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ABSTRACT

Aims. X-ray sources at intermediate fluxes (a few x10~'* erg cm s~!) with a sky density of ~100 deg™ are responsible for a significant fraction
of the cosmic X-ray background at various energies below 10 keV. The aim of this paper is to provide an unbiased and quantitative description of
the X-ray source population at these fluxes and in various X-ray energy bands.

Methods. We present the XMM-Newton Medium sensitivity Survey (XMS), including a total of 318 X-ray sources found among the serendipitous
content of 25 XMM-Newton target fields. The XMS comprises four largely overlapping source samples selected at soft (0.5-2 keV), intermediate
(0.5-4.5 keV), hard (2—10 keV) and ultra-hard (4.5-7.5 keV) bands, the first three of them being flux-limited.

Results. We report on the optical identification of the XMS samples, complete to 85-95%. At the flux levels sampled by the XMS we find that
the X-ray sky is largely dominated by Active Galactic Nuclei. The fraction of stars in soft X-ray selected samples is below 10%, and only a few
per cent for hard selected samples. We find that the fraction of optically obscured objects in the AGN population stays constant at around 15-20%
for soft and intermediate band selected X-ray sources, over 2 decades of flux. The fraction of obscured objects amongst the AGN population is
larger (~35-45%) in the hard or ultra-hard selected samples, and constant across a similarly wide flux range. The distribution in X-ray-to-optical
flux ratio is a strong function of the selection band, with a larger fraction of sources with high values in hard selected samples. Sources with

X-ray-to-optical flux ratios in excess of 10 are dominated by obscured AGN, but with a significant contribution from unobscured AGN.

Key words. X-rays: general — X-rays: galaxies — X-rays: stars — galaxies: active

1. Introduction

Supermassive black holes (SMBHs, i.e., with masses
~10°-10° M,) have been detected in the centers of virtu-
ally all nearby galaxies (Merritt & Ferrarese 2001; Tremaine
et al. 2002). In many of these galaxies -including our own- the
SMBH is largely dormant, i.e., the luminosity is many orders of
magnitude below the Eddington limit. Only ~10% of today’s

* Based on observations obtained with XMM-Newton, an ESA sci-
ence mission with instruments and contributions directly funded by
ESA Member States and the USA (NASA). Based on observations
made with the INT/WHT, TNG and NOT operated on the island of
La Palma by the Isaac Newton Group, the Centro Galileo Galilei and
the Nordic Optical Telescope Science Association respectively, in the
Spanish Observatorio del Roque de los Muchachos. Based on observa-
tions collected at the Centro Astronémico Hispano Aleméan (CAHA) at
Calar Alto, operated jointly by the Max-Planck Institut fiir Astronomie
and the Instituto de Astrofisica de Andalucia (CSIC). Based on obser-
vations collected at the European Southern Observatory, Paranal, Chile,
as part of programme 75.A-0336.

** Tables 2 and 5 are only available in electronic form at
http://www.aanda.org

galaxies (at most) host active galactic nuclei (AGN), and a
very large fraction of them are in fact inconspicuous at most
wavelengths because of obscuration (Fabian & Iwasawa 1999).

It is generally believed that the seeds of these SMBHs were
the remnants of the first generation of massive stars in the history
of the Universe. These early black holes may have had masses
of tens of M at most. The growth of these relic black holes to
their current sizes is very likely dominated by accretion, with ad-
ditional contributions by other phenomena like black hole merg-
ers and tidal capture of stars (Marconi et al. 2004). According
to current synthesis models, the integrated X-ray emission pro-
duced by the growth of SMBHs by accretion over the history of
the Universe is recorded in the X-ray background (XRB). Thus
the XRB can be used to constrain the epochs and environments
in which SMBHs developed.

There are currently a number of existing or on-going sur-
veys in various X-ray energy bands (see Brandt & Hasinger
2005, for a recent compilation). In the pre-Chandra and
pre-XMM-Newton era the Einstein Extended Medium Sensitivity
Survey (Maccacaro et al. 1982; Gioia et al. 1990; Stocke et al.
1991) pioneered the procedure of determining typical X-ray to

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20077606
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optical flux ratios for different classes of X-ray sources to fa-
cilitate the identification processes and has set the standard for
serendipitous X-ray surveys. ROSAT produced a number of sur-
veys in the soft 0.5-2 keV X-ray band at various depths, e.g.,
the ROSAT Bright Survey (Schwope et al. 2000), the intermedi-
ate flux RIXOS survey (Mason et al. 2000) and the ROSAT deep
surveys (McHardy et al. 1998; Georgantopoulos et al. 1996;
Hasinger et al. 1998; Lehmann et al. 2001) among others. These
surveys show that AGN dominate the high Galactic latitude soft
X-ray sky at virtually all relevant fluxes. The majority of these
AGN are of spectroscopic type 1, which means that we are wit-
nessing the growth of SMBH through unobscured lines of sight.
In a moderate fraction of the sources identified, however, there
is evidence for obscuration as their optical spectra lack broad
emission lines (type 2 AGN).

Ueda et al. (2003) discuss the results from a large area
X-ray survey in the 2—10 keV band with ASCA and those from
HEAO-1 and Chandra, where a larger fraction of the sources
identified correspond to type 2 AGN.

With Chandra and XMM-Newton coming into operation
X-ray surveys, particularly at energies above a few keV, have
been significantly boosted. Thanks to the high sensitivity and
large field of view of the EPIC cameras (Turner et al. 2001;
Striidder et al. 2001) on board XMM-Newton (Jansen et al.
2001), X-ray surveys requiring large solid angles have been
dominated by this instrument. The Bright Source Survey-BSS
(Della Ceca et al. 2004) contains 400 sources brighter than ~7 X
10-'* erg cm™2 s7! either in 0.5-4.5 keV or 4.5-7.5 keV. The
BSS samples', which have been identified to ~90% (Caccianiga
et al. 2007), show an X-ray sky dominated by AGN, where the
fraction of obscured objects varies with the selection band (sam-
ple selection at harder energies reveals a higher fraction of ob-
scured objects, as expected).

Deep surveys have also been conducted by XMM-Newton,
for example in the Lockman Hole down to ~10~!> erg cm™2 s~!
(Hasinger et al. 2001; Mateos et al. 2005b). However, thanks
to its much better angular resolution, the Chandra deep surveys
are photon counting limited and far from confusion and are con-
sequently much more competitive at fainter fluxes (Alexander
et al. 2003; Tozzi et al. 2006). Optical identification of these
deep surveys is largely incomplete, a fact that is driven by the
intrinsic faintness and red colour of most of the counterparts to
the faintest X-ray sources. In the intermediate flux regime, how-
ever, the identified fractions are large and nearing completion.
Deep surveys start to find a population of galaxies not necessar-
ily hosting active nuclei as an important ingredient. In addition,
the AGN population is found to contain an important fraction of
obscured objects.

The wide range of intermediate X-ray fluxes, between
1075 erg em™2 s7! and 107'3 erg cm™2 s7!, have also been
the subject of a number of on-going surveys. Besides bridg-
ing the gap between wide and deep surveys, intermediate fluxes
sample the region around the break in the X-ray source counts
(Carrera et al. 2007), and therefore their sources are responsi-
ble for a large fraction of the X-ray background. Among these,
we highlight the XMM-Newton survey in the well-studied (at
many bands) COSMOS field, which covers 2 deg2 to fluxes
~1071 ergcm™ s7! (Hasinger et al. 2007). The optical iden-
tification is still on-going, reaching 40% (Brusa et al. 2007). At
fluxes around 107'* erg cm™? s7!, the HELLAS2XMM survey
(Baldi et al. 2002; Fiore et al. 2003), now extended to cover

! http://www.brera.mi.astro.it/” xmm/
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1.4 deg?, contains over 220 X-ray sources, optically identified
to 70% completeness (Cocchia et al. 2007).

Other surveys in this flux range include the XMM-Newton
survey in the Marano field (Krumpe et al. 2007), which is
65% identified over a modest solid angle of 0.28 deg. Also
the XMM-2dF survey (Tedds et al., in preparation), which
contains almost 1000 X-ray sources optically identified in the
Southern Hemisphere, is an important contributor in this regime.
Chandra has also triggered surveys at intermediate fluxes,
most notably the Chandra Multiwavelength Survey (Kim et al.
2004a,b; Green et al. 2004), covering 1.7 deg2 and identified to
~40% completeness (Silverman et al. 2005).

In the realm of this variety of X-ray surveys that yield a
qualitative picture of the X-ray sky, the XMM-Newton Medium
sensitivity Survey (XMS) discussed in this paper finds its place
in three important ways: a) it deals with very large samples,
selected at various X-ray bands where XMM-Newton is sensi-
tive, from 0.5 to 10 keV; b) the samples that we consider have
been identified almost in full, from 85% to 95% completeness
and c) three out of the four samples that we explore are strictly
flux limited in three energy bands (0.5-2 keV, 0.5—-4.5 keV and
2—-10 keV). Armed with these unique features, the XMS is a
very powerful tool to derive a quantitative characterization of
the population of X-ray sources selected in various bands, and
also to study and characterize minority populations, all at spe-
cific intermediate X-ray fluxes where a substantial fraction of the
X-ray background below 10 keV is generated. The power of the
XMS is enhanced by the fact that to some extent it is a represen-
tative sub-sample of the XMM-Newton X-ray source catalogue
2XMM?, containing 200 000 entries.

Specific goals that have driven the construction of the XMS
whose results are presented in this paper include to a) quantify
the fraction of stars versus extragalactic sources at intermedi-
ate X-ray fluxes and at different X-ray energy bands; b) quan-
tify the fraction of AGN that are classified as obscured by op-
tical spectroscopy at intermediate X-ray fluxes and for samples
selected in different energy bands; c) find the redshift distribu-
tion for the various classes of extragalactic sources and compare
soft and hard X-ray selected samples; d) study the distribution
of the X-ray-to-optical flux ratio for the various classes of X-ray
sources, also as a function of X-ray selection band. The X-ray
spectral properties of the sources of the XMS were discussed in
Mateos et al. (2005a).

Further goals that we will achieve with the XMS in forth-
coming papers include to e) determine the fraction of “red
QSOs” at intermediate X-ray fluxes and as a function of X-ray
selection band; f) relate X-ray spectral properties (like pho-
toelectric absorption) to optical colours of the counterpart;
2) quantify the fraction of radio-loud AGN in the samples se-
lected at various X-ray energies; h) construct Spectral Energy
Distributions for the various classes of sources in the XMS.
Results of these further analyses will be presented in a forth-
coming paper (Bussons-Gordo et al., in preparation).

The paper is organized as follows: in Sect. 2 we define the
XMS along with the 4 samples that constitute it, including the
X-ray source list; in Sect. 3 we discuss the multi-band optical
imaging conducted on the XMM-Newton target fields and the
process for selecting candidate counterparts; this is continued in
Sect. 4 where we discuss the identification of the XMS sources in
terms of optical spectroscopy, and list photometric and spectro-
scopic information on each XMS source. Section 5 presents the
first scientific results from the XMS, specifically a description of

2 Pre-release under http://xmm.vilspa.esa.es/xsa
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the overall source populations, the fraction of stars in the various
samples, the fraction of optically obscured AGN, and the X-ray
to optical flux ratio of the different source populations. Section 6
summarizes our main results.

To clarify the terminology used in this paper, an AGN not
displaying broad emission lines in its optical spectrum is termed
as type 2 or obscured, and type 1 or unobscured otherwise. The
property of being absorbed or unabsorbed refers only to the de-
tection or not of photoelectric X-ray absorption. Throughout this
paper, we used a single power law X-ray spectrum to convert
from X-ray source count rate to flux in physical units, with a
photon spectral index I' = 1.8 for the XMS-S and XMS-X sam-
ples and I' = 1.7 for the XMS-H and XMS-U samples. These are
the average values obtained by Carrera et al. (2007), which -as
opposed to what we do here- used the specific value of I for each
individual source and energy range. When computing luminosi-
ties, we also use the above spectra for K-correction and the con-
cordance cosmology parameter values: Hy = 70 kms~' Mpc™,
Qn = 0.3 and Qp = 0.7. All quoted uncertainties in parameter
estimates are shown at a 90% confidence level for one interesting
parameter.

2. The XMM-Newton medium sensitivity survey
(XMS)

The XMS is a serendipitous X-ray source survey with interme-
diate X-ray fluxes, which has been built using the AXIS?® sample
described in Carrera et al. (2007). The XMS uses 25 target fields
(see Table 1, areas around targets themselves are excluded),
which cover a geometric sky area ~3 deg”. The details of the
source searching, screening, masking out of problematic detec-
tor areas (CCD gaps, bright targets, bad pixels and columns and
out of time events) are extensively discussed in Carrera et al.
(2007).

The XMS itself is made of four largely overlapping sam-
ples. The XMS-S, XMS-H and XMS-X are flux limited in
the 0.5-2 keV, 2—10 keV and 0.5-4.5 keV bands respectively,
with flux limits, well above the sensitivity of the data, listed in
Table 3. A fourth sample (XMS-U) selected in the “ultrahard”
band 4.5-7.5 keV is not artificially limited in flux, and due to
the scarcity of these sources it contains all the sources detected in
the 25 fields. Table 2 lists the X-ray source positions and fluxes
in the various bands.

The XMS-S and XMS-H were constructed to match the
standard “soft” and “hard” X-ray bands that have been exten-
sively used in previous and contemporary X-ray surveys with
XMM-Newton and other X-ray observatories. The 0.5-4.5 keV
selection band of the XMS-X sample was chosen to maxi-
mize the XMM-Newton/EPIC sensitivity and is the largest of the
4 samples. The total number of distinct X-ray sources in the
XMS is 318, out of which 272 (86%) have been spectroscopi-
cally identified. The identification completeness of the various
samples is also shown in Table 3, which exceeds 90% for the
softer XMS-S and XMS-X samples, and is around 85% for the
hard XMS-H and ultra-hard XMS-U samples. The XMS-X sam-
ple extends the size of the pilot study presented in Barcons et al.
(2002) by an order of magnitude.

3 AXIS (An XMM-Newton International Survey) was an International
Time Programme of the Observatorio del Roque de Los Muchachos,
which was granted observing time in 2000 and 2001. See
http://venus.ifca.unican.es/ "xray/AXIS for details.

1193

Table 1. XMS target fields.

Target field RA (J2000) Dec (J2000) b&'/(deg) Phot®
C10016+1609 00:18:33 +16:26:18 -45.5 SDSS
G 133-69 pos2 01:04:00 -06:42:00 -69.3 CMC
G 133-69 posl 01:04:24 -06:24:00 -68.7 CMC
SDS-1b 02:18:00 —05:00:00 -59.7 CMC
SDS-3 02:18:48 —04:39:00 -593 CMC
SDS-2 02:19:36 —05:00:00 -58.9 CMC
A 399 02:58:25 +13:18:00 -39.2 CMC
Mrk 3 06:15:36 +71:02:05 +22.7 WEFC?
MS 0737.9+7441 07:44:04 +74:33:49 +29.6 WEFC
S5 0836+71 08:41:24 +70:53:41 +344  WFC
C10939+4713 09:43:00 +46:59:30 +48.9 SDSS
B2 1028+31 10:30:59 +31:02:56 +59.8 SDSS
B2 1128+31 11:31:09 +31:14:07 +72.0 SDSS
Mrk 205 12:21:44 +75:18:37 +41.7 WEFC
MS 1229.2+6430 12:31:32 +64:14:21 +53.0 SDSS
HD 117555 13:30:47 +24:13:58 +80.7 SDSS
A 1837 14:01:35 -11:07:37 +47.6 CMC
UZ Lib 15:32:23 —08:32:05 +36.6 WEFC*
PKS 2126-15 21:29:12 —15:38:41 —424 CMC
PKS 2135-14 21:37:45 —14:32:55 -43.8 CMC
PB 5062 22:05:10 -01:55:18 —43.3 CMC
LBQS 2212-1759 22:15:32 —17:44:05 =529 CMC
PHL 5200 22:28:30 —05:18:55 -50.0 CMC
IRAS 22491-1808  22:51:50 -17:52:23 -614 CMC
EQ Peg 23:31:50 +19:56:17 -39.1 CMC

¢ This column gives the ultimate photometric calibration used: WFC if
our own data from a photometric night was used as the main resource,
SDSS for the Sloan Digital Sky Survey, and CMC for the Carlsberg
Meridian Catalogue survey.

b In this case the extinction curve calibration in our data gives some
scatter which means that the magnitudes are not as accurate as for the
sources in the other fields.

¢ This field was not imaged in g’ and 7. In addition to #/, it was imaged
in the Johnson filters B, V and R at the ESO/MPG 2.2 m telescope with
the WFI camera.

3. Imaging and selection of candidate counterparts
3.1. The data

Target fields were observed primarily with the Wide-Field
Camera (WFC) on the 2.5 m INT telescope. The observations
were obtained via the AXIS programme and other programmes
devoted to image a large number of XMM-Newton target fields
in the optical. The WFC covers virtually all the field of view
of EPIC, if centered optimally. We used the Sloan Digital Sky
Survey filters g’, ¥’ and i’ to image all the XMS target fields.
In addition many of the fields were also imaged bluewards
and redwards using existing facility filters at the WFC (u and
Z Gunn). These data are available for all fields, except for
the G 133-69 pos 1 and PB 5062 fields, while for UZ Lib and
B2 1128+31 the u-band data are missing. Since data from these
two additional filters are not used in this paper, we do not discuss
them any further.

Exposure times were adjusted to be deep enough for most
of the X-ray sources to have an optical counterpart in the '
and ¢ filters, and therefore had to be significantly deeper than
those in the Digitized Sky Surveys. They were chosen as 600 s,
600 s and 1200 s respectively in the ¢, r/, i’ filters for dark
time. This produced images with limiting magnitude for point
sources going down to ' ~ 23—24 for ~1—1.5" seeing, typical
in our observing runs, which our experience with the first fields
(Barcons et al. 2002) demonstrated to be appropriate. When
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Table 3. Summary of identifications in the various samples.

Sample Sel.band Limiting Number Number Fract.
(keV) flux“ sources ident. (%)
XMS-S  0.5-2.0 1.5 210 200 95
XMS-X 0545 2.0 284 261 92
XMS-H  2.0-10 33 159 132 83
XMS-U  45-75 1.15 70 60 86

2

“ In units of 107! erg cm™2 s~! in the selection X-ray band.

observing with brighter moon conditions, we restricted ourselves
to the reddest filters and doubled the exposure times.

The WFC images were reduced using standard techniques
including de-bias, non-linearity correction, flat fielding and
fringe correction (in i and Z). Bias frames and twilight flats
obtained during the same observing nights were used, but for
the fringe correction, contemporaneous archival i’ and Z fringe
frames were utilised. Information on the WFC pipeline proce-
dures, that perform all these steps can be found in the Cambridge
Astronomy Survey Unit* (CASU) web pages.

3.2. Photometric calibration

The photometric calibration of the WFC images was conducted
in the standard way. Photometric standard stars were observed
during the same nights as the XMM-Newton target fields were
imaged, at different air masses. Then an extinction curve was fit-
ted for each optical band. In several cases where we suspected
that photometric conditions were not achieved, we re-imaged the
same field with one WFC filter (#') or alternatively a part of
it with the ALFOSC instrument in imaging mode on the NOT
telescope.

However, in a number of target fields and for some of
the bands, the extinction curve showed significant scatter that
was attributed to these observations being done under non-
photometric conditions. In order to improve the photometric
quality of the data, two steps were taken. First we concentrated
on calibrating one band (typically ") and later we applied colour
corrections to propagate the improved photometry to all bands.

In the first step we used two complementary photometri-
cally calibrated data sets. The first of these is the Sloan Digital
Sky Survey, Data Release 5°. We could use the SDSS data on
6 XMM-Newton fields. The sky density of SDSS is lower than
our WFC images, but we typically found a large enough number
(~100) of matches in every image.

The second data set used to improve the photometric cali-
bration is the Carlsberg Meridian Catalogue (CMC) astromet-
ric survey in the 7 band®, which we could apply to 19 fields.
This survey is much shallower than the SDSS (' < 17). In
addition we found very significant systematic differences be-
tween WFC magnitudes and CMC ones at magnitudes less than
r ~ 16-16.5 which we attributed to saturation in our data.
That typically leaves a very narrow dynamic range for cross-
calibrating WFC versus CMC magnitudes, that we adopted as
16.5 < ' < 17. Prompted by this, we also restricted the
WEC versus SDSS cross calibration to magnitudes brighter than
r’ ~ 16. As a safety test, we cross-calibrated CMC versus SDSS
r’ magnitudes in the 5 fields where we could do that, but in this

4 http://www.ast.cam.ac.uk/ wfcsur

5 http://www.sdss.org

6 See http://www.ast.cam.ac.uk/ dwe/SRF/camc.html
for details.
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Fig. 1. Photometric cross-calibration in the B2 1128431 field, where
we have both coverage from the SDSS and CMC, along with our own
WEC photometry.

case using the full magnitude range from * ~ 14—18 and found
tiny significant shifts, all of them well below 0.1 mag in all fields.
Figure 1 illustrates the residuals of the cross-calibration in the
case of one target field where we had all three WFC, SDSS and
CMC data sets.

In general, photometric shifts in fields where the quality of
the WFC photometric calibration was thought to be good were
found to be small (always Ar’ < 0.2 mag) when calibrated
against CMC or SDSS. In other cases where we had reason to
suspect that our initial photometric calibration was not of high
quality, we found photometric shifts as large as Ar’ ~ 0.5 mag.
This is why we applied these corrections to our photometry, with
the SDSS one taking priority over CMC. Table 1 lists the photo-
metric calibration data used in each field.

We then exported this refined calibration in 7’ into the g’ and
i’ bands by constructing a g’ —r’ vs. r’ —i’ colour—colour diagram.
We compared this to a calibrated colour—colour sequence pattern
that was constructed using WFC observations of ELAIS fields.
Shifts were applied to g’ and i/ WFC magnitudes as to match
both. These shifts were propagated to all magnitudes listed in
this paper.

We believe our photometry to be better than 0.1 mag in the
majority of our fields and certainly better than 0.2 mag for all of
them. In Sect. 5.5, where we analyze the X-ray-to-optical flux
ratio, we use the quantity log fo,, which has a maximum error
due to these calibration uncertainties of well below 10%.
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3.3. Astrometric calibration

Astrometric calibration of the WFC was performed using
the Cambridge Astronomy Survey Unit (CASU) procedures.
Typically, hundreds of matches per WFC image were obtained
against the APM catalogue’, which was used as the astrometric
reference for the optical images. Specifically, a simple 6 param-
eter plate solution over the whole 4-CCD image was used, but
accounting for a known and previously calibrated telescope dis-
tortion cubic radial term. The residuals from the plate solution
were typically below 0.2 arcsec, which is good enough to iden-
tify candidate counterparts to the X-ray sources and for blind
spectroscopic observations to identify these counterparts.

The astrometry of the XMM-Newton X-ray source posi-
tion was registered against the USNO A2 (Monet et al. 1998)
source catalogue (Carrera et al. 2007), but the optical astrom-
etry refers to a different astrometric system. In order to en-
sure that this does not lead to artificial mismatches, we mea-
sured the USNO-APM shifts in each XMM-Newton field by
cross-correlating both source catalogues in the corresponding
region. The shifts were significant in most cases but small, typ-
ically <0.5 arcsec, which is less than the statistical accuracy in
the X-ray source positions (0.6 arcsec averaged over the whole
XMS sample). The positions of bright sources that were severely
saturated in our WFC images were obtained from the USNO
catalogue itself and therefore do not suffer from these small
APM-USNO shifts. Given the small size of these shifts and in
view of the much broader overall distribution of offsets between
the position of the X-ray source and its optical counterpart (see
Fig. 2) we conclude that the use of these two different astromet-
ric reference frames does not affect in any noticeable way the
results presented in this paper.

4. Identification of the XMS sources

In order to search for candidate counterparts of the X-ray
sources, we normally used the r’-band WFC image. Optical
source lists for these images were generated with the
CASU procedures.

Counterparts for the X-ray sources were searched for in
the optical image lists. Candidate counterparts had to be either
within the 5 statistical errors (at 90% confidence) of the X-ray
position or within 5 arcsec from the position of the X-ray source.
This last criterion was used to accommodate any residual sys-
tematics in the astrometric calibration of the X-ray EPIC images.

As reported in Barcons et al. (2002) this resulted in the vast
majority of the XMS sources having a single candidate counter-
part. There are a few exceptions to this. In a few cases (15), the
position of the X-ray source happened to fall in the gaps between
CCDs in the WFC images. The strategy adopted to image in all
optical filters with the same target point, which allowed us to
obtain reliable optical colour information for the vast majority
of the sources, also implied that for these few sources there is
no optical image in any of the optical filters covering the region
around these X-ray sources. In some of these sources (14 out of
15), the candidate counterpart was found by considering other
optical imaging data, mostly the USNO A2 catalogue, or com-
plementary imaging data.

Also, in a modest number of sources (78), there was more
than one single candidate counterpart formally complying with
our proximity criteria. But in 70 out of these 78 the optical
source closest to the X-ray source position was also brightest and

7 http://www.ast.cam.ac.uk/ mike/apmcat/

1195

40
T

" I...:...: " Ml | n...; " M | n 2 " " 1
0 I 2 3 4 5

Offset (arcsec)

Fig. 2. Histogram of the distances from the optical source to the X-ray
source centroid. The continuous line is for all sources with a counterpart
and the dotted line for those with a likely counterpart without spectro-
scopic confirmation.

we adopted that as the likely counterpart. Given the brightness
of the optical counterparts »’ < 22 and the small region searched
for around every X-ray source, we are confident that the number
of spurious associations is insignificant in this sample.

Figure 2 shows the histogram of the X-ray to optical angular
separations for the sources spectroscopically identified and for
those where a unique candidate counterpart is found but with-
out a spectroscopic identification. The distribution peaks at small
separations (~2”"). Integrating this distribution outwards shows
that in 68%, 90% and 95% of the cases the optical counterpart
lies closer than 1.5”, 2.4” and 3.6” from the X-ray source re-
spectively. Although the histogram of unidentified sources looks
slightly more disperse than that of the identified ones, all can-
didate optical counterparts fall within 3" of the position of the
X-ray source.

There are a total of five sources that have no candi-
date counterpart in any of our optical images. For a further
3 sources, finding a candidate counterpart required a special
strategy: in one case a counterpart was only found in the K-band
(XMSJ 122143.6+752238), and in a further two cases the very
faint optical counterparts were only detected via imaging with
the VLT (XMSJ 225227.6-180223, in the / band) and Subaru
(XMSJ 021705,4-045654, with R = 25.60) telescopes.

4.1. Optical spectroscopy

Searches for information on the XMS candidate counterparts in
existing catalogues gave useful information (i.e., nature of the
source and redshift) only for a handful of objects. Identifications
for a few other X-ray sources were provided to us by the
Subaru/XMM-Newton Deep Survey project (Akiyama, private
communication) and by the XMM-Newton Bright Source Survey
(Della Ceca et al. 2004). That means that the vast majority of the
XMS sources were previously unidentified and required optical
spectroscopy.

Optical spectroscopy was conducted in a number of ground-
based optical facilities, following the strategy presented in
Barcons et al. (2002). The low surface density in the sky
of the XMS sources (~100 deg_z) makes the use of multi-
object slit-mask spectrographs not particularly efficient. Part of
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Table 4. List of spectroscopic setups relevant to this sample.

X. Barcons et al.: The XMM-Newton medium sensitivity survey. IV.

Telescope Instrument Spectral Slit width Spectral Comments
range A (arcsec) resolution® (A)
WHT/ORM  AUTOFIB2/WYFFOS  3900-7100 2.7 7 Fibre
WHT/ORM  AUTOFIB2/WYFFOS  3900-7100 1.6 6 Fibre
WHT/ORM ISIS 3500-8500 1.2-2.0 3.0-33 Long slit
TNG/ORM DOLORES 3500-8000 1.0-1.5 14-15 Long slit
NOT/ORM ALFOSC 4000-9000 1.0-1.5 4 Long slit
3.5 m/CAHA MOSCA 3300-10 000 1.0-1.7 24 Long slit
UTI1/ESO FORS2 4400-10 000 1.0 6-12 Long slit

@ Measured from unsaturated arc lines. » Width of individual fibres.

the identifications were performed using a fibre spectrometer
(AUTOFIB2/WYFFOS) which covers a much larger solid an-
gle in the sky and therefore is better suited for the identification
work.

The main limitation of the fibre spectrometers in obtaining
the spectrum of faint sources resides in the subtraction of the
sky which enters the fibres along with the light from the target
objects. Wider fibres make this problem worse. This limits the
ultimate sensitivity of the spectrometer, which for our exposure
times and observing conditions was rarely good enough for mag-
nitudes fainter than ’ ~ 20.5.

Therefore, despite the larger solid angle covered by fibre
spectrometers, the distribution of optical magnitudes in the
XMS source candidate counterparts calls for the use of single
object long-slit spectroscopy. A number of such spectrometers
were used in a variety of ground-based telescopes, with aper-
tures from 2.5 m to 8.2 m.

Table 4 lists the telescopes and observatories that were used,
along with the specific spectrometers, with specification of the
wavelength range, the slit width (or fibre width when appli-
cable) along with the measured spectral resolution using un-
blended arc lines (or a sky line in the case of the fibre spec-
trometer). The spectral reduction process is standard and was
described in Barcons et al. (2002). The final spectra will be
available at http://www.ifca.unican.es/ " xray/AXIS and
in the long term in the XMM-Newton Science Archive® under the
2XMM catalogue.

These spectra are meant only to be reliable for identification
purposes, i.e., the spectrophotometric calibration has only been
performed at best in relative terms (i.e., up to an absolute nor-
malisation factor). Even more, in the fibre spectra and in some
of the long-slit spectra that were not taken with the slit aligned to
the parallactic angle, differential refraction will cause the over-
all large-scale shape of the spectrum to be incorrect. None of
these facts hamper the identification of the spectral features that
we used in this paper, which is based on broad and/or narrow
emission lines and on absorption bands, but not on broad-band
features like the 4000 A break. However we caution against the
use of these spectra to measure line fluxes or line ratios because
of the above limitations.

4.2. Classification of the sources

Based on the optical spectroscopy, we classify the counter-
parts to the XMS X-ray sources as in Barcons et al. (2002).
Extragalactic sources exhibiting broad emission lines (velocity
widths in excess of ~1500 kms™!) are classified as BLAGN

8 http://xmm.vilspa.esa.es/xsa

(Broad Line Active Galactic Nuclei); those exhibiting only nar-
row emission lines are termed NELG (Narrow Emission Line
Galaxies); those with galaxy spectra without obvious emission
lines are classified in principle as Absorption Line Galaxies
(ALG). Of the latter, we distinguish two classes of exceptions:
two of the sources with a galaxy spectrum without emission lines
were previously catalogued as BL Lac objects and we classify
them as such; if a qualitative inspection of the optical images
show obvious evidence for a galaxy concentration we then clas-
sify the source as a cluster (Clus). Finally all X-ray sources with
a stellar spectrum are labeled simply as “Star”.

This classification is simple to perform, but in some cases it
lacks a more detailed physical description of the source. This is
particularly true in the case of the NELG, because no line di-
agnostics are performed to check whether the object hosts an
AGN or not. The reason is that due to the rather wide redshift
range spanned by these sources and the rather narrow wave-
length coverage of the optical spectra (particularly for the fibre
spectroscopy) the number of lines detected is small. Therefore
it happens that typical diagnostic lines drift out of the spectrum
with redshift. In addition, the quality of the spectra are in most
cases not good enough to detect the weak lines necessary for
these diagnostics. In fact the NELG are likely to be a mixture of
type-2 AGN and star forming galaxies. In the discussion of the
various samples we use the X-ray luminosity as an indicator of
the presence of an AGN in these objects.

The second limitation of this simple classification is in the
case of clusters. The very small number of X-ray sources iden-
tified as clusters (2) is not a real property of the X-ray sky at
these flux levels, but an artifact of the detection and classification
method. The detection method for X-ray sources is designed for
point sources and might be missing a number of extended X-ray
sources. In addition, in several optical images, the presence of
a cluster of galaxies might not be obvious and the source might
have been identified as a galaxy with or without emission lines.

The third and final limitation is in the stellar content. The
stars that we identify have a varied range of spectral properties,
but this is not explored in the present paper.

Redshifts have been measured by matching the most promi-
nent features in emission or absorption to sliding wavelengths of
these features. Templates for QSO and galaxies with a range of
spectroscopic classes were used to assist in the generation of first
guesses when necessary, especially when there were no promi-
nent features.

Table 5 displays the full list of the 318 XMS sources,
along with optical magnitudes of their counterparts, and the
identifications.
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Table 6. Summary of the identifications of the various XMS samples.
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Sample Total BLAGN NELG ALG BLLac Clus Star Unid
XMS-S 210 150 26 6 2 1 15 10
XMS-X 284 192 38 7 2 2 20 23
XMS-X (South) 167 120 25 4 0 1 13 4
XMS-H 159 85 34 7 2 1 3 27
XMS-U 70 41 15 2 2 0 0 10
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Fig. 3. Optical magnitude versus 0.5—-4.5 keV flux for the XMS sources. The optical magnitude shown is 7’ (filled symbols) when available, and
otherwise R (hollow symbols). Upward arrows denote lower limits in the magnitude derived from the lack of optical counterparts in the WFC
r’ band image, but several of these sources have counterparts in other optical bands.

5. The XMS X-ray source populations
5.1. General

The breakdown of the identifications in the 4 XMS samples is
shown in Table 6. The completeness of these identifications is
higher for the XMS-S (95%) and XMS-X (92%) than for the
XMS-H (83%) and XMS-U (86%). There are several reasons
for that, the most important one being that the XMS was orig-
inally conceived around the 0.5—-4.5 keV band to optimise the
XMM-Newton EPIC sensitivity and therefore the identification
strategy has been especially successful in this band.

In particular, and as we will show later, the Hard and Ultra-
hard samples contain a higher fraction of sources with a higher
X-ray-to-optical flux ratio and therefore more sources have op-
tically fainter counterparts. Given the limitations of the access
to 8—10 m aperture class telescopes, in practice this means that
the identification incompleteness is also biased. This implies that
the fraction of unidentified sources is likely to be richer in po-
tentially obscured objects than the average.

The results for the XMS-X are particularly robust and their
robustness can be verified by using what we might call the
“Southern” subset of the XMS-X. This is due to the fact that

virtually all sources in this sample that are accessible from
the VLT at ESO were observed in September 2005 during the
075.A-0336 run and the vast majority of them were identified.
Table 6 also displays the numbers of identified targets in fields
below a declination of +20° in the XMS-X sample. In this sam-
ple, at the price of reducing the size from the parent sample
to ~60%, we raise the identification fraction to over 98% (only
4 sources out of 167 remain unidentified).

A first glance at the overall source population that we are
sampling, is given in Fig. 3, where we have plotted the opti-
cal magnitude (typically ’, but R when r’ is not available), as a
function of 0.5-4.5 keV X-ray flux.

5.2. Stellar versus extragalactic content

Despite the high-galactic latitude selection of the XMM-Newton
fields used in the XMS, a few of our X-ray sources have been
identified as stars. A detailed study of the stellar content of the
XMS is beyond the scope of this paper, but similarly to what is
found in the XMM-Newton Galactic Plane Survey (Motch et al.,
in preparation) most of them will be active coronal stars.
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Fig. 4. X-ray luminosity in the selection band versus redshift for extragalactic sources in each of the XMS samples. Top left is for the XMS-S, rop
right for the XMS-X, bottom left for the XMS-H and bottom right for the XMS-U.

The current landscape of X-ray surveys indicates that the
stellar content at high galactic latitudes decreases at faint fluxes.
Since it is unlikely that any stellar X-ray source has escaped
identification in the XMS survey, we are in a position to quantify
this statement as well as to compare the stellar populations when
selected at different energy bands.

The XMS-X sample contains a total of 20 stars, which rep-
resent 73% of the sample (henceforth errors on fractions are
of 90% confidence and assuming a binomial distribution). If we
split the XMS-X sample between bright (0.5-4.5 keV flux above
3.3 x 107 erg cm™ s7!) and faint (below the same flux) X-ray
sources, the whole sample splits in two approximately equal
halves (143 bright and 141 faint X-ray sources). The fraction
of stars (8) in the faint sample is then S.St‘z‘:g% and the fraction
of stars (12) in the bright sample is 8.5f‘3"5 .

Loépez-Santiago et al. (2007) have explored the stellar con-
tent of the BSS (Della Ceca et al. 2004), finding 58/389 (15 +
3%) stars in the 0.5—-4.5 keV sample. Combined with our own
measurements on the XMS-X, this shows that there is a decrease
in the stellar content when going to fainter X-ray fluxes.

It is also interesting to compare the fraction of stars in
the various XMS samples. The soft XMS-S sample contains
15 stars, which represent 7’:‘2‘% of the sample, similar to the
XMS-X. The stellar content in the XMS-X and XMS-S samples
is very similar.

Stars are much rarer in the XMS-H and XMS-U samples:
the XMS-H contains only 3 stars (2’:%'5%) and the XMS-U con-
tains no stars whatsoever (<4% at 90% confidence). In this case
we are totally confident that we are not missing any stars, as all
unidentified sources in the XMS-H and XMS-U samples are op-
tically extended. The low stellar content in these samples is not a

surprise, as most of our stars are seen in X-rays because of their
active coronae, which have X-ray spectra that are dominated by
soft X-ray line emission and peak around 1 keV.

5.3. Luminosity and redshift distributions

The vast majority of XMS sources are extragalactic. We have
computed the X-ray luminosities of the extragalactic sources
(not corrected for absorption) and these are represented in Fig. 4
as a function of redshift for each of the XMS samples.

A visual inspection of these L—z relations reveals that all but
a few sources optically classified as NELGs have X-ray lumi-
nosities in the corresponding band in excess of 10*? erg s~!, and
are therefore most likely to host a hidden AGN. With very few
exceptions, NELGs in our survey are therefore type 2 AGN.
In fact, the 2—10 keV luminosity of 6 such objects exceeds
10* erg s™! and therefore qualify as type 2 QSOs by standard
X-ray astronomy definitions.

The X-ray luminosity of a fraction of sources that we classi-
fied as ALG also exceeds 10%? erg s™!. Specifically the number
of ALG that exceed this luminosity threshold is 4 out of 7 in the
most numerous and complete XMS-X. Such sources are often re-
ferred to as X-ray Bright Optically Normal Galaxies (XBONGS)
and when studied in detail are invariably seen to host an AGN,
which is either heavily obscured, or of low luminosity and out-
shone by the host galaxy, as shown by Severgnini et al. (2003),
Rigby et al. (2006) and Caccianiga et al. (2007).

We also find a few X-ray sources classified as ALG with
low X-ray luminosities (~10*" erg s7'). In at least one case
(XMSJ 084221.6+705758) the position of the X-ray source falls
in the outskirts of the galaxy, and therefore is likely to be a
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Fig. 5. Redshift histograms in each of the XMS samples. Solid line is for BLAGN, dashed line for NELG and dotted line for ALG. Top left is for
the XMS-S, rop right for the XMS-X, bottom left for the XMS-H and bottom right for the XMS-U.

candidate for an Ultra-luminous X-ray source. Watson et al.
(2005) have discussed some of these sources in the context of
the Subaru/XMM-Newton Deep Survey.

The overall luminosity distribution in all four samples is cen-
tered around 10* erg s!, which means that the sample contains
both Seyfert-like AGN and QSOs. This value is also where the
AGN X-ray luminosity function exhibits a knee and therefore
where most of the X-ray volume emissivity comes from.

The redshift distribution is displayed in Fig. 5 for the four
samples. The peak of the BLAGN population in the XMS-S and
XMS-X samples is around z ~ 1.5 which is not far from the one
found in deeper surveys. However, the redshift cutoff at around
z ~ 3 is due to the limited depth of the XMS that fails to find the
higher redshift AGN revealed by deeper surveys.

The contribution from NELG and ALG, most of which are
obscured AGN, peaks at low redshift, typically z < 0.5. This is
lower than the peak revealed by deep surveys, due to the mod-
est depth of the survey. Comparing the redshift distribution for
the softer XMS-S sample to the hard XMS-H sample (which
are drawn from different parent populations according to the
Kolmogorov-Smirnov test which gives a probability of 10~ for
the null hypothesis) shows that with a similar sky density the
hard sample misses an important fraction of unobscured AGN
(BLAGN) at high redshift but includes virtually all the obscured
objects. The redshift distribution is consequently shifted to lower

values. We next discuss in more detail the relative fraction of ob-
scured AGN.

5.4. Obscured versus unobscured AGN

The fraction of obscured AGN is known to have a strong depen-
dence on the X-ray selection band and also on the depth of the
survey. Typically soft X-ray selection misses a large fraction of
obscured (and therefore likely absorbed in the X-ray band) AGN.
Deeper X-ray surveys, even with soft X-ray sensitivity only, have
also produced increasingly large fractions of obscured AGN.

The broad bandpass of XMM-Newton allows us to study
the fraction of obscured AGN as a function of selection band
and depth, at the intermediate fluxes sampled by the XMS. A
detailed multi-wavelength study of the XMS survey, combin-
ing X-ray spectral information, optical colours and data at in-
frared and radio wavelengths is in preparation (Bussons-Gordo,
in preparation).

For the current discussion, we now classify as an AGN any
extragalactic X-ray source whose 2—10 keV X-ray luminosity
exceeds 10* erg s™! and is not obviously associated with a clus-
ter of galaxies. This stems from the observation that in the lo-
cal Universe all sources more luminous than this are at the very
least suspected to harbour an AGN. A potential limitation of our
classification, and therefore of our estimates of the fraction of
optically obscured sources among AGN, comes from the limited
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quality of the optical spectra, in particular if weak broad emis-
sion lines are present. This is illustrated in the BSS (Caccianiga
et al. 2007; Della Ceca et al., in preparation) where some of the
sources originally classified as ALG or NELG turned out to have
“elusive” broad emission lines. For this paper, an AGN that does
not display an obvious dominant broad emission line is consid-
ered as an obscured AGN.

The sources that we have classified as BLAGN are unob-
scured AGN. A fraction of these (around 10 per cent) dis-
play X-ray photoelectric absorption (Mateos et al. 2005a,b),
but whatever the nature of these absorbers, they do not contain
enough dust to obscure the broad line regions of these AGN, and
in this context we will not consider them to be obscured AGN.

Among the sources classified optically as NELG or ALG, a
large fraction of them are AGN according to the above scheme,
and we term these as obscured AGN, since their Broad Line
Region is not seen. Obscured AGN are expected to follow the
AGN unified model predictions in the sense that they host the
same central engine as an unobscured AGN, but that due to
the presence of dust the Broad Line Region is heavily reddened
and therefore not seen. Photoelectric absorption is expected in
their X-ray spectrum (and is seen in most cases), but in about half
of AGN without broad emission lines X-ray absorption is unde-
tected (Mateos et al. 2005a). There are a number of hypotheses
that can explain this mismatch, some of them dealing with the
structure of the AGN itself, and not with real obscuration of a
standard AGN (Mateos et al. 2005b). However, this discussion
is beyond the scope of this paper, and we stick to the standard
interpretation that the lack of broad emission lines is equivalent
to obscuration.

A potential problem in the study of the fraction of the ob-
scured objects among the AGN population arises because the
fraction of unidentified X-ray sources is higher for optically
fainter sources and these are more likely to be obscured. There
is an indication of this being true, as most of their optical coun-
terparts appear extended and therefore dominated by host galaxy
light rather than by the nucleus.

For the XMS-X, we find 42 optically obscured AGN out of
a total sample of 236 identified AGN, which represents 18tj%.
This fraction is rather robust as it remains virtually unchanged if
we restrict its estimate to the “South” XMS-X sample complete
sample (20f§%).

The fact that this fraction is much smaller than what is ex-
pected from local Universe studies, where obscured AGN out-
number unobscured ones by a factor of 3, is due to the fact
that obscuration comes along with photoelectric X-ray absorp-
tion which suppresses X-rays, particularly in the soft band. This
implies that at harder X-ray energies there should be a higher
fraction of obscured AGN. Although this is what qualitatively
emerges from existing X-ray surveys, the size and combination
of various selection bands on the XMS can provide a quanti-
tative measurement of these effects. There is also a qualitative
impression that the fraction of obscured AGN increases substan-
tially when going deeper in a given X-ray energy band. In what
follows we attempt to test these statements.

If we divide again the XMS-X sample in two approximately
equal halves of faint and bright X-ray sources (0.5—-4.5 keV
fluxes below and above 3.3 x 107'* erg cm™2 s7!), among the
identified sources obscured AGN represent 17fg% of the faint
AGN and 19fg% of the bright AGN. This lack of flux depen-
dence is confirmed when we restrict it to the “South” XMS-X
complete sample (20*9% and 19*9% of obscured AGN for faint
and bright sources respectively). This is within the errors of
what comes out if we assume that all unidentified sources in
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the XMS-X sample are obscured AGN, in which case the frac-
tion of obscured AGN would be slightly higher (25fi%) and
independent of flux. Comparison of this fraction to the ~20%
of obscured AGN in the South XMS-X sources shows that de-
spite an important obscured AGN component being among the
unidentified XMS-X sources, there might be some type 1 AGN
among them. We will return to this point later when discussing
X-ray-to-optical flux ratios.

In the XMS-S the fraction of obscured AGN is 17’12%, which
is very marginally smaller than in the XMS-X sample. This frac-
tion remains unchanged when we split the XMS-S in faint and
bright sources.

Things change significantly when we deal with hard X-ray
selected sources. The identified sources in the XMS-H sample
contain 35 + 7% obscured AGN which could be as high as 45 +
7% if all unidentified sources are obscured AGN. None of these
figures change between XMS-H bright and faint X-ray sources.

There are no dramatic changes when we use the XMS-U
sample with respect to the XMS-H sample: obscured AGN rep-
resent 31’12% of the AGN population which might be slightly

higher if all unidentified sources are obscured AGN (431%).

In summary, in soft X-ray selected samples at intermedi-
ate fluxes, about ~20—-25% of the AGN are obscured, and this
applies to both 0.5-2 keV and 0.5-4.5 keV selection. The
XMM-Newton BSS (Della Ceca et al. 2004), which is also se-
lected in the 0.5-4.5 keV band but at brighter fluxes, finds a
slightly smaller fraction of obscured AGN, in the range of 6 to
14%. In the opposite flux direction, the ROSAT ultra-deep survey
(Lehmann et al. 2001), which contains 94 X-ray sources with a
0.5-2 keV flux down to 1.2 x 107" erg cm™2 s~! and identi-
fied to 90% completeness, also found ~20% of obscured objects
among the AGN population (13 out of 70).

The fraction of obscured AGN goes up to ~35-45% for
hard X-ray selected samples at intermediate fluxes in the XMS.
This applies equally to 2—10 keV selection and to 4.5-7.5 keV
selection. This means that above 4.5 keV the sensitivity of
XMM-Newton is not high enough, and our exposure times are
not deep enough, to raise new heavily obscured X-ray sources
that are not selected in the 2—10 keV band. These fractions
do not appear to change with X-ray flux of the sources within
the flux ranges sampled by our survey. In this case, compar-
ison with the Hard Bright Source Survey (Caccianiga et al.
2004, 2007; Della Ceca et al., in preparation) selected in the
4.5-7.5 keV band shows no change in the fraction of obscured
AGN, which these authors quantify as 31-33%. The Chandra
Multi-wavelength Survey (Silverman et al. 2005) (which goes
down to 2—10 keV fluxes beween 10713 and 10~'* erg cm™2 s71),
when restricted to optically bright sources, reports that 28% of
the total source sample is obscured, but its identified fraction is
only 77% and therefore this fraction is most likely a lower limit.

A final point to address is the dependence of the fraction
of optically obscured AGN as a function of X-ray luminos-
ity. This fraction is reported by Barger et al. (2005) and Gilli
et al. (2007) among others to decrease towards high luminosi-
ties. From Fig. 4 we can see this effect clearly happening in
the XMS. For the XMS-H the fraction of optically obscured ex-
tragalactic objects with 2—10 keV luminosity between 10*? and
10* erg s7! is 62% (34 out of 55 objects) and above 10** erg s~
is only 9% (6 out of 70 objects). These numbers are consistent,
within errors, with those quoted by Barger et al. (2005) and Gilli
et al. (2007). However, Fig. 4 shows the very restricted coverage
of the luminosity-redshift plane of a single flux-limited survey.
We believe that addressing this issue needs the combination of
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Fig. 6. X-ray to optical flux ratio as a function of X-ray flux in the corresponding X-ray band for all 4 XMS samples. Only those sources with
known counterpart, which has a measured value (or a lower limit) of 7" from our WFC imaging is included. In this way we miss a number of
sources in each sample, but we avoid uncertain conversion factors between different bands. Top left is for the XMS-S, top right for the XMS-X,
bottom left for the XMS-H and bottom right for the XMS-U. Symbols are as in Fig. 3.

multiple surveys covering different depths and solid angles in a
way that evenly samples the luminosity-redshift plane.

5.5. X-ray to optical flux ratio

The X-ray to optical flux ratio has been used in various surveys
as a proxy for obscuration. Similarly to other papers (Krumpe
et al. 2007; Cocchia et al. 2007), we use as a proxy for optical
flux that in the ' band and therefore compute log fop,, = —0.47" +
log(f,-064), where fro = 2.40 x 10~ erg cm™2 s7! A~! is the
zero-point for  and 61 = 1358 A is the FWHM of the ’ filter.
Note that this yields X/O = log(fx/ fopt) = log(fx)+0.4r"+5.49,
where fx is the 2—10 keV flux in erg cm~2 s7!, not corrected
for Galactic absorption (the correction is insignificant at the
XMS Galactic latitudes). Typically, unobscured type 1 AGN
have —1 < X/O < 1, and therefore sources with X-ray to op-
tical flux ratio in excess of 10 have been considered as likely
obscured AGN.

We have excluded from this analysis those sources for which
we have no reliable » magnitudes, to avoid uncertainties. We
attempted to calibrate the R versus 7’ relation, where the R mag-
nitudes are mostly extracted from the literature and the USNO
A2 catalogue. Specifically, Table 5 contains 105 BLAGN and
30 NELG for which we have both R and ’. Formally, log fz ver-
sus log f,- yields an offset of —0.30 for BLAGN and —0.49 for
NELG, but in both cases the scatter is very large (0.25 dex).
Therefore, by adding into this analysis those sources for which
only R is available, we would be expanding considerably their
uncertainties and therefore we ignore these sources.

‘We have studied the fraction of obscured AGN in the various
XMS samples. This is best seen in Fig. 6, where we find that the
vast majority of our objects lie in the “normal” type 1 AGN do-
main —1 < X/O < 1. However, a fraction of XMS sources have
extreme values of X/O. Values below —1 are usually dominated
by stars.

Far more important is the other extreme, X/O > 1, where
obscured AGN are expected. Table 7 shows the numbers and
fractions of obscured AGN in the various XMS samples and in
3 ranges of X/O. A difficulty is how we deal with lower limits to
optical fluxes of various sources, where there is no detection in
the WFC image, but only an upper limit in their magnitude from
the sensitivity of the corresponding image. There are a number
of uncertainties in this, including the likely possibility that the
undetected counterpart is optically extended and therefore might
be brighter (in integrated magnitude) than the quoted lower limit.
For these sources (which are very few) we have used the lower
limit in X/O as if it were a real detection.

The first result that becomes evident from Table 7 is the fact
that the fraction of sources with X/O > 1, and therefore po-
tentially obscured, varies substantially between samples. For the
XMS-S, we find only 5 sources with X/O > 1 among a sample
of 180 with measured X/O which represents only 3 + 2%. This
percentage grows to 7’:‘2‘% (17/245) for XID-X and grows even
further for the XMS-H to 17f;% (23/138) (for the XMS-U the
numbers are too small to reach any conclusion). It is therefore
clear that the fraction of sources with large X/O goes up from a
small few per cent in the 0.5-2 keV selected XMS-S sample to
20% in the 2—10 keV selected XMS-H sample, with XMS-X in
between. Note that these percentages have to be revised slightly
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Table 7. Fraction of obscured AGN in the various XMS samples.
(fobsc) is the fraction actually measured and (f, ) the fraction that
would result under the assumption that all unidentified sources are ob-
scured AGN.

log(F(2-10 keV)/F, ) Fone Foe
XMS-S

-1.0: 0.0 17+3% (14/84)  183% (15/85)
0.0: +1.0 17%% (14/81)  253% (22/89)
>+1.0 Sj‘]‘g‘? (1/4) 03‘117 2/5)
XMS-X

-1.0: 0.0 12+9% (8/65) 14*3% (9/66)
0.0:+1.0 2075% (29/146)  25%%% (39/156)
>+1.0 36:2% (4/11) 597199 (10/17)
XMS-H

-1.0: 0.0 21119% (6/28)  24%18% (7/29)
0.0:+1.0 28+9% (22/78) 34+9% (29/85)
>+1.0 o+2‘% (6/12) 433% (17/23)
XMS-U

-1.0: 0.0 14719% (4/29)  17*17% (5/30)
0.0:+1.0 9+2217 (7/18) 0+19% (11/22)
>+1.0 50*4017 (2/4) 50*4017 (2/4)

downwards, as we are missing * magnitudes for most of the
stars (more abundant in the softer samples) which are saturated
in our WFC images.

We see from Table 7 that the fraction of obscured AGN
among the X/O > 1 sources is higher than in the whole sam-
ple, and this holds for all XMS samples. The second fact that
can be seen by inspecting Table 7 is that in the XMS-H the frac-
tion of obscured AGN amongst the X/O > 1 sources could be as
high as 90% if all unidentified sources are obscured AGN, but
this percentage is lower for the XMS-S and XMS-X.

But we can also look at this fact from a different point of
view, which is that there are unobscured AGN with X/0 > 1.
There are at least 3/5, 7/17, 6/23 and 2/4 unobscured AGN with
X/O > 1 in the XMS-S, XMS-X, XMS-H and XMS-U sam-
ples respectively, which represent somewhere between one fifth
and one half of the corresponding sample with a selection cut at
X/O > 1. The nature of these BLAGN with X/O > 1 will be
investigated in future papers.

6. Conclusions

In this paper we have presented the XMM-Newton Medium sen-
sitivity Survey XMS, and extracted a number of robust quanti-
tative conclusions about the population of high Galactic latitude
X-ray sources at intermediate flux levels. We have argued that
given the completeness of our identifications and the relatively
large size of the XMS samples, these conclusions can be safely
exported to a much larger X-ray source catalogue like 2XMM.
Our conclusions can be summarized as follows:

1. The high galactic latitude X-ray sky at intermediate flux lev-
els is dominated by AGN, which includes type-1 and type-
2 AGN as well as the so-called XBONG which are likely
to host a low luminosity or obscured nucleus (or both). The
stellar content is less than 10% in soft X-ray selected sam-
ples, and drops to below 5% at around soft X-ray fluxes
~107"* erg cm s~!. The stellar content in hard X-ray selected
samples does not exceed a few per cent at most. Selection in
0.5—-4.5 keV produces intermediate results.

X. Barcons et al.: The XMM-Newton medium sensitivity survey. IV.

2. Given the limited sensitivity of XMM-Newton above a few
keV -which is due to the roll over of effective area- cur-
rent surveys conducted in the so-called ultra-hard band
(4.5-7.5keV) do not bring any new source population or any
significant difference with respect to 2—10 keV selected sur-
veys. Much longer exposure times would be needed to reveal
any new heavily obscured population with XMM-Newton.

3. Obscured AGN represent ~20% of the soft X-ray selected
population of AGN, from ~107!3 erg cm™ s~! down to
~107" erg cm™2 s7!, with no compelling evidence for an
increase of this fraction towards fainter fluxes within this
range.

4. Obscured AGN represent ~35% (45% if all unidentified
sources are obscured AGN) of the hard X-ray selected pop-
ulation of AGN, with no hint of an increase down to a hard
X-ray flux ~107'* erg cm™2 571,

5. The fraction of X-ray sources with X-ray to optical flux ratio
>10 (or X/O > 1 using the notation of this paper) is a mere
3% in soft X-ray selected samples, but grows to 20% in hard
X-ray selected samples.

6. Those sources with X/O > 1 are mostly obscured AGN, but
around 20% of them in the hard band are unobscured type-1
AGN. This means that X/O > 1 alone cannot be used as a
proxy for obscured X-ray sources.
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