Influence of dissolution on long-term frictional properties of carbonate fault gouge

Hadrien Rattez, F. Disidoro, Jean Sulem, Manolis Veveakis

To cite this version:

HAL Id: hal-03120086
https://hal.science/hal-03120086
Submitted on 25 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Influence of dissolution on long-term frictional properties of carbonate fault gouge

H. Rattez¹, F. Disidoro², J. Sulem³, M. Veveakis¹

¹Duke University, Durham, North Carolina, USA.
²Politecnico di Torino, Turin, Italy.
³Laboratoire Navier, Ecole des Ponts ParisTech, UGE, CNRS, Champs-sur-Marne, France.
⁴Institute of Mechanics, Materials and Civil Engineering (IMMC), Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

Corresponding author: Hadrien Rattez (hadrien.rattez@duke.edu)

Key Points:

- Velocity stepping experiments have been conducted on a synthetic calcite gouge using an annular shear apparatus to study the effect of the injection of an acid fluid on the long-term frictional properties of the gouge.
- The dissolution process affects the particle size distribution of the gouge material and the roughness of the particles.
- Experimental results show a decrease toward more negative values of the carbonate gouge Rate and State parameter (a-b) due to dissolution for experiments performed on dry specimens, whereas an increase of (a-b) is observed for wet experiments.

Abstract

Velocity stepping experiments have been performed on a simulated calcite gouge using an annular shear apparatus to investigate the effect of dissolution on the frictional properties of a carbonate fault. The tested material was put in contact with hydrochloric acid at different concentration in order to provoke grains dissolution prior to the experiments. Particle size analysis shows that the small grains tend to disappear due to the chemical reaction, whereas the
distribution of large grains is not much affected. The dissolution process induces a decrease of the fractal number of the grain size distribution and an increase of the roughness of the particles. The study of the rate-and-state parameter of the materials, which is commonly used to characterize the ability of the fault to generate earthquakes, shows a decrease toward more negative values with dissolution for dry specimens and an increase for wet samples. Moreover, a decrease of the steady state friction coefficient is observed with dissolution for wet samples. This decrease of the friction would promote the triggering of slip along an existing fault after the injection of an acid fluid like in the cases of CO$_2$ storage or acid gas disposal projects in a carbonate reservoir, but the increase of the rate and state parameter (a-b) of saturated specimens implies that the seismogenic potential of faults could potentially be reduced.

1. Introduction

A variety of human activities can modify the stress state or the material properties of underground rocks and, thus, induce potentially a frictional instability at the origin of an earthquake. Human-induced seismicity has been evidenced for a large range of activities (e.g., (Foulger et al. 2018)). Among them, the most commonly reported anthropogenic activities are mining and water reservoir impoundment, but it can also be caused by hydrofractures, oil and gas extraction, waste water disposal or geothermal projects (Wilson et al. 2017). Human-made seismicity have drastically increased in the U.S. since 2001 from a previous average of 21 earthquakes a year to 188 documented in 2011 (Ellsworth 2013). For instance, infrastructures and people in Oklahoma and southern Kansas face potential damages in the next years from induced earthquakes, in a similar level to regions known for their large number of natural earthquakes, like southern California (Schoenball and Ellsworth 2017).

Projects like carbon capture and storage, acid gas disposal or enhanced oil recovery involve the injection of a reacting fluid into a reservoir (Khan, Amin, and Madden 2013). Carbon Capture and Storage (CCS) is one of the methods considered to reduce emissions of CO$_2$ into the atmosphere (Espinoza 2011). The principle is to capture the CO$_2$ and separate it from other gases in the combustion smoke of large point sources like cement factories or coal-burning power plants. Once extracted, the gas is compressed and transported with a pipeline to injection sites for long term storage. Acid gas disposal is a method used by oil and gas producer to reduce atmospheric emissions of hydrogen sulphide (H$_2$S). A mixture of hydrogen sulphide and carbon
dioxide (by-product of ‘sweetening’ sour hydrocarbons) is injected into depleted reservoirs or deep saline aquifers (Bachu and Gunter 2004). Enhanced oil recovery, also called tertiary recovery, is a way to improve the extraction of crude oil from reservoir that could not be extracted otherwise (Rubinstein and Mahani 2015). The most common methods are gas or chemical injection that modify the viscosity of the oil and improve its mobility. In these cases, induced seismicity could produce damage to the well or the caprock and deteriorate the sealing of the reservoirs, leading to the failure of the project.

A large number of numerical studies have been devoted to study the mechanisms at the origin of induced seismicity and to evaluate the maximum magnitude of the earthquake a project may induce (e.g. Cappa 2012). Most of them consider a hydro-mechanical model and look at the modifications of the stress state at the location of a known fault in a specific site (Baisch et al. 2010; Yehya, Yang, and Rice 2018; Mortezaei and Vahedifard 2015; Cappa 2012). In these studies, fluid injection into a reservoir-caprock system bounded by a fault is modelled with different stress state conditions and assuming various permeability conditions. The stress modifications induced by the fluid potentially leading to an earthquake can be computed and the value of the stress drop permits to estimate the magnitude.

The injection of an acid fluid does not only change the stress state, but also modifies the properties of the storage medium and can, in particular, affect the mechanical behavior of fault zones. Due to the conditions of stresses, temperature and velocity, many complex couplings are involved in earthquake nucleation and propagation (Rice 2006; Sulem and Famin 2009; Alevizos, Poulet, and Veveakis 2014; Veveakis, Poulet, and Alevizos 2014; Rattez and Veveakis 2020). In fault reactivation simulations based on effective stresses modifications, reactivation through a possible decrease in the frictional strength of fault zones is usually not taken into account. However, experimental studies have looked at the influence of physico-chemical interactions on the potential of a fault to create earthquakes (see (Rohmer, Pluymakers, and Renard 2016) for a review in the context of CO₂ storage). The largest impact of the injection of a reacting fluid on the mechanical properties has been observed for carbonate reservoirs (Rohmer, Pluymakers, and Renard 2016), which are potential target formations for CO₂ capture and storage (Michael et al. 2010). Some experiments have looked at the influence of the short term effect of the presence of CO₂-saturated water on the value of the friction coefficient (Samuelson and Spiers 2012; Anne M H Pluymakers et al. 2014) or the velocity dependence of the friction
coefficient (Samuelson and Spiers 2012; Rattez, Sulem, and Ghabezloo 2014; A. M.H. Pluymakers, Niemeijer, and Spiers 2016a), which is of primary importance for earthquake nucleation. To our knowledge, the only experimental study on the long-term effect of a contact with an acidic fluid is (Bakker 2017) by modifying the gouge content and the fraction of the different minerals based on chemical calculations.

In this work, we perform experiments on analog carbonate fault gouges previously subjected to different degrees of dissolution at different normal stresses. The aim is to assess the effect of long-term exposure to an acidic fluid on frictional properties of a carbonate material (section 3). Carbonate materials are chosen here as many reservoirs and potential sites for injection of CO₂ storage or acid gas disposal are carbonate formations (Bjorlykke 2010). The mechanical results obtained from annular shear experiments on dry and wet specimens and microstructural observations are used to infer the micro-physical processes controlling frictional sliding of calcite fault gouges and discuss the potential effect of dissolution on fault’s reactivation (section 4).

2. Experimental setup

2.1. Materials

The material used for the experiments is a carbonate rock powder extracted from the Fergues quarry by the company “les Carrières du Boulonnais” located in the North of France. The powder is produced by crushing of rocks from the quarry and is composed of 99% of calcite (CaCO₃) and show traces of quartz (SiO₂), magnesium carbonate (MgCO₃), Hematite (Fe₂O₃) and Aluminum Oxide (Al₂O₃). The grain size distribution is obtained using a combination of sieves and hydrometer analysis or laser diffraction. Both methods show similar results and the broad grain size distribution of the material is shown in Figure 1.

To study the effect of dissolution, granular samples are placed in a large plastic container with a certain amount of water and then, a solution of hydrochloric acid (mass concentration of 10%) is slowly poured. In the meantime, the solution is stirred with an electric mixer to obtain a uniform dissolution in the sample. Hydrochloric acid is a strong acid and is used here to simulate the long-term effect of dissolution by a weak acid like carbonic acid on the grain size distribution. The reason for using this acid, instead of carbonic acid or other acids, corresponding to the fluid injected in the case of acid gas injection or enhanced oil recovery, is that the kinetics of the
chemical reaction is almost instantaneous. The calcium carbonate (CaCO$_3$) is dissolved by the hydrochloric acid (HCl) and the products of reaction are carbon dioxide (CO$_2$), water (H$_2$O) and calcium chloride (CaCl$_2$) (Lund et al. 1975). The equation of the chemical reaction is:

$$\text{CaCO}_3^{(s)} + 2\text{HCl}^{(l)} \rightarrow \text{CaCl}_2^{(aq)} + \text{H}_2\text{O}^{(l)} + \text{CO}_2^{(g)}$$

CaCl$_2$ is highly soluble (Kirk-Othmer 2004) and the specimens put in contact with the acid are then washed several times with water after the end of the reaction to ensure that this product is removed. The degrees of degradation chosen for this study are 10% and 25% weight percentages of material that is dissolved from the acid during the reaction. The software ChemDigiT is used to calculate the exact quantity of hydrochloric acid required to dissolve the various amounts of materials. Considering that the software provides the amount of pure hydrochloric acid (no dilution with water), while the solution at our disposal had a concentration of 23% in weight (100 g of solution: 23 g of HCl + 77 g of H$_2$O), we have scaled the provided quantities as function of this concentration. The amount of water initially placed in the container with the rock powder is calculated for the hydrochloric solution to not exceed 10% in weight.

![Figure 1. Cumulative grain size distribution of the simulated fault materials showing different level of dissolution](image)

The cumulative grain size distributions of the samples for the initial material, after 10% and 25% of dissolution of the total mass are shown in Figure 1. In particular, the higher the degradation,
the more the small particles get dissolved. This phenomenon is due to the greater specific surface that small particles offer to the reactive fluid compared to bigger particles.

Considering that our tests are carried out on a material that is supposed to simulate a natural fault gouge, one of the most important material properties to be assessed is the fractal dimension of the grain size distribution. The fractal dimension \((D)\) is defined by \(N = r^D\), where \(N\) is number of particle of diameter \(r\). (Sammis, King, and Biegel 1987) measured the particle distribution of intact gouge samples retrieved from the Lopez Fault in the San Gabriel Mountains of Southern California. The gouge is composed mainly of feldspars, quartz and chlorite, with smaller amounts of calcite and other oxides. The analysis has revealed a remarkable degree of self-similarity for the grain size distribution and the authors have found the fractal dimension to be \(1.60 \pm 0.11\) in two-dimensional cross-section. Thus, the fractal dimension is \(2.60 \pm 0.11\) in a three-dimensional volume as a general result of fractal theory states that the fractal dimension of an isotropic three-dimensional figure is greater by unity than a two-dimensional cross-section of it (Sammis, King, and Biegel 1987). On the basis of the observations, they proposed a new model, called the comminution model, for the mechanical processes that generate fault gouges. Self-similarity results from repeated tensile splitting of grains and that splitting probability depends largely on the relative size of nearest neighbors: during the fragmentation process, the direct contact between two particles of near equal size will result in the tensile breakup of one of the two. In this way, at the end of fragmentation process, the material will have a particle distribution in which particles of the same size are separated from each other. Such a spatial organization repeats itself at each scale, providing a self-similar grain size distribution having a fractal dimension of \(2.58\), independently of the initial size distribution of the particles. After the development of this model, several authors conducted experiments on natural and simulated fault gouges, showing their tendency to develop a fractal dimension values of about 2.6 supporting the Sammis' theory (Steacy and Sammis 1991; An and Sammis 1994). Moreover, (Biegel, Sammis, and Dieterich 1989) have investigated the frictional properties of gouge presenting fractal dimension of 2.6 and in particular the role of the minimum and maximum grain size. However, (Storti, Billi, and Salvini 2003) have analyzed gouge samples of a carbonate fault in the Apennines, Italy and have shown that for this material the comminution model is not always verified. Fractal dimensions obtained from fault cores varies from 2.61 to 3.49 in strike-slip faults’ gouge and between 2.17 to 2.74 in the breccia zones. They
recognized the value 2.6 to be a threshold between a first stage of fault gouge formation dominated by particles fragmentation and a second one dominated by particles abrasion in the case of carbonate materials.

In Figure 2, the number of particles as a function of the grain diameter is shown for the different level of dissolution of the grains. The value of the fractal number of the simulated gouge that is not dissolved (intact) is in agreement with the comminution theory and this material can, therefore, be considered as a good analog of a gouge material at the first stage of formation. The dissolution induces a decrease of the fractal number from 2.59 to 2.16. This decrease is due to the preferential dissolution of the small particles from the grain size distribution, in the same way that abrasion makes the fractal number increase due to the creation of more small particles. An interesting feature of the effect of dissolution on the particle size distribution is that it induces an increase of the mean grain diameter. It can, thus, affect the prediction of continuum models considering the mean grain size explicitly into the constitutive laws. These class of models are used in particular to regularize the problem of strain localization like Cosserat continua (Rattez, Stefanou, Veveakis, et al. 2018).

Figure 2. Number of particles as function of the grain diameter for different level of dissolution of the carbonate rock powder. The points represent the experimental data obtained from sieve and hydrometer analyses. The lines represent an interpolation of the experimental data using a power law. The fractal number associated D with each distribution is also shown.

2.2. Experimental set-up
The device used for the mechanical tests is an annular simple shear device called ACSA (“Appareil de Cisaillement Simple Annulaire”), designed in 1993 in the CERMES laboratory of Ecole des Ponts (Unterreiner et al. 1993). It has been used in the context of fault mechanics by (Guillaume Chambon, Schmittbuhl, and Corfdir 2006a, 2006b; Messen, Corfdir, and Schmittbuhl 2013). This device enables to shear the gouge material over large displacements and with samples that are thicker than other experimental devices. This thickness of the samples (10cm) represents an average value of the fault core thickness measured on outcrops of carbonate rocks (Billi 2005; Torabi, Johannessen, and Ellingsen 2019). A schematic view of the machine is shown in Figure 3. We only present here this apparatus briefly. A more detailed description can be obtained from (Guillaume Chambon 2003; Corfdir, Lerat, and Vardoulakis 2004).

The internal surface of a ring-shaped sample, which presents a square section of 100*100mm², is sheared by the rotation of a rough steel cylinder. A 15-bit optoelectronic rotation encoder is used to monitor the rotation angle ϕ of the steel cylinder providing a 0.011° resolution. The tangential displacement δ at the inner boundary of the sample is deducted as $\delta = \phi R_i$ (where R_i is the inner radius of the sample) and is measured with a resolution of 1.92×10^{-5} m. The spacing between the vertical triangular striation of the inner interface is 1mm, the same size as the maximum grain diameter of the samples, in order to preclude interfacial slip along the steel-granular boundary (Koval et al. 2011). The outer boundary of the sample is subjected to a constant radial confinement σ_e through a 1.5-mm-thick neoprene jacket and applied using water by a pressure-volume controller (max. press: 2 MPa, vol.: 10^{-3} m³, resolution: 1 kPa and 1 mm³, accuracy <0.25 per cent). Vertically, the sample is embedded between an upper plate made of duralumin and a lower plate made of glass.
For a given normal stress, the samples are initially sheared at a constant speed of 33 μm/s for 10 cm, in order to reach the steady-state friction coefficient. Then, the shearing velocity is instantaneously changed every 2 mm of slip to apply different velocity steps. The sequence shown in Table 1 is chosen such that each velocity step is repeated at least twice to better constrain the value of the friction parameters calculated. At the end of this phase, the shear force is unloaded, normal stress is increased and the procedure is repeated as in (Scuderi et al. 2013; Berend A. Verberne et al. 2015). It should be noted that the different normal stresses applied on the sample in this case also correspond to different applied displacements to the sample, which could affect the mechanical behavior.

<table>
<thead>
<tr>
<th>Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement [mm]</td>
<td>100</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Speed [μm/s]</td>
<td>33</td>
<td>10</td>
<td>1.7</td>
<td>10</td>
<td>33</td>
<td>10</td>
<td>1.7</td>
<td>10</td>
<td>33</td>
</tr>
</tbody>
</table>

Table 1. Velocity stepping sequence applied to the sample for a given normal stress.

In Table 2, a list of all the conducted tests with different degrees of dissolution, different stages consisting of various normal stresses and conditions of saturation is presented. The “dry” experiments have been conducted in nominally dry conditions, that is with room atmosphere inside the pore space, while the “wet” experiments are conducted on specimens that are saturated with deaerated water and tested in drained conditions. We note that the samples were saturated in two steps: the water was first injected from the bottom of the specimen until the water level reached the valves located at the top, then the flow through the specimen was maintained until
half the total volume of pore space of the specimen was expelled at the top, to ensure conditions close to homogeneous saturation.

<table>
<thead>
<tr>
<th>Degradation</th>
<th>σ_i (MPa)</th>
<th>saturation</th>
<th>Set of data name</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>0.6</td>
<td>dry</td>
<td>Intact0.6</td>
</tr>
<tr>
<td>none</td>
<td>1</td>
<td>dry</td>
<td>Intact1</td>
</tr>
<tr>
<td>none</td>
<td>1.6</td>
<td>dry</td>
<td>Intact1.6</td>
</tr>
<tr>
<td>10%</td>
<td>0.6</td>
<td>dry</td>
<td>10deg0.6</td>
</tr>
<tr>
<td>10%</td>
<td>1</td>
<td>dry</td>
<td>10deg1</td>
</tr>
<tr>
<td>10%</td>
<td>1.6</td>
<td>dry</td>
<td>10deg1.6</td>
</tr>
<tr>
<td>25%</td>
<td>0.6</td>
<td>dry</td>
<td>25deg0.6</td>
</tr>
<tr>
<td>25%</td>
<td>1</td>
<td>dry</td>
<td>25deg1</td>
</tr>
<tr>
<td>none</td>
<td>0.6</td>
<td>wet</td>
<td>Intact0.6w</td>
</tr>
<tr>
<td>none</td>
<td>1</td>
<td>wet</td>
<td>Intact1w</td>
</tr>
<tr>
<td>none</td>
<td>1.6</td>
<td>wet</td>
<td>Intact1.6w</td>
</tr>
<tr>
<td>10%</td>
<td>0.6</td>
<td>wet</td>
<td>10deg0.6w</td>
</tr>
<tr>
<td>10%</td>
<td>1</td>
<td>wet</td>
<td>10deg1w</td>
</tr>
<tr>
<td>10%</td>
<td>1.6</td>
<td>wet</td>
<td>10deg1.6w</td>
</tr>
<tr>
<td>25%</td>
<td>0.6</td>
<td>wet</td>
<td>25deg0.6w</td>
</tr>
<tr>
<td>25%</td>
<td>1</td>
<td>wet</td>
<td>25deg1w</td>
</tr>
<tr>
<td>25%</td>
<td>1.6</td>
<td>wet</td>
<td>25deg1.6w</td>
</tr>
</tbody>
</table>

Table 2 – List of complete set of phases and experiments

2.3. Data acquisition and processing

The apparent friction coefficient μ of the sample is calculated as the ratio of the applied shear stress τ to the normal stress σ, $\mu = \frac{\tau}{\sigma}$. The shear stress τ can be found converting the applied torque measurements Γ, measured by a torquemeter of 20 N.m accuracy:

$$\tau = \frac{\Gamma}{2\pi r H} = \frac{\Gamma}{2\pi r^2 H} \quad \#(1)$$

where r and H are respectively the radius and the height of the inner cylinder and are both equal to 10 cm. The normal stress exerted on the inner cylinder is different from the external normal stress applied on the outer boundary of the sample due to the particular geometry of the sample.

According to (Guillaume Chambon 2003), simple geometrical considerations indicate that the inner normal stress σ_i should be equal to twice the applied confinement σ_e, since the external radius of the sample is the double of the internal one; moreover, the same authors conducted some experiments equipping both the smooth and the rough cylinder with five stress sensors, and
they found that normal stress on cylinders’ surface was strongly varying at the beginning of the test, but it tended to stabilize after few millimeters of slip toward values very close to the double of external pressure. As the shear band is developing near the inner cylinder, the apparent friction is calculated as:

\[
\mu = \frac{\tau}{\sigma_i} = \frac{\Gamma}{2\pi r^2 H} \cdot \frac{1}{2\sigma_e} \tag{2}
\]

2.4. The Rate-and-State Friction (RSF) law

(Reid 1910) was the first to argue after the 1906 San Francisco earthquake that this phenomenon is not created by the emergence of a new crack in the crust, but rather by the sudden slip along an existing fault. After the beginning of slipping the fault can move aseismically or seismically (Scholz 1998) if a frictional instability is triggered. An empirical law describing the instability along a fault was developed during the eighties by Dieterich and Ruina (Dieterich 1981; Ruina 1983). They introduced new state variables that describe a second order effect on the coefficient of friction. These laws are called “Rate and State”, because the friction depends on the velocity of slipping (Rate) and a state variable \(\theta \), which is interpreted as the average lifespan of a set of grain-to-grain contacts in a frictional system. They describe the evolution of the friction coefficient to changes in sliding motions by the equation:

\[
\mu = \mu_0 + a \ln \left(\frac{V}{V_0} \right) + b \ln \left(\frac{V_0 \theta}{D_c} \right) \tag{3}
\]

\(\mu_0 \) is a reference friction coefficient, \(V \) and \(V_0 \) are respectively the actual and reference velocities of the fault. \(D_c \) is the critical slip distance representing the slip necessary to renew contacts, associated with the state variable \(\theta \) (Marone 1998). \(a \) and \(b \) are empirical parameters. The observed evolution of the state variable can be described by the following equation (Dieterich 1979):

\[
\frac{d\theta}{dt} = 1 - \frac{v \theta}{D_c} \tag{4}
\]

These empirical laws can capture the repetitive stick-slip failure at the origin of the seismic cycle. A simple system called the spring-slider model, in which the slider follows the rate and state friction laws and the spring represents the elastic surrounding mass of the fault, is usually applied to model seismic slips. The study of the linear stability of that system (Rice and Ruina...
1983) shows a critical value for the stiffness of the spring k_{cr} (if the inertial terms are negligible). Under this value, the system is unstable and over this value, it is conditionally stable.

$$k_{cr} = \frac{\sigma_N}{D_c} (b - a) \tag{5}$$

where σ_N is the effective normal stress applied perpendicular to the direction of sliding.

The parameter $(a - b)$ is therefore fundamental to determine the stability of a fault modelled with a rate and state friction law, because if it is positive, frictional instability would not nucleate with this model. Moreover, a modification of the value of $(a-b)$ in the velocity-weakening regime modifies the value of the critical stiffness and, if $(a-b)$ becomes more negative (stronger weakening), it can lead to seismic slips for faults that were stable before the modification.

The parameter $(a - b)$ can be calculated based on the values of the steady-state friction before and after an instantaneous velocity change. At steady-state $(d\theta/dt = 0)$ and the state evolution law gives $\theta = D_C/v$. So, equation (3) becomes:

$$\mu = \mu_0 + (a - b)\ln\frac{v}{v_0} \tag{6}$$

To evaluate the friction parameter $(a-b)$, the general long-term strain trend of the apparent friction is removed in order to avoid this factor to influence the $(a-b)$ values. It is typically a softening trend as the one shown in Figure 4. The same procedure was also applied by several studies (Blanpied, Lockner, and Byerlee 1995; Tembe, Lockner, and Wong 2010; Samuelson and Spiers 2012) for velocity stepping experiments.
The $(a-b)$ value of each velocity step can be obtained from the detrended evolution of the friction coefficient, and in particular, from the value of residual friction before the velocity change and the one obtained once a new steady state is obtained after the change:

$$ (a - b) = \frac{\mu_0 - \mu}{\ln(V/V_0)} \quad \#(7) $$

where μ is the coefficient of friction at the end of a step with velocity V, and μ_0 and V_0 are the coefficient of friction and velocity immediately prior to the velocity step.

3. Results

In this section, we describe first the frictional data obtained from the mechanical experiments. The global evolution of the apparent friction as well as the rate and state parameter $(a-b)$ are presented together with their evolution with normal stress and dissolution rate. Secondly, the specific surface areas of the samples are assessed by two methods in order to estimate the rugosity of the grains. This analysis is completed with observations obtained using a scanning electron microscope to interpret the different mechanical responses of the samples.

3.1. Mechanical results

An example of the apparent friction coefficient evolution with shear displacement is shown in Figure 4. It exhibits a peak for a value between 0.6 and 0.7 for all dry experiments at 600 kPa of imposed normal stress. The peak is more pronounced for a normal stress of 600 kPa as it is the
first run applied to the material. This peak is followed by a slip-weakening behavior with a characteristic slip distance of a few centimeters, also observed in the experiments performed on glass beads and quartz sand by (Guillaume Chambon, Schmittbuhl, and Corfdir 2006a). The evolution of the shear stress for all the stages of the experiments is shown in Figure 5 for the different samples. The peak stress is less important for the normal stresses 1 and 1.6 MPa than for 600 kPa due to the multi-stage procedure.

We observe through the glass window at the bottom of the sample a strain localization of the deformation next to the inner cylinders. The shear band thickness is on the order of a few millimeters, which corresponds approximately to 10 times the mean grain size, in accordance with results of numerical simulations of continuum models of granular media (Rattez, Stefanou, Sulem, et al. 2018; Rattez, Stefanou, and Sulem 2018). However, digital image correlation needs to be used to observe accurately the evolution of the thickness with increasing displacements as in (G. Chambon et al. 2003) but has not been carried out for this study.

The value of the friction μ is not much affected by the dissolution in the dry case (see Figure 5 and Table 3), except for the residual friction at 1.6 MPa of normal stress. We can see that for the tests performed under 600 kPa of normal stress, the three peak values are nearly the same ($\mu=0.63–0.67$), as well as the residual values ($\mu=0.22–0.25$). The same happens in the tests under 1 MPa of normal stress where the peak is exactly the same and the intact residual value is only a bit higher that the degraded ones ($\mu=0.20$). Finally, the 1.6 MPa run exhibits only a difference in the value of the residual friction. In the wet experiments, the peak values and the residual friction coefficients show a decrease with the dissolution (except the peak stress between the intact and deg10 for the 600 kPa, which can be due to different degrees of initial compaction) for all normal stresses. For the wet experiments, the residual friction decreases from $\mu=0.27–0.33$ for the intact gouge to $\mu=0.14–0.15$ for the gouge dissolved at 25%.

Regarding the velocity stepping experiments, the results presented in Figure 6 and Figure 7 show that all of the tests performed in this study, regardless of degradation level and pressure, exhibit a velocity weakening behavior. The $(a-b)$ values are falling between -0.003 and -0.018; the only exception is the 25deg0.6dry test (see Table 2 for the denomination of the tests), which exhibits a more negative value of $(a-b)$ reaching -0.028.
For dry samples, we can see that deg10 results are situated between intact and deg25 ones (see Figure 6 a, c, e). It means that a larger amount of degradation induces a more pronounced velocity-weakening, and this trend is clear for the tests at 0.6, 1 MPa of normal stress and the velocity steps 10-33 μm/s at 1.6 MPa, but is not visible for the velocity steps 1.7-10 μm/s at 1.6 MPa. For the wet experiments, the opposite effect is observed (see Figure 6 b, d, f), the dissolution of the grains leads to coefficients (a-b) that are less negative, even though we still observe a velocity weakening.

Figure 5. Shear stress as a function of the displacement of the inner cylinder for the different experiments

<table>
<thead>
<tr>
<th></th>
<th>0.6 MPa peak</th>
<th>0.6 MPa residual</th>
<th>1 MPa peak</th>
<th>1 MPa residual</th>
<th>1.6 MPa peak</th>
<th>1.6 MPa residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>intact</td>
<td>0.67</td>
<td>0.24</td>
<td>0.34</td>
<td>0.24</td>
<td>0.35</td>
<td>0.26</td>
</tr>
<tr>
<td>dissolution 10%</td>
<td>0.67</td>
<td>0.21</td>
<td>0.33</td>
<td>0.20</td>
<td>0.34</td>
<td>0.21</td>
</tr>
<tr>
<td>dissolution 25%</td>
<td>0.64</td>
<td>0.24</td>
<td>0.32</td>
<td>0.20</td>
<td>0.32</td>
<td>0.19</td>
</tr>
<tr>
<td>Intact, wet</td>
<td>0.4</td>
<td>0.27</td>
<td>0.33</td>
<td>0.30</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>dissolution 10%, wet</td>
<td>0.5</td>
<td>0.22</td>
<td>0.3</td>
<td>0.23</td>
<td>0.31</td>
<td>0.29</td>
</tr>
<tr>
<td>dissolution 25%, wet</td>
<td>0.24</td>
<td>0.15</td>
<td>0.23</td>
<td>0.14</td>
<td>0.24</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Table 3. Values of the residual apparent friction coefficient for different normal stresses and level of dissolution
In Figure 7, the values of the friction parameters \((a-b)\) are plotted as a function of the normal stress for the different degrees of dissolution and velocity steps. The different values obtained for a velocity step are calculated as an average of the values of the velocity jumps involving the same velocity values (velocity jump 10-33 \(\mu\)m/s: 1-2, 4-5, 5-6, 8-9; velocity jump 1.7-10 \(\mu\)m/s: 2-3, 3-4, 6-7, 7-8). For the intact gouge, the rate and state parameter \((a-b)\) increase slightly with the normal stress but a more visible dependency on the velocity steps considered is observed. The transition from 10 to 33 \(\mu\)m/s induces more weakening than the transition from 1.7 to 10 \(\mu\)m/s. This effect is also observed for the degraded gouge. The dry gouges that underwent 10% and 25% dissolution show a distinct increase of the rate and state parameter \((a-b)\) with the normal stress (more pronounced for 25% dissolution). In these tests, the \((a-b)\) values get closer to zero when the confinement pressure is increased. For the intact sample, \((a-b)\) shows no clear variation with the normal stress. For the wet samples, we also observe a slight increase of \((a-b)\) with the normal stress for the intact sample. However, for the samples with 10 and 25% degradation, this increase is only observed for the velocity step 10-33 \(\mu\)m/s and no clear trend is observed for the velocity step 1.7-10 \(\mu\)m/s. It should be noted that the different normal stresses applied here correspond also to larger displacements due to the multi-stage applied to the material, which could affect the evolution of \((a-b)\) observed here.
Figure 6. Effect of the dissolution on the rate and state friction parameters (a-b) for the different velocity steps and for different normal stress.
Figure 7. Effect of the normal stress on the rate and state friction parameters (a-b) plotted for the different velocity steps and for different rate of dissolution

3.2. Roughness of the grains

The dissolution of the calcite through contact with an acid solution before shearing affects not only the grain size distribution but also the shape of the particles. The shape and in particular the roughness of the grains could influence the mechanical response of the sample (Anthony and Marone 2005). Thus, we characterize the roughness and shape of the particles using the specific BET surface area (SA 3100 BET surface area and pore size analyzer; Beckman Coulter, U.S.), sieves analysis and a Scanning Electron Microscope (SEM).

The roughness of a given sample is defined as the ratio between the surface areas obtained from the BET method and the particle size analysis (considering spherical particles) as explained in (Micić et al. 2017). The BET method is a way to calculate the specific surface area of a sample based on gas adsorption. Nitrogen is pumped into the sample at a given pressure, with constant temperature (corresponding to the boiling point of liquidNitrogen) and the adsorption process is measured volumetrically. The isotherm data obtained from this procedure enable to determine the specific surface area based on the theory developed by (Brunauer, Emmett, and Teller 1938) with an accuracy of 0.1 m²/g. This value of the specific surface area can be compared with one obtained from the particle size distribution (PSD). The latter is obtained by assuming that the mass of material obtained for each size correspond to spherical particles with the diameter of the mesh size (or the size of the volume equivalent for laser diffraction). The results are reported in Table 4.
The specific surface area obtained from the PSD exhibits a decrease with the amount of dissolution. It is due to the more pronounced dissolution of the small particles that contributes substantially to the value of the specific surface. However, the values obtained from the BET method are not notably affected by the dissolution. Consequently, the roughness increases with the increasing amount of dissolution. (Micić et al. 2017) have performed a similar methodology to evaluate the roughness of different granular materials. They have observed a difference of almost two orders of magnitude for the same definition of the roughness used here between glass beads with a diameter of 1 mm and Dorsilit8 sand composed of 95% of quartz presenting moderately well-sorted angular grains (0.3–0.8 mm), which shows that the difference of the values of roughness reported in Table 4 are reasonable. To understand our results, observations of the grains have been performed using a Variable Pressure Scanning Electron Microscope (FEI XL30 SEM). The specimens have been coated with gold film prior to be placed in the microscope. Images of the intact gouge and the gouge with 25% degradation are shown in Figure 8. The intact gouge exhibits much more fine particles attached to each other or to larger grains than the samples which experienced dissolution. Moreover, grains with a diameter larger than 10 μm in the intact gouge (Figure 8. b) present an external surface that exhibits less asperities than the one in the dissolved gouge (Figure 8. d).
Figure 8. Scanning Electron Microscope images of the intact gouge (a and b), and the gouge with 25% dissolution (c and d).

4. Discussion

In this section, we integrate the mechanical data from our experiments and microstructural investigation of the gouge prior to shear to discuss the role of the normal stress (see (A. M.H. Pluymakers, Niemeijer, and Spiers 2016b) for a broader discussion on the effect of this parameter), saturation of water and amount of dissolution on the velocity weakening behavior of carbonate bearing faults. We also discuss the implications of our results in the context of injection of an acidic fluid in a reservoir presenting faults composed of carbonates.
4.1. Comparison with other works

Our results show that the mechanical behavior of simulated carbonate-bearing faults is modulated by the imposed slip velocity, the normal stress, the amount of chemical dissolution of the grains and the presence of water inside the pores.

A number of experimental studies have focused on the frictional behavior of carbonate materials (Han et al. 2007; B. a. Verberne et al. 2013; Smith, Nielsen, and Di Toro 2015; Carpenter et al. 2016) under different range of temperature, velocities and normal stress using double direct shear and rotary shear experiments. They observed a strong resistance and a friction coefficient at the peak between 0.6 and 0.7, consistent with our observations for a normal stress of 600 kPa and sub-seismic velocities. The decrease of the peak friction coefficient in the presence of water has also been previously observed (B. a. Verberne et al. 2013), but the difference was less pronounced than in our observations for the dissolved samples. Moreover, the steady state friction coefficients obtained in experiments reported in the literature stay close to the peak value (at velocities below 1 cm/s), exhibiting thus almost no slip weakening or slip strengthening. This discrepancy is due to the size of the sample used in the ACSA as explained in (Guillaume Chambon, Schmittbuhl, and Corfdir 2006a). This macroscopic slip-weakening operating over centimetric distances is induced by a progressive mechanical decoupling between the interfacial layer and the bulk of the samples, as shown by image analysis during shearing (G. Chambon et al. 2003). This characteristic distance of the slip weakening is much larger than in previous experimental studies and fully consistent with values inferred for large earthquakes (Guillaume Chambon, Schmittbuhl, and Corfdir 2006b).

Experiments conducted on gouge at typical velocities consistent with earthquake nucleation (a few micrometers per seconds like here) exhibits velocity strengthening (B. A. Verberne et al. 2014) or a velocity neutral (Carpenter et al. 2016) for normal stresses below 20 MPa. The order of magnitude of the \((a-b)\) coefficient, we have obtained \((10^{-2})\) is in agreement with previous studies on friction in gouge materials composed of quartz or carbonates (Biegel, Sammis, and Dieterich 1989; Carpenter et al. 2016). Nevertheless, our experiments reveal a velocity weakening behavior. This weakening has also been observed by (Guillaume Chambon 2003) for monodisperse quartz sand and glass beads using the annular shear apparatus. The difference in terms of \((a-b)\) can be explained by the large displacements applied to the gouge in our
experiments before the velocity steps compared to experiments performed in double direct shear or saw cut configurations. Large-displacement experiments using a rotary shear apparatus with gouge samples have consistently shown a decrease of the friction rate parameter with displacement and a transition from velocity-strengthening to velocity-weakening (Beeler et al. 1996; Marone 1998).

4.2. Micro-mechanisms affecting the rate and state friction parameters for dry experiments

For the range of normal stresses applied to our samples, the mechanical behavior of the dry gouge is dominated by sliding and rotation of grains, the creation of force chains, cataclasis and strain localization (Anthony and Marone 2005; Guillaume Chambon, Schmittbuhl, and Corfdir 2006a; B. a. Verberne et al. 2013). We focus in this section on the possible mechanisms driving the experiments performed for the dry samples and compare with our observations to infer which ones seem to dominate.

The dissolution of the calcite by an acid fluid before shearing affects the samples in two ways. First, it generates a modification of the particle size distributions by dissolving preferably the small grains. The fractal number of the distribution decreases and the mean grain size increases. Moreover, the dissolution modifies the roughness of the particles. Both effects can influence the frictional behavior of the sample.

(Anthony and Marone 2005) have studied the influence of particle roughness on the frictional behavior of gouge using two materials: spherical glass beads and quartz sand, presenting comparable particle size distributions. They have shown that an decrease of the angularity/roughness of the grains for a similar grain size distribution tends to induce a weakening of the apparent friction coefficient (Anthony and Marone 2005) and the triggering of stick-slip instabilities (manifestation of a more negative rate and state parameter $(a-b)$). However, our analysis of the roughness of the particles exhibits an increase with the dissolution but a decrease of the apparent friction (see Figure 5 and Table 4) and a decrease of $(a-b)$ towards more negative values (Figure 6). Therefore, the decrease of the apparent friction and $(a-b)$ with the dissolution for dry experiments cannot be explained as a direct effect of the roughness of the particles. In the present work, the particle size distribution changes (in addition to the roughness
of the grains) when subjected to dissolution, so this effect must dominate the mechanical
behavior of the sample and not the modification of the grains’ roughness.

Compared to silica sand, carbonate sand presents a lower grain hardness and higher intraparticle
porosity, which makes them more susceptible to grain crushing (Coop et al. 2004). Recent papers
on granular mechanics have linked the rate dependency observed in sand to the crushing of
particles (Karimpour and Lade 2010; Y. D. Zhang and Buscarnera 2017; Das and Das 2019).
This effect induces a larger compaction rate and thus a stronger velocity-weakening behavior as
explained in (Marone 1998). For our experiments, the dissolution affects the width of the particle
size distribution and generates a narrower distribution and a higher fraction of large particle.
Therefore, the force chains between the grains can be expected to carry a higher load and to be
longer (Mair and Hazzard 2007; C. Ovalle et al. 2016). This can lead to a more important
comminution process, a decrease of friction and a larger velocity-weakening (a more negative \((a-b)\)
parameter) as observed here for the dry experiments in Figure 9 and Figure 5. However, the
fact that we use multi-stage experiments and large displacements before applying the velocity
steps here induces that the velocity steps performed for lower normal stress are performed on a
material that is more subject to grain crushing and a larger compaction rate affecting the values
of \((a-b)\) obtained.

In Figure 7 and Figure 9, the 25% dry experiments (and also less significantly the 10% dry) show
an increase of the \((a-b)\) parameter with the normal stress. The other tests exhibit only a small
variation with the normal stress. This can be attributed to the fact that the experiments with 0.6
MPa normal stress are performed on the initial sample (not yet sheared) and the grains can be
more subject to grain crushing and thus a higher compaction rate, whereas the tests with higher
normal stresses are performed on samples that have already been sheared and thus, the
comminution has already modified the PSD.
Therefore, the mechanical behavior of the dry experiments is inferred to be mainly caused by the grain crushing that is more important for the dissolved samples as the particle size distributions become narrower as it allows to explain the evolution observed for the rate and state parameter \((a-b)\) and the value of the friction coefficient.

4.3. Effects of water

In Figure 9, the values of \((a-b)\) for a given step is represented as a function of the percentage of mass dissolved by the acid solution for different normal stresses and in presence or not of water. The different values obtained for a velocity step are calculated as an average of the values of the velocity jumps involving the same velocity values (velocity jump 10-33 \(\mu m/s\): 1-2, 4-5, 5-6, 8-9; velocity jump 1.7-10 \(\mu m/s\): 2-3, 3-4, 6-7, 7-8). We can observe that the presence of water modifies the influence of the dissolution on the coefficient \((a-b)\). For dry experiments, the dissolution leads to more weakening of the rate parameters towards more negative values, whereas in the wet case it leads to an increase of the rate and state parameter \((a-b)\). Moreover, the addition of water modifies also the value of the friction coefficient at peak and steady state compared to the dry experiments (Figure 5). The peak friction is decreased by the presence of water compared to the dry experiments, however the steady state friction shows a larger value for the intact sample and a lower value in the wet tests compared to the dry tests.

As explained in (B. A. Verberne et al. 2014), the effect of unpressurized water is threefold regarding the frictional behavior of granular materials. Water can 1) promote compaction of the
specimen through pressure-solution; 2) lubricate grain contacts; or 3) stimulate cataclasis by lowering the fracture toughness of the grains. The influence of these three mechanisms is discussed in the following paragraphs and compared to our observations to infer which ones dominate during the experiments presented here.

The phenomenon of pressure solution is a time-dependent chemo-mechanical process inducing a compaction of rocks and granular assemblies when saturated. It is a dissolution-precipitation mechanism in which the solid is dissolved in stressed regions and precipitates in sheltered regions relatively under-stressed. This process is more active for fine grain materials (Niemeijer, Elsworth, and Marone 2009), and would therefore tend to be more active in the intact gouge than in the dissolved gouges in our case. (X. Zhang and Spiers 2005) performed creep experiments on calcite with normal stresses between 1 and 4 MPa at room temperature and observed most of the deformations induced by pressure solution happened within the first few hours of the experiments. This timescale of pressure solution is similar to the total time of our tests for a similar material and can therefore influence the mechanical behavior. In particular, pressure solution during shearing at low velocities leads to a porosity reduction, an increasing grain contact area (Bos, Peach, and Spiers 2000) and lower absolute value for \((a-b)\) (more neutral) (van den Ende et al. 2018). This phenomenon cannot explain the lower value of \((a-b)\) for in the wet case compared to the dry for the intact gouge as the slip distances between each velocity jump is too small for it to develop. However, the increased gouge cohesion due to pressure-solution in wet experiments should lead to a higher steady-state frictional strength than in dry tests as observed in Table 3 for the intact and deg10 experiments, which are samples presenting smaller grains than deg25 and are therefore more subject to pressure solution. It indicates that this mechanism influences the value of the friction but not the rate and state parameter \((a-b)\) in our experiments.

The presence of water promotes grain breakage by decreasing the fracture toughness of individual grains (Atkinson 1982; Carlos Ovalle et al. 2015; Y. Zhang and Buscarrer 2018). This effect is usually referred as subcritical crack propagation and several theories have been developed to explain it based on the modification of the plastic zone near the crack tip or chemical interactions of the water with bonds at the crack tip (Y. Zhang and Buscarrer 2018). This effect induces a larger compaction and thus a stronger velocity-weakening behavior. It can explain the decrease of \((a-b)\) for the intact gouge for the wet compared to the dry experiments
but not the results for the samples submitted to dissolution (in terms of difference wet versus dry). Indeed, carbonate gouges can present a non-self-similar cataclasis and grain crushing is not inhibited when reaching a fractal distribution with fractal number 2.6 and they can exhibit higher fractal numbers than 2.6 (Storti, Billi, and Salvini 2003) compared to silica gouges. Also, the wet intact sample is the only one of the wet experiments showing a small increase of (a-b) with the normal stress, and therefore increasing displacements, for the two velocity steps (Figure 7), which can also be an effect of the grain crushing as the compaction rate decreases with increasing displacements. It should be noted that the effects of water like pressure solution or grain crushing would affect the microstructure of the gouge and therefore the microstructure would not be the same in the dry and wet samples after the initial shear of the material when the velocity steps take place.

A third mechanism due to the presence of water is the intergranular lubrication, which decreases intergranular friction and/or adhesion (Cornelio and Violay 2020). This phenomenon leads to a decrease of friction coefficient and an evolution of (a-b) towards neutral velocity dependence in the presence of water compared to the dry case as the effect of changing porosity and thus contact area is less pronounced inducing in this way less velocity weakening (B. A. Verberne et al. 2014). These two effects have been observed for the samples with 25% mass dissolution (see Table 3 and Figure 9). The intergranular lubrication could be dominant in this case due to the narrower particle size distribution and longer force chains becoming more unstable with the lubrication. Moreover, it can explain the lower friction coefficient at peak for the wet samples compared to the dry ones.

Therefore, the above considerations seem to indicate that the frictional behavior of our samples in the presence of water appears to be more controlled by grain breakage/abrasion and pressure solution (for the value of the friction coefficient at steady state) for the intact gouge, and to intergranular lubrication for the degraded gouge (25%). The behavior of the gouge with 10% dissolution is not much affected by the presence of water and it is probably a result of the different mechanisms described above competing and counteracting each other. The importance of these mechanisms is inferred to be a result of the narrower particle size distribution and not the change of grains’ roughness induced by dissolution. They lead to an increase of the rate and state parameter (a-b) with dissolution for wet gouges, which would decrease the seismic potential of a fault (that are most of the time saturated) by decreasing the critical stiffness under
which it is unstable (eq. 5). Nonetheless, this complex set of microphysical mechanisms controlling frictional sliding in wet calcite gouges needs to be better constrained using microphysical observations to evaluate the particle size distribution evolution at different stages of the experiments and evidences of the mechanisms operating at the interface between the grains. It will be the subject of future studies.

4.4. Implications for fault reactivation

Our results can have important implications for the study of CO$_2$ storage or acid gas injection projects, but also to understand the mechanisms of carbonate bearing faults. Indeed, a great number of earthquakes are triggered in such lithologies. Noteworthy examples of seismic slips triggered and propagated through a fault composed of calcite are the magnitude 7.9 Wenchuan (China) earthquake in 2008 (Chen et al. 2013), the magnitude 6.2 Aigion (Greece) earthquake in 1995 (Bernard et al. 1997), or the magnitude 7.6 Chi-Chi (China) earthquake in 1999 (Boullier et al. 2009). Carbonate rocks are particularly ubiquitous in Italy and in the Apennines where the tectonic activity produce number of seismic events, like in the Amatrice and Norcia areas for the 2016-17 seismic sequence (Pizzi et al. 2017), or in L’Aquila for the 2009 earthquake (Valoroso et al. 2014). Moreover, many reservoirs in the world and potential sites for injection of CO2 storage or acid gas disposal are composed or carbonate materials (Bjorlykke 2010) and present faults that may induce leakage from the storage if they would be reactivated.

Sliding along an existing fault favors grain comminution and abrasion and thus, an increase of the fractal number (Storti, Billi, and Salvini 2003). Our results show that this increase of the fractal number would tend to destabilize the gouge as faults in the crust are located in a wet environment. On the other side, injection of an acid fluid tends to decrease this fractal number by dissolving the small grains. This dissolution decreases the peak friction and promote reactivation but also would reduce the velocity weakening of the fault and could prevent unstable (seismic) slips.

In our experiments, the maximum amount of mass decrease due to dissolution of calcite that we have considered is 25%. This high percentage of dissolved mass has been chosen to investigate whether and how dissolution can affect the frictional properties of fault gouges and a lower amount of dissolution would be expected in injection projects. However, (Bakker 2017) have obtained a 25% decrease of calcite content for a carbonate gouge after 10,000 years of CO$_2$
injection based on geochemical simulations of the long term effect of CO₂ on the mineral composition of a fault gouge, considering a residence time of 1000 years. In this study, the authors considered a carbonate bearing claystone and have investigated the effect of long-term exposure to CO₂ on the frictional properties of the fault by changing its mineral composition according to the geochemical model and different scenarios. Therefore, the high percentages of dissolution used in this study could potentially be reached after a long-term injection.

However, the experiments presented here have been performed at low normal stresses compared to the stresses applied to faults at seismogenic depths or typical depths of potential CO₂ storage sites, which are between at least 800 meters and 5 kilometers depth (Nakanishi et al. 2009), and acid gas injection sites, which are between 700 meters and 5 kilometers depth (Bachu and Gunter 2002). This would result in normal stresses between 10 and 100 MPa at the fault and also higher temperatures. The same mechanisms described above are expected to take place at the shallower depths of the faults at these sites (below 50 MPa (Carpenter et al. 2016)), but their relative importance would change. Pressure solution and grain crushing becomes both more important with larger depths and they would have opposite effects on the rate and state parameter \((a-b)\) (an increase for pressure solution and a decrease for grain crushing). On the other side, the viscosity of supercritical CO₂ is one tenth the one of water, which would affect grain lubrication and tend to increase \((a-b)\) (Cornelio and Violay 2020). At higher depths, crystal plastic deformation could be triggered and would result in a semi-brittle behavior (Carpenter et al. 2016). Further investigations would be required using an apparatus that allows to apply higher normal stresses to the sample in order to further describe the influence of the different mechanisms at larger depths.

5. Concluding remarks

In this paper, we investigate the effect of the injection of an acid fluid on the frictional properties of a fault located in a carbonate reservoir. The rate and state parameter \((a-b)\) of a simulated calcite gouge are evaluated using an annular shear apparatus and conducting velocity stepping experiments. The material is dissolved using a strong acid prior to mechanical tests in order to investigate the potential effect of weak acids in the long-term. We observe that the long-term exposure to an acid fluid can induce a decrease in the apparent friction and an increase in the rate and state parameter \((a-b)\) for a wet fault by dissolving the small particles and changing the fractal
number of the grain size distribution, whereas dry experiments exhibit a decrease of parameter $(a-b)$ with dissolution. Our mechanical results are consistent with an interpretation that the frictional behavior of dry samples is controlled by grain breakage, which leads to a velocity weakening when the particles have been exposed to an acid. The presence of water induces different competing mechanisms: it promotes grain breakage and triggers pressure-solution and intergranular lubrication. Here, it is suggested that the dissolution of the grains causes a transition for the frictional behavior to be controlled by grain breakage and pressure-solution to a behavior more influenced by intergranular lubrication. However, the physical processes driving the shear behavior of the granular samples need to be further investigated and constrained from microstructural observations, which will be the focus of future studies. Finally, these experiments enable us to estimate that chemical reactions could potentially induce the reactivation of faults by modifying the grain size distribution and, thus, decreasing the apparent friction but also prevent seismic slip in a storage site by increasing the rate and state parameter $(a-b)$ of the fault. However, this tendency needs to be confirmed by experiments performed with larger normal stress corresponding to the depths of injection.

Acknowledgments

This work was supported by the French National Research Agency (ANR FISIC n° ANR-11-SEED-0003) and the Southern California Earthquake Center (SCEC), award number 118062196. SCEC is funded by NSF Cooperative Agreement EAR-1033462 and USGS Cooperative Agreement G12AC20038.

References

Boullier, Anne Marie, En Chao Yeh, Sébastien Boutareaud, Sheng Rong Song, and Chin Ho

Tembe, Sheryl, David A. Lockner, and Teng Fong Wong. 2010. “Effect of Clay Content and

