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Abstract

The Stop Number Problem arises in the management of a dial-a-ride system

served by a fleet of autonomous electric vehicles. In such a system, clients

request for a ride from an origin station to a destination station, and a fleet

of capacitated vehicles must satisfy all requests. The goal is to minimize the

number of pick-up/drop-off operations. In this paper we focus on a special

case of this problem that was recently conjectured to be NP-Hard. In this

regard, we show how such special case relates to other problems known

in the literature in order to derive some polynomial-time solvable variants.

Moreover, we provide a positive answer to the conjecture by showing that the

problem is NP-Hard for any fixed capacity greater than or equal to 2, even

for the case where the graph of requests is restricted to the class of planar

bipartite graphs. Our proof of NP-Hardness also improves the complexity

results known in the literature for the related problems identified.
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1. Introduction

In modern societies, mobility plays a central role in economic and social

activities such as commuting, manufacturing, distributing goods, or supply-

ing energy (see Rodrigue et al. (2016)). Mobility is supported and driven by

transport systems allowing interactions among individuals and/or institu-

tions which are continuously evolving. Indeed, tightening CO2 regulations

together with an increasing traffic load in urban areas and a consistent

growth in the usage of web services are inducing new technology-driven

trends in transportation, giving rise to new transport systems such as ride-

sharing (e.g., Agatz et al. (2012)), car-sharing (e.g., Boyacı et al. (2015);

Shaheen & Cohen (2012)) and dial-a-ride (e.g., Cordeau & Laporte (2007);

Cordeau (2006); Cordeau & Laporte (2003); Parragh et al. (2008); Ho et al.

(2018)) systems. Moreover, the role of transport systems in the develop-

ment of the well-being and life satisfaction of a community is highlighted in

Delbosc (2012).

The VIPAFLEET project arises from this background and attempts to

contribute to sustainable intelligent mobility through the development of

models and algorithms for managing fleets of specific autonomous vehicles

named VIPA, a French acronym for Autonomous Individual Passenger Ve-

hicle. VIPA is an electrical vehicle designed to operate in fully autonomous

manner (i.e., without any driver assistance) notably in closed and semi-

closed sites like industrial and commercial areas, medical complexes and

campuses.

VIPA shuttles may perform in different modes of operation. In this paper

we focus our efforts on the so-called ’tramway mode’ (see Bsaybes et al.

(2019) for a study on other modes). In this mode of operation, a circuit

with predefined stations is fixed and customers use their smartphones or a

’call terminal’ to request for a ride from an origin station to some destination

station of their choice. For its part, the fleet of identical capacitated vehicles

travels around the circuit (always in the same direction) and stops at a

station upon request.

It is worth noting that a VIPA shuttle can transport more than one
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passenger at the same time. In its latest version, each vehicle is designed

to have a capacity of up to 15 passengers. This leads to a Dial-a-Ride

Problem (DARP) on which a fleet of capacitated vehicles is responsible

for transporting clients or goods that must be moved from certain pickup

locations to other delivery locations on a given network.

Due to infrastructure restrictions, stations usually do not belong to the

circuit but are attached to it (see Figure 1). This particularity produces

a significant impact on the fleet management of such a system. Indeed,

in order to respond to a client demand, the vehicle must slow down and

make a deviation from its original course. Such deviations increases the

travel times of on-board customers. If the deviations lengths are supposed

to be approximately the same, then improving the quality of service fairly

corresponds to minimizing the total number of stops performed by the fleet

of vehicles. In Pimenta et al. (2017), it is also pointed out that minimizing

the total number of stops is a good way of improving the system’s reliability

by ensuring a steady flow of the vehicles.

Figure 1: Circuit Scheme

The Stop Number Problem (SNP) consists of assigning each client de-

mand to a vehicle such that no vehicle gets overloaded, and the total number

of vehicles’ stops is minimized. For this, one may use as many vehicles as

desired. Notice that, in the search for a better solution, a vehicle is allowed

to make several tours before serving a demand. Tours performed before

serving a demand are called waiting tours. In order to ensure the quality

of service and deal with customers time windows, the maximum number
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of waiting tours is bounded by a given parameter H ≥ 0 ∈ N. Moreover,

once a customer is picked up, it cannot stay on the vehicle for a full tour,

that is, once loaded it has to be unloaded as soon as the vehicle reaches

its destination. Finally, a customer demand may request for more than one

seat on a single vehicle. In this sense, a demand is specified by an origin

station, a destination station and a load that stands for the number of seats

requested.

When the load of each client demand is unitary and there are no waiting

tours, that is, each client may only request for a single seat and the fleet

must respond to all requests within a single tour (i.e., H = 0), the problem

is called Unit Stop Number Problem (U-SNP).

In practice, the system should be capable of reacting dynamically to the

on-going flow of demands through online algorithms. However, in order to

better evaluate such reactive procedures, the static case (offline) should be

understood and mastered. In return, a good understanding of the properties

and difficulties of the static case is essential to the development of better

suited online algorithms. A reasonable choice is thus to deeply investigate

where resides the complexity of SNP on the static case.

In this study, the combinatorial core of SNP is explored by looking into

its constrained unitary version (i.e., U-SNP), which was conjectured to be

NP-Hard by Pimenta et al. (2017). The paper is organized as follows. In

Section 2, we formally define the U-SNP and provide a literature review of

the works related with its computational complexity. Next, in Section 3 we

discuss some particular cases where U-SNP can be solved in polynomial time

and provide a study on the properties their optimal solutions hold. Such

study is then used to derive a proof of NP-Hardness for the U-SNP that is

capable of yielding stronger complexity results for other related problems.

Finally in Section 5 we draw some conclusions and propose some further

research directions.
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2. Problem Definition and literature review

2.1. The Unit Stop Number Problem

For U-SNP imposes that only vehicles in their first tour can pick up

customers, we represent the circuit as an ordered line from the depot to

the last destination station and the customers’ requests as intervals on this

line. Notice that this line may correspond to more than a tour of the circuit

(i.e., some stations are duplicated) if for some request the depot appears in

between its origin and destination stations. So let V = {1, . . . , n} be the set

of all the stations but the depot as they appear on the ordered line. Let E

be the set of m unit-load requests where each request e ∈ E is specified by a

pick-up station oe ∈ V and a drop-off station de ∈ E where 1 ≤ oe < de ≤ n,

that is e = (oe, de). Finally, let K = {1, . . . , p} denote the set of available

vehicles, all having the same capacity C ∈ Z+. An U-SNP instance is hence

represented by a 4-tuple (V,E,C, p). Without loss of generality, we suppose

that every station in V is a pick-up or drop-off station of at least one request

in E.

With any U-SNP instance I = (V,E,C, p), an undirected graph GI =

(V,E) is associated and henceforth, stations and requests may be referred to

as nodes and edges, respectively. We use G whenever the instance I can be

deduced from the context. Notice that although G has a natural orientation

as oe < de for any e ∈ E, we keep it undirected for the sake of simplicity.

Figure 2 depicts the construction of the associated graph G from an instance

composed of five requests represented as intervals over four stations. Several

requests may share the same pick-up and drop-off stations (e.g., e1 and e2

in Figure 2) and correspond to parallel edges in G. They are thus referred

to as parallel requests. For any two distinct sets S1 and S2 of V , we say

that S1 precedes S2, and write S1 ≺ S2, if any station in S1 appears before

any station in S2 on the ordered line, that is, v1 < v2 for all v1 ∈ S1 and

v2 ∈ S2. Similarly, S1 succeeds S2, written S1 � S2, if S2 precedes S1.

For any subset F ⊆ E and any station v ∈ V , let

∆F (v) = {e ∈ F : oe ≤ v ≤ de − 1} (1)
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Figure 2: Stations and requests of an instance I and the associated graph GI

denote the set of requests in F that cross or start at station v. Notice that

requests ending at station v (i.e., having v as their drop-off station) do not

belong to ∆F (v). In graph G, ∆E(v) corresponds to the cut induced by the

node set {1, . . . , v}. Figure 3 illustrates ∆E(v), for each station v ∈ V , for

the instance described in Figure 2.

e1
e2

e3
e4

e5

1 2 3 4

∆E(1) = {e1, e2} ∆E(2) = {e1, e2, e3, e4} ∆E(3) = {e4, e5} ∆E(4) = ∅

Figure 3: Illustration of ∆E(v).

We can now define a feasible solution to U-SNP as a partition of E into

p subsets E1, . . . , Ep that satisfy |∆Ei(v)| ≤ C for each i = 1, . . . , p and each

v ∈ V . The cost of a feasible solution is expressed as the total number of

stations the p vehicles visit, that is, as

p∑
i=1

|V [Ei]|, (2)

where V [Ei] represents the set of stations vehicle i ∈ {1, . . . , p} stops at. U-

SNP thus consists of finding a feasible partition {E1, . . . , Ep} that minimizes

(2).

To guarantee the existence of feasible solutions, we hereafter assume
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that the number p of available vehicles is at least the minimum number

pmin of vehicles necessary to serve the m requests. Indeed for the requests

correspond to half-closed intervals on an ordered line, pmin clearly is bounded

from below by

max
v∈V

{⌈
|∆E(v)|
C

⌉}
. (3)

Moreover any feasible solution output by a first-fit type algorithm where

the requests are served according to a nondecreasing order of their pick-up

stations uses a number of vehicles equal to (3). Consequently, pmin can

be computed in polynomial time and from now on we assume p ≥ pmin =

maxv∈V

{⌈
|∆E(v)|

C

⌉}
.

2.2. Literature review

SNP was introduced in Pimenta et al. (2017) and proved to be weakly

NP-Hard. They showed that the classic Partition Problem (see, e.g., Garey

& Johnson (2002)) indeed corresponds to SNP where all the requests share

the same pick-up and drop-off stations and the vehicles’ capacity C equals∑
e∈E

le

2
,

where le denotes the load of request e ∈ E. Notice however that this proof

is fully based on different request loads and hence cannot be directly applied

to determine the computational complexity of U-SNP. After having proved

that U-SNP is solvable in polynomial time through dynamic programming

providing the number of available vehicles and their capacity are considered

as fixed parameters, Pimenta et al. (2017) also conjectured that U-SNP is

otherwise NP-Hard.

Pimenta et al. (2017) also introduced an integer linear-programming for-

mulation for the SNP with request-vehicle assignment variables and vehicle-

station stop variables. For this formulation provides a weak linear relaxation,

a set-partitioning reformulation yielding better bounds but containing an ex-

ponential number of variables was also proposed in Pimenta et al. (2017).
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The associated pricing problem was shown to be NP-Hard and a GRASP-

type procedure was proposed to heuristically solve it.

It is worth mentioning that the so-called traffic grooming problem (see

Dutta et al. (2000)) that arises in Wavelength-Division-Multiplexing (WDM)

optical networks is closely related to U-SNP. To the best of our knowledge, no

connections between that problem and U-SNP have ever been made before.

An instance (H,R, g) of the traffic grooming problem is composed of a simple

connected graph H describing the WDM optical network, a simple graph

R = (V (H), E) where the edges of E represent the traffic requests, and an

positive integer g called the grooming factor. The traffic grooming problem

consists of assigning a lightpath (i.e., a path in H) and a wavelength from

a set of Λ available wavelengths to each traffic request in R such that (i)

a wavelength gets at most g lightpaths that share an edge and (ii) the

total number of Add-Drop Multiplexers (ADMs) is minimized where each

lightpath requires an ADM at each endnode and two lightpaths having a

common endnode and being assigned to the same wavelength can share an

ADM. The reader is referred to Dutta & Rouskas (2002) for a survey on this

problem.

The traffic grooming problem has also been considered when the optical

network is restricted to some specific topologies such as star, path, and ring

networks (see, e.g., Huang et al. (2006); Amini et al. (2009); Bermond et al.

(2007)). In the so-called Path Traffic Grooming Problem (PTGP), graph H

is assumed to be a path and the only decisions to make are the wavelength

assignments for there exists a unique lightpath for each request in R. PTGP

thus consists of finding a partition {R1, . . . , RΛ} of R such that (i) on no

edges in H the number of traffic requests in Ri, i ∈ {1, . . . ,Λ}, traversing

that edge does exceed g and (ii) the total number of ADMs
∑Λ

i=1 |V (Ri)|
is minimized. It is straightforward to see that there exist one-to-one corre-

spondences between the U-SNP set of stations and the PTGP set of nodes

and between the U-SNP and PTGP sets of requests as long as there are no

parallel requests in U-SNP. The grooming factor is equivalent to the vehicle

capacity. U-SNP therefore is a generalization of PTGP.

PTGP was proved to be NP-Hard if the grooming factor g is at least 2 by

8



Huang et al. (2006). Moreover Bermond et al. (2007) presented polynomial-

time algorithms to solve PTGP when g = 1 or g = 2 and R is a complete

graph. Some of the computational-complexity results that were obtained for

PTGP can thus be extended to U-SNP as stated in the next section.

3. Polynomial Cases and Optimal Solution Properties

In this section, we first study some properties optimal solutions to U-SNP

satisfy and then present some polynomial-time solvable variants of U-SNP

mainly based on the relations between U-SNP and PTGP.

U-SNP predominantly consists of minimizing the total number of stops

the p vehicles have to make to serve all the requests in E. To lay emphasis

on this objective, the number of available vehicles usually is assumed to

not correspond to a critical resource, that is, the decision maker can use as

many vehicles as needed. Notice however that the number m of requests is

a trivial upper bound on the number of needed vehicles and we thus always

consider p = m from now on.

Pimenta et al. (2017) pointed out that all the optimal solutions to U-

SNP they empirically obtained use pmin vehicles. The next result states

that it might not be necessarily the case.

Proposition 1. Some instances of U-SNP require strictly more than pmin

nonempty vehicles in any of their optimal solutions.

Proof. Consider the instance of U-SNP depicted in Figure 4 with C = 2.

a

b
c

d
e

f
g

h

1 2 3 4 5 6 7

1 3

2

5

4

6

7

a

b

e

f
c

d

g

h

Figure 4: U-SNP Instance needing more than pmin + 1 vehicles in optimal solutions
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For maxv∈V ∆E(v) = 4, we have pmin = 2. It is easy to see that the

partition {{a, b, e, f}, {c, h}, {d, g}} of E corresponds to a feasible solution

using 3 vehicles for a total of 9 stops. We now show that no feasible solutions

whose total number of stops is less than 10 only use 2 vehicles.

Suppose first that requests c and d are assigned to the same vehicle, say

vehicle 1, and only two vehicles are used. All the other requests must be

assigned to the second vehicles for otherwise vehicle 1 would be overloaded.

The partition {{c, d}, {a, b, e, f, g, h}} corresponds to a feasible solution us-

ing 2 vehicles for a total of 10 stops.

Suppose now that requests c and d are assigned to different vehicles, say

c to the first vehicle and d to the second, and only two vehicles are used.

Requests a and b must also be assigned to different vehicles and so must

requests e and f . Without loss of generality let a and e be assigned to the

first vehicle and b and f to the second. So far the first vehicle already has

to stop 4 times while the second vehicle stops 5 times. For none of the

two vehicles stops at station 5 and request h still needs to be assigned to a

vehicle, at least 10 stops would be made by the two vehicles.

Assigning up to C parallel requests to a vehicle might seem intuitive

when seeking optimal solutions to U-SNP. The next proposition invalidates

this intuition.

Proposition 2. Some instances of U-SNP require assigning parallel requests

to different vehicles in any of their optimal solutions

Proof. Consider the instance of U-SNP described in Figure 5 with C = 2.

a

b
c

d
e

f

1 2 3 4

1 2

3

4

a

b

c

d

e

f

Figure 5: U-SNP instance with parallel requests in different vehicles in optimal solutions

10



The partition {{a, c, e}, {b, d, f}} clearly corresponds to a feasible solu-

tion where parallel requests a and b are assigned to different vehicles and

the total number of stops is 6. We now show that if requests a and b are

assigned to the same vehicle, at least 7 stops then are needed. Suppose that

requests a and b are assigned to the same vehicle, say vehicle 1. To respect

the capacity limit of vehicle 1, requests c and d cannot be assigned to vehicle

1.

If they both are assigned to different vehicles, say c to vehicle 2 and d to

vehicle 3, these three vehicles already stop 6 times. For assigning request e

to any vehicle would increase the number of stops by at least one, no feasible

solutions with a and b assigned to the same vehicle yield less than 7 stops.

Suppose now that requests c and d are assigned to the same vehicle, say

vehicle 2. Vehicles 1 and 2 already stop 5 times. Notice that neither request

e nor request f can be assigned to vehicle 2. If they both are assigned to

vehicle 1, the total number of stops would be 7. Any assignment of requests

e and f to vehicles other than 1 and 2 would increase the number of stops

by at least 3, yielding a total number of stops greater than or equal to 8.

For a vehicle can serve at most C requests among those starting or ending

at a given station, the total number of stops made by the p vehicles clearly

is bounded from below by

∑
v∈v

⌈
max{|δ+(v)|, |δ−(v)|}

C

⌉
, (4)

where δ+(v) and δ−(v) denote the set of requests having station v as their

pick-up and drop-off station, respectively. Notice that for the instances

depicted in Figures 4 and 5 the optimal values do not match (4). However,

this lower bound will be helpful when devising polynomial-time algorithms

for U-SNP cases.

We first consider two polynomially-solvable cases of U-SNP that do not

depend on any structural properties of graph G.

Proposition 3. If pmin = 1 or C = 1 then U-SNP is polynomially solvable.
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Proof. If pmin = 1, that is, C ≥ maxv∈V |∆E(v)|, then all the requests fit

in a single vehicle. The number of stops this vehicle then makes equals n.

For n is a trivial lower bound on the total number of stops made by the p

vehicles, the solution that consists of serving all the requests by the same

vehicle, and leaving the other vehicles in the depot, is optimal to U-SNP.

If C = 1 then two parallel requests cannot be served by the same vehicle.

The greedy algorithm given by Bermond et al. (2007) for solving PTGP with

a unitary grooming ratio g = 1 can hence be easily adapted to optimally

solve U-SNP with C = 1. Such algorithm would sequentially

i. select a maximal sequence (e1, . . . , eq), q ≥ 1, of requests such that the

drop-off station of request ei matches the pick-up station of request ei+1,

that is, dei = oei+1 , for i = 1, . . . , q − 1,

ii. assign all the q demands of the sequence to an available vehicle, and

iii. remove all the q demands of the sequence from E.

The total number of stops of that greedy solution clearly equals∑
v∈v

max{|δ+(v)|, |δ−(v)|},

and matches lower bound (4). The greedy solution therefore is optimal and

can be found in O(m).

We now present some polynomially-solvable U-SNP cases when the in-

stance graph fulfills some structural properties.

Proposition 4. If C = 2 and graph G = (V,E) is complete then U-SNP is

polynomially solvable.

Proof. When G is a complete graph, PTGP and U-SNP are equivalent for

no parallel requests exist. The algorithm proposed by Bermond et al. (2007)

for solving PTGP when the grooming ratio g = 2 thus applies for solving

U-SNP with C = 2.

We now present a polynomially-solvable version of U-SNP that does not

relie on PTGP.
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Proposition 5. If graph G = (V,E) is a star then U-SNP is polynomially

solvable.

Proof. Let {E1, . . . , Ep∗} be a partition of E corresponding to an optimal

solution to instance (V,E, 1, p), where p∗ ≤ p denotes the number of ve-

hicles serving at least one request. Such a solution may be obtained in

polynomial time using the greedy algorithm of Proposition 3 and yields

n − 1 + max{|δ+(vc)|, |δ−(vc)|} stops, where vc denotes the central node

of G (i.e., the node that is adjacent to all the other nodes). Note that

1 ≤ |Ei| ≤ 2 for all i ∈ {1, . . . , p∗}. Moreover if Ei is composed of two

requests e1 = (oe1 , de1) and e2 = (oe2 , de2), we then must have

oe1 < de1 = vc = oe2 < de2 .

Let {E′1, . . . , E′q∗}, q∗ = dp
∗

C e, be the partition of E obtained from parti-

tion {E1, . . . , Ep∗} as follows

E′i =
iC⋃

j=C(i−1)+1

Ej for i = 1, . . . , q∗ − 1,

E′q∗ =
p∗⋃

j=C(q∗−1)+1

Ej .

Partition {E′1, . . . , E′q∗} clearly defines a feasible solution to (V,E,C, p) and

yields n−1+max{ |δ
+(vc)|,|δ−(vc)|

C } stops. This total number of stops matches

the lower bound (4). Therefore {E′1, . . . , E′q∗} is an optimal solution to

(V,E,C, p).

4. Computational Complexity of U-SNP

In Section 2.2 we pointed out the equivalence between U-SNP and PTGP.

Since PTGP has been proved to be NP-hard for any fixed grooming factor

g ≥ 2 by Amini et al. (2009), so is U-SNP. The conjecture of Pimenta et al.

(2017), mentioned in Section 2.2, thus is proved. To prove the NP-hardness

of PTGP, Amini et al. (2009) use a reduction from the NP-Hard problem of

finding the maximum number of edge-disjoint triangles (i.e., cycles of length
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3) in a tripartite graph. This proof however cannot be directly used to show

the NP-hardness of PTGP and U-SNP on bipartite graphs for those graphs

do not contain any odd cycles. In this section, we prove that U-SNP (and

thus PTGP) is NP-hard for any fixed capacity C ≥ 2 on planar bipartite

graphs, and thus improve the known computational-complexity results for

U-SNP and PTGP.

Inspired by the work of Dyer & Frieze (1985), we propose polynomial

reductions from the well-known 3-Dimensional Matching Problem (3DMP).

This problem is one of the 21 classic NP-Complete problems proposed by

Karp (1972) and can be stated as follows. Given three disjoint sets X, Y ,

and Z with equal cardinality q, and a set of triples T ⊆ X × Y × Z, a

3-dimensional matching is a subset M of T such that for any two distinct

triples (x1, y1, z1) and (x2, y2, z2) of M , x1 6= x2, y1 6= y2, and z1 6= z2.

3DMP consists of deciding whether or not there exists a 3-dimensional

matching of cardinality q. Dyer & Frieze (1986) proved that 3DMP is

NP-Complete even when the associated bipartite graph H = (T, S,E′) is

restricted to be planar, where S = X ∪ Y ∪ Z and

E′ =
⋃

t=(x,y,z)∈T

{(t, x), (t, y), (t, z)} .

Figure 6 represents such graph H. The restriction of 3DMP to planar bi-

partite graphs is referred to as planar 3DMP.

Theorem 1. U-SNP is NP-Hard even when restricted to the case where

C = 2 and G is a planar bipartite graph.

Proof. Consider an instance of 3DMP as described above such that graph

H = (T, S,E′) is planar bipartite. Let G = (V,E) be the graph obtained

from H as follows. (See Figure 7.) Besides the sets X and T , node set V is

also composed of the sets

• X ′ = {x′t : t ∈ T},

• Xi = {xik : x ∈ X, k = 1, . . . ,degH(x)− 1} for i = 1, 2,

• W = {wv : v ∈ Y ∪ Z}, and
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Figure 6: 3DMP bipartite graph H = (T, S,E′)

• W j = {wjk : w ∈W,k = 1, . . . ,degH(w)− 1} for j = 1, 2, 3,

where degH(s) denotes the degree of node s ∈ S in graph H. Since |Xi| =
|T | − q for i = 1, 2 and |W j | = 2|T | − 2q for j = 1, 2, 3, the cardinality of V

is then equal to 10|T | − 5q.

The edge set E of G is composed of

• Et = {(x′t, t), (x′t, x), (t, wy), (t, wz)} for t = (x, y, z) ∈ T ,

• Ex = {(x, x1
k), (x

1
k, x

2
k) : k = 1, . . . ,degH(x)− 1} for x ∈ X, and

• Ew = {(w,w1
k), (w

1
k, w

2
k), (w

2
k, w

3
k) : k = 1, . . . ,degH(w) − 1} for w ∈

W .

Notice that sets Ex, x ∈ X, and Ew, w ∈W , are composed of paths of length

2 and 3 that only share nodes in X and W , respectively. The cardinality

of E clearly is equal to 12|T | − 8q. Notice that graph G is planar bipartite

because H is.

Consider any numbering of the nodes of V (i.e., the stations with respect

to U-SNP) that respects the following precedence order

W2 ≺ X ′ ≺W1 ≺ X ≺W3 ≺ T ≺ X2 ≺W ≺ X1, (5)

that is, as they appear in Figure 7. Notice that sets X, W , T , X ′, X1, X2,

W 1, W 2, andW 3 correspond to stable sets ofG. The 4-tuple I = (V,E, 2, p),
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p = 12|T | − 8q, is a U-SNP instance whose construction can be done in

polynomial time.

...

W2

x′t

...

...

X ′

...

W1

x

...

X

Additional (degH(x)− 1)
paths of length 2

...

W3

t

...

...

T

...

X2

wy

...

wz

...

W

Additional (degH(wz)− 1)
paths of length 3

...

X1

∆E(v′) ∆E(v′′)

Figure 7: Construction of graph G

We now claim that the instance of planar 3DMP has a 3-dimensional

matching of cardinality q if and only if I has a solution {E1, . . . , Ep} with

|E|+ |E|
4 stops.

Let v′ and v′′ be the nodes in X ′ and X2 with the largest number,

respectively. For (5) we have ∆E(v′) ∪ ∆E(v′′) = E. (See Figure (7).) To

respect its capacity limit of 2 requests at a time, any vehicle i ∈ {1, . . . , p}
may serve at most 4 requests, that is,

|Ei| ≤ 4 for i = 1, . . . , p. (6)

Moreover from the construction of graph G, any cycle in G must con-

tain at least three edges of either ∆E(v′) or ∆E(v′′). The subgraph Gi =

(V (Ei), Ei), if nonempty, clearly is a forest and vehicle i thus makes |Ei|+
c(Gi) stops where c(Gi) denotes the number of connected components of
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Gi for i = 1, . . . , p. Suppose without loss of generality that only the first

p′ vehicles serve a request, that is, Ei 6= ∅ for i = 1, . . . , p′ and Ei = ∅
for i = p′ + 1, . . . , p. The total number of stops of solution {E1, . . . , Ep}
therefore equals

p′∑
i=1

|V [Ei]| =
p′∑
i=1

(|Ei|+ c(Gi)) = |E|+
p′∑
i=1

c(Gi).

Using (3) and ∆E(v′) ∪∆E(v′′), we obtain

p′∑
i=1

c(Gi) ≥ p′ ≥ pmin ≥
|E|
4

and |E|+ |E|4 is a lower bound on the total number of stops of {E1, . . . , Ep}.
If the total number of stops is exactly |E|+ |E|

4 , then each vehicle serves

either no requests or 4 requests that induce a connected subgraph of G for

a total of 5 stops. Each set of requests defining a path of length 3 in Ew,

w ∈W , thus must be served by a different vehicle. For each of these vehicles

serves 4 connected requests, they also must serve as many requests between

T and W as paths of length 3. Each node in W then is incident with exactly

one unassigned request whose pick-up station belongs to T .

Similarly each set of requests defining a path of length 2 in Ex, x ∈ X,

must be served by a different vehicle that also needs to serve two additional

requests, one from X ′ to X and one from X ′ to T . Notice that these two

additional requests could not both have been from X ′ to X for they would

have left a connected component composed of 3 unassigned requests (i.e.,

a star whose central node is in T ). Each node in X then is incident with

exactly one unassigned request whose pick-up station belongs to X ′, the

latter being incident with exactly one unassigned request whose drop-off

belongs to T .

The q remaining nonempty vehicles therefore serve sets of 4 requests that

induce trees with two internal nodes, one in X ′ and one in T , and one leaf

in each of the sets X, Y , and Z. The loads of these vehicles thus correspond
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to a 3-dimensional matching of cardinality q in H.

Conversely from any 3-dimensional matching of cardinality q in H, a

solution to I with |E| + |E|
4 stops can easily be obtained by following the

foregoing process in a reverse order.

The proof of the NP-Hardness of U-SNP for even values of C on planar

bipartite graphs is similar to the one of Theorem 1. Every edge in the con-

structed graph is indeed replaced by a path of length C
2 . (The constructed

instance’s graph for C = 4 is depicted in Figure 8.) The next theorem

therefore is stated with no proof. (A detailed proof can be found in Colares

(2019).)

...

T

...

W ...

...

...

W1

...

...

W2

...

...

W3

...

...

X ′...

...

X ...

...

X1 ...

...

X2

∆E(v′)

∆E(v′′)

Figure 8: Construction of graph G for C = 4
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Theorem 2. The U-SNP is NP-Hard even when restricted to the case where

C = 2k, for any k ∈ Z+, and G is a planar bipartite graph.

Our proof of Theorem 1 relies on the ability to enforce that no more

than 2C requests are assigned to each vehicle by constructing an instance

with two stations (namely v′ and v′′) covering the whole set of requests.

Each nonempty vehicle then serves C requests crossing v′ and C requests

crossing v′′. For even values of C, substituting each edge in the construction

of graph G for a path of length C
2 preserves the validity of that argument.

However for odd values of C, such subdivision-based approach cannot be

directly applied. We therefore provide a slightly different reduction from

3DMP to prove the NP-Hardness of U-SNP with odd values of C.

Theorem 3. The U-SNP is NP-Hard even when restricted to the case where

C = 2k + 1, for k ∈ Z+, and G is a planar bipartite graph.

Proof. Consider an instance of 3DMP with H = (T, S,E′) planar bipartite.

(See Figure 6.) Let k be a positive integer. Following a similar approach as

in Theorem 1, we construct graph G = (V,E) of an U-SNP instance with

vehicles’ capacity C = 2k + 1. Starting from H, we apply the next three

operations

i. replace the edges between T and Y ∪ Z with paths of length k,

ii. attach degH(i)−1 disjoint paths of length k+1 to each node i ∈ Y ∪Z,

and

iii. attach degH(i)− 1 disjoint paths of length 2k to each node i ∈ X.

Figure 9 depicts graph G for k = 2.
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Additional (degH(x)− 1) paths of length 2k

... X

y

... Y

z

... Z

Path of length k

Additional (degH(y)− 1) paths of length k + 1

Additional (degH(z)− 1) paths of length k + 1

Figure 9: Construction of graph G for Theorem 3, with k = 2

The number of nodes in G clearly equals (6k+ 1)|T | − (4k− 1)q and its

number of edges (2k + 1)(3|T | − 2q). Graph G can thus be constructed in

polynomial time. Notice that for H is planar bipartite, so is graph G. The

node set of G can therefore be partitioned into two disjoint and independent

sets A and B. Consider any numbering of the nodes of V that respects the

precedence order A ≺ B. Let I = (V,E, 2k+1, p), p = (6k+3)|T |−(4k+2)q,

be the thus obtained U-SNP instance.

We claim that the instance of 3DMP has a 3-dimensional matching if

and only if I has a solution {E1, . . . , Ep} with |E| + |E|
2k+1 stops. Let v′

denote the node in A having the largest number. From the construction of

G, we clearly have ∆E(v′) = E. Therefore each vehicle may take at most

C = 2k + 1 demands. Moreover from the construction of G, no cycle in G

contains less than 2k+ 2 (i.e., C+ 1) edges. The subgraph Gi = (V (Ei), Ei)

associated with vehicle i = 1, . . . , p, if nonempty, clearly is a forest. The

argument, similar to the one used in the proof of Theorem 1, consisting of

i. proving that Gi is connected with |Ei| = 2k + 1, if nonempty, for i =

1, . . . , p,

ii. assigning the requests of any additional path of length 2k together with

one of the requests between T and X to a same vehicle, and
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iii. assigning the requests of any additional path of length k + 1 together

with the k requests of one of the paths between T and Y ∪Z to a same

vehicle

to end up with each node in S being incident with exactly one unassigned

request whose other station belongs to T would hence complete the proof.

We summarize the three foregoing theorems into the following corollary

that validates the conjecture of Pimenta et al. (2017) even on planar bipartite

graphs.

Corollary 1. The U-SNP is NP-Hard for any fixed capacity C ≥ 2, even

when restricted to the case where G is a planar bipartite graph.

Notice that all the optimal solutions to the U-SNP instances constructed

in proofs of Theorems 1, 2, and 3 need exactly pmin nonempty vehicles. We

can therefore state the following.

Corollary 2. The U-SNP is NP-Hard for any fixed capacity C ≥ 2 and

p = pmin, even when restricted to the case where G is a planar bipartite

graph. .

U-SNP graphs G, constructed in the proofs of Theorems 1, 2, and 3,

clearly have no parallel egdes. For U-SNP and PTGP are equivalent as

long as U-SNP does not have any parallel requests, Corollary 1 naturally

extends to the path traffic grooming problem, improving the state-of-the-art

computational-complexity results for this problem.

Corollary 3. The PTGP is NP-Hard for any fixed grooming ratio g ≥
2, even when restricted to the case where the request graph H is a planar

bipartite graph.

5. Conclusion

In this paper, we have studied the computational complexity of the unit

stop number problem (U-SNP), a problem that arises in the management
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of a dial-and-ride system with identical autonomous vehicles along a closed

circuit. Besides providing polynomial-time algorithms to solve special cases

of U-SNP, we have proved the NP-Hardness of U-SNP on planar bipartite

graphs, and hence have positively proved a conjecture of Pimenta et al.

(2017) for any vehicle’s capacity greater than or equal to 2. An equivalence

between U-SNP and the path traffic grooming problem (PTGP) yields an

improvement of the computational-complexity results known in the litera-

ture.

As a recent optimization problem, U-SNP needs to be addressed from

various angles. It would be worthwhile to study the computational com-

plexity of U-SNP for instances whose associated graph fulfills some specific

properties. The structural properties of the optimal solutions to U-SNP,

introduced in this paper, could represent valuable insights when designing

heuristics or approximation algorithms, or when developing mixed-integer

programming models for this problem or its variants.
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