or 1) at time t. It means that if component
Ci is inoperable at time instant t then the system will
be inoperable and if it is functioning the system will
be functioning.

• Risk augmentation factor RAFi(t) of component i:
relative increase of the probability of inoperability of
the system knowing that the basic component Ci is
inoperable given by equation (11)

RAFi(t) =
IS/xi(t)=1(t)− IS(t)

IS(t)
(11)

where IS/xi(t)=1 is the probability of inoperability of
the system given that the component Ci is totally
inoperable.

• Risk diminution factor RDFi(t) of component i:
relative decrease of the probability of inoperability
of the system knowing that the component Ci is
operating given by following equation (12)

RDFi(t) =
IS(t)− IS/xi(t)=0(t)

IS(t)
(12)

where IS/xi(t)=0 is the probability of inoperability of
the system given that the component Ci is totally
operable.

• Vessely-Fussel or diagnosis importance factor V Fi(t)
of component i: probability that the basic component
Ci is inoperable knowing that the system is inoperable
defined by equation (13)

V Fi(t) = Pr {xi(t) = 1/ϕ(x(t)) = 1} (13)

• Birnbaum’s factor BFi(t) of component i: probability
that vector x(t) is critical for component Ci at time
instant t defined by (14)

BFi(t) = IS/xi(t)=1(t)− IS/xi(t)=0(t) (14)

• Lambert or critical component factor LFi(t) (diagno-
sis) of component i: probability that the vector x(t) is
critical for component Ci and the system is inoperable
or the probability that the inoperability of component
Ci is the cause of the inoperability of the system that
is given by equation (15)

LFi(t) = Ψi(t) Pr {xi(t) = 1} (15)



Fig. 3. Scheme of illustrative case study

where Ψi(t) is given by (16)

Ψi(t) =

(

IS/xi(t)=1(t)− IS/xi(t)=0(t)

IS(t)

)

(16)

In the following section, we will illustrate the approach
described in the previous sections on a case study system
that is primarily intended to be pedagogical. The reader
will have noted that the simplicity of this illustrative
example does not prevent the approach from being applied
to real world application cases.

2.4 Illustrative case study

Consider a power supply system for a server consisting
of a power supplier (P), a circuit breaker (C) and two
parallel circuits (active redundancy) each consisting of a
cable (C1/2) and a transformer (T1/2) as shown in Figure
3.

The main objective is to model this system in order to
prognosis the possibility of inoperability of the server due
to a lack of electrical energy. FTA analysis of this system
(giving the fault tree as that of Figure 1 does not bring
anything significant here) leads to 6 minimal cut sets: two
of order 1 (the number of elements in the cut set) in terms
of P (main power supplier) and C (circuit bricker) and
four of order 2 consisting in T1T2 (transformers), T1C2
(transformer 1 and cable 2), T2C1 (transformer 2 and
cable 1) and finally C1C2 (cables).

Let us consider the following dynamic scenario: it is
admitted that nominal failure rate of all components are
considered to be λ0

i = 10−3/TU where TU stands for
time unit; but the real failure rate of the two transformers
depend on a time varying disturbance signal w(t), with a
nominal value w0, according to the law given by equation
(17)

λTi
(t) = λTi

(t− 1) + βTi
(w(t)− w0), λTi

(0) = λ0

i (17)

and the main purpose is to study the influence of this signal
on the IS(t) of the system. Dynamic Bayesian Network
model of this system is shown on Figure 4 where S(t)
represents the status of whether the server is supplied of
power or not.

Let us denote by RULα
w0

(t0) and RULα
w(t)

(t0) the re-

maining useful life from time instant t0 at the caution

( )w t

Fig. 4. Dynamic Bayesian network model of considered
illustrative application

Fig. 5. Simulated behavior of external signal w(t) and
transformers failure rate

or boldness index α in nominal behavior of the external
signal (w0) and when transformers are subjected to ex-
ternal signal w(t) respectively. Consider now the following
conditions:

• nominal behavior of external signal is w0 = 0;
• w(t) and consequently λTi

(t) behave like the curve
shown on Figure 5 (a) and Figure 5 (b) with βTi

=
10−3.

By running the DBN model given by Figure 4, we obtain
result shown on Figure 6 for IS(t) where the red curve
corresponds to perturbed case whereas the blue one corre-
sponds to nominal behavior of external disturbance signal
w(t).

From this Figure 6 we can see that at caution or boldness
index of α = 10%, the nominal and the disturbed RULs
at time instant t0 = 20 are given by RUL0.1

w0
(20) ≈ 750−

20 = 730 TU and RUL0.1
w(t)

(20) ≈ 250 − 20 = 230 TU. In

terms of decision making, given the behavior of external
signal w(t), decision maker can either maintain the caution
or boldness level of 10% and then shorten the mission time
from 730 to 230 or maintain the mission time of 730 by
diminishing the caution from 10% to almost 0%.
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3. CONCLUSION

A problem of modeling complex systems in order to an-
alyze and manage risk related to their inoperability has
been considered in this communication. Two main at-
tributes of complexity has been addressed, namely hier-
archy and interdependence. Basically, hierarchy is consid-
ered through directed acyclic graph (DAG) to represent
functional relationship between components of the systems
whereas interdependence is considered to represent de-
layed inter-relationship effect between components. Thus,
modeling process goes from functional or dysfunctional
analysis using fault tree analysis (FTA) as the underlying
mathematical tool to obtain structural model representing
functional or organizational description of the system;
then this FTA model that is isomorphic to Bayesian net-
work (BN) is transformed to a dynamic Bayesian network
(DBN) to taken into account delayed interdependence
effect. The ultimate DBN model can serve as a decision
support system for many decision making as it permits to
simulate different scenarios, to estimate many indicators
related to inoperating status of the system. Future works
will be devoted to applying this approach to real world
problems. The apparent difficulty in moving to a scale
of application on real systems of the approach set out
in this paper lies in the complexity of constructing the
dynamic Bayesian network and defining its parameters.
However, the structuring adopted in this paper, namely
a functional hierarchy and delayed-effect interdependency,
makes it possible to envisage the construction of the model
by modules.
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